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1 Introduction

In this paper we revisit the multinomial multiperiod Probit (MMP) model and

discuss formal parameter identification and likelihood evaluation. The MMP

model represents a flexible framework to analyze repeated discrete choices such

as, e.g., the living arrangement of the elderly (Börsch-Supan et al., 1990) or the

brand choice in successive purchase occasion (McCullock and Rossi, 1994).

The standard dynamic specification commonly used in the literature assumes

that the innovations to the utility differences w.r.t. the utility of the baseline de-

cision follow a diagonal AR process, implicity treating the utility of the baseline

decision as non-random – see, e.g., Börsch-Supan et al. (1990), McCullock and

Rossi (1994), Geweke et al. (1997). However, such a specification is not invariant

w.r.t. the choice of the baseline decision. This implies that parameter estimates

obtained under different baseline alternatives are not one-to-one transformations

of one another and, thus, not directly comparable. Here we propose a dynamic

specification of the MMP model which is invariant w.r.t. the chosen baseline al-

ternative. Moreover, it identifies parameters of the stationary covariance matrix

which are not identified under the standard specification. These formal identifi-

cation results will be illustrated by MC experiments.

The main obstacle to the practical implementation of the MMP is the diffi-

culty in computing the choice probabilities involving high-dimensional truncated

integration of a multivariate normal distribution. Thus likelihood-based esti-

mation of the MMP model typically relies upon Monte Carlo (MC) integration

(see Geweke and Keane, 2001). The most popular MC technique used for the

computation of Gaussian choice probabilities is the GHK procedure developed by

Geweke (1991), Hajivassiliou (1990), and Keane (1994). It has been applied to the
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MMP model to obtain simulated ML estimates as well as estimates based on the

method of simulated moments (see, e.g., Börsch-Supan et al., 1990, Keane, 1994,

and Geweke et al., 1997). In an extensive study of alternative MC-procedures

for the evaluation of probabilities, Hajivassiliou et al. (1996) find that GHK is

the numerically most reliable among the considered alternatives. However, as

illustrated by the MC study of Geweke et al. (1997), parameter estimates for

the MMP model obtained by ML under GHK likelihood evaluation with the

frequently used simulation sample size of 20 draws can be significantly biased,

especially when the serial correlation in the innovations is strong.

As we shall argue further below the GHK procedure relies on importance

sampling densities which ignore critical information relative to the underlying

correlation structure of the model under consideration, leading to potentially

significant numerical efficiency losses. In order to incorporate such information,

we propose here to combine GHK with the Efficient Importance Sampling (EIS)

methodology developed by Richard and Zhang (2007). EIS represents a power-

ful and generic high-dimensional integration technique, which is based on simple

Least-Square approximations designed to maximize the numerical efficiency of

the probability MC approximations. As such the GHK-EIS is well suited to han-

dle the correlation structure in the MMP model and, thereby, provides highly

accurate likelihood approximations. This approach is illustrated through a set

of MC experiments. We compare the sampling distribution and the numerical

accuracy of the ML estimator for the MMP model using GHK-EIS with those

based on standard GHK. Our most important result is that under a common sim-

ulation sample size for both procedures, GHK-EIS leads to substantial numerical

efficiency gains relative to GHK. Furthermore, the large biases of the ML esti-

mators for the MMP model under GHK become negligible under the GHK-EIS
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with only 20 draws.

The remainder of this paper is organized as follows. In the next section we

discuss formal identification of the MMP model and propose a specification of the

MMP which is invariant w.r.t. the selection of the baseline category. In Section

3 we describe the GHK-EIS procedure in the present context. The results of the

MC experiments are discussed in Section 4 and conclusions are drawn in Section

5.

2 Parametrization and Identification

Identification of multinomial Probit models has been extensively discussed in the

literature - see, e.g., Bunch (1991), Keane (1992), and Train (2003). The static

one-period model is well understood and is discussed below mainly for the pur-

pose of introducing notation. The dynamic multi-period specification is revisited

in greater details. We shall argue that the standard autoregressive model, as

discussed, e.g., by Börsch-Supan et al. (1990) and Geweke et al. (1997) can be

reinterpreted as a latent common factor model and, relatedly, is not invariant with

respect to the selection of the baseline category. We shall propose an alterna-

tive specification which is invariant w.r.t. such selection and identifies coefficients

which are not identified in the standard model.

2.1 Static Multinomial Probit

Let U = (U1, ...., UJ+1)
′ denote a (J + 1)-dimensional vector of normally dis-

tributed random utilities

U ∼ NJ+1(µ, Σ), (1)

3



where Uj (j = 1, . . . , J +1) denotes the utility of the jth alternative. Alternative

k is chosen if Uk > Uj for all j 6= k. In most applications µ would be a linear

function of observable exogenous variables but we shall treat it here as an uncon-

strained vector of unknown coefficients, focussing our attention on the (partial)

identification of Σ . Actually, identification (whether formal or qualitative) of the

coefficients of the exogenous variables has been extensively discussed elsewhere -

see, e.g., Bunch (1991) and Keane (1992). Keane in particular shows that exclu-

sive restrictions on the exogenous coefficients can significantly contribute to the

qualitative identification of covariance parameters in Σ.

Observations consist solely of the indices of the selected alternatives, there-

fore, only depending upon utility differences. The standard approach consists

of selecting a baseline alternative, say alternative J + 1 and expressing all other

utilities in differences from UJ+1. This amounts to introducing the non-singular

transformation of variables

U∗ =

(
YJ

UJ+1

)
=

(
∆J

e′(J+1)

)
U = QJU, (2)

where ∆J is the J × (J + 1) matrix

∆J = (I(J)
... − ι(J)), (3)

ι′(J) = (1, . . . , 1) and e′(J+1) is the unit vector (0,. . . ,0,1). Let partition the covari-

ance matrix of U∗ conformably with (Y ′
J , UJ+1), say

Var(U∗) = QJΣQ′
J =




Ψ Ψb

b′Ψ υ2 + b′Ψb


 . (4)
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It follows that

YJ ∼ NJ(∆Jµ, Ψ) and UJ+1|YJ ∼ N1(a + b′Y, υ2), (5)

with a = (e′J+1 − b′∆J)µ. Under the baseline category J + 1 the parameters

θ1 = (∆Jµ, Ψ) are identified up to a proportionality constant but since only the

utility differences YJ (or, as below, one-to-one transformations of YJ) are relevant

for the decisions, the parameters θ2 = (a, b, υ2) are unidentified. Next consider

what happens when alternative j 6= J + 1 is selected as baseline alternative.

Since Ui − Uj = (Ui − UJ+1) − (Uj − UJ+1), UJ+1 − Uj = −(Uj − UJ+1), and

Uj = (Uj−UJ+1)+UJ+1, we introduce the following non singular transformation

U∗
j =

(
Yj

Uj

)
=

(
Pj 0

e′(j) 1

)
U∗, (6)

where Pj denotes the J × J non-singular matrix

Pj =




I(j−1) −ι(j−1) 0

0 −1 0

0 −ι(J−j) I(J−j)




, (7)

with P−1
j = Pj. It immediately follows that

Yj ∼ NJ(Pj∆Jµ , PjΨP ′
j) and Uj|Yj ∼ N1(a + b′jYj , υ2), (8)

with b′j = −e′(j) + b′Pj. Note that Equation (8) remains valid for j = J + 1

with PJ+1 = I(J) and bJ+1 = b. The parameters (Pj∆Jµ, PjΨP ′
j) and (a, b′j, υ

2)

are trivial one-to-one transformations of θ1 and θ2, respectively. Whence, an
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approach which consists of leaving θ2 unspecified is invariant with respect to the

selection of the baseline alternative since the likelihood function depends solely

on θ1, irrespective of the reference category.

2.2 Dynamic Multiperiod Multinomial Probit

In order to explore the implicit restrictions underlying the conventional approach,

as presented, e.g., by Börsch-Supan et al. (1990) and Geweke et al. (1997), we

start by assuming first-order autocorrelation for the shocks to the individual

utilities. In particular, let Ut = (U1t, . . . , UJ+1t)
′ denote the vector of utilities in

time period t which evolve according to

Ut = µt + εt, εt|εt−1 ∼ NJ+1(Rεt−1, Σ), t = 1, . . . , T. (9)

We apply the same baseline transformation as in the static case - see Equations

(2) and (3). Thus we obtain

U∗
t = QJUt = µ∗t + ε∗t , ε∗t |ε∗t−1 ∼ NJ+1(R∗ε∗t−1, Σ∗), (10)

with

µ∗t = QJµt, ε∗t = QJεt, Σ∗ = QJΣQ′
J , R∗ = QJRQ−1

J , (11)

where QJ is defined in Equation (2) and

Q−1
J =

(
I(J) ι(J)

0 1

)
. (12)
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The first step consists in deriving the joint distribution of {ε∗t}T
t=1, For small T

it is generally assumed that ε∗1 is drawn from the stationary distribution of ε∗t .

Let Φ∗ denote the corresponding stationary covariance matrix. It satisfies the

identity

Σ∗ = Φ∗ −R∗Φ∗R′
∗. (13)

The stationary covariance between ε∗s and ε∗t is given by

Cov(ε∗t , ε
∗
s
′) = Rt−s

∗ Φ∗, s ≤ t. (14)

As in Equation (4), the non-observability of the baseline utility calls for parti-

tioning Φ∗ into

Φ∗ =




Ψ Ψb

b′Ψ υ2 + b′Ψb


 . (15)

Next, let jt represents the particular choice observed in period t and let ε∗jt

denote the transformation of ε∗t associated with the observation jt. Following

Equation (6), the J-dimensional vector ε∗jt
is given by

ε∗jt
= (Pjt

... 0) ε∗t . (16)

As in the static case the probability that alternative jt is chosen in period t

depends only on ε∗jt
. The stationary distribution of {ε∗jt

}T
t=1 is characterized by a

covariance matrix containing the following blocks:

Var(ε∗jt
) = PjtΨP ′

jt
, Cov(ε∗jt

, ε∗js

′) = PjtR
∗
t−sΨP ′

js
, (17)
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where

R∗
t−s = (I(J)

... 0) Rt−s
∗

(
I(J)

b′

)
. (18)

According to these expressions we conclude the following: (i) As in the static

case ∆Jµ and Ψ are identified up to a proportionality factor. (Note that here

Ψ denotes the stationary covariance matrix of ∆Jεt.) (ii) Identification of (R, b)

requires that the transformation of (R, b) into {R∗
i }T−1

i=1 is injective. Since there

are at most J(J +1) distinct elements in (R, b), the moments in (17) imply over-

identification restrictions on {Ri
∗}T−1

i=1 and ML estimation as discussed further

below has to account for these implied restrictions. But we have also to account

for the possibility that (R, b) might be under-identified.

2.2.1 Standard Multinomial Multiperiod Probit

In the present paper we restrict our attention to two particular MMP specifica-

tions of R. The first one is the one commonly discussed in the literature (see,

e.g., Börsch-Supan et al., 1990 and Geweke et al., 1997) whereby the differences

∆Jεt are assumed to follow a diagonal AR(1) process. This implies that the first

J rows of R∗ are of the form

(I(J)
... 0) R∗ = (Γ

... 0), (19)

where Γ denotes a diagonal matrix with elements {ρj}J
j=1. It immediately follows

that the ρjs are identified but that, as for the static case, b is not. It is instructive

to examine more closely the implications of this specification in terms of the initial

R matrix in Equation (9). One verifies that Equation (19) requires that R be of
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the following form

R =

(
Γ −Γ · ι(J)

0 0

)
+ ι(J+1) · r′, (20)

with r ∈ RJ+1 unrestricted (except for stationarity constraints).

This MMP specification calls for three qualifications. First, it is obviously

not invariant with respect to the baseline alternative except in the special case

where R = ρI(J+1). Next, the implied form of the matrix R given by Equation

(20) suggests that r′εt−1 can be interpreted as a latent common factor to all J +1

components of εt. It only differs from εJ+1t by an innovation and is eliminated by

differencing w.r.t. UJ+1t. Finally, R includes additional restrictions which implies

that after differencing it simplifies into an diagonal AR(1) in the differences. Un-

der such interpretation it would be natural to model UJ+1t exclusively in terms

of exogenous variables which are constant across alternatives. Moreover, inter-

preting UJ+1t as a latent common factor rather than a baseline alternative leads

to considering that there are only J actual alternatives. An alternative interpre-

tation to this specification suggested by Geweke et al. (1997) is that the baseline

utility UJ+1t is non random with εJ+1t = 0 for all t (and r′ = 0).

2.2.2 Invariant Multinomial Multiperiod Probit

Short of the above justifications, one might prefer dynamic MMP specifications

which are invariant with respect to the choice of the baseline alternative as for

the static case. One such specification which we discuss next is that where R is

diagonal with diagonal elements {ρj}J+1
j=1 . In such a case the elements of R∗

t−s in

9



Equation (18) are given by

[R∗
t−s]i,i = ρt−s

i + (ρt−s
i − ρt−s

J+1)bi, i = 1, . . . J (21)

[R∗
t−s]i,j = (ρt−s

i − ρt−s
J+1)bj, i 6= j = 1, . . . J. (22)

Invariance obtains as the result of the following theorem together with the fact

that the stationary covariance matrix in Equation (17) can be rewritten as

Cov(ε∗jt
, ε∗js

′) = PjtR
∗
t−sPjtPjtΨP ′

js
, where Pj is defined in Equation (7).

Theorem 1. The matrix PjR
∗
t−sPj has the same analytical form as R∗

t−s up

to a permutation between the pairs (ρj, bj) and (ρJ+1, bJ+1) with bJ+1 = −(1 +
∑J

i=1 bi).

Proof. The proof is similar for all values of t − s ≥ 1 and is given here only

for t − s = 1. In view of Equation (7), we have the following five combinations

to consider:

(i) [PjR
∗
1Pj]j,j = e′(j) R∗

1 ι(J) = ρj + (ρj − ρJ+1)
∑J

i=1 bi

= ρJ+1 + (ρJ+1 − ρj)bJ+1

(ii) [PjR
∗
1Pj]j,k = −e′(j) R∗

1 e(k) = (ρJ+1 − ρj)bk,

(iii) [PjR
∗
1Pj]k,j = (e′(j) − e′(k)) R∗

1 ι(j) = ρj + (ρj − ρJ+1)
∑J

i=1 bi − ρk

−(ρk−ρJ+1)
∑J

i=1 bi = (ρk−ρj)bJ+1

(iv) [PjR
∗
1Pj]k,l = (e′(k) − e′(j)) R∗

1 e(l) = (ρk − ρJ+1)bl − (ρj − ρJ+1)bl

= (ρk − ρj)bl

(v) [PjR
∗
1Pj]k,k = (e′(k) − e′(j)) R∗

1 e(k) = ρk + (ρk − ρj)bk. 2
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Next, we discuss the identification of (ρ1, . . . , ρJ+1) and b. We first note that

for J + 1 = 2, R∗
t−s reduces to a scalar and, furthermore, that

ρt−s
1 + (ρt−s

1 − ρt−s
2 )b1 ≡ ρt−s

2 + (ρt−s
2 − ρt−s

1 )b2, (23)

with b2 = −(1 + b1). Whence, (ρ1, ρ2) and b1 are identified only up to a permu-

tation between (ρ1, b1) and (ρ2, b2). For J +1 > 2, identification follows from the

following theorem.

Theorem 2. (ρ1, . . . , ρJ+1) and b are identified as long as there are at least

two pairs of distinct ρjs.

Proof. In view of theorem 1, we only need to consider the pairs (ρj, ρJ+1).

Consider first the case where ρ1 6= ρJ+1 and ρj = ρJ+1 for j > 1. Then, except

for its first row, R∗
t−s is diagonal (see Equations 21 and 22). It follows that

ρ2, ..., ρJ are identified. But we can still permute ρ1 and ρJ+1 (as above for the

case J + 1 = 2) with bJ+1 = −(1 + b1) and changing the sign of all other bjs.

Suppose next two (or more) ρi are different form ρJ+1 and different from each

other, say ρ1 and ρ2. The leading 2× 2 block of R∗
t−s is given by

[R∗
t−s]1:2,1:2 =




ρt−s
1 + (ρt−s

1 − ρt−s
J+1)b1 (ρt−s

1 − ρt−s
J+1)b2

(ρt−s
2 − ρt−s

J+1)b1 ρt−s
2 + (ρt−s

2 − ρt−s
J+1)b2


 , (24)

for t − s = 1, 2, . . .. As for the case where J + 1 = 2 in Equation (23), we only

need to consider permutations between (ρi, bi) for i = 1 and/or 2 and (ρJ+1, bJ+1).

But any such permutation is excluded by the off-diagonal elements of the leading

block. 2
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Theorem 2 implies that the invariant specification of the MMP with diagonal

R identifies coefficients of the stationary covariance matrix which are not iden-

tified in the standard specification used, e.g., by Börsch-Supan et al. (1990) and

Geweke et al. (1997). These identification results for J +1 ≥ 2 will be illustrated

in section 4.3 below. Finally, we note that the standard specification in Equation

(20) and the invariant specification with diagonal R are non-nested within one

another.

3 GHK and GHK-EIS Algorithm

The presentation of the generic GHK and GHK-EIS is fairly straightforward as

it relies upon standard Gaussian algebra. Moreover, GHK turns out to be a

special case of the GHK-EIS so that only the latter needs to be presented in full.

In section 3.1 we present the GHK-EIS algorithm under streamlined notation

ignoring individual and time indices. Its application to the static model and to

the multiperiod models introduced above are presented in Section 3.2 and 3.3,

respectively.

3.1 GHK-EIS baseline algorithm

The probabilities to be computed are those associated with events of the form

y < 0, where y′ = (y1, . . . , yM) denotes a M -dimensional multivariate normal

latent random vector with mean µ and covariance matrix V . Let L denote the

lower triangular Cholesky decomposition of V so that V = LL′. It follows that y

is given by

y = µ + Lη, η ∼ NM(0, I(M)). (25)
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We aim at computing efficiently the probability that y ∈ D, where D = {y; yτ <

0, τ = 1, . . . , M}.
Let `′τ denote the τth (lower triangular) row of L, partitioned as

`′τ = (γ′τ , δτ ), (26)

with γτ ∈ Rτ−1 and δτ > 0. The τth component of y is given by

yτ = µτ + γ′τη(τ−1) + δτητ , (27)

with η′(τ−1) = (η1, . . . , ητ−1) and η(0) = ∅. The probability to be computed is

given by

P (D) =

∫

RM

M∏
τ=1

ϕτ (η(τ))dη, (28)

with

ϕτ (η(τ)) = I(ητ < − 1

δτ

[µτ + γ′τη(τ−1)]) φ(ητ ), (29)

where I denotes the indicator function and φ the standardized normal density

function. Both GHK and GHK-EIS are MC Importance Sampling (IS) techniques

which aim at constructing auxiliary parametric sequential samplers of the form

m(η; a) =
M∏

τ=1

mτ (ητ |η(τ−1), aτ ), (30)

with a′ = (a1, . . . , aM) ∈ A = ×M
τ=1Aτ . The corresponding IS estimate of P (D)

is then given by

P̂S(D; a) =
1

S

S∑
s=1

ω(η̃(s); a), where ω(η; a) =
M∏

τ=1

ϕτ (η(τ))

mτ (ητ |η(τ−1), aτ )
(31)
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and {η̃(s); s = 1, . . . , S} denotes S i.i.d. simulated trajectories drawn from m. A

trajectory is a sequential draw of η whereby η̃
(s)
τ is drawn from mτ (ητ |η̃(s)

(τ−1), aτ ).

For a preassigned class of auxiliary samplers M = {m(η; a); a ∈ A} whose se-

lection is discussed below, the objective of EIS is that of selecting â ∈ A which

(approximately) minimizes the MC sampling variance of P̂S(D; a). The EIS al-

gorithm is briefly presented next in order to establish notation. See Richard and

Zhang (2007) for details.

Note that the integral of ϕτ (η(τ)) with respect to ητ is a function of η(τ−1).

Whence, we cannot approximate it directly by a proper density mτ (ητ |η(τ−1), aτ )

which integrates to one w.r.t. ητ by definition. Instead we shall approximate

ϕτ (η(τ)) as a function of η(τ) by a density kernel kτ (η(τ); aτ ) with known functional

integral χτ (η(τ−1); aτ ) in ητ . The relationship between χτ and mτ is given by

mτ (ητ |η(τ−1), aτ ) =
kτ (η(τ); aτ )

χτ (η(τ−1); aτ )
, with χτ (η(τ−1); aτ ) =

∫

R
kτ (η(τ); aτ )dητ . (32)

The integral in Equation (28) is then rewritten as

P (D; a) = χ1(a1)

∫

RM

M∏
τ=1

ϕτ (η(τ)) · χτ+1(η(τ); aτ+1)

kτ (η(τ); aτ )
·

M∏
τ=1

mτ (ητ |η(τ−1), aτ )dη,

(33)

with χM+1(·) ≡ 1. EIS aims at selecting values of aτ which minimizes the MC

sampling variances of the ratios ϕτχτ+1/kτ . As described in greater details in

Richard and Zhang (2007), near optimal values {âτ ; τ = 1, . . . ,M} obtain as

solutions of the following backward recursive sequence of fixed point auxiliary
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Least Squares (LS) problems (for τ = M,M − 1, . . . , 1):

(κ̂τ , âτ ) = arg min
κτ ,aτ

S∑
s=1

{
ln

[
ϕτ

(
η̃

(s)
(τ)

) · χτ+1

(
η̃

(s)
(τ); âτ+1

)]
(34)

−κτ − ln kτ

(
η̃

(s)
(τ); aτ

)}2

,

where {η̃(s), s = 1, . . . , S} denotes i.i.d. trajectories drawn from m(η; â) – whence

the need for fixed point iterations on these auxiliary LS problems. As starting

values we propose to use the values of the auxiliary parameters a implied by the

GHK sampler discussed further below. Note that if kτ is a kernel of a (truncated)

Gaussian density, as it is the case below, the LS problems in Equation (34) are

linear under their natural parametrization in the sense of Lehmann (1986, Section

2.7). In order to guarantee fast and smooth fixed-point convergence it is critical

that all trajectories {η̃(s)} be obtained by a transformation of a set of Common

Random Numbers (CRNs) {ũ(s)} pre-drawn from a canonical distribution, i.e. one

that does not depend on the parameters a. In the present context, the CRNs

consists of draws from a uniform distribution on [0, 1] to be transformed into

truncated Gaussian draws from mτ (ητ |η̃(s)
(τ−1), aτ ) by inversion.

The following theorem provides closed form recursive expressions for GHK-

EIS evaluation of P (D) as defined in Equations (32) to (34).

Theorem 3. If

(i) χτ+1(η(τ), aτ+1) is of the form

χτ+1(η(τ); aτ+1) = Φ(cτ+1 − d′τ+1η(τ)) · χ∗τ+1(η(τ)), (35)

where Φ denotes the standardized normal c.d.f. and χ∗τ+1 the Gaussian den-
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sity kernel

χ∗τ+1(η(τ)) = exp−1

2
(η′(τ)P

∗
τ+1η(τ) − 2η′(τ)q

∗
τ+1 + r∗τ+1); (36)

(ii) kτ (η(τ); aτ ) is defined as the following product of Gaussian density kernels

kτ (η(τ); aτ ) = ϕτ (η(τ)) · χ∗τ+1(η(τ)) · k∗τ (η(τ)), (37)

where ln k∗τ denotes an EIS quadratic approximation to ln Φ of the form

−2 ln Φ(ωτ )
.
= α̂τω

2
τ + 2β̂τωτ + κ̂τ , (38)

where ωτ = cτ+1 − d′τ+1η(τ);

Then χτ (η(τ−1), aτ ) has the same analytical form as χτ+1(η(τ), aτ+1) with coeffi-

cients (cτ , dτ , P
∗
τ , q∗τ , r

∗
τ ) obtained as described in the proof which follows.

Proof. The proof follows from a sequence of standard algebraic operations on

Gaussian kernels.

Step 1: Recombine the three kernels in Equation (37) into a single one of the

form

−2 ln kτ (η(τ); aτ )
.
= η′(τ)Pτη(τ) − 2η′(τ)qτ + rτ + ln(2π) (39)

with the symbol
.
= momentarily accounting for the omission of the indicator
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function in Equation (29) and

Pτ = P ∗
τ+1 + α̂τdτ+1d

′
τ+1 + e(τ)e

′
(τ) (40)

qτ = q∗τ+1 + (α̂τcτ+1 + β̂τ )dτ+1 (41)

rτ = r∗τ+1 + α̂τc
2
τ+1 + 2β̂τcτ+1 + κ̂τ , (42)

with e′(τ) = (0, . . . , 0, 1)

Step 2 (for τ > 1): Partition Pτ and qτ conformably with η(τ) = (η′(τ−1), ητ )

into

Pτ =




P τ
00 P τ

01

P τ
10 P τ

11


 , qτ =




qτ
0

qτ
1


 . (43)

Next, factorize kτ into the product of a Gaussian kernel for ητ |η(τ−1) and one for

η(τ−1), say

−2 ln kτ (η(τ); aτ )
.
= P τ

11[ητ − m̄τ (η(τ−1))]
2 + η′(τ−1)P

∗
τ η(τ−1)

−2η′(τ−1)q
∗
τ + s∗τ + ln(2π), (44)

with

m̄τ (η(τ−1)) =
1

P τ
11

(qτ
1 − P τ

10η(τ−1)), P ∗
τ = P τ

00 −
1

P τ
11

P τ
01P

τ
10 (45)

q∗τ = qτ
0 −

1

P τ
11

P τ
01q

τ
1 , s∗τ = rτ − 1

P τ
11

(qτ
1 )2. (46)

Step 3: Integrate the ητ Gaussian kernel over the support associated with
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ϕτ (η(τ)) as defined by Equation (29) – accounting for the the indicator

1√
2π

∫

R1

I(ητ < − 1

δτ

[µτ + γ′τη(τ−1)]) · exp−1

2
P τ

11[ητ − m̄τ (η(τ−1))]
2dητ

=
1√
P τ

11

Φ(cτ − d′τη(τ−1)), (47)

with

cτ = −
√

P τ
11

(
µτ

δτ

+
qτ
1

P τ
11

)
, dτ =

√
P τ

11

(
γτ

δτ

− P τ
01

P τ
11

)
. (48)

Finally, the log of the multiplicative constant in Equation (47) is combined

with s∗τ in Equation (46) so that r∗τ is given by

r∗τ = s∗τ + ln P τ
11. (49)

Note that for τ = 1 with η1|η(0) = η1, we skip step 2 and delete all subsequent

terms with a subscript 0. 2
The simplicity of the GHK-EIS auxiliary regression follows from the fact that

the first two factors in kτ as defined in Equation (37) are also included in the

product ϕτχτ+1, where χτ+1 was defined in Equation (35). Whence, these two

factors cancel out in the auxiliary regression of ln(ϕτχτ+1) on ln kτ which simpli-

fies into a trivial bivariate OLS regression of ln Φ(ωτ ) on ω2
τ and ωτ and a constant

as defined in Equation (38), with ωτ = cτ+1 − d′τ+1η(τ). Additional implementa-

tion details for the static and multiperiod models are discussed in the next two

subsections.

Note also that theorem 3 covers standard GHK as special case with α̂τ =

β̂τ = κ̂τ = 0 such that the GHK sampling densities have the form

mτ (ητ |η(τ−1), aτ ) =
I(ητ < − 1

δτ
[µτ + γ′τη(τ−1)]) φ(ητ )

Φ(− 1
δτ

[µτ + γ′τη(τ−1)])
, τ = 1, ...,M. (50)
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It trivially follows that GHK is numerically less efficient than GHK-EIS. Note in

particular that the GHK density mτ incorporates the constraints that (y1, ..., yτ ) <

0, but neglects the correlated information (yτ+1, ..., yM) < 0. This implies that

draws form mτ ignore potentially critical information, which would allow to ad-

just the region of importance for ητ , leading to potential efficiency losses of the

MC-GHK estimate for the probability P (D) (see also Stern, 1997). Accord-

ingly, the GHK density mτ can be interpreted as a filtering density incorporating

the constraints on y only up to element τ . In contrast, EIS-GHK produces by

its back-recursive transfer of the integrating constants χt – implemented by the

back-recursive LS-problems (34) – sequential sampling densities for ητ , which are

conditional on the entire set of constraints on y.

3.2 GHK-EIS implementation for the static model

The application of GHK-EIS to the static model introduced in section 2.1 is

straightforward. Under the assumption that observations are independent of one

another the likelihood function for a particular observation is an integral of the

form given in Equations (28) and (29) with M = J . Let ji denote the index of

the alternative chosen by observation i. According to Equation (8), Equation

(25) is rewritten as

Yji
= Pji

∆Jµi + Lji
ηi, ηi ∼ NJ(0, I(J)), (51)

where Lji
denotes the Cholesky decomposition of the the covariance matrix

Pji
ΨP ′

ji
. Note that since there are only J + 1 alternatives, we have at most

J + 1 Cholesky decompositions to compute.
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3.3 GHK-EIS implementation for the multiperiod models

Under autocorrelation in the MMP model discussed in section 2.2 , the likelihood

function for a particular individual has to properly account for time dependence

across T successive observations. For moderate time dimensions, the simplest

way to evaluate the likelihood for an individual amounts to express it as a single

M = J · T dimensional integral of the form given by Equations (25) to (29) with

y = (Y ′
j1

, ..., Y ′
jT

)′, where Yjt = Pjt∆JUt. The lower triangular matrix L in Equa-

tion (25) then denotes the Cholesky decomposition of the joint covariance matrix

of (ε∗j1 , ..., ε
∗
jT

) as defined in Equations (17) and (18). The main advantage of this

one-shot procedure (also used to implement the GHK for a multiperiod multino-

mial Probit, e.g., by Geweke et al., 1997) lies in its relative ease of programming

since, beyond the construction of the larger J · T -dimensional covariance matrix,

it relies upon the same GHK-EIS steps as the static model. Note in particu-

lar that the EIS auxiliary regressions in Equation (38) depend upon only three

coefficients irrespectively of the size J · T .

Nevertheless, if J · T were significantly larger, there are two alternatives to

the brute force Cholesky decomposition of a single J · T -dimensional covariance

matrix which could be considered at the cost of additional programming. The

first alternative would consist of applying the baseline GHK-EIS procedure one-

period at the time to the J-dimensional integrals with appropriate back-transfer

of the integrating factor χ(·) in order to account for autocorrelation. In a nutshell,

this would require redefining η(τ−1) in Equations (27) to (47) as the t + (τ − 1)-

dimensional vector η′(τ−1) = (ε∗−1
′, η1, ..., ητ−1), where ε∗−1 denotes the vector of

innovations ε∗jt−1
associated with the alternative selected in period t − 1 and

η1, ..., ητ−1 represents the first τ−1 standardized innovations of period t associated

with the choice jt. The integration factor χ1(a1t) in Equation (31) would then
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depend on ε∗−1 and would have to be transferred back into the period t − 1

integral. This would imply that, except for period T for which χM+1(·) remains

set to one, all other period integrals include an initial carry-over term of the form

χ1t+1(ε
∗
jt
; a1t+1). The principle of such a sequence of J-dimensional integrals is

conceptually straightforward but tedious to implement.

A second alternative consists of constructing the (J+1)·T dimensional covari-

ance matrix of (ε∗t , ..., ε
∗
T ) instead of that of (ε∗j1 , ..., ε

∗
jT

). While doing so increases

the dimension of the relevant covariance matrix by T , it also replaces the rectan-

gular transformation in Equation (16) by the square transformation

ε¦jt
=




Pjt 0

0 1


 ε∗t = Qjtε

∗
t , (52)

with Q−1
jt

= Qjt . The Cholesky decomposition of the joint covariance matrix

of (ε¦j1 , ..., ε
¦
jT

) can be efficiently computed by application of lemma A1 in the

Appendix and is based upon individual Cholesky decomposition of (at most J+1)

matrices of the form QjtΦ∗Q′
jt
. Note that the T additional integrals with respect

to the (J + 1)-th element of ε¦jt
are un-truncated and produce a probability Φ(·)

equal to one in Equation (35). Theorem 3 still applies with (α̂J+1, β̂J+1, κ̂J+1) all

set equal to zero in Equation (38).
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4 Monte Carlo Results

4.1 Simulated Choice Probabilities for a Static Multino-

mial Probit

In order to evaluate the relative numerical accuracy of GHK-EIS and standard

GHK for the static multinomial Probit, we consider the four simple examples

used by Stern (1992) and Börsch-Supan and Hajivassiliou (1993). In these stud-

ies, choice probabilities according to Equation (5) with J + 1 = 5 categories are

computed for different parameter values of ∆Jµ and Ψ. The parameter values

are given by

Example 1: ∆Jµ = (−1,−0.75,−0.5,−0.2), Ψ =




1

0.2 1

0.3 0.4 1

0.1 0.3 0.5 1




;

Example 2: ∆Jµ = (0, 0, 0, 0), Ψ =




1

0.2 1

0.2 0.4 1

0.2 0.4 0.6 1




;

Example 3: ∆Jµ = (1, 1, 1, 1), Ψ =




1

0.9 1

0 0 1

0 0 0.95 1




;
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Example 4: ∆Jµ = (1.5, 0.75, 0.5, 0.75), Ψ =




1

0.5 1

0.2 0.5 1

0.1 0.2 0.5 1




.

Table 1 summarizes the results for the GHK-EIS and GHK MC approxi-

mations of the choice probabilities. The results which are reported are sample

means, standard deviations and root mean squared errors (RMSE) based upon

1,000 independent replications of both algorithms. Each individual estimate is

based upon a simulation sample size S = 100. The number of EIS (fixed point)

iterations is set equal to three. One GHK-EIS probability evaluation requires

0.0060 s on a Intel Core 2 CPU notebook with 2 GHz for a code written in

GAUSS and a GHK evaluation takes 0.0017 s. The true probability values are

computed using iterated applications of product Gauss formulas (see Atkinson,

1978).

Our results for the standard GHK given in Table 1 are essentially the same as

those reported by Börsch-Supan and Hajivassiliou (1993). Furthermore, we note

that in all four cases the MC standard deviations of GHK-EIS are smaller than

their GHK counterparts indicating that GHK-EIS is, as expected, numerically

more accurate than GHK. We also notice that in the examples 1, 2, and 4 the

improvement of GHK-EIS relative to GHK is substantially larger than in example

3. In fact, while in example 3 the GHK-EIS standard deviation is only 1.6 times

smaller than the GHK counterpart, the GHK-EIS standard deviations in the

remaining cases are between 19 (example 4) and 70 times (example 1) smaller.

An obvious explanation for the comparably small efficiency gain of GHK-EIS

relative to GHK in example 3 is found in the fact that in this case only the first
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and second element and the third and fourth element of ∆JU are correlated.

Accordingly, the integrating factor χ3 to be transferred into the approximation

problem in η(2) (see Equation, 34) does not depend on η(2). Hence, the GHK-EIS

and the GHK sampling density for η2 are equivalent (in addition to that for the

last element, η4, which obtains by construction for all GHK-EIS applications).

Finally, we note that while GHK-EIS requires about three times the computing

time of GHK, the payoff is very substantial, at least for the non pathological

examples 1, 2, and 4, as GHK would require between 360 and 4,900 times as

many draws as GHK-EIS to reach the same accuracy.

4.2 Standard Multinomial Multiperiod Probit

In order to analyze the sampling distribution and numerical accuracy of the ML

estimator based upon GHK and GHK-EIS for the MMP model, we use the same

design of as Geweke et al. (1997). They consider a three alternative (J + 1 = 3)

probit model with T = 10 periods and N = 500 individuals based on the non-

invariant normalization rule discussed in section 2.2.1. In particular, they use the

following data generating process (DGP) for the utility differences of individual

i:

∆JUit = ∆Jµit + ∆Jεit, t = 1, . . . , T, i = 1, . . . , N (53)

with

∆Jµit = (π01 + π11Xit + ψZit1 , π02 + π12Xit + ψZit2)
′ (54)

∆Jεit = Γ · (∆Jεit−1) + vit (55)

vit ∼ N2


0 , (1− ρ1)

2 ·




1 ω12

ω12 ω2
12 + ω2

22





 , (56)
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where Γ is a diagonal matrix with elements (ρ1, ρ2). The regressors Xit and Zitj

(j = 1, 2) are constructed as follows:

Xit = φζi +
√

1− φ2ωit, Zitj = φτij +
√

1− φ2ξitj, (57)

with |φ| < 1 and ζi, ωit, τij and ξitj being i.i.d. standard normal random variables

which are independent among each other.

We use this DGP to construct 20 artificial data sets to obtain the sampling

distribution of the ML-GHK and ML-GHK-EIS estimator. In order to make our

results directly comparable to those of Geweke et al. (1997), we estimated the

MMP for each simulated data set under a different set of CRNs. The resulting

sampling distribution compounds the statistical and numerical variation of the

simulation based estimators. As discussed in Richard and Zhang (2007), the

analysis of the conventional statistical properties of the estimators would actually

require to obtain estimates for the different data set under a fixed set of CRNs.

However, since in the present case the numerical variation of the estimates is

dominated by the statistical variation, the compound sampling distribution of the

estimators provides a very close approximation to their statistical distribution.

In a second experiment we focus our attention on the numerical properties of

ML-GHK and ML-GHK-EIS estimates as MC approximations for the unfeasible

exact ML estimate, by repeating the estimation 20 times under different CRNs

for the first of the simulated data sets.

In our MC study, we consider three out of the 12 different sets of parameter
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values used by Geweke et al. (1997). The three sets considered here are given by

(ρ1, ρ2, ω12, ω22, φ
2) =





(0.5, 0.5, 0.5, 0.866, 0), (set 1)

(0.8, 0.8, 0.5, 0.866, 0), (set 2)

(0.5, 0.5, 0.8, 0.6, 0.8), (set 3)

,

with the mean parameters fixed at

(π10, π11, π02, π12, ψ) = (0.5, 1,−1.2, 1, 1).

The first set of parameters values implies low serial and cross correlation of the

innovations and no serial correlation in the regressors. The second set with in-

creased serial correlation of the innovations represents a worse case scenario for

ML-GHK relative to a Bayesian Gibbs procedure. Finally, the last set, in which

the correlations are low, high and high, respectively, represents the best case sce-

nario for ML-GHK. Results for these three scenarios are found in tables 1, 4, and

9, respectively, in Geweke et al. (1997).

The results of our MC experiments based on these three different sets of

parameter values are summarized in Tables 2–4 where we ran two experiments

for each set, one based upon 20 simulated data sets, the other on 20 different

sets of CRNs for the first simulated data set. For the first experiment we report

the mean, standard deviation and RMSE around the true parameter values (see

column three and four of Tables 2–4). The GHK as well as the GHK-EIS results

are based on a simulation sample size of S = 20, and for EIS we use three

fixed point iterations. For the second experiment we report the mean, standard

deviation and RMSE around the pseudo-true values (see column five and six

of Tables 2–4). The latter are obtained by an ML-GHK-EIS estimate based
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on simulation sample size of S = 10001. For S = 20, one GHK-EIS likelihood

evaluation takes 5 s and a GHK evaluation 1 s for a code written in GAUSS, which

implies that GHK-EIS is computationally more efficient than GHK as soon as

the resulting efficiency gain measured by the ratio of the respective MC standard

deviations exceeds
√

5.

Our results for the statistical distribution of the ML-GHK estimator under

different data sets are essentially the same as those reported by Geweke et al.

(1997). They indicate that the biases of the estimates for the mean parameters

(π10, π11, π02, π12) are typically very small, while, in contrast, the ML-GHK es-

timates for the covariance parameters (ρ1, ρ2, ω12, ω22) are often severely biased.

In fact, the t-statistic constructed for the difference between the true parameter

value and the mean point estimates indicate highly significant biases for ρ1 and ρ2

under parameter set 1 and 3 (see Table 2 and 4) and for all covariance parameters

under set 2 (see Table 3).

Next, the results obtained for GHK-EIS under different data sets indicate that

for the mean parameters the mean point estimates, standard deviations and RM-

SEs are nearly the same as their GHK counterparts for all three data structure.

However, the mean of the GHK-EIS estimates for all covariance parameters are

very close to the data generating values with biases which are not statistically

significant. Thus, in contrast to the standard GHK, a simulation sample size of

S = 20 seems to be sufficient for GHK-EIS to produce nearly unbiased parameter

estimates for the standard MMP model. As illustrated by Geweke et al. (1997),

a much larger size than S = 20 is typically necessary in order to eliminate the

biases of ML-GHK for the covariance parameters. For example, under the sec-

1In order to verify that the pseudo-true values obtained by GHK-EIS with S = 1000 are close
to those obtained from GHK, we also computed the ML-GHK estimates with S = 5000. The
results, not reported here, show that both procedures lead indeed to values which are essentially
identical.
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ond parameter set, a simulation size of at least S = 1280 is needed to reduce the

biases of GHK to the same level as those of GHK-EIS with S = 20. In fact, for

ρ1, ρ2, ω12, and ω22 Geweke et al. (1997, Table 16) report RMSEs for GHK with

S = 1280 of 0.072, 0.079, 0.013, and 0.029 while those for GHK-EIS with S = 20

are according to Table 2 given by 0.066, 0.058, 0.014, and 0.021, respectively.

The results obtained for the repeated parameter estimates under different sets

of CRNs indicate substantial numerical efficiency gains of ML-GHK-EIS relative

to the ML-GHK for all three data structures. For example, the (numerical) stan-

dard deviations for GHK-EIS are between 8 (ω12) and 18 times (ρ1) smaller than

their GHK counterpart under the first parameter set (see Table 2). Furthermore,

the mean GHK-EIS estimates are very close to the pseudo-true ML values under

all three data structures and for all parameters. GHK, on the other hand, while

producing estimates close to the pseudo-true values for the mean parameters,

exhibits relatively large numerical biases for the covariance parameters. Thus,

the significant statistical biases of the ML-GHK estimates (as estimates for the

parameters) found for the covariance parameters are largely driven by numerical

biases of the ML-GHK estimates (as MC estimates of the unfeasible true ML esti-

mate). This is consistent with Geweke et al.’s result showing that the statistical

biases of ML-GHK disappear if the simulation size for GHK is (substantially)

increased, leading to a reduction of the numerical biases.

In order to illustrate how the numerical accuracy of the probability estimates

of GHK and GHK-EIS affects that of the corresponding ML parameter esti-

mates, Figure 1 plots the GHK and EIS-GHK MC estimates of the sectional

log-likelihood functions for the mean parameter ψ and the covariance parameter

ρ1 obtained under 20 different sets of CRNs and a fixed data set. The data are

generated under parameter set 2 and the sectional functions for ψ and ρ1 are
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obtained by setting the remaining parameters equal to their pseudo-true value

given in Table 2. Note that the GHK MC estimates of the sectional log-likelihood

function exhibit a substantially larger variation than their GHK-EIS counterparts

leading to a much broader range of parameter values maximizing the single GHK

MC estimates of the sectional log-likelihood. Moreover, notice that the GHK

estimates of the log-likelihood appear to be significantly downward biased.

4.3 Invariant Multinomial Multiperiod Probit

In order to illustrate the results on formal identification discussed in Section 2.2.2,

we fitted the invariant MMP model with J + 1 = 3 alternatives to simulated

samples of size N = 500 and T = 10.

In particular, we consider the following specification for the utility differences

(w.r.t. to the utility of the third alternative as the baseline utility):

∆JUit = ∆Jµ + ∆Jεit, t = 1, . . . , T, i = 1, . . . , N (58)

with

∆Jµ = (π01 + ψZit1 , π02 + ψZit2)
′ (59)

εit = Rεit−1 + vit (60)

vit ∼ N3 (0, Σ) , Σ = [σik] (61)

where R is a diagonal matrix with elements (ρ1, ρ2, ρ3). The regressor Zitj is

constructed according to Equation (57) with φ = 0. From the specification of

εit given in Equations (60) and (61), we obtain the stationary distribution of
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ε∗it = QJεit = ((∆Jεit)
′, εit3)

′, which is parameterized according to Section 2.2 as

ε∗it ∼ N3


0,




Ψ Ψb

b′Ψ υ2 + b′Ψb





 , with Ψ =




l211 l11l12

l11l12 l212 + l222


 (62)

and b = (b1, b2)
′.

We consider the following values for the original parameters in Equations

(58)–(61):

(π01, π02, ψ, σ11, σ22, σ33, σ12, σ13, σ23, ρ1, ρ2, ρ3)

= (0.5,−1, 1, 1, 1, 1, 0.3, 0.3, 0.3, 0.8, 0.6, 0.3).

The implied values for the identified parameters of the stationary distribution for

ε∗it are given by

(l11, l12, l22, b1, b2) = (1.757, 0.521, 1.288,−0.134,−0.316),

up to a scaling factor for Ψ. For complete identification, we fix the square root of

the first diagonal element of Ψ given by l11 to its true value. Alternatively, one

could set l11 equal to one, which amounts to dividing the parameter true values

and their estimates for (π01, π02, ψ, l11, l12, l22) by 1.757.

As above, we estimated this invariant MMP specification for 20 artificial data

sets by ML-GHK-EIS and ML-GHK both with a simulation sample size of S = 20,

and repeated the estimation for the first data set 20 times under different CRNs.

The results are summarized in Table 5. As for the previous MC experiments, we

report the mean of the point estimates, standard deviation and RMSE across the

20 different data sets as well as across the 20 different sets of CRNs. Additionally,
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Table 5 contains the mean of the asymptotic standard errors across the simulated

data sets.

The MC results for different data sets are fully in line with our earlier results

in Section 2.2.2, confirming that the invariant MMP specification is formally

identified. In particular, the standard deviations and RMSEs of the ML-GHK-

EIS estimates indicate that the three additional parameters of the stationary

covariance matrix (b1, b2, ρ3) which are not identified under the standard MMP

model can be estimated with a reasonable precision, even though their estimates

appear to exhibit, as expected, a somewhat larger variation than those for the

remaining parameters. In fact, the standard deviations for b1, b2, and ρ3 are

0.097, 0.098 and 0.140, while those of the remaining parameters are all below

0.074. Furthermore, we note that the mean of the ML-GHK-EIS asymptotic

standard errors are in fairly close agreement with the corresponding standard

deviation of the GHK-EIS estimate for all parameters of the invariant model,

indicating that the Hessian of the log-likelihood is well behaved.

Comparing the ML-GHK and the ML-GHK-EIS estimates under different

data set reveals the same feature as that observed under the standard MMP:

the GHK-EIS produces point estimates with biases which are not statistically

significant, while the ML-GHK estimates are reasonably close to their true val-

ues only for the mean parameters, but are significantly biased for the covariance

parameters, except for ρ3. Furthermore, we note that for most of the covariance

parameters the mean of the asymptotic standard errors under GHK are substan-

tially smaller than the RMSE which could lead to strongly biased test results in

practical applications. For example, the RMSE for ρ2 is 0.147 while the mean

asymptotic standard errors is only 0.047. In contrast, under GHK-EIS the RMSE

and the mean asymptotic standard errors are much closer to each other. Also
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in line with the results for the standard MMP, GHK-EIS leads to a substantial

increase of numerical precision relative to GHK, with significantly smaller (nu-

merical) standard deviations and RMSEs obtained for a fixed data set and under

different CRNs. Once again, the large numerical biases of the ML-GHK esti-

mates relative to the pseudo-true ML estimates – in particular for the covariance

parameters – are in close accordance with the significant statistical biases of the

ML-GHK estimates relative to the data generating parameter values.

Note finally that the GHK numerical standard deviation is larger than the

statistical standard deviation of the ML-GHK estimates for some of the covari-

ance parameters (b1, b2, ρ2, ρ3). An inspection of the individual estimation re-

sults obtained under different CRNs reveals that the comparably large numerical

standard deviations for those parameters are mainly driven by single ‘outliers’

producing parameters estimates which are very far from the average estimate.

5 Conclusion

We have proposed to combine the GHK probability simulator with Efficient Im-

portance Sampling (EIS) in order to obtain simulated ML estimates of multi-

nomial multiperiod probit (MMP) models. The proposed GHK-EIS procedure

uses simple linear Least-Squares approximations designed to maximize the nu-

merical accuracy of Monte Carlo (MC) estimates for Gaussian probabilities of

rectangular domains within a parametric class of importance sampling densities.

The implementation of GHK-EIS is straightforward and allows for numerically

very accurate and reliable ML estimates of MMP models as illustrated by the

MC results we have reported. In particular, GHK-EIS significantly reduces the

biases of ML estimates obtained under GHK with the commonly used simulation
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sample size of 20 draws.

We have also proposed a MMP specification which is invariant w.r.t. the se-

lection of the baseline category and identifies parameters which are not identified

under the standard approach (such as the parameters governing the dynamics of

the utility for the reference category). The formal identification of the proposed

invariant MMP specification has been illustrated by MC experiments.
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Appendix 1: Efficient Cholesky decomposition

for (ε¦
j1

, ..., ε¦
jT

)

According to Equations (14) and (52), the (J + 1) · T -dimensional stationary

covariance matrix V of (ε¦j1 , ..., ε
¦
jT

) is partitioned into (J + 1) dimensional blocks

of the form

Vts = Cov(ε¦t , ε
¦
s
′) = QtR

t−sΦQ′
s, s ≤ t, (A-1)

with Qt = Q−1
t (the subscripts ∗ and j are deleted for the ease of notation; note

the Qt can only take one of J + 1 different forms, corresponding to each of the

alternatives). Let L denote the lower triangular Cholesky decomposition of V . L

is partitioned conformably with V into blocks Lts for s ≤ t.

Lemma A1. The diagonal blocks of L are given by the following (J + 1)-

dimensional Cholesky decompositions

L11L
′
11 = Q1ΦQ′

1 (A-2)

LttL
′
tt = QtΣQ′

t, with Σ = Φ−RΦR′, t > 1, (A-3)

and the off-diagonal blocks by the products

Lts = (QtR
t−sQs)Lss, s ≤ t. (A-4)

Proof. The proof follows by recursion over the sequence (((t, s), t = s, ..., T ), s =

1, ..., T ). Equation (A-2) trivially follows from the (block) lower-triangular form
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of L. Then for s = 1 and t > 1 we have

Lt1L
′
11 = QtR

t−1ΦQ′
1 = (QtR

t−1Q1)Q1ΦQ′
1 = (QtR

t−1Q1)L11L
′
11. (A-5)

For s > 1, we have

Lt1L
′
s1 +

s−1∑
j=2

LtjL
′
sj + LtsL

′
ss = QtR

t−sΦQ′
s, (A-6)

(under the usual summation convention that for s = 2 the middle summation is

omitted). Whence

LtsL
′
ss = Qt

[−Rt−sΦR′s−1 −
s−1∑
j=2

Rt−j(Φ−RΦR′)R′s−j (A-7)

+Rt−sΦ
]
Q′

s

= QtR
t−sQs

[
Qs(Φ−RΦR′)Q′

s

]
, (A-8)

which, together with (A-3), completes the proof. 2

Note that the proof critically relies on the fact that Qt is square non-singular

with Q−1
t = Qt. It does not generalize to the rectangular transformation (16)

which is why this efficient Cholesky decomposition requires extending ε∗jt
into ε¦jt

.
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Table 1. Simulated Choice Probabilities for
the Static Multinomial Model

true mean std. dev. rmse

Example 1 GHK .02401 .02396 .00070 .00070
GHK-EIS .02401 .00001 .00001

Example 2 GHK .14989 .14956 .00448 .00449
GHK-EIS .14984 .00018 .00019

Example 3 GHK .64718 .64713 .00867 .00867
GHK-EIS .64638 .00529 .00536

Example 4 GHK .49557 .49457 .01356 .01360
GHK-EIS .49537 .00071 .00074

NOTE: Reported statistics are obtained from 1,000 independent replications of
the MC estimation of the probabilities. The GHK and GHK-EIS MC-estimates
are based upon a simulation sample size of S = 100. The true value is calculated
using the ISML subroutine DQAND with a relative accuracy of at least 1e− 6.
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Table 2. ML-EIS-GHK and ML-GHK for the Standard Multiperiod
Multinomial Probit: Parameter Set 1.

diff. data sets fixed data set/diff. CRNs

GHK pseudo GHK
Parameter true GHK EIS true GHK EIS

π01 .500 .512 .512 .548 .551 .548
(.027) (.027) (.0050) (.0005)
[.030] [.029] [.0060] [.0008]

π11 1.000 .998 1.000 1.030 1.031 1.031
(.035) (.036) (.0051) (.0005)
[.035] [.036] [.0053] [.0011]

π02 −1.200 −1.177 −1.179 −1.197 −1.208 −1.199
(.058) (.057) (.0170) (.0016)
[.062] [.061] [.0206] [.0027]

π12 1.000 .997 .998 1.058 1.064 1.060
(.056) (.056) (.0134) (.0015)
[.056] [.056] [.0145] [.0022]

ψ 1.000 .991 .994 1.008 1.009 1.009
(.024) (.024) (.0054) (.0005)
[.025] [.024] [.0054] [.0010]

ω12 .500 .523 .506 .511 .532 .511
(.056) (.051) (.0351) (.0046)
[.060] [.052] [.0410] [.0046]

ω22 .866 .878 .860 .849 .872 .849
(.056) (.063) (.0256) (.0029)
[.057] [.063] [.0344] [.0029]

ρ1 .500 .459 .504 .518 .472 .518
(.028) (.031) (.0106) (.0006)
[.050] [.031] [.0472] [.0006]

ρ2 .500 .413 .495 .475 .388 .477
(.047) (.053) (.0381) (.0035)
[.099] [.053] [.0945] [.0041]

NOTE: The reported numbers for ML-GHK and ML-GHK-EIS are mean, stan-
dard deviation (in parentheses) and RMSE (in brackets) obtained for S = 20.
For the experiment with different data sets (fixed data set and different CRNs)
RMSE is computed around the true (pseudo-true) value. The pseudo-true values
are the ML-GHK-EIS estimates based on S = 1000.
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Table 3. ML-EIS-GHK and ML-GHK for the Standard Multiperiod
Multinomial Probit: Parameter Set 2.

diff. data sets fixed data set/diff. CRNs

GHK pseudo GHK
Parameter true GHK EIS true GHK EIS

π01 .500 .504 .510 .540 .540 .542
(.047) (.048) (.0104) (.0012)
[.047] [.049] [.0104] [.0028]

π11 1.000 .995 1.005 1.017 1.005 1.020
(.042) (.041) (.0079) (.0009)
[.043] [.041] [.0144] [.0032]

π02 −1.200 −1.149 −1.171 −1.136 −1.111 −1.143
(.070) (.061) (.0330) (.0035)
[.087] [.068] [.0416] [.0076]

π12 1.000 .995 1.006 1.047 1.031 1.051
(.049) (.048) (.0155) (.0033)
[.050] [.048] [.0223] [.0056]

ψ 1.000 .985 .998 1.005 0.989 1.007
(.033) (.030) (.0098) (.0010)
[.036] [.030] [.0183] [.0024]

ω12 .500 .556 .510 .431 .483 .445
(.082) (.065) (.0330) (.0104)
[.100] [.066] [.0613] [.0171]

ω22 .866 .908 .859 .749 .817 .766
(.057) (.058) (.0463) (.0107)
[.071] [.058] [.0822] [.0202]

ρ1 .800 .750 .799 .798 .754 .796
(.019) (.014) (.0089) (.0009)
[.053] [.014] [.0448] [.0019]

ρ2 .800 .712 .799 .842 .768 .834
(.033) (.021) (.0210) (.0035)
[.094] [.021] [.0772] [.0091]

NOTE: The reported numbers for ML-GHK and ML-GHK-EIS are mean, stan-
dard deviation (in parentheses) and RMSE (in brackets) obtained for S = 20.
For the experiment with different data sets (fixed data set and different CRNs)
RMSE is computed around the true (pseudo-true) value. The pseudo-true values
are the ML-GHK-EIS estimates based on S = 1000.
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Table 4. ML-EIS-GHK and ML-GHK for the Standard Multiperiod
Multinomial Probit: Parameter Set 3.

diff. data sets fixed data set/diff. CRNs

GHK pseudo GHK
Parameter true GHK EIS true GHK EIS

π01 .500 .503 .505 .500 .501 .501
(.033) (.033) (.0044) (.0005)
[.033] [.034] [.0045] [.0009]

π11 1.000 .995 .999 .938 0.937 0.940
(.029) (.030) (.0037) (.0005)
[.029] [.030] [.0037] [.0025]

π02 −1.200 −1.204 −1.210 −1.102 −1.115 −1.115
(.089) (.099) (.0189) (.0028)
[.089] [.100] [.0232] [.0136]

π12 1.000 .983 .984 .934 0.941 0.937
(.043) (.045) (.0122) (.0019)
[.046] [.048] [.0138] [.0037]

ψ 1.000 1.008 1.016 .936 0.934 0.941
(.044) (.044) (.0042) (.0009)
[.045] [.047] [.0045] [.0054]

ω12 .800 .790 .780 .694 .712 .689
(.064) (.071) (.0233) (.0051)
[.064] [.074] [.0296] [.0070]

ω22 .600 .607 .608 .572 .590 .579
(.049) (.058) (.0170) (.0024)
[.050] [.059] [.0242] [.0068]

ρ1 .500 .457 .489 .509 .479 .507
(.025) (.027) (.0072) (.0006)
[.049] [.029] [.0307] [.0018]

ρ2 .500 .453 .489 .549 .507 .549
(.038) (.042) (.0149) (.0024)
[.060] [.043] [.0451] [.0024]

NOTE: The reported numbers for ML-GHK and ML-GHK-EIS are mean, stan-
dard deviation (in parentheses) and RMSE (in brackets) obtained for S = 20.
For the experiment with different data sets (fixed data set and different CRNs)
RMSE is computed around the true (pseudo-true) value. The pseudo-true values
are the ML-GHK-EIS estimates based on S = 1000.
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Table 5. ML-EIS-GHK and ML-GHK for the Invariant Multiperiod
Multinomial Probit.

diff. data sets fixed data set/diff. CRNs

Para- GHK pseudo GHK
meter true GHK EIS true GHK EIS

π01 mean .500 .501 .515 .537 .517 .539
std. dev. .061 .060 .014 .001
rmse .061 .062 .024 .003
mean asy. s.e. .049 .050

π02 mean −1.000 −.984 −1.011 −.961 −.963 −.969
std. dev. .064 .063 .026 .002
rmse .066 .064 .026 .009
mean asy. s.e. .069 .067

ψ mean 1.000 .995 1.009 1.020 1.009 1.024
std. dev. .021 .019 .007 .0008
rmse .021 .021 .013 .005
mean asy. s.e. .031 .031

l12 mean .521 .476 .521 .550 .484 .552
std. dev. .093 .074 .039 .005
rmse .103 .074 .077 .005
mean asy. s.e. .070 .064

l22 mean 1.288 1.260 1.296 1.291 1.273 1.298
std. dev. .066 .064 .024 .002
rmse .072 .064 .030 .007
mean asy. s.e. .057 .054

b1 mean −.134 −.266 −.151 .000 −.145 −.004
std. dev. .122 .097 .139 .002
rmse .180 .098 .201 .005
mean asy. s.e. .078 .075

b2 mean −.316 −.275 −.312 −.427 −.352 −.416
std. dev. .098 .098 .119 .003
rmse .107 .098 .141 .011
mean asy. s.e. .065 .075

ρ1 mean .800 .821 .803 .775 .782 .775
std. dev. .042 .030 .038 .0006
rmse .047 .030 .039 .0006
mean asy. s.e. .030 .026
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Table 5. Continued.

diff. data sets fixed data set/diff. CRNs

Para- GHK pseudo GHK
meter true GHK EIS true GHK EIS

ρ2 mean .600 .489 .600 .687 .529 .685
std. dev. .096 .064 .193 .002
rmse .147 .064 .251 .003
mean asy. s.e. .047 .045

ρ3 mean .300 .298 .286 .317 .275 .302
std. dev. .160 .140 .190 .004
rmse .160 .140 .194 .016
mean asy. s.e. .088 .110

NOTE: The reported numbers for ML-GHK and ML-GHK-EIS are mean, stan-
dard deviation, RMSE, and the mean of the asymptotic standard errors obtained
for S = 20. The asymptotic standard errors are obtained from a numerical ap-
proximation to the Hessian. For the experiment with different data sets (fixed
data set and different CRNs) RMSE is computed around the true (pseudo-true)
value. The pseudo-true values are the ML-GHK-EIS estimates based on S = 1000.
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Figure 1. Sectional log-likelihood functions for the standard multiperiod multinomial
Probit for parameter ψ (upper panels) and ρ2 (lower panels). The sectional
log-likelihood functions are constructed for a fixed data set (generated under

parameter set 2) using GHK (left panels) and GHK-EIS (right panels) under 20
different sets of CRNs. The remaining parameters are set to their pseudo true values

(see Table 3). The vertical lines indicate the range of the parameter values which
maximize the individual simulated sectional log-likelihood functions.
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