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Abstract

We study long-term incentives for polluting and regulated firms to invest in advanced

abatement technologies, when some new technology is available but an even better techno-

logy will be expected in the future. Firms can invest only once. We find that depending on

the adoption fixed costs all possible combinations of investment patters can occur in social

optimum. Further we show that if the regulator anticipates the arrival of the new technology

he can decentralize socially optimal allocation by charging Pigouvian tax or issuing tradable

permits through announcing his policy and setting ex post optimal policy levels, after firms

have invested.
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1 Introduction

In the last decade the impact of environmental policy instruments on both adoption and the

development of advanced abatement technology has been a major issue of interest in envi-

ronmental economics. Since the early papers by Malueg [1989], Milliman and Prince [1989],

Jung et al. [1996] and others, more recently researchers such as Kennedy and Laplante [1999],

Deniccolo [1999], Montero [2002a, 2002b], Parry [1995,1998,2003], Petrakis and Xepapadeas

[1999] Requate and Unold [2001,2003], and Requate [2005] have investigated how different

policy instruments but also different timing and commitment structures influence the incen-

tives to adopt advanced abatement technology. Except van Soest [2005] and Bulte and van

Soest [2001], in all these models the investment decision is once and for all decision in a cer-

tain environment. In reality, however, the development of further, even better technologies is

to be expected. Hence firms have an option value to postpone their investment decision and

wait until an even better technology is available. Dixit and Pindyck [1994] have developed

an analytical tool box to analyze problems like these.

In this paper we study a model where some advanced abatement technology a is availa-

ble, but an even better technology b may be available in the future. To simplify the analysis

we adopt some modeling features from endogenous growth theory (see Aghion and Howitt,

1998) by assuming that the future technology is exogenous but the arrival time is subject to

uncertainty and is distributed according to a Poisson process. In a first step we characterize

the socially optimal pattern of investment given the investment cost of both technologies,

the one available immediately and the one coming up in the future. We find that the dis-

tribution of the three different technologies depends crucially on the (relative) size of the

fixed investment costs. surprisingly, all combinations of different technologies may occur: No

firm should invest in any technology if the fixed investment costs of both technologies are

sufficiently high, or all firms should adopt the available technology a immediately, or all

firms should wait and adopt technology b. It also may happen that some firms should adopt

technology a, some firms should keep the conventional technology, but no firm should adopt

technology b. It may happen that some firms should keep the conventional technology, and
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all remaining firms should wait and adopt the future technology b, and finally it may be

optimal that eventually all three technologies will be employed at the same time.

In a second step we investigate decentralized decision making by firms under different

regimes of regulation, in particular Pigouvian taxation and tradable permits. Here we start

to study investment behavior under long-term commitment policies. I.e. the regulator makes

a long term commitment to a particular tax rate or a particular quantity of permits to be

issued. Such commitment can be found in many European countries employing emission

taxes, and in the US under Title IV of the Clean Air Act Amendments 1990 for the case of

tradable permits.

In a third step we assume that the regulator anticipates arrival of new technology and

is able to optimally react on it by adjusting his policy instrument. In particular we ask the

question what policy, and what timing and commitment structure is necessary in order to

decentralize the social optimum. We discuss both ex ante commitment and ex post optimal

policies. Ex ante commitment means that the regulator commits to implement a particular

tax rate, or to issue a particular amount of permits as soon the advanced technology b is

available and before the firms have adopted that technology. Ex post optimal policy means

that the regulator does not only observe the arrival date of the new technology b but also

observes how many firms have adopted the advanced technology. Then, given the number of

firms having invested in technology a and technology b, respectively, he sets the optimal level

of his policy instrument. We show that ex post optimal policy induces the social optimum.

This is so because the firms anticipate the behavior of the regulator and since they are small

and therefore are unable to act strategically. Under ex ante optimal policy the first best

allocation can be implemented by auctioning off tradable permits. Under the tax policy, by

contrast, multiple equilibria exist, one of which is optimal but many of them are non-optimal.

These results are in line with the findings of Requate and Unold (2003), who studied the

case where only one advanced technology is available.

The paper is organized as follows. In the next section we present the model. In section 4 we

characterize socially optimal allocations. In section 5.1 we investigate the firms’ investment
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decisions under different policy instruments, in particular we study the firms’ behavior if the

regulator has made a long term commitment either to a tax policy or to a fixed number of

permits. In section 7 we investigate how the socially optimal allocations can be decentralized.

The final section concludes. The proofs are given in the appendix.

2 The Model

We consider a competitive industry consisting of a continuum of ex ante symmetric firms

represented by the interval [0, 1]. All firms emit a homogenous pollutant which can be abated.

The opportunity cost of abatement is represented by a cost function C(e, θ), which depends

on the emission level e, chosen by the firm, and a technology parameter θ. We make the

following assumptions about C :

Assumption 2.1. i) For each θ there exists a unique laisser-faire abatement level emax(θ),

characterized by ∂C
∂e

(emax(θ), θ) = 0. For each emission level e < emax(θ) we have

C(e, θ) > 0, −∂C
∂e

> 0 and ∂2C
∂e2 > 0, i.e. both abatement and marginal abatement costs

are positive in the relevant range, and marginal abatement costs are increasing with

more abatement.

ii) A higher technology parameter leads to a decrease of both the variable and the marginal

abatement costs , i.e. ∂C
∂θ

< 0 and − ∂2C
∂e∂θ

< 0 for e ≤ emax(θ). Moreover, costs fall at a

decreasing rate i.e. ∂2C
∂θ2 > 0.

In the following, we will assume that there are three exogenously given technologies 0, a

and b, represented by their corresponding technology parameters θ0, θa and θb with θ0 < θa <

θb. To simplify notation, we will write Ci(·) instead of C(·, θi) for i = 0, a, b.

Initially all firms start with technology 0, referred to as the conventional technology.

Advanced technology a is available yet and can in principle be adopted immediately. Buying

and installing this technology causes a fixed cost Fa > 0. The even better technology b will

be available in the future with a certain probability. Its arrival time is Poisson-distributed

with exogenous arrival parameter λ. Buying and installing that technology costs Fb > 0.
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Investment in one of these technologies is irreversible. Moreover we assume that if a firm

invests in technology a, it is prohibitively expensive to adopt technology b if technology a has

already been installed. In other words: investment in both technologies is not feasible. This

assumption generates an option value to postpone the decision to adopt advanced technology

a at time t = 0.

Further we denote total emissions of industry by E =
∫ 1

0
eidi, where ei is the i-th firm

emission level. The damage born from pollution depends on aggregate emissions only and

is evaluated by a social damage function D(E) which is increasing and convex in E, i.e.

D′(E) > 0 and D′′(E) > 0. Finally, we will assume that both the social planer and the firms

discount the future at a constant discount rate r. Moreover we will refer to the ”first stage”

as the time interval where only technologies 0 and a are available. In particular the date of

first decision making t = 0 is called the first stage. By contrast, the ”second stage” is referred

to as the time interval when the advanced technology b is available.

3 Expected Net Present Costs of an Investment Deci-

sion

In this section we provide a formula for the net present value of total cost incurred by

an economic agent who - deviating from the assumption of irreversible investment for a

moment - can invest twice, at time 0 and time t when the advanced technology b is available,

respectively. This formula is very general and does not only refer to the model of this paper.

Lemma 3.1. Let Fa and Fb denote the fixed cost incurred when investing in technology a or

b, respectively. Further let C0, Ca and Cb denote the current values of the cost flow resulting

from not investing, investing in technology a, and investing in technology b, respectively. If

the agent invests immediately in technology a and substitutes technology a by technology b as



5

soon as it is available, the present value of total cost is given by:

Fa +

∫ ∞

0

(∫ t

0

Ca · e−rs ds +

∫ ∞

t

Cb · e−rs ds + Fb · e−rt

)
λe−λt dt

=Fa +
1

r + λ
C1 +

λ

r + λ

(
Cb

r
+ Fb

) (1)

If the agent does not invest in technology a, but adopts technology b, as soon as that is

available, the net present value of total costs is given by

1

r + λ
C0 +

λ

r + λ

(
Cb

r
+ Fb

)
. (2)

4 The Social Optimum

Before considering regulation and the regulated firms’ behavior it is useful to study the

socially optimal investment pattern. The social planner’s problem is to minimize the expected

social costs by balancing industry’s total abatement costs against the damage caused by the

pollution. To do so he decides on both, each firm’s emission level at each point of time, and

the shares of firms which should either adopt technology a, technology b, or none of both.

Note that social costs will be constant over time in the two stages before and after technology

b is available. Note further that the emission level of a firm using technology i = 0, a in the

first stage may differ from its emission level in the second stage even if the firm does not

change technology. Hence we denote the emission level of a firm at the first stage by ei and

the level of a firm using technology i = 0, a, b at the second stage by e2
i .

Thus, using Lemma 3.1 the social planner minimizes

min
{e0,ea,e2

0,e2
a,e2

b ,na,nb}
{ 1

λ + r
[(1− na)C0(e0) + naCa(ea) + D((1− na)e0 + naea)] + naFa

+
λ

λ + r
[
1

r
[(1− na − nb)C0(e

2
0) + naCa(e

2
a) + nbCb(e

2
b) + D((1− na − nb)e

2
0 + nae

2
a + nbe

2
b)]

+
λ

λ + r
nbFb]},

(3)

subject n0 = 1− na − nb.
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In the following we will show that depending on Fa and Fb every possible adoption

scenario can indeed be socially optimal i.e. no adoption of one or both of the technologies

or partial adoption of one or both technologies. We will characterize the optimal pattern of

technology adoption contingent on the size of Fa and Fb. Before we state our results formally,

it is useful to illustrate the forthcoming results with the help of Figure 1, which displays the

different patterns of investment for all combinations of fixed investment costs.

- Figure 1 about here -

Line AA′ is the locus of all pairs (Fa, Fb) such that na = 1, i.e. all firms should adopt

technology a but the social planner is indifferent about the last firm to adopt or to wait for

the arrival of technology b. The part AC of AA′ is increasing since a higher Fa requires a

higher Fb to keep nb equal to zero. In the area bounded by ACHBA, na is strictly smaller

than 1, but all the remaining firms 1 − na adopt technology b, as soon as that is available.

By contrast in the area bounded by A′CGB′, we have also na < 1, but the remaining firms

do not adopt any of the new technologies (because Fb is too high). Therefore the curve CA′

is vertical.

Similarly, the line BB′ represents the locus of all pairs (Fa, Fb) where no firm should

adopt technology a, but the social planner is just indifferent about having the marginal firm

to adopt technology a or not. Below the dotted line Z ′, the adoption cost Fb is so low that

left of the branch BH all the remaining firms 1 − na should adopt technology b, while to

the right of BH all should firms wait for technology b. Above Z ′′, no firm should ever wait

for technology b, no matter how large Fa, because Fb is too large. In that area to the left

of GB′ some firms should adopt technology a, while to the right of GB′ none of the two

technologies should ever been adopted, because costs of both are too high. Finally, along the

branch GH always some firms should wait for technology b. On that branch and on its right

na is zero, while to its left na is positive. Again GH is increasing since a higher Fb has to be

compensated by a higher Fa to leave it unattractive for the social planner to let some firms

adopt technology a. The branch CH is the boundary where some firms adopt technology
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a and the remaining firms wait for technology b. Note that a higher Fa makes technology

a less attractive. Instead of adopting technology b there are two alternatives: waiting for

technology b, or not investing at all. In order to wait for technology b, a higher Fa requires

a lower Fb. The opposite holds for CG. Above CG some but not all firms adopt technology

a, while no firm is waiting for technology b. Here a higher Fa requires a higher Fb to make

the employment of technology b non-optimal.

We know state our results formally. For this purpose, we start backwards. For a given

number of firms na which have adopted the new technology in the first stage, we determine

both the optimal number of firms nb which should adopt the latest technology and the

optimal emission levels e2
0, e

2
a, and e2

b for each technology. Thus in the second stage the social

planner’s problem can be written as:

min
{nb,e

2
0,e2

a,e2
b}
{1

r
[(1−na−nb)C0(e

2
0)+naCa(e

2
a)+nbCb(e

2
b)+D((1−na−nb)e

2
0+nae

2
a+nbe

2
b)]+nbFb}

(4)

The following result characterizes the optimal rate of adoption of technology b given that a

share of na has already adopted technology a.

Proposition 4.1. Let the share of firms na, having adopted technology a, be given. Then

there exists an interval of fixed costs [F b(na), F b(na)] of technology b, such that

1. No firm should adopt technology b for Fb > F b(na).

2. All firms should adopt it for Fb < F b(na).

3. For Fb ∈ [F b(na), F b(na)] partial adoption of technology b is optimal. The optimal

number of firms adopting technology b is decreasing in Fb while the optimal marginal

damage at the second stage is increasing in Fb.

4. If na increases, the lower bound F b(na) increases while the upper bound F b(na) de-

creases and both converge to a cost level FM as na goes to 1. Moreover, the optimal

number of firms n∗b(na) adopting technology b is decreasing in na.
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5. For all Fb for which an na exists such that Fb ∈ (F b(na), F b(na)), both the socially

optimal emission levels e2
i of a firm using technology i = 0, a, b and the socially optimal

marginal damage are independent of na.

Note that part 1. - 3. are similar to the result of Requate and Unold [2003]. For na = 0,

their result follows as a special case.

Results 4 says that the interval of investment costs for which partial adoption of techno-

logy b is optimal shrinks as na increases. The intuition is that the more firms have already

adopted technology a, the fewer firms are necessary to adopt the even better technology b.

The reason why the upper bound of fixed costs F b(na) for which partial adoption is optimal

is decreasing is similar: The more firms have already adopted technology a, the less it pays

for the remaining firms to adopt the latest technology b, and thus the threshold of adoption

costs, for which no further firm should adopt the latest technology b, falls. By contrast, it

may be surprising at first glance that the lower bound F b(na) for which partial adoption is

optimal is increasing with na. However, the more firms have already adopted the less advan-

ced technology a, the fewer firms should adopt the latest technology at a given fixed costs.

This in turn implies that the threshold F b(na) for which all the firms should adopt the latest

technology increases. The intuition for result 5 is that in the optimum each firm operates at

its minimal average cost including social damage. Therefore a change in na can be met by

purely adjusting nb, the optimal number of firms investing in technology b, without affecting

the firms’ optimal emissions and the socially optimal marginal damage.

Knowing which investment pattern for the latest technology is optimal for given na, we

will now investigate what number of firms na is optimal to adopt technology a at time zero,

when technology a is available but technology b is not. Following the same argument as

above there will be some interval of investment costs for which partial adoption of the first

technology is optimal.

Proposition 4.2. Let the fixed investment cost for the latest technology Fb be given. Then

there exists an interval [F a(Fb), F a(Fb)] of investment cost to adopt technology a such that:

1. No firm should adopt technology a for Fa ≥ F a(Fb), implying that for Fb ≥ F b(0) no
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adoption of any technology is optimal, and for Fb ≤ F b(0) full adoption of technology

b is optimal.

2. All firms should adopt the first technology for Fa ≤ F a(Fb).

3. For Fa ∈ [F a(Fb), F a(Fb)[ a share 0 < n∗a < 1 of firms should adopt technology a.

Moreover, n∗a falls and optimal marginal damage at the first stage increases as Fa

increases.

4. For all values Fa ∈]F a, F a[, where for the corresponding na partial or full adoption at

the second stage is optimal we have ∂n∗
a

∂λ
< 0 and ∂n∗

a

∂Fb
> 0.

5. For Fb < F b(0) we get
∂F a

∂Fb
= ∂F a

∂Fb
> 0, while for F b(0) < Fb < FM we obtain

∂F a

∂Fb
> ∂F a

∂Fb
> 0. In case of FM < Fb < F b(0) we get

∂F a

∂F2
= 0 and ∂F a

∂Fb
> 0. Finally for

FM < Fb < F b(0) we have
∂F a

∂Fb
= ∂F a

∂Fb
= 0.

6. Whenever n∗b > 0 given na = 0 ∂F a/∂λ > 0 holds. If given Fb full adoption of techno-

logy b is efficient for large values of na then also ∂F a/∂λ > 0 is the case. Otherwise F a

is independent of λ.

In words the result states the following. If the adoption cost of technology a is sufficient-

ly low compared to those of technology b, it is optimal that all firms immediately adopt

technology a, which is intuitive (part 1). If conversely, the adoption cost of technology a is

sufficiently high, it is optimal that all firms wait for the arrival of technology b (part 2). For

intermediate values of technology a’s adoption cost some firms should adopt immediately

technology a while some should wait for the arrival of technology b. In that case the lower

the adoption cost of technology a the more firms should adopt technology a (part 3). In part

4 and 5 we look at the comparative statics effects of increasing either λ or Fb on both the

optimal number of firms n∗a adopting technology a, and the boundaries F a(Fb) and F a(Fb).

The directions are as we would expect: If the mean arrival time becomes shorter (i.e. λ rises)

we want less firms to invest in the available technology a but rather wait for the even better

technology b. If by contrast technology b becomes more expensive, we want more firms to
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invest in the less advanced technology a. This also implies that the interval of costs where

partial adoption of technology a is optimal is shifted to the right.

By the first proposition, for a given na we can find a value Fb such that the share of

firms adopting technology b equals a given nb. Now we can consider this Fb as given. The

second proposition now allows us to find an Fa for which a share of na firms adopts the first

technology. This leads us to the following result:

Corollar 4.3. For all na, nb where na + nb ≤ 1 we find Fa, Fb so that na and nb are the

corresponding socially optimal shares.

Proposition 4.2 and the corollary can best be illustrated by Figure 1.

5 The Investment Decision of the Firms

5.1 General Decision Rules

After having characterized the socially optimal investment pattern depending on the relati-

onship of the investment costs, we will now study decentralized decision investment decisions

by firms under different policy instruments, in particular emission taxes and tradable per-

mits. Before studying the behaviour under long term tax or permit policies we derive some

general decision rules which are in common for both policies. In each regime there are two

policy levels, i.e. prices for emissions in the time period between the adoption of the first

and arrival of the second technology, denoted by σ1 and σ2, respectively (σ1 = σ2 being a

special case). Since the arrival time of the new technology b is stochastic, the length of the

time period where the firms face σ1 is uncertain. A firm’s emission level in period i = 1, 2,

where the firm uses technology 0 or a in the first stage and 0, a, or b in the second, is given

by the following first-order condition:

∂C

∂e
(θj, e) = σi (5)

the solution being denoted by e(θj, σ
i).
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For short we will write ei, i = 0, a for a firm’s emission level in the first stage when

technology i is used, and e2
i , i = 0, a, b for the firm’s emission level in the second stage when

technology θi is used. Given the different technologies and their (uncertain) availability, the

firms have the choice between three strategies:

• strategy 0: stay with technology 0 forever,

• strategy 0a: adopt technology a immediately,

• strategy 0b: stay with technology 0 in stage 1 and adopt technology b as soon as that

is available.

We start by calculating the expected net present cost for each strategy: Using Lemma

3.1, we obtain the following expected net present cost of the different possible strategies in

the first stage:

1

r + λ
[Cj(ej) + σ1ej] + δj1Fa +

λ

r + λ

1

r
[Ck(e

2
k) + σ2e2

k] + δk2
λ

λ + r
Fb (6)

where j = 0, 1, k = 0, a, b, δlm = 1 if l = m and δlm = 0 otherwise. j = k = 0 corresponds

to strategy 0 (never invest at all), j = k = 1 corresponds to strategy 0a (adopt technology

a immediately), j = 0, k = b corresponds to strategy 0b.

At the beginning of the second stage the net present cost of the relevant strategies is

determined by
1

r
[Ck(e

2
k) + σ2e2

k] + δk2Fb (7)

where k = 0, b, δlb = 1 if l = b and δlb = 0 otherwise. For k = 0 we obtain the net present

cost of strategy 0 at the second stage while for k = b we get the net present cost of strategy

0b at the second stage.

To Figure out the best strategy, the firms look at the cost difference ∆Cij resulting from

any two strategies i and j. The term

∆C0b(σ
2) =

1

r
[Cb(e

2
b)− C0(e

2
0) + σ2(e2

b − e2
0)] + Fb (8)
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compares the two feasible strategies in the second stage. If ∆C0b(σ
2) is negative, the firm

decides to adopt technology b.

The next term represents the cost difference between strategy 0a and strategy 0b at stage

1:

∆Cab(σ
1, σ2) =

1

r + λ
[Ca(ea)− C0(e0) + σ1(ea − e0)] + Fa + (9)

λ

r + λ

1

r
[Ca(e

2
a)− Cb(e

2
b)) + σ2(e2

a − e2
b)] +

λ

r + λ
Fb,

Finally at stage 1 the cost difference between strategy 0 and strategy 0a is given by:

∆C0a(σ
1, σ2) =

1

r + λ
[Ca(ea)− C0(e0) + σ1(ea − e0)] + (10)

λ

r + λ

1

r
[Ca(e

2
a)− C0(e

2
0)) + σ2(e2

a − e2
0)] + Fa.

For both terms a negative sign induces the firm to adopt technology a.

5.2 Long Term Tax Commitment

In this subsection we will assume that the regulator has moved first and has made a long

term commitment to the level of his tax rate τ . Thus according to the last section 5.1, we

have the special case where σ1 = σ2 = τ . To abreviate notation we denote by ei a firm’s

emission level if it uses technology θi, i = 0, a, b. Thus, abusing notation slightly, we can

rewrite (10), (8), and (9), respectively, as

∆C0a(τ) ≡ 1

r
[Ca(ea)− C0(e0)) + τ(ea − e0)] + Fa,

∆C0b(τ) ≡ 1

r
[Cb(eb)− C0(e0)) + τ(eb − e0)] + Fb,

and

∆Cab(τ) ≡ 1

r + λ
[Ca(ea)− C0(e0)) + τ(ea − e0)]

+
λ

r + λ

1

r
[Ca(ea)− Cb(eb)) + τ(ea − eb)] + Fa −

λ

r + λ
Fb.

When these expressions are zero, the firm is indifferent between the two technologies 0 and

a, or 0 and b, or a and b, respectively. The following lemma characterizes the roots of these

expressions.
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Lemma 5.1. 1. For i = a, b, the function ∆C0i is decreasing in τ . If Fi is not too large,

there exists a unique solution τ̄0i of ∆C0i(τ) = 0 such that firms are indifferent between

technologies 0 and a. If the solution exists, staying with the conventional technology

0 is more profitable for τ < τ̄0i, while for τ > τ̄0i the firm is better off by adopting

technology i. Furthermore, ∂τ̄0i

∂Fi
> 0.

2. The slope of ∆Cab is ambiguous. If ∆Cab is monotonic in τ , then, if a solution τ̄ab of

∆Cab(τ) = 0 exists, it is unique.2 If ∆Cab is decreasing (increasing), the firm prefers

to invest into technology a if τ < τ̄ab (if τ > τ̄ab), and the firm prefers to postpone the

investment and to adopt technology b as soon as the latter is available if τ > τ̄ab (if

τ < τ̄ab).

For the proof see the appendix. The intuition is as follows. The greater τ , the higher the

cost difference and the more it matters what technology a firm uses. Thus, if the investment

costs Fi are not too large, there will always be a tax rate sufficiently high such that both

technologies a and b become more attractive compared to the conventional technology 0. The

impact of τ on the decision between technology a and b is less clear-cut as can be seen from

the ambiguity of the slope of ∆Cab: investing in the first technology may lead to a decrease

of the abatement costs as long as technology b is not available. As soon as technology b is

available, however, the firm faces opportunity costs of using a less efficient technology. It is

not clear, which of the two technologies leads to the larger cut of the present value of total

future costs. The following example shows that this ambiguity can arise even for a simple

quadratic cost function:

Example 5.2. Let C(θ, e) := (e−αθ + A − βe)2/2β. Then one can easily verify that given

a tax rate τ, the cost minimizing emission level of a firm with technology θ, is given by

e(θ, τ) = (A + e−αθ − τ)/β. This yields

∂∆Cab

∂τ
=

1

λ + r

e−αθa − e−αθ0

β
+

λ

r(λ + r)

e−αθa − e−αθb

β

Therefore we get ∆Cab ≥ (≤)0 if and only if r(e−θ0 − e−θa) ≤ (≥)λ(e−θa − e−θb).

2Whether a solution exists depends on the cost difference Fa − λ
r+λFb.
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The slope of ∆Cab basically depends on both, the efficiency parameter θi and the para-

meters λ and r.

Lemma 5.3. Assume that ∆Cab(τ) is monotonic in τ and a (unique) tax rate τ̄ab exists,

leaving the firm indifferent between technology a and b. Then the following holds: If ∆Cab(τ)

is decreasing (increasing), then ∂τab/∂Fa < (>)0 and ∂τab/∂Fb > (<)0

Intuition suggests that a firm’s decision depends on the order of these three threshold

tax rates. However, not each combination of this three values is feasible. In particular we

will prove the following result:

Proposition 5.4. If Fa and Fb are such that all three threshold taxes exist, then:

1. For every τ satisfying ∆Cab(τ) = 0 we get τ 6∈ [τ̄i, τ̄j] for i, j = a, b and i 6= j. Thus if

τ̄a < τ̄b then ∆Cab < 0 for all τ ∈ [τ̄a, τ̄b]. If τ̄b < τ̄a then ∆Cab > 0 for all τ ∈ [τ̄b, τ̄a].

2. If ∆Cab is monotonically decreasing, then τ̄ab < τ̄a < τ̄b or τ̄b < τ̄a < τ̄ab.

3. If ∆Cab is monotonically increasing, then τ̄ab < τ̄b < τ̄a or τ̄a < τ̄b < τ̄ab.

The last two results can be illustrated as follows

1. If ∆Cab is decreasing, we obtain:

τab τa τ b

no inv. no inv. inv. in a inv. in a
or

τ b τa τab

no inv. inv. in b inv. in b inv. in a

2. If ∆Cab is increasing, we obtain:

τab τ b τa

no inv. no inv. inv. in b inv. in b
or

τa τ b τab

no inv. inv. in a inv. in a inv. in b

The intuition is straightforward. If ∆Cab decreases, and τ b < τ , a firm’s optimal decision

in the second stage would be to adopt technology b. Therefore, in the first stage, the relevant

decision has to be made between adopting technology a, on the one hand, and waiting for
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technology b, on the other. Thus the relevant threshold tax rate is τab, and thus e.g. τab < τ

would induce investment in technology a.

If we do not assume ∆Cab to be monotonic, then there may be multiple switches between

intervals where all firms adopt technology a and intervals where all firms adopt technology

b for τ > max{τa, τ b}. Note, however, that there are no switches between τa and τ b and we

therefore only need to know the sign of ∆Cab either at τa or τ b. The next figure illustrates

how in that case the investment pattern may look like:

τ 1
ab τa τ b τ 2

ab τ 3
ab

no inv. no inv. inv. in a inv. in a inv. in b inv. in a

5.3 Long Term Commitment to a Quantity of Permits

In this section we analyze how the firms make their investment decisions when they are

regulated by tradable permits and the regulator has made a long term commitment to a

constant quantity of permits being issued. Analogously to the tax case we can define price

thresholds for permits where a firm is indifferent between any two strategies. According to

the different strategies these threshold prices can be derived from (8 ), (9) or (10) as the

prices where these terms are equal to zero. Thus we define σ0a(σ
2) by ∆0a(σ0a(σ

2), σ2) = 0,

σab(σ
2) by ∆ab(σab(σ

2), σ2) = 0 and σ0b by ∆0b(σ0b) = 0, where σ2 > 0 is arbitrary. Thus

the threshold prices at the first stage depend on the expected permit price at the second

stage. By backward induction we will analyze the second stage first where the share of firms

na adopting the technology a is given. Having accomplished this we can write the threshold

prices at the first stage as a function of na since we know the permit price at the second

stage corresponding to na.

With these preparations we are ready to characterize the permit price in the second stage

depending on the supply of permits:

Proposition 5.5. Let L be the amount of permits issued by the regulator. Let 0 ≤ na < 1 be

given and let σ denote the market price for permits in the second stage. Then the following

holds:
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1. If L ≥ E
2
(na), then σ < σ0b and none of the remaining firms invests.

2. If L ≤ E2(na), then σ > σ0b and all of the remaining firms invest.

3. If L ∈]E2(na), E
2
(na)[, then σ = σ0b and a share of firms

nb =
e0(σ0b) + na(ea(σ0b)− e0(σ0b))− L

e0(σ0b)− eb(σ0b)

will adopt the second technology.

4. If na increases, E2(na) increases and E
2
(na) decreases. Furthermore both E2 and E

2

converge to EM = ea(σ0b) as na goes to 1.

The proof is given in the appendix. Note that for na = 0 the claims 1.)-3.) corresponds to

Lemma 2 in Requate and Unold [2003]. The reason for 4.) is that with a greater number na

a greater abatement level has already been achieved. We can now determine both the firms’

decision and the pattern of investment in the first stage. For this purpose it is useful to first

investigate the relationship between the number of firms na investing in technology a and

the first stage equilibrium price for permits. Since for given L and na the equilibrium permit

price σ2(na) in the second stage is uniquely determined, we write σ1(na) as the relevant

threshold price at the first stage where the remaining 1 − na firms are indifferent between

adopting technology a, on the one hand, and not adopting it and behaving optimally at the

second stage, on the other. Thus if no firm wants to adopt the second technology in the

second stage, σ1(na) is given by σ0a(σ
2(na)). Otherwise σ1(na) is given by σab(σ

2(na)). If

there is partial adoption in the second stage we obtain σab(σ
2(na)) = σ0a(σ

2(na)). The next

result establishes how both the threshold price σ1 and the equilibrium price σ1 depend on

na.

Proposition 5.6. The threshold price σ1(na) is continuous and non-decreasing in na while

the market price σ1 is decreasing and continuous in na.

To determine the pattern of investment, given the supply of permits L, we proceed

similarly as in the second stage. We define E
1

:= e0(σ
1(0)) and E1 := ea(σ

1(1)). E
1

is
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the aggregate emission level which induces no firm to adopt technology a, but each firm is

indifferent between adopting and not adopting technology a and which leads to a permit price

equal to σ1(0). Analogously E1 is the aggregate emission level which induces an outcome

where all firms adopt technology a but each firm is indifferent between adopting and not

adopting technology a and which thus leads to a the permit price equal to σ1(1). As we will

see in the next result, (E1, E
1
) is the interval of permits where partial adoption of technology

a occurs.

Proposition 5.7. 1. For L > E
1

none of the firms will adopt the first technology and

σ1 < σ1(0).

2. If L < E1 all firms will adopt technology a and σ1 > σ1(1).

3. If L ∈]E1, E
1
[ then a share 0 < na < 1 of firms will adopt technology a and the

permit price is equal to σ1(na). Moreover na is given by the solution of the equation

L = (1− na)e0(σ
1(na)) + naea(σ

1(na)).

The intuition for the result is as follows: At the threshold price σ1(0) firms are indifferent

between adopting and not adopting technology a, but no firm in fact adopts that technology

such that total emissions amount to E
1
. If the number of permits L exceeds E

1
, the price

for permits must therefore be lower than σ1(0), and all firms strictly prefer to not adopt

technology a. At the threshold price σ1(1) firms are indifferent between adopting and not

adopting technology a, too, but all firms in fact adopt technology a such that total emissions

amount to E1. If the number of permits L is smaller than E1, the price for permits must

exceed σ1(1), and all firms strictly prefer to adopt technology a. If L is between E1 and E
1
,

a share 0 < na < 1 adopts the new technology, and the permit price is σ1(na) = σ1(na) with

σ1(0) < σ1(na) < σ1(1). Moreover, σ1(na) is increasing in na.

- Figure 2 and Figure 3 about here -

Figure 2 illustrates the relationship between the threshold price and na, for the cases

where either full or no adoption of technology b occurs at the second stage. The curves AA,
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BB, and CC each depict the equilibrium price for permits if we vary na but treat is as

an exogenous variable. Along each curve L is fixed. If we increase L, we move from AA to

CC. Along AA, the quantity of permits is larger than E
1
, and the equilibrium prices for

each fixed na are everywhere larger than the threshold price σ1(na). Hence full adoption

will occur. Along CC, the quantity of permits is smaller than E1, and the equilibrium

prices for each fixed na are everywhere smaller than the threshold price σ1(na). Hence no

adoption will occur. Along BB, where E1 < L < E
1
, the equilibrium price curve for any

exogenously given na, i.e. σ1(na), intersects the threshold price curve σ1(na). At this point

the equilibrium price for fixed na is exactly equal to the threshold price where firms are

indifferent between adopting and not adopting technology a. This intersection determines

the equilibrium number of adopting firms.

Why is the curve σ1(na) increasing? Recall that Figure 2 covers the case where either

full or no adoption of technology b occurs at the second stage. Consider first the case where

none of the firms adopt technology b. Here a higher na induces less demand for permits and

thus a lower price at stage 2, making technology a less attractive at stage 1. Therefore the

threshold price σ1(na) for which it begins to be attractive to invest in technology a must be

increasing in na.

Consider now the case where all the remaining firms 1− na adopt technology b at stage

2. Here a higher na triggers more demand for permits and thus induces the permit price to

rise at stage 2, which makes it more attractive to wait for technology b instead of adopting

technology a at stage 1. Put differently, a higher na raises the option value to postpone the

investment decision. Therefore again the threshold price σ1(na) must increase with na to

compensate for that effect. Note the fundamental difference to the case where there is no

second technology in the future (the Requate-Unold [2003] model) where the threshold price

is always constant in na.

Figure 3 captures the case where partial adoption may occur in the second stage. Again

the curves AA through DD depict the equilibrium prices if we vary na but treat it as an

exogenous variable. Along each curve L is constant, and if we increase L, we move from
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AA to DD. If na is sufficiently large, say greater then some n̂a as depicted in the picture,

we know from Proposition 5.5 (part 4), that either no or full adoption will occur at stage

2. Therefore to the right of n̂a we obtain the same picture as in Figure 2. To the left of

n̂a partial adoption of technology b will occur at stage 2. In this case a higher na will be

compensated by a lower nb at the second stage such that the threshold price stays constant.

6 Welfare Analysis in Cases of Myopic Regulation

In the section we study the allocations derived in the last two sections, assuming that the

regulator has made a long-term commitment to the optimal policy with respect to the con-

ventional technology 0. In case of a tax policy, the regulator has set a single tax rate τ0

equal to the socially optimal marginal damage D′(E∗
0). In the case of permits he has issued

an amount of permits L0 equal to E∗
0 . This may for example occur if the regulator did not

anticipate the new technologies for reason of insufficient information.

Firstly we will examine the case of taxes. From the results we have derived before we know

that in general only one of both technology will be adopted by all firms under a regulation

by a long term tax. The choice depends on the relative difference between the installment

costs of both technologies. To derive the result, define F̂a(Fb) as the installment cost level

where for the corresponding socially optimal share n1 the relationship F b(na) = Fb holds.

I.e. exactly for this cost level the socially optimal share of firms adopting technology a get

that large that no adoption of technology 2 gets socially optimal in the second stage. Thus

the graph of F̂a(Fb) is identical to the one of F b(Fa) in Figure 1. Mathematically F̂a(Fb) is

the inverse of F b(Fa). Trivially F̂a(Fb) ∈ [F a, F a]. First we state the result in case of a tax

regulation.

Proposition 6.1 (Myopic Regulation, Tax Case). Assume that the regulator commits

the tax rate τ0 for once and forever. Then, given installment cost Fb of technology b, there

exists a threshold level F t
a(Fb) for the installment cost of technology 1 in such way that

irrespective to the optimal decision at the second stage we get:
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1. If Fa > F t
a(Fb), then no firms will adopt technology a. All firms take the optimal

decision in the second stage.

2. If Fa < F t
a(Fb), then all firms will adopt the first technology. No firms take the optimal

decision in the second stage.

3. If Fa = F t
a(Fb), the share of firms which will adopt the first technology is ambiguous.

The remaining firm take the optimal decision in the second stage.

For the allocation of both technology this yields:

a.) If Fb > F b(0), then for each firm the optimal decision in the second stage will be to

adopt not technology b. It is F t
a = F a and F t

a is independent from Fb.

b.) For Fb = F b(0), each firm, which has not invested in the first stage is indifferent between

not investing and the adoption of the second technology. It is F t
a = F a. This implies for

example that for Fa = F t
a the outcome is complete ambiguous.

c.) If FM < Fb < F b(0), for each firm that still uses the conventional technology 0 the

adoption of technology b is optimal in the second stage. F t
a(Fb) ≤ F a(Fb). More exactly

if ∆Cab decreases, we have F t
a(Fb) ∈ [F̂a(Fb), F a] whereas if ∆Cab increases we have

F t
a(Fb) < F̂ (Fb)a, but not necessarily F t

a(Fb) < F a.

d.) If Fb ≤ FM , again for each firm that still uses the conventional technology 0 the adoption

of technology b is optimal in the second stage. Again F t
a(Fb) ≤ F a. But now if the

function ∆Cab decreases, only F a < F t
a(Fb) holds whereas if the function ∆Cab increases,

now F t
a(Fb) < F a has to be the case.

The resulting exact allocation for cost pair (Fa, Fb) can be best seen in the Figures 4 and

5.

- Figure 4 and Figure 5 about here
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By and large this is the result would have been expected in the light of Requate and Unold

[2003]. But there is a little but important difference we have to explain. If ∆Cab decreases,

there may also occur under-investment e.g. for Fb < F b(0) or at least full adoption of the

first technology where partial adoption of the second technology is socially optimal because

for F b(0) < Fb < FM it may also be socially optimal that some firms do not invest. In this

sense we have under-investment for this case. Figure 4 visualizes the result. The dotted lines

represent the border lines for the socially optimal allocation (compare to Figure 1). The

thick vertical line represents F t
a(Fb). It is easy to check that the slope is equal to the one

of F a(Fb) for Fb < FM . Thus for both cases, the case that ∆Cab decreases (Figure 4 and

Figure 5) and the one that ∆Cab increases (Figure 5) the Fa, Fb plane is separated by F t
a(Fb)

and F 2(0) into four areas where either none of the technology or one of the new technologies

is adopted by all firms. If ∆Cab decreases F t
a(Fb) lies right from F a(Fb), which, as mentioned

above induces under-investment. For the case that ∆Cab increases over-investment is induced

in all cases where the market outcome does not coincide with the social optimal allocation.

Thus the result shows that the decision between the two new technologies has a direct

impact on the allocation. To illuminate that recall that ∂∆Cab∂τ > 0 implies that for a high

tax rate the firm would prefer technology a. In that context, technology b may be interpreted

as a small enhancement of the technology a which can be developed quickly. Now if τ is small

the firms will wait for the enhancement. Otherwise they would adopt the basic technology.

But thinking in that way it seems plausible that for even some very high costs Fa the firms

will still adopt the first technology facing τ0 while the regulator may prefer that some firms

would adopt the second technology to compensate the cost disadvantage.

Now we do the same thing as above for the permit case. Again we start by analyzing the

second stage. In the one technology case (Requate and Unold [2003]), there exist an interval

[F u, F o] of installment cost where given L0 = E∗
0 partial adoption is the market outcome.

Furthermore from the social planner’s point of view for all F ∈]F u, F o[ under-investment

occur. The intuition behind that is straight-forward. Given the installment cost we will find

a market where the adoption of technology gets attractive for some firms. Since there is an
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upper and lower bound for the market price - corresponding to the cases that all and no

firm invests respectively - for very high installment cost the market price is always to low

to induce an incentive to adopt technology while for low installment even if all firms adopt

the technology the market price will exceed this threshold price. For a moderate level of the

installment cost the market price may equal the price where a firm is indifferent between

adopting the technology or not if some firms have adopted the new technology.

In principle we will expect that these result will also hold for this two technology scena-

rio. So given a share na > 0 it is intuitive that there will exist an interval [F u
b (na), F

o
b (na)]

where partial adoption of technology 2 is the market outcome. Since the amount of permit

is not flexible there will a lower incentive to adopt technology if some firms have already

invested into technology a (i.e. na > 0) or technology b as if the regulator will change the

amount of permit to the socially optimal emission level. Thus we will expect that in general

F u
b (na) and F o

b (na)] will be smaller than F b and F b respectively. That is what we will show

in the next proposition.

Proposition 6.2 (Myopic Regulation, Permit Case, Second Stage). Assume the

amount of permits is equal to L0 and a share 0 ≤ na < 1 of firms have adopted technology a.

Then there exist an interval [F o
b (na), F

u
b (na)] of installment costs with the following properties

1. For all na ≥ 0 it is F u
b (na) < F b(na). Furthermore we get F o

b (0) = F b(0) and F o
b (na) <

F b(na) for all na > 0.

2. If Fb > F o
b (na) none of the remaining firms using the conventional technology will

adopt technology b.

3. If Fb < F u
b (na) all 1− na firms will adopt technology b.

4. If Fb ∈]F u
b (na), F

o
b (na)[ a partial share 0 < nb < 1 − na of firms adopts technology b.

This share is always smaller than the socially optimal share n∗b(Fb).

5. If na increases, then also F u
b (na) increases while F o

b (n1) decreases. Both tend to a cost

level F̃M < FM as na goes to 1.
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In principle this is an analog to proposition 4.1. Also the intuition of this result is similar

to the one of proposition (4.1). As explained above the intuition why all these bounds are

smaller than the corresponding socially optimal ones is the lower incentive to invest due to

the fixed amount of permits which is larger than every socially optimal level if any adoption

has occurred.

As we know the market outcome in the second stage we can analyze the adoption of

technology a in the decentralized case. In principle we get an analog to proposition 5.

Proposition 6.3 (Myopic Regulation, Permit Case, First Stage). Assume that the

amount of permits is equal to L0. Consider the installment cost Fb of technology b to be

given. Then there exist an interval [F o
a (Fb), F

u
a (Fb)] in such way that for Fa ≥ F o

1 (Fb) no

adoption firm will adopt technology a, for Fa ≤ F u
a all firms will adopt technology and for

Fa ∈]F u
a , F o

a [ a partial share na of firms adopts technology a.

With these preparations we can compare the resulting allocation (na, nb) of both tech-

nologies corresponding to a cost pair (Fa, Fb) to the socially optimal one allocation (n∗a, n
∗
b)

which corresponds to (Fa, Fb). We will see that analogously to the tax case the slope of

∆Cab as a function of the permit price σ plays an important role to the question whether

under-investment or over-investment occurs. Note as we have explained above that this slo-

pe can be interpreted as a measure whether the first or the second technology is a greater

improvement.

Corollar 6.4. Consider the same assumptions as in proposition 6.3.

1. Fb > F o
b (0) implies F o

a (Fb) = F a(Fb) and F u
a (Fb) < F a(Fb). For Fa ∈]F u

a (Fb), F
o
a (Fb)[

the share of firms adopting technology 1 is smaller than socially optimal one.

2. For F̃M < Fb < F o
b (0) we have F o

a (Fb) = F a(Fb) for Fb ≥ F b(0) and F o
a (Fb) > F a(Fb)

for Fb < F b(0). For Fb > FM it is F u
1 (F2) < F a(Fb) while for Fb < FM this only holds

in ∆Cab decreases. If ∆Cab increases it is ambiguous whether F u
a (Fb) < F a(Fb) or

F u
a (Fb) > F a(Fb). For Fa ∈]F u

a (Fb), F
o
a (Fb)[ the share na of firms that adopt technology
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1 is always smaller than the socially optimal share n∗a. If nb(na) > 0 and nb(na)+na < 1

then na + nb(na) < n∗a + n∗b(n
∗
a).

3. In case of F u
b (0) < Fb < F̃M and Fb ≥ F b(0) it is F o

a (Fb) = F a(Fb) while in case

of F u
b (0) < Fb < F̃M and Fb < F b(0) it is F o

a (Fb) > F a(Fb). If ∆Cab(σ) increases

in the permit price σ then F u
a (Fb) > F a(Fb) while if ∆Cab(σ) decreases in σ then

F u
a (Fb) < F a(Fb) is induced. This implies that for Fa ∈ [F u

a (Fb), F
o
a (Fb)] that the share

na as well as the total share na + nb(na) of firms that invest in any new technology is

smaller than the corresponding socially optimal shares as long as na + nb(na) < 1. If

na + nb(na) = 1 then it is ambiguous whether na is smaller, equal or greater then the

socially optimal share n∗a.

4. Fb < F u
b (0) implies F o

a (Fb) > F a. If ∆Cab(σ) increases in σ then F u
a (Fb) > F a(Fb) while

F u
a (Fb) < F a(Fb) if ∆Cab(σ) decreases in σ. In that case for Fa ∈]F u

a (Fb), F
o
a (Fb)[ it is

always ambiguous whether the share na is smaller, equal or greater than the correspon-

ding socially optimal share n∗a. If ∆Cab(σ) increases for Fa ∈]F a(Fb), F
u
a (Fb)[ we get

na > n∗a and nb > n∗b . In contrast to that if ∆Cab(σ) decreases for Fa ∈]F u
a (Fb), F a(Fb)[

we get na < n∗a and nb > n∗b . In both cases for Fa ∈]F a(Fb), F
o
a (Fb)[ we get na > n∗a

and nb > n∗b .

This result may seem surprising at first glance since we have argued above that a de-

creasing ∆Cab could be interpreted as a preference to adopt the first technology. It seems

more plausible that there would be over-investment, meaning there is too much investment

into the second technology, if ∆Cab is increasing. But note, however, that a decreasing ∆Cab

means also that the firms would prefer the second technology if the tax is low. Or more

generally speaking the firms prefer the second technology when the incentive to adopt a

new technology is rather low. But this is the case here because too many permits have been

issued.

- Figures 6 and Figures 7 about here -
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The Figures 6 and 7 visualize the result for both the case that ∆Cab is decreasing (Figures

6) and the case that ∆Cab is increasing (Figures 7). Again as in Figures 4 and 5 the dotted

lines represent the border lines of the socially optimal allocation. The thick vertical lines

represent F o
a (Fb) and F u

a (Fb) while the upward and the downward slopping horizontal lines

represent F u
b and F o

b as a function of Fa. It is easy to show that for both F o
a and F u

a the slope

equals − λ
λ+r

which is for very small Fb and thus both lines are a parallel shift of F a and F a.

By comparing the allocations we see that if ∆Cab increases we have always under-investment

as in the one stage case when the allocation does not coincide with the socially optimal

one. But if ∆Cab decreases there is also a small area (Figure 6) where over-investment is

induced. It is the area where only the adoption of technology a would be socially optimal

while the market outcome is such that a partial share 0 < na < 1 adopts technology a and

the remaining firms adopt technology b.

7 Optimal Policy in Anticipation of the New Techno-

logy

In the last section we have investigated the firms’ behavior for the case where the regulator

has made a long term commitment to one of the policies. In this section we assume that

the regulator anticipates arrival of new technology and reacts optimally on arrival of new

technology. In this case we can think of three scenarios:

1) The regulator anticipates the expected arrival time of the latest technology, denoted

by say t̄2, and makes an ex ante commitment to set the tax rate at τ = τ 2∗ (or L = E∗
2) for

t ≥ t̄2. The tax rate τ 2∗ corresponds the optimal marginal damage if the optimal number

of firms has adopted technology b. Alternatively he may issue is the corresponding optimal

number of permits L = E2∗ . This policy, however, will not be optimal in general, since the

realization of the arrival time is stochastic and may be smaller or larger than t̄2. Hence we

will not further investigate second best optimal policies of this kind.

2) Ex ante contingent commitment. The regulator knows technology a and anticipates
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arrival of technology b, but he does not anticipate the exact arrival date t2. He sets the

optimal level of his policy instrument τ 1 or L1, in case of taxes or permits, respectively, for

t < t2 when only technologies 0 and a are available, and he makes a contingent commitment

to implement the optimal levels of his policy instruments τ 2 or L2, for t ≥ t2, when all three

technologies are available. Then some firms may adopt technology a immediately at time

t1 = 0 while some other firms may decide to adopt technology b, as soon as that technology

is available. The timing of this game is depicted in Figure 8 for the case of a tax policy. Note

that the points of time t1 and t2 are artificially split up into further virtual points of time t10,

t11 and t12, where the new technology a becomes available at t10, then the regulator makes

his commitment at time t11, and finally the firms make their decision at time t12. The time

intervals t12 − t11 and t11 − t10 are assumed to be infinitesimally small. The case of t20,t21,

and t22 is similar except that at t21 the regulator implements his policy τ 2 or L2 according

to his commitment. This virtual timing structure can be considered as a proxy of the real

world’s if the time lag t2 − t1 is large compared to the lags t12 − t11 and t11 − t10.

- Figure 8 about here -

3) Ex post regulation. In the final scenario the firms move first by deciding whether or

not to adopt technology a at the (virtual) point of time t11. Then the regulator observes how

many firms have adopted technology 1 and then sets his tax rate τ 1, or issues his number

of permits L1, respectively, at the virtual point of time t12. As soon as the new technology

becomes available at time t2, (more exactly at the virtual point of time t20), those firms which

have not adopted technology a at time t1, now decide whether or not to adopt technology

b at the virtual point of time t21. Then the regulator again observes how many firms have

adopted the latest technology b and sets the optimal level of his policy instrument at virtual

point of time t22. The timing of this game is depicted in Figure 9 for the case of a tax policy.

Note that we assume that the regulator maximizes welfare, and the firms, knowing this,

anticipate the investment equilibrium and thus the level of the policy instrument in the time

intervals [t1, t2) and [t2,∞).
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- Figure 9 about here -

First we will show that under ex ante contingent commitment permits outperform taxes

because the efficient allocation can always be implemented through a unique equilibrium

under permits while under taxes multiple equilibria may occur only one being the efficient.

Proposition 7.1 (Ex ante commitment). Assume the welfare-maximizing regulator mo-

ves first and announces his full policy setting.

1. (Ex ante optimal tax policy) Let τ 1 be the emission tax level relevant for the time

period [t1, t2[ and τ 2. If it is socially optimal that either none of the firms adopt any of

the new technology or all firms adopt either technology a or technology b there exist a

unique subgame perfect equilibrium where the regulator in both stages charges a tax

equal to the corresponding socially optimal damage and also in both stages the social

optimal share of firms adopts the corresponding technologies. Otherwise there always

exists an infinity number of equilibria where only one is the efficient one.

2. (Ex ante optimal permit policy) There exists a unique subgame perfect equilibrium

where the regulator issues the socially optimal number of permits L1 = E1∗ for the

time period [t1, t2[ and also the socially optimal number of permits L2 = E2∗ for t ≥ t2

when technology b is available. Furthermore in both stages the social optimal share of

firms adopts the corresponding technologies.

The intuition behind the result is simple. Since an ex ante committed tax is not flexible

in principle the decision of other firms does not affect the equilibrium tax level. Thus by

the results of section 5.2 either all firms take the same decision or each firm is indifferent

between different strategies which induces that the choice is ambiguous. In the proof of this

proposition we see that the latter is always the case if the social optimal allocation consist

partial adoption of at least one technology.

However optimal ex post regulation induces the social optimum with both, taxes or

permits. The next proposition establish the result.
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Proposition 7.2 (Ex post optimal policy). Let Fa, Fb be given and assume that a

welfare-maximizing regulator observes the shares of investing firms at each stage. Then

under both, taxes and permits, there exists a unique subgame perfect equilibrium where at

each stage the optimal number of firms invest and the regulator sets the tax rates τ 1 and τ 2

equal to the corresponding socially marginal damage, or issues the corresponding number of

permits, respectively.

Note that this result generalizes a similar result of Requate and Unold [2003] for the case

where only technologies 0 and a exist. The nice feature about proposition 7.2 is that despite

the uncertainty about the future it is sufficient for the regulator to stick to the Pigouvian

rule. Thus the regulator does not have to solve complex commitment problems and problems

of time-(in-)consistency. The optimality of ex-post regulation however only works if the firms

are small and cannot influence the regulator’s decision by their investment decision. In other

words their impact on marginal damage must be sufficiently small.

8 Conclusion

The aim of this paper was to investigate incentives to adopt new technology when some

new technology is available and some even better (but exogenously given) technology will be

available in the future but the arrival time is subject to uncertainty. This creates an option

value to postpone the decision to adopt new technology. Our analysis drew on Requate and

Unold [2003] who considered a deterministic framework where one new was available with

certainty. We have shown that, depending on the fixed investment cost of both technology

a and technology b, all constellations are possible: All firms adopt technology a, but none

adopts technology b, and vice versa; some firms adopt technology a but some firms wait and

adopt technology b if that becomes available. It may even be optimal that all three tech-

nologies, the conventional technology 0, technology a, and technology b will be employed

simultaneously. Moreover we have shown that the socially optimal outcome can be decen-

tralized by ex post optimal policy. This means that the firms move first by deciding whether
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or not to adopt technology a immediately, or to wait for technology b, and in a second step

the regulator implements the ex post optimal level of his policy instrument. The reason why

this policy is socially optimal is the fact that the firms are many and cannot strategically

influence the regulator’s decision. If firms were few, the optimality result would, of course,

not hold. Ex ante commitment, by contrast leads to the first best outcome only in the case

of permits, whereas this was not the case for taxes due to multiplicity of equilibria.

We have assumed that firms are symmetric ex ante in this paper. Despite optimality of

equilibrium, firms would have to solve a coordination problem because ex ante symmetric

firms may be different ex post. The coordination problem may be solved by introducing an

exogenously given order of investment. It may also be solved by introducing some asymmetry

among the firms along the lines of Requate and Unold [2001] which we here have to relegate

for further research. A further issue of research will be to endogenize the new technology

since the analysis becomes more complicated if the technology jumps are endogenous.

A Appendix

Proof of Proposition 4.1: Ad 1.-3.: Given na at stage 2 the social planner solves

min
nb,n0,e2

0,e2
a,e2

b

{
1

r
(n0C0(e

2
0) + naCa(e

2
a) + nbCb(e

2
b) + D(n0e

2
0 + nae

2
a + nbe

2
b)) + nbFb

}
(11)

subject to the constraints n0 ≥ 0, nb ≥ 0 and n0 + na + nb = 1 with corresponding Kuhn-

Tucker multipliers µi for the non-negative constraint for ni for i = 0, b and Lagrange multi-

plier ν w.r.t. n0 = 1 − na − nb. For simplicity we write ei instead of e2
i for i = 0, a, b. The

first order conditions w.r.t. ei, n0 and nb are given by

C ′
i(ei) + D′(E2) = 0, i = 0, a, b (12)

1

r
(C0(e0) + e0D

′(E2))− µ0 − ν = 0 (13)

1

r
(Cb(eb) + ebD

′(E2)) + Fb − µb − ν = 0 (14)

Eliminating ν from the equations (13) and (14) yields

1

r
(Cb(eb)− C0(e0) + (eb − e0)D

′(E2)) + Fb − µb + µ0 = 0 (15)
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Considering first the interior solutions (i.e. µ0 = µb = 0), we differentiate the equation system

(12) and (15) with respect to Fb . Employing the Envelope Theorem, we obtain:

C ′′
i (ei)

∂ei

∂Fb

+ D′′(E)
∂E2

∂Fb

= 0, i = 0, a, b (16)

and
1

r
D′′(E)

∂E2

∂Fb

(eb − e0) + 1 = 0 (17)

Solving for ∂E2/∂Fb yields:

∂E2

∂Fb

=
r

D′′(E)(e0 − eb)
> 0

Substituting this equation into (16) yields ∂ei/∂Fb < 0 for each type of firm. We can write

the total emissions as E(Fb) = (1 − na − nb)e0 + naea + nbeb. Differentiating this equation

with respect to Fb and solving the result for ∂nb/∂Fb yields

∂nb

∂Fb

=
∂E2

∂Fb
− (1− na − nb)

∂e0

Fb
− na

∂ea

Fb
− nb

∂eb

Fb

eb − e0

< 0.

Note now that the expression Cb(eb) − C0(e0) + (eb − e0)D
′(E2) is decreasing in E . Let us

denote by E
2

and E2 the maximum and the minimum feasible values of emissions in the

second stage, respectively, occuring when no firm or all remaining firms adopt the technology

b, respectively. Furthermore let F b(na) and F b(na) be the values of the fixed investment costs

for which complete or no adoption of technology b by the remaining 1− na firms is optimal.

Then for each F ∈]F b(na), F b(na)[ we find E such that Cb(eb)−C0(e0)+(eb−e0)D
′(E)+F = 0

and a corresponding nb with 0 < nb < 1 − na such that E = naea + nbeb + (1 − na − nb)e0.

Conversely, every Fb for which there is an interior solution nb of (11) must satisfy Fb ∈

]F b(na), F b(na)[ since for the corresponding E2 we have E2 ∈]E
2
, E2[.

ad 4.: For the maximum feasible aggregate emission level E
2

= naea + (1 − na)e0, where ei

satisfies (12) we obtain

∂E
2

∂na

= (ea − e0)/

[
1 + D′′

(
na

∂2Ca

∂e2

+
1− na

∂2C0

∂e2

)]
< 0.

Analogously we get for the minimal feasible emission level

∂E2

∂na

= (ea − eb)/

[
1 + D′′

(
na

∂2Ca

∂e2

+
1− na

∂2Cb

∂e2

)]
> 0.
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Since E
2

= naea + (1− na)e0 and E2 = naea + (1− na)eb both tend to the level EM = e∗a(1)

as na tends to 1, such that all firms use technology a. Now observe that F b(na) and b2(na)

are given by −[Cb(eb)−C0(e0) + (eb − e0)D
′(E2)]/r = F b(na) and −[Cb(eb)−C0(e0) + (eb −

e0)D
′(E2)]/r = F b(na), respectively. By differentiating both equations with respect to na we

can easily derive that F b(na) increases and F b(na) decreases in na. Because obviously the

LHSs of both equations tend to the same value as na tends to 1, both F b(na) and F b(na)

tend to the same level FM .

ad 5.: Let Fb ∈ (F b(na), F b(na)) be fixed. Differentiating (12) and (15) with respect to na

and applying the Envelope Theorem we obtain

C ′′
i (ei)

∂ei

∂na

+ D′′(E2)
∂E2

∂na

= 0, i = 0, a, b (18)

and
1

r
D′′(E2)

∂E2

∂na

(eb − e0) = 0 (19)

Hence ∂E2/∂na = 0. Substituting into (18) yields ∂ei/∂na = 0 for i = 0, a, b.

Proof of Proposition 4.2 Part 1-3: First note that for given Fb there are four general

possible scenarios. If Fb ≥ F b(0) for all na, no adoption of technology b will be socially

optimal in the second stage since F b is decreasing in na. If Fb ≤ F b(0) for all na, full

adoption of technology b by the remaining will be socially optimal in the second stage.

If Fb ∈ [FM , F b(0)) by Proposition 4.1, there exists a unique n̂a ≤ 1 such that partial

adoption of technology b is socially optimal for na < n̂a and no adoption is optimal for

na ≥ n̂a. Conversely, if Fb ∈ (F b(0), FM ] by Proposition 4.1, there exists a unique n̂a ≤ 1

such that partial adoption of technology b is socially optimal for na < n̂a, and full adoption

of technology b by the remaining firms is optimal for na ≥ n̂a. For the latter two cases we

now solve the minimization problem under the restrictions na ∈ (0, n̂a) and na ∈ (n̂a, 1) and

then add up the results. Since obviously optimal total emissions E2(na) are continuous in

na we conclude that n∗a(Fa) is continuous. First we consider the case Fb > F b(0): Hence for

any na adoption of technology b is never socially optimal. Therefore we can apply the proof

Proposition (4.1) i.) - iii.) in the case of na = 0.
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Next consider Fb < F b(0). In this case, for any na it is socially optimal that the remaining

firms will adopt technology b. Therefore at the first stage the social planner solves the problem

min
{e0,ea,n0,na}

1

λ + r
[n0C0(e0) + naCa(ea) + D(n0e0 + naea)] + naFa

+
λ

λ + r

1

r

[
n0Cb(e

2
b(na)) + naCa(e

2
a(na)) + D(n0e

2
b(na) + nae

2
a(na))

]
+

λ

λ + r
n0Fb

(20)

under the constraints n0 ≥ 0, na ≥ 0 and n0 + na = 1. Set E1 = n0e0 + naea and E2 =

n0e
2
b(na) + nae

2
a(na). Again µi, i = 0, a, is the Kuhn-Tucker multiplier for ni ≥ 0 and ν

the Lagrange multiplier for n0 + na = 1. Following the same procedure as in the proof of

Proposition 4.1 i.e. differentiating equation (20) with respect to ei and ni, i = 0, a, applying

the Envelope Theorem, and eliminating ν we obtain:

Fa =
1

λ + r
(C0(e0)− Ca(ea) + (e0 − ea)D

′(E1))

+
λ

λ + r

1

r
(Cb(e

2
b − Ca(e

2
a)) + (e2

b − e2
a)D

′(E2)) +
λ

λ + r
Fb + µa − µ0

(21)

Considering first the interior solutions (i.e. µ0 = µa = 0 ) and multiplying the last equation

by r(λ + r), we obtain:

r(λ + r)Fa = r(C0(e0 − Ca(ea)) + (e0 − ea)D
′(E1))

+ λ(Cb(e
2
b − Ca(e

2
a)) + (e2

b − e2
a)D

′(E2)) + rλFb

(22)

Furthermore, in the second period

C ′
i(e

2
i ) + D′(E2) = 0, i = a, b (23)

still holds. Differentiating (23) with respect to na, we obtain

−C ′′
i (e2

i )
∂e2

i

∂na

= D′′(E2)[e2
a − e2

b + na
∂e2

a

∂na

+ (1− na)
∂e2

b

∂na

], i = a, b.

Thus ∂e2
a/∂na = [C ′′

b (e2
b)/C

′′
a (e2

a)] · ∂e2
b/∂na. Substituting this expression into (22) we obtain:

∂e2
b

∂na

=
D′′(E2)(e2

a − e2
b)

−C ′′
i (e2

i )−D′′(E2)na
C′′

b (e2
b)

C′′
a (e2

a)
−D′′(E2)(1− na)

< 0

implying ∂e2
a/∂na < 0. Since D′′(E2)·∂E2/∂na = ∂2C/∂e2 ·∂e2

a/∂na we obtain ∂E2/∂na > 0.

Note that we can reinterpret the maximization problem above as a two stage procedure,
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where we first determine ea, e0 for given na. These values will be delivered by (23) together

with E1 = naea + (1 − na)e0. Now doing the analogous calculations as above, we derive

∂ei/∂na > 0, i = 0, a, and ∂E1/∂na < 0. With these results we are able to calculate

∂E1/∂Fa and ∂na/∂Fa. For that purpose we differentiate (22) and (23) w. r. t. Fa yielding

C ′′
i (ei)

∂ei

∂Fa

+ D′′(E1)
∂E1

∂Fa

= 0, i = 0, a,

and

r(λ + r) = r(e0 − ea)D
′′(E1)

∂E1

∂Fa

+ λ(e2
b − e2

a)D
′′(E2)

∂E2

∂Fa

.

Using ∂E1/∂Fa = ∂E1/∂na · ∂na/∂Fa and solving for ∂na/∂Fa yields

∂na

∂Fa

=
r(λ + r)

r(e0 − ea)D′′(E1)∂E1

∂na
+ λ(e2

b − e2
a)D

′′(E2)∂E2

∂na

< 0

from which we can derive ∂ei/∂Fa < 0, ∂e2
i /∂Fa > 0, ∂E1/∂Fa > 0 and ∂E2/∂Fa < 0.

Furthermore by differentiating the RHS of equation (21) with respect to na, still assuming

an interior solution (i.e. µ0 = µa = 0), we verify that the RHS of 21) decreases in na. Thus

analogously to the proof of Proposition 4.1 we can show that there exists [F a, F a] such that

µ0 = µa = 0 for every Fa ∈ [F a, F a], and such that µ0 > 0 if Fa > F a and µa > 0 if Fa < F a

respectively

Finally let Fb ∈ [F b(0), F b(0)]. Depending on whether Fb > FM or Fb < FM , there exists

an na < 1 such that Fb = F b(na) or Fb = F b(na). The social planner’s problem can then be

written as

min
e0,ea,n0,na

1

λ + r
(n0C0(e0) + naCa(ea) + D(n0e0 + naea)) + naFa

+
λ

λ + r

1

r
((1− na − nb(na))C0(e

2
0(na)) + nb(na)Cb(e

2
b(na)) + naCa(e

2
a(na))

+ D((1− na − nb(na))e
2
0(na) + nb(na)e

2
b(na) + nae

2
a(na))) +

λ

λ + r
nb(na)Fb

subject to the constraints 0 ≤ na ≤ na and n0 + na = 1. Set E1 := n0e0 + naea and

E2 := (1 − na − nb(na))e
2
0(na) + nb(na)e

2
b(na) + nae

2
a(na). Analogously as in the case above

from the FOCs we can derive

0 =
1

λ + r
(Ca(ea)− C0(e0) + (ea − e0)D

′(E1)) (24)

+
λ

λ + r

1

r
(Ca(e

2
a)− C0(e

2
0) + (e2

a − e2
0)D

′(E2)) + Fa
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Now we can apply Proposition 4.1 iii.) to the case of partial adoption of technology b. Hence

both e2
i , i = 0, a, b, and E2 only depend on Fa but neither on na nor on Fa. Thus, by

differentiating (23) and (24) w. r. t. Fa, we obtain :

∂2Ci

∂e2

∂ei

∂Fa

+ D′′(E1)
∂E1

∂Fa

= 0, i = 0, a,

and
1

λ + r
((ea − e0)D

′′(E1)
∂E1

∂Fa

) + 1 = 0

Therefore
∂E1

∂Fa

=
λ + r

(e0 − ea)D′′(E1)
> 0

Following the proof of Proposition 4.1 we derive ∂ei/∂Fa < 0, for i = 0, a and ∂na/∂Fa < 0.

Thus we find a minimum value Fmin and a maximum value Fmax such that for each Fa ∈

]Fmin, F
max[ there is an interior solution for na. Now if Fb = FM then obviously F a = Fmin

and F a = Fmax. For the case that no or full adoption of technology b is optimal, the result

immediately follows. Otherwise as derived above there are two intervals [F, F ] and [F ′, F
′
]

such that for all Fa ∈ (F, F ) we have 0 < na < n̂a and for Fa ∈ (F ′, F
′
) we have n̂a < na < 1

and either no (Fb > FM) or full (Fb < FM) adoption of technology b follows. Obviously

F = F ′. Thus [F, F
′
] is the interval we are looking for. q.e.d.

Proof of Proposition 4.2 4.-5.: ad 4.: Let us first consider the case where partial

adoption is socially optimal at the second stage. Thus (24) is relevant. If we differentiate

(24) with respect to λ, solve for ∂na/∂λ and apply that E2 is independent of na, we obtain

∂na

∂λ
=

(Ca(ea)− C0(e0) + (ea − e0)D
′(E1)− (Ca(e

2
a)− C0(e

2
0) + (e2

a − e2
0)D

′(E2)))

(λ + r)(ea − e0)D′′(E1)∂E1

∂na

The second part of the numerator, representing the second stage, is smaller than the first

part in absolute values. Thus the numerator is negative. The denominator is clearly positive.

If we differentiate (24) with respect to Fb and solve for ∂na/∂Fb we obtain:

∂na

∂Fb

=
λ
r
(e2

a − e2
0)D

′′(E2)∂E2

∂Fb
)

(e0 − ea)D′′(E1)∂E1

∂na
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Both the numerator and the denominator are negative, since ∂E1/∂na < 0 and ∂E2/∂Fb > 0.

In case of full adoption at the second stage, we differentiate (21) with respect to λ and again

solve for ∂na/∂λ to obtain:

∂na

∂λ
=

Ca(ea)− C0(e0) + (ea − e0)D
′(E1)

(λ + r)[(ea − e0)D′′(E1)∂E1

∂na
+ λ

r
(e2

a − e2
b)D

′′(E2)∂E2

∂na
]

− Ca(e
2
a)− C0(e

2
0) + (e2

a − e2
0)D

′(E2)

(λ + r)[(ea − e0)D′′(E1)∂E1

∂na
+ λ

r
(e2

a − e2
b)D

′′(E2)∂E2

∂na
]

+
(Cb(e

2
b)− C0(e

2
0) + (e2

b − e2
0)D

′(E2) + rFb

(λ + r)[(ea − e0)D′′(E1)∂E1

∂na
+ λ

r
(e2

a − e2
b)D

′′(E2)∂E2

∂na
]

The denominator is clearly positive. The difference of the first two parts of the numerator is

negative for the same reasons as in case of partial adoption at the second stage. The third

part in principle represents the first order condition with respect to nb. Since, however, the

optimum is adopted at the upper boundary for nb (complete adoption), this term must be

negative. Analogously we get:

∂na

∂Fb

=
λ

(ea − e0)D′′(E1)∂E1

∂na
+ λ1

r
(e2

a − e2
b)D

′′(E2)∂E2

∂na

< 0

ad 5.: It is obvious that neither F a nor F a depends on Fb if no adoption of technology b is

optimal at the second stage, which for F a is the case if and only if Fb > FM , while for F a

this is the case if and only if Fb > F bb(0). In case of partial adoption at the second stage we

only have to consider F a. Partial adoption is optimal if and only if F b(0) < Fb < F b(0). In

that case F a(Fb) is given by equation (24) where E1 = e0 and E2 = nbe2 + (1−nb)e0, where

nb is the optimal share of firms using technology b. From these equations we obtain

=
λ

(λ + r)r
(e2

a − e2
0)D

′′(E2)
∂E2

∂Fb

+
∂F a

∂Fb

.

Since ∂E2/∂Fb = r/(D′′(E2)(e2
b − e2

0)) we get ∂F a/∂Fb = λ/(λ + r) · [(e2
a − e2

0)/(e
2
b − e2

0). For

F a(Fb) full adoption of technology b can only occur if and only if Fb < FM . For F a(Fb) full

adoption of technology b is the relevant scenario if and only if Fb < F b(0). Thus to derive

the effect on F a(Fb) we have to differentiate (21) considering E1 = e0 and E2 = e2. Thus we

obtain:

0 =
∂F a

∂Fb

− λ

(λ + r)
.
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Analogously we can compute that
∂F a

∂Fb
= λ

(λ+r)
. Finally note that on [F b(0), FM ] we have

∂F a/∂Fb > ∂F a/∂Fb since
(e2

a−e2
0)

(e2
b−e2

0))
< 1.

Proof of Lemma (5.1): ad 1. : Differentiating ∆C0i with respect to τ and using the

Envelope Theorem yields
∂∆C0i

∂τ
=

1

r
(ei − e0) < 0.

For τ = 0 we have ∆C0i = Fi. If the term Ci(ei) − C0(e0) is bounded (which in particular

is the case if C is bounded), a sufficient condition for a solution of ∆C0i(τ) = 0 to exist is

that Fi is smaller than 1
r
[Ci(0)− C0(0)]. If Ci(ei)− C0(e0) goes to −∞ as ei, e0 tend to 0, a

root for ∆C0i(τ) = 0 exists for each Fi. Differentiating ∆C0i(τ) = 0 implicitly with respect

of Fi, using the Envelope Theorem, and solving for ∂τ̄i/∂Fi yields:

∂τ̄i

∂Fi

=
r

(e0 − ei)
> 0.

ad 2. : Differentiating ∆Cab(τ) = 0 with respect to τ and using the Envelope Theorem yields

∂∆Cab

∂τ
=

1

λ + r
(ea(τ)− e0(τ)) +

λ

λ + r

1

r
(ea(τ)− eb(τ)).

Obviously, the sign and it’s development is ambiguous without further restrictions. So let us

assume that the sign is unique and let us consider that ∆Cab increases. Now observe that

∆Cab(0) = Fa − λ
r+λ

Fb. Thus if Fa and Fb are such that ∆Cab(0) < 0 holds and such that

∆Cab(τ) gets positive for τ sufficiently large, by reasons of continuity there must exist a tax

rate τ̄ such that ∆Cab(τ̄) = 0. Since ∆ab is monotonic, this value is unique.

Proof of Lemma (5.3): Differentiating ∆Cab(τ) = 0 with respect to Fa and using the

Envelope Theorem, we obtain:

∂τab

∂Fa

(
1

λ + r
(ea − e0) +

λ

λ + r

1

r
(ea − eb)

)
+ 1 = 0.

This yields
∂τab

∂Fa

= − r(λ + r)

r(ea − e0) + λ(ea − eb)
=

1
∂∆Cab

∂τ

.

Analogous we can derive

∂τab

∂Fb

=
rλ

r(ea − e0) + λ(ea − eb)
=

λ

λ + r

1
∂∆Cab

∂τ

.
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Proof of Proposition (5.4) ad 1.: First we consider the case τa < τ b. Assume first

τ ∈]τa, τ b[. Because ∆Ci, i = a, b decreases, we obtain ∆Ca(τ) = 1
r
[Ca(ea)−C0(e0))+ τ(ea−

e0)] + Fa < 0 and ∆Cb(τ) = 1
r
[Cb(eb) − C0(e0)) + τ(eb − e0)] + Fb > 0. This gives us the

following inequality chain:

0 >
1

r
[Ca(ea)− C0(e0)) + τ(ea − e0)] + Fa

=
1

r + λ
[Ca(ea)− C0(e0)) + τ(ea − e0)]

+
λ

r + λ

1

r
[Ca(ea)− C0(e0)) + τ(ea − e0)] + Fa

>
1

r + λ
[Ca(ea)− C0(e0)) + τ(ea − e0)]

+
λ

r + λ

1

r
[Ca(ea)− Cb(eb)) + τ(ea − eb)] + Fa

−[
λ

r + λ

1

r
[Cb(eb)− C0(e0)) + τ(eb − e0)] +

λ

r + λ
Fb]

= ∆Cab(τ).

Next we consider the case τ b < τa. Assume that τ ∈]τ b, τa[. Following the same argument

as above this implies ∆Ca(τ) = 1
r
[Ca(ea) − C0(e0)) + τ(ea − e0)] + Fa > 0 and ∆Cb(τ) =

1
r
[Cb(eb)− C0(e0)) + τ(eb − e0)] + Fb < 0. A similar inequality chain yields 0 < ∆Cab(τ).

ad 2.: First assume τa < τ b. Since ∆Cab decreases, ∆Cab(τ) < 0 for each τ ∈ [τa, τ b] and τ̄ab

is given by ∆Cab(τ̄ab) = 0, τ̄ab < τa must be the case. Now if τa > τ b analogously τ̄ab > τa

follows.

ad 3.: Analogously.

Proof of Proposition 5.5 We will prove the first three claims via contradiction:

ad 1. : Let L > E
2
(na) and suppose σ > σ2. Hence, all (1−na) firms using the old technology,

would adopt technology b and aggregate emissions will fall below E2(na). Therefore the

permit market would not be cleared because E2(na) < L, a contradiction. Now suppose

σ = σ2. In this case the emission level could not be larger than E
2
(na). But E

2
(na) < L.

Analogous we can prove 2. and 3. . The share of firms investing if L ∈ [E2(na).E
2
(na)] can

easily be derived from naea + nbeb + (1− na − nb)e0 = L.

ad 4. : It is obvious that E
2
(na) is strictly decreasing in na and tends to ea(σ

2). Similary
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E2(na) is strictly increasing in na and also tends to ea(σ
2). q.e.d.

To prove Proposition 5.7 we use the following Lemma which characterize the market price

at the first stage:

Lemma A.1. The market price for permits in the first stage σ1(na) is strictly decreasing in

na.

Afterwards we will prove that the threshold price σ1(na) is non-decreasing and continuous

in na respectively. For this purpose we will prove the following Lemma:

Lemma A.2. The threshold price σ1(na) is characterized as follows:

1. If L > E
2
(0), then σ1(na) equals σ0a(σ2(na)) for all na and is increasing in na.

2. If L < E2(0), then σ1(na) equals σab(σ2(na)) for all na and is increasing in na.

3. If L ∈ [E2(0), E
2
(0)], we have the following three subcases:

(a) For L = EM , σ1(na) equals σab(σ2) for all na and is therefore constant.

(b) For L < EM let na be the share of firms where L = E2(na). For na ≤ na the

threshold price σ1(na) equals σab(σ2) and is therefore constant in na. For na >

na the price σ1(na) equals σab(σ2(na)) and is increasing. For na = na we have

σ1(na) = σab(σ2) = σab(σ2(na)).

(c) If L > EM , let na be the share of firms where L = E
2
(na). For na ≤ na the

threshold price σ1(na) equals σab(σ2) and is therefore constant in na. For na >

na the price σ1(na) equals σ0<(σ2(na)) and is increasing. For na = n< we have

σ1(na) = σab(σ2) = σ0a(σ2(na)).

Proof of Lemma A.1: We differentiate the two market equilibrium equations, −∂Ci

∂e
=

σ1, i = 0, and L = naea + (1 − na)e0 implicitly with respect to na. This yields −∂2Ci/∂e2 ·

∂ei/na = ∂σ1/∂na, i = 0, a , and 0 = ea − e0 + na∂ea∂na + (1− na)
∂e0

∂na
. Thus we can derive

∂2Ca

∂e2

∂2C0

∂e2

∂ea

∂na

=
∂e0

∂na

,



39

and therefore
∂ea

∂na

=
e0 − ea

na + (1− na)
∂2Ca
∂e2

∂2C0
∂e2

> 0.

Obviously this implies ∂σ1∂na < 0. q.e.d.

Proof of Lemma A.2: ad 1.: In that case, given each na it is optimal for all remaining

firms not to adopt technology b in the second stage. Moreover, the market price in the second

stage equals the one in the first stage since none of the remaining firm adopts technology

b. Differentiating ∆C0a(σ
1(na), σ

1) = 0 (Note that σ1(na) = σ0a(σ1)) with respect to na,

employing both the Envelope Theorem and Lemma A.1, we obtain:

∂σ1

∂na

=
λ ∂σ1

∂na
(ea(σ

1)− e0(σ
1))

r(e0(σ
1)− ea(σ

1))
> 0.

ad 2.: In that case, given each na it is optimal for the remaining firms to adopt technology

b in the second stage. Thus in the first stage each firm decides between adopting technology

a immediately and adopting technology b in the second stage. Thus σ1(na) = σab(σ2). Dif-

ferentiating ∆Cab(σ
1(na), σ

2) = 0 with respect to na, and using the Envelope Theorem, we

obtain:
∂σ1

∂na

=
λ ∂σ2

∂na
(e2

a(σ
2)− eb(σ

2))

r(e0(σ
1)− ea(σ

1))
.

Thus to prove ∂σ1/∂na > 0 it suffies to show ∂σ2/∂na > 0. Differentiating the market

equilibrium equations −∂Ci

∂e
= σ2, i = a, b, and L = nae

2
a + (1 − na)e

2
b with respect to na

we obtain −∂2Ci/∂e2 · ∂e2
i /∂na = ∂σ2/∂na, i = a, b , and 0 = e2

a − e2
b + na∂e2

a/∂na + (1 −

na)∂e2
b/∂na, yielding [∂2Ca

∂e2 /∂2Cb

∂e2 ] · [∂e2
a/∂na] = ∂e2

b/∂na and therefore

∂e2
a

∂na

=
e2

b − e2
a

na + (1− na)
∂2Ca
∂e2

∂2Cb
∂e2

< 0.

Obviously this implies ∂σ2/∂na > 0.

ad 3.: (a) By Proposition 5.5 we know that if L = EM then for all na < 1 partial adoption

of technology b occurs in the second stage. This implies that in equilibrium each firm that

has not adopted technology a in the first stage is indifferent between adopting technology

b and not adopting it in the second stage. Therefore σ2 = σ2. Therefore in the first stage
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σ1 = σab(σ2) = σ0a(σ2) must be the case in equilibrium.

(b) By Proposition 5.5 we know that na satisfying L = E(na) exists since L < EM . Further-

more for all na < na partial adoption in the second case occurs while for all na ≥ na full

adoption of technology b is the equilibrium outcome. Thus in each case we can apply the

arguments above and therefore we only need to show that σ1(na) is continuous at na. But

by Proposition 5.5 we know that all remaining (1− na) firms invest in technology b and σ2

must be equal to σ2. That is how na is defined. Thus all these (1− na) firms are indifferent

between investing into technology b and not investing at all in the second stage. It therefo-

re directly follows from ∆C0b(σ
2) = 0 that for σ1 and σ

1
satisfying ∆C0b(σ

1, σ2) = 0 and

∆Cab(σ
1
, σ2) = 0 the equality σ1 = σ

1
must hold. Hence the threshold price σ1 is continuous

in na .

(c) Analogous to (b).

Proof of Proposition 5.7: First note that in case of an equilibrium with partial adoption,

the threshold price σ must equal the market price.

ad 1.: If L > E
1

the market price is lower than the lowest possible threshold price. Thus no

firm will adopt technology a.

ad 2. : If L < E1 the market price is higher than the highest possible threshold price. The-

refore all firms will adopt technology a.

ad 3. : In this case we find na such that E(σ1(na)) = L = E(σ(na)). For this na the permit

market clears and there is no incentive for any firm to take another decision. q.e.d.

Proof of proposition (6.1): In the following E1 and E2 denote the socially optimal

aggregated emission levels corresponding to (Fa, Fb). To shorten the notation in general we

will only write F̂a and F̃a.

First note that irrespective to the share of firms which have adopted technology a in the

first stage all firms with the conventional technology will adopt technology b if Fb > F 2(0)

since for Fb = F 2(0) we have τ 0b = τ0. Furthermore note that for Fb = F b(0) the equality

E2 = E∗
0 holds. Since τ0 = D′(E∗

0) = τ 2 for Fb = F b(0) the first order condition of the

social planner coincides with (8). Moreover for Fa = F a(F b(0)) obviously E1 = E∗
0 holds
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(see Figure 4 and 5). Now since for Fa = F a(F b(0)) the first order condition of the social

planner coincides with (9) and (10), we get τ0 = D′(E∗
0) = τ 0a = τab.

a.) : In this case τ 0b > D′(E∗
0) since ∂τ0b

∂Fb
> 0. Hence no firm would like to invest into the

second technology irrespective to what happened in the first stage. If Fa < F a then τ 0a < τ0

has to follow which implies complete adoption technology 1. As mentioned above Fa = F a

yields τ 0a = D′(E∗
0). Thus every firm is indifferent between adopting technology a and doing

not so. At last Fa > F a yields τ 0a > τ0. Therefrom no firm would adopt technology a.

b.) : For Fa = F a by (9) and the corresponding first order condition of the social plan-

ner (22) τab = D′(E1) has to hold. Obviously D′(E1) < τ0. If ∆Cab decreases it must be

∆Cab(τ0) < 0. This implies F̃a > F a since F̃a is defined by ∆Cab(τ0) = 0 given Fb. If ∆Cab in-

creases, ∆Cab(τ0) > 0, and analogously F̃a < F a follows. c.) : First remember that F̂a(Fb) is

the cost level where F b(F̂a(Fb)) = Fb holds. Thus τab = D′(E1) for Fa = F̂a since it is socially

optimal for this installment cost pair that a share n̂a of firms adopt technology a and no firm

adopts technology b. Again note that D′(E1) < τ0. Again if ∆Cab decreases, ∆Cab(τ0) < 0

holds and therefore F̃a > F̂a. Analogously follows that if ∆Cab increases F̃a < F̂a has to hold.

d.) : This is obvious.

q.e.d.

Proof of proposition (6.2): We denote with E2 the socially optimal aggregated emissi-

on level which corresponding to a installment cost of Fb. First note that given Fb it is socially

optimal that a partial share of firms adopt technology b always σ02 = D′(E2) has to hold.

1.) : For na = 0 in case that no firm adopts technology b the permit price σ2 equals D′(E∗
0).

Furthermore from the first order condition of the social optimal solution for Fb = F b(0)

we have σ0b = D′(E∗
0) follows. If na > 0 then obviously none of the firms using still the

conventional technology will adopt technology b for Fb = F b(0) since σ2(0) < D′(E∗
0) = σ0b.

But since F o
b (na) is determined by ∆C0b(σ

2(0)) = 0 it follows that F o
b (na) < F b(0).

For Fb = F b(na) we have σ0b = D′(E2). Obviously D′(E2) > σ2(1− na), since D′(E2) =

σ2(1− na) is only the case if the socially optimal number of permits has been issued. Since
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∆C0b(σ
2(1− na)) = 0 determines F u

b (na) the relationship F u
b (na) < F b(na) must hold.

2.) and 3.) follow immediately.

4.) : We only need to consider the case Fb ∈]F b(na), F
o
b (na)[. First note that F b(na) <

F o
b (na) must not necessarily be the case. But for F b(na) > F o

b (na) our claim is obviously

true. So assume the opposite. But obviously for F2 ∈ [F b(na), F
o
b (na)] as well D′(E2) = σ0b

as σ2(n∗b) < σ0b have to hold if the socially optimal share n∗b of firms invests into technology b

since L0 = E∗
0 > E∗

2 . Therefore ∆C0b(σ
2(n∗b)) > 0. Therefore the permit price must decrease

which induces that the share of firms adopting technology b has to be smaller than the

socially optimal one.

5.) : For n′a > na we obviously get σ2(0)|na > σ2(0)|n′
a

and σ2(1−n′a) > σ2(1−na). Since

given a share ña the upper bound F o
b (ña) is defined by ∆C0b(σ

2(0)) = 0 and the lower bound

F u
b (ña) by ∆C0b(σ

2(1 − ña)) = 0 we get F o
b (n′a) < F o

b (na) and F u
2 (n′1) > F u

2 (n1). The level

F̃M is given by ∆C0b(σ
2|na=1) = 0 and it is obvious that both bounds tend to this level. And

since for na = 1 the permit price σ2 < D(E2) also F̃M < FM follows immediately.

Proof of proposition 6.3 and of the subsequent corollar: In the following E1 and

E2 denote the socially optimal aggregated emission levels corresponding to a installation

cost pair (Fa, Fb).

For each 0 ≤ nb < 1 − na the corresponding Fa depends on the market price and the

market outcome in the second stage. If all remaining firms or even a partial share of them

adopt technology b, then the cost level Fa which corresponds to na is given by ∆Cab(na) = 0.

Furthermore by proposition 6.2 one of the four possibilities may be the case: For all na

none of the remaining firms adopt technology b, for all na all of the remaining firms adopt

technology b, there exists n̂a such that partial adoption of technology b is the market outcome

for na < n̂a and none of the remaining firms adopt technology b for na > n̂a and there exists

n̂a such that partial adoption of technology b is the market outcome for na < n̂a and all of

the remaining firms adopt technology b for na > n̂a. It is easy to show that na decreases in

Fa.

ad corollar :
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1. : In this case, no firm would adopt technology b at any circumstances. Thus the proof is

similar to the proof of proposition 6.2 where na = 0.

2. : For Fa = F o
a (Fb) partial adoption of technology bis the market outcome in the

second stage. By the FOC of the social optimum and proposition 5.5 the permit price in

the second stage must equalize the socially optimal marginal damage D′(E2) as long partial

adoption of technology b is also socially optimal for na = 0, i.e. Fb > F b. This implies,

since in the first stage σ1 = D′(E∗
0) holds, that F a(Fb) = F o

b (Fb) since both are given by

∆Cab(D
′(E∗

0), D
′(E∗

b )) = 0. If Fb < F b full adoption is socially optimal, i.e. D′(E2) > σ2 =

σ2. Since for Fa = F a(Fb) we have ∆Cab(D
′(E∗

0), D
′(E∗

2)) = 0 > ∆Cab(D
′(E∗

0), σ
2) = 0

the relationship F o
a (Fb) > F a(Fb) must hold. For Fa = F u

a (Fb) we get σ1 < D′(E1) and

σ1 = σ2, since all firms adopt technology a, and for no adoption of technology b would

be the optimal alternative in the second stage in the decentralized case, since F2 > F̃M .

For F2 > FM no adoption is also optimal from the social planners point of view. Since

∆C0a(D
′(E1), D′(E1)) = 0 for F a(Fb) we get F u

a (Fb) < F a(Fb) since ∆C0a(τ) decreases in τ

in that case. For Fb < FM we have adoption of technology b as socially optimal alternative

while no adoption is the optimal alternative in the decentralized situation. Thus for Fa =

F a(Fb) we have ∆C0a(D
′(E1), D′(E1)) < ∆Cab(D

′(E1), D′(E1)) = 0. Thus if ∆Cab increases

it is ambiguous whether F u
a (Fb) < F a(Fb) or F u

a (Fb) > F a(Fb) (see Figure 7). But if ∆Cab

decreases ∆C0a(D
′(E1), D′(E1)) < ∆Cab(D

′(E1), D′(E1)) = 0 and 0 = ∆C0a(σ
1, σ1) >

∆Cab(σ
1, σ1) can only be the case if F u

a (Fb) < F a(Fb) since ∆C0a is steeper than ∆Cab.

n∗a + n∗b < na + nb : If both n∗a = na = 0 the result follows from 6.2. Thus consider a cost

pair (Fa, Fb) where 1 > n∗a > 0 and 1 > na > 0 and where n∗b > 0 and nb > 0 and where

n∗a + n∗b < 1. First note that by the FOC of the social optimal solution and proposition 5.5

both, the socially optimal damage and the permit price, must equal the threshold price σ2

which only depends on Fb. Note also that if na > 0 and n∗a > 0 also σ1 = σ1 = D′(E1) have

to hold. Now consider n∗a + n∗b ≥ na + nb: Note that in our case only na + nb < 1 is possible.

Now since L > E1 we must get na < n∗a. But this implies n∗b + n∗a − na ≥ nb. Even if only

equality would hold we would get E < E2 < L since the permit price equals D′(E2). Now
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assume na + nb = 1. This would imply that σ2 ≤ D′(E2) and thus σ2 ≤ D′(E2).

3. : The result about F o
a (Fb) can be derived as in the previous case. So consider Fa =

F u
a (Fb). For Fa = F u

a (Fb) we get σ1 < D′(E1) and σ1 = σ2, since all firms adopt technology

a, and adoption of technology b would be the optimal alternative in the second stage, since

Fb < F̃M . Thus ∆Cab is the relevant function we have distinguish between the case that ∆Cab

decreases and ∆Cab increases. Now F a(Fb) is characterized by ∆Cab(D
′(E1), D′(E1)) = 0

while F u
a (Fb) is characterized by ∆Cab(σ

1, σ1) = 0. Thus if ∆Cab increases then this implies

F u
a > F a(Fb). Analogously if ∆Cab decreases F u

a < F a follows. The claim about na + nb can

be proven analogously to the previous case.

4. : If Fb ≤ F u
b (0) always full adoption of technology 2 by the remaining firms is the

market outcome in the second stage. Since for Fb ≤ F u
b also F u

b (0) < F b(0) holds for na = 0

the market price σ2 will be smaller than the socially optimal marginal damage D′(E2). Thus

as above F o
a (Fb) > F a(Fb) follows. and again as above also F u

a (Fb) < F a(Fb) follows if ∆Cab

decreases and F u
a (Fb) < F a(Fb) follows if ∆Cab increases. The rest follows immediately.

Proof of proposition (7.1) permit case: In principle we apply the same arguments

as in the proof of the next proposition, proposition 7.2. As we will do there we can define

a threshold price which is non-decreasing in the share of technology for each stage while

the market price is strictly decreasing. Thus we can prove that there is always a unique

equilibrium and we can easily see - like in that proof - that the efficient allocation is an

equilibrium. tax case: First we consider all cases where it is socially optimal that all firms

adopt the same technology. If for example Fb > F b(0) and Fa > F a(Fb), then by the proofs

of proposition 4.1 and 4.2 D′(E1) < τ 0a and D′(E2) < τ 0b. Thus no firm will invest. If

Fb < F b(0) and Fa > F a(Fb), D′(E1) < τ 0a and D′(E2) > τ 0b and therefore all firms will

adopt technology b. If Fb > F b(0) and Fa < F a(Fb), D′(E1) > τ 0a and D′(E2) < τ 0b and

therefore all firms will adopt technology a. If Fb < F b(0) and Fa < F a(Fb), D′(E1) > τ 0a and

D′(E2) > τ 0b. Furthermore τ = D′(E1) = D′(E2) is such that all firms will prefer to adopt

technology a. In all other cases at least one of the equalities D′(E1) = τ 0a, D′(E1) = τab or

D′(E2) = τ 0b will hold. Thus all firms are indifferent between at least two strategies.
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Proof of Proposition 7.2: tax case: First we will analyze the second stage, where na

is given: The regulator will set τ 2 = D′(E2∗(nb)), where E2∗(nb) is the socially optimal

aggregate emission level corresponding to nb. To find the equilibrium value for nb, we have

to compare τ to the threshold level τ b, i.e. the tax level where a firm would be indifferent

between adoption and no adoption of technology b. This level is given by ∆0b(τ b) = 0. Note

that by the proof of Proposition 4.1 this is also nothing else than the first order condition for

the socially optimal nb if we replace τ b by D′(E2). Therefore τ b = D′(E2∗(n∗b)) holds if for

the socially optimal share n∗b the inequality 0 < n∗b < 1− na holds. In this case the resulting

share of firms adopting technology b must be the socially optimal. Otherwise by the Ex-Post

regulation rule τ > D′(E2∗(n∗b)) or τ < D′(E2∗(n∗b)) must hold since E2∗(nb) decreases in nb

by proposition 4.1. If n∗b = 0 by the proof of proposition (4.1) D′(E2∗(n∗b)) ≤ τ b holds. Thus

for each share nb > 0 we must have D′(E2∗(nb)) < τ b since E2∗ decreases in nb. Thus partial

or full adoption cannot be an equilibrium outcome. An analogous argument applies to the

case n∗b = 1− na.

Now we analyze the first stage. First for each na we define the threshold tax rate τ(na). If no

adoption of technology b is the result in the second stage under ex post regulation, τ(na) is

given by ∆0a(τ(na), D
′(E2∗(0))) = 0. If partial adoption of technology b is the outcome, τ(na)

is given by ∆ab(τ(na), D
′(E2∗(n∗b(na)))) = 0 while if full adoption of technology b follows, the

threshold tax is given by ∆ab(τ(na), D
′(E2∗(1− na))) = 0. Relating these equations to proof

of Proposition 4.2 we see that these equations correspond to the first order condition of the

socially optimal share at the first stage. If in particular partial adoption of both technologies

is the social optimal outcome ∆ab(D
′(E1∗ , D′(E2∗) = 0 holds. Thus τ(n∗a) = D′(E1∗(n∗a))

holds if for given Fa and Fb 0 < n∗a < 1 holds. Furthermore n∗a = 1 is equivalent to τ(1) ≤

D′(E1∗(1)) and τ(0) ≥ D′(E1∗(0)) is equivalent to n∗a = 0. Thus the social optimal outcome

is also an equilibrium with the optimal tax rate. We still need to show that it is unique.

thus we assume first that τ(na) is non-decreasing in na: First consider the case 0 < n∗a < 1.

Since E1∗ decreases in na for all na < n∗a we must have τ(na) < D′(E1∗(na)), and for all

na > n∗a we must have τ(na) > D′(E1∗(na)). Therefore in the first case there is a further
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incentive for the remaining firms to adopt technology a while in the second case, too many

firms would have adopted technology a. In case of n∗a = 0, for each share na > 0 we would

have τ(na) > D′(E1∗(na)). Thus partial or full adoption of technology a cannot be an market

equilibrium. An analogous argument applies to the case of n∗a = 1. Thus it only remains to

show that indeed τ(na) is non-decreasing. We distinguish three cases:

Case 1: No adoption will be expected in equilibrium in the second stage: Then τ(na) is given

by ∆0a(τ(na), D
′(E2∗(0))) = 0 as mentioned above. Obviously ∂E2∗/∂na < 0. Thus

∂τ

∂na

=
(e2

a − e2
0)D

′′(E2∗)∂E2∗

na

e0 − ea

> 0.

Case 2: Partial adoption in the second stage: By Proposition 4.1 the socially optimal emission

level in the second stage is independent of na. Since the socially optimal emission level is also

the market outcome in the second stage by differentiating ∆Cab(τ(na), D
′(E2∗(n∗b(na))) = 0

w.r.t. na we obtain ∂τ/∂na = 0.

Case 3: Complete adoption will be expected in equilibrium in the second stage: In this

case τ(na) is given by ∆Cab(τ(na), D
′(E2∗(1 − na))) = 0. But it immediately follows that

∂E2∗(1− na)/∂na > 0 and thus

∂τ

∂na

=
(e2

a − e2
b)D

′′(E2∗)∂E2∗ (1−na)
na

e0 − ea

> 0.

permit case:Analogously if we substitute the tax rate by the permit price. q.e.d.
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C Figures

Figure 1. Socially optimal allocation with respect to (Fa, Fb)
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Figure 2. Permit market (first stage) in case of no or full adoption in the second stage.
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Figure 3. Permit market (first stage) in case of partial adoption in the second stage.
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Figure 4. Allocation in case of myopic tax regulation, ∆Cab decreases
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Figure 5. Allocation in case of myopic tax regulation, ∆Cab increases
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Figure 6. Allocation in case of myopic permit regulation, ∆Cab decreases
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Figure 7. Allocation in case of myopic permit regulation, ∆Cab increases
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Figure 8. Ex-ante timing
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Figure 9. Ex-post timing
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