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1 Introduction

The purpose of this paper is to analyze the dynamic effects of anticipated raw
materials price increases for small open economies and to discuss the impacts
of possible monetary policy responses to such price shocks.
The relevance of this paper follows from the strong fluctuations in com-

modity prices, especially the substantial increase in oil prices during the past
decades. It could be seen that raw materials price increases can be of temporary
as well as of permanent nature and that they generally are anticipated shocks.1

The analysis of the intertemporal effects of anticipated raw materials price
shocks is based on a calibrated New Keynesian open economy model with a
hybrid IS- and Phillips curve equation.2 It can be shown that there are output
expansion and moderate inflation before the occurrence of the raw materials
price shock, whereas typical stagflationary effects only appear directly after
raw materials price increases. In the course of the adjustment, deflationary
phases and further output increases are possible.
In the second part of this paper it is analyzed in how far monetary policy

rules can contribute to a simultaneous stabilization of the cyclical development
of output and inflation rate caused by anticipated commodity price shocks.
Are interest rate rules of the type originally proposed by Taylor (1993) able
to reduce the increased volatility of output and inflation simultaneously or are
money growth rules rather able to do so? It will be shown that the inflation rate
volatility can clearly be reduced by targeting the money stock growth, whereas
in case of temporary input price shocks Taylor-type interest rate rules lead to
an increase in total inflation rate variance. Irrespective of the type of the input
price shock money growth rules are always linked to a lower total variance of the
inflation rate than interest rate rules of the Taylor type are, whereas exactly the
opposite applies for the output variance. In contrast, interest rate rules of the
Taylor type are compared to money growth rules more appropriate in order to
stabilize output variance. Both rules are nevertheless accompanied by a strong
increase in nominal interest rate volatility. This applies especially to interest
rate rules without interest rate smoothing or if perfect stabilization of inflation
rates is aimed at.
To our best knowledge, in economic literature there are no articles based on

open economy New Keynesian models yet that deal with the dynamic effects
of anticipated raw materials price shocks and the effects of alternative interest
rate rules and money growth rules, which are used by the central bank to simul-
taneously stabilize inflation and output. Kim and Loungani (1992), Rotemberg
and Woodford (1996) and Finn (2000) analyze the effects of oil price shocks in

1Bhandari and Turnovsky (1984) emphasize that most of the oil price increases in the 70’s and
early 80’s were anticipated. They analyze anticipated and unanticipated as well as permanent
and temporary raw materials price increases in a traditional open economy framework. More
recently, Schubert and Turnovsky (2006) consider anticipated fiscal policy changes in a rep-
resentative agent economy with investment adjustment costs. They also provide an overview
of economic literature that deals with anticipated shocks.

2Numerous empirical studies analyze the consequences of oil price shocks and the interplay
between oil price shocks and monetary policy responses. See, for example, Hamilton and
Herrera (2004) and the references therein.
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dynamic general equilibrium models of closed economies. Backus and Crucini
(2000) consider an open-economy real business cycle model to study the ef-
fects of oil on the economy. All these studies are based on the assumption of
completely flexible prices. Hence, there is no role for monetary policy.
Leduc and Sill (2004) as well as Carlstrom and Fuerst (2006) include nominal

rigidities in dynamic general equilibrium models of oil-dependent economies to
study the interaction between oil price shocks and monetary policy. However,
by considering a closed economy they rule out the potentially important impacts
of changes in the nominal exchange rate and the terms of trade. The authors
of both studies, as we do too, attempt to isolate the impacts of an oil price
shock from the impacts of the endogenous response of monetary policy to this
oil price hike. In doing so Carlstrom and Fuerst (2006) challenge the empirical
work by Bernanke et al. (1997, 2004) by showing that anticipation effects
actually matter for the analysis of the interplay between oil price shocks and
monetary policy. We follow this line of thought and now analyze the effects of
anticipated oil price shocks under several monetary policy responses.
The remainder of the paper is organized as follows: Section 2 presents the

model. Section 3 deals with the dynamic effects of raw materials price increases
under a neutral monetary policy. Section 4 discusses the impacts of monetary
policy rules. Section 5 discusses the possibility of a perfect stabilization of the
consumer price inflation. Section 6 compares the monetary policy rules and
draws from this economic policy conclusions. At the end, the paper includes
an extensive mathematical appendix.

2 The Model

We consider a stylized hybrid New Keynesian model of a small open economy
which is dependent upon raw materials imports (like crude oil).3 The building
blocks of our rational expectations model are a hybrid IS and a hybrid Phillips
curve, the uncovered interest parity condition and a money demand equation.
All variables – except for the interest rates – are in logs. Therefore, the positive
model parameters can be interpreted as elasticities or semi-elasticities.
The equilibrium of the goods market can be represented by the following IS

curve:

qt = a1

(
Φyt−1 + (1− Φ)Et yt+1

)
− a2(it − Et∆p

c
t+1) (1)

+ a3(mt − p
c
t) + gt − b1yt + b2y

∗
t − b3τt + b0

q denotes real output, y real income, i the nominal interest rate, mt the nom-
inal money stock, g real government expenditure and p the domestic price
of domestic output. p∗ and y∗ denotes the foreign price and foreign income
respectively. τ = p − (p∗ + e) are the terms of trade, where e is the nomi-
nal exchange rate defined as the domestic currency price of foreign currency.
pct = αpt + (1− α)(p

∗
t + et) is the consumer price index (CPI) where 1− α can

3Similar models are used by e.g. van Aarle et al. (2004) to study monetary and fiscal policy in
the European Monetary Union or by Svensson (2000) to analyze inflation targeting in a small
open economy.
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be interpreted as the degree of demand side openness. ∆pct+1 denotes the CPI
inflation rate between period t and t+1. b0 is a constant and E the expectations
operator where rational expectations are assumed.
Domestic output qt depends on past and expected future income, the real

interest rate it−Et∆p
c
t+1, real government expenditure and the aggregate trade

balance, where the latter depends on income developments and on the terms of
trade. Our IS curve reflects the behavior of rational, intertemporally optimiz-
ing consumers as well as the assumption of habit formation in consumption.4

Moreover, we assume that the demand of goods depends directly on real money
balances mt − pct where the nominal money stock is deflated by the consumer
price index to allow for the fact that in open economies money is also used for
the purchase of imported goods.5.
Money market equilibrium is given by a standard LM curve:

mt − p
c
t = l0 + l1qt − l2it (2)

Money demand is assumed to depend on real output rather than on real income
which is considered as a more appropriate measure of the volume of transactions.
We assume perfect substitutability of domestic and foreign bonds and per-

fect capital mobility, so that the uncovered interest parity condition holds:

it = i∗t + Et∆et+1 (3)

The domestic interest rate may only deviate from the foreign interest rate i∗ by
the rationally expected depreciation rate between period t and t+1 (Et∆et+1).
The difference between the respective domestic production and real income

or gross national product is described by the following equation:

qt = yt + ψ(p
∗
R,t + et − pt) + d0 (4)

p∗R denotes the foreign nominal price of raw materials imports and d0 a constant.
The difference between q and y results from imports of intermediate goods which
in turn depend on the respective real factor price. We assume that raw materials
imports (like crude oil) are denominated in terms of the foreign currency (US
dollars) so that the domestic real factor price p∗R+e−p depends on the nominal
exchange rate e.6

The dynamics of inflation are given by a hybrid Phillips curve:

∆pt = µ
(
ω∆pct−1 + (1− ω) Et∆p

c
t+1

)
+ µδ(qt − q) + (1− µ)(∆p

∗
R,t+∆et) (5)

4For a detailed derivation of a microfounded IS curve with habit formation in consumption see,
for example, McCallum and Nelson (1999).

5The presence of the real money stock in the IS curve reflects the implicit assumption that the
utility function of the representative household is non-separable.

6The constant ψ can be derived from a profit maximizing approach with a CES production
technology which allows for factor substitution between labor and raw materials imports. It
can be shown that in this case ψ is of the form (1 − µ)(1 − σ)/µ, where σ is the elasticity
of substitution between labor and raw materials imports and where µ measures the share of
labor in gross domestic output (Bhandari and Turnvosky (1984)). The constant 1 − µ then
measures the share of imported inputs in gross output and can be interpreted as a measure
for the supply side openness of the domestic economy.

3



Inflation between period t− 1 and t depends on past and expected future CPI
inflation, the output gap q−q and the inflation of raw materials imports ∆p∗R,t+
∆et between period t−1 and t. In the special case ω = 0 we obtain a traditional
backward-looking Phillips curve, in the other special case ω = 1 we obtain the
forward-looking New Keynesian Phillips curve. We assume that ω lies between
0 and 1 to allow for both backward and forward-looking price setting behavior.7

In the long run, assuming labor market equilibrium where labor demand
is a negative function of the producer and labor supply a positive function of
the consumer real wage rate and, in addition, assuming a perfectly elastic raw
materials supply, output supply depends positively on the final goods terms of
trade and negatively on the domestic real oil price:8

q = f0 + f1τ − f2(p∗R + e− p) (6)

where f0 is a constant.
Since the economy is assumed to be small relative to the rest of the world,

the foreign variables y∗, i∗, p∗ and p∗R are exogenously given.

3 Dynamic Effects of Anticipated RawMaterials Price

Increases

In what follows we use the terms raw materials imports, oil imports and com-
modity imports interchangeably. We assume that at time t = 0 the public
anticipates a one-unit price shock in raw materials imports to take effect at
some future time T > 0. For example, we can assume that in t = 0 the OPEC
credibly announces a permanent or temporary price increase in crude oil to
occur at the future date T > 0. In what follows we will discuss the dynamic
effects of such commodity price shocks. In particular the anticipation effects of
announced oil price increases are analyzed. In this chapter we ask what effect
an oil price increase has on the economy if monetary policy is neutral or pas-
sive. We follow Leduc and Sill (2004) and define monetary policy as neutral, if
the money stock is held constant by the central bank (∆mt = 0).

9 In the next
chapter we will discuss the impacts of various monetary policy rules in response
to anticipated raw materials price shocks. We assume that the foreign nominal
price of raw materials imports p∗R follows the autoregressive AR(1) process

p∗R,t = βR · p
∗
R,t−1 + κt, 0 ≤ βR ≤ 1 (7)

7This assumption is in line with empirical evidence provided by e.g. Gaĺı and Gertler (1999)
or Gaĺı et al. (2001, 2005).

8A more detailed theoretical derivation of the role of the terms of trade in aggregate supply is
given in Devereux and Purvis (1990). The supply equation (6) can also be derived by assuming
long run static price and wage equations of the form p = µw + (1− µ)(p∗R + e), w = pc + δq.
In this case the parameters f1, f2 are of the form f1 = (1 − α)/δ, f2 = (1 − µ)/(µδ) where
f2 > f1.

9Carlstrom and Fuerst (2006) use the same definition of neutral monetary policy. They also
analyze alternative definitions of neutral monetary policy, namely an interest rate peg and a
so called “Wicksellian” interest rate policy.
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where κt is the one-unit price shock

κt =

{
1 for t = T > 0

0 for t 6= T
(8)

If the initial value of p∗R is normalized to zero (p
∗
R,0 = 0) then

p∗R,t =

{
0 for 0 < t < T

βt−TR for t ≥ T
(9)

We assume further that a one-unit increase in the foreign nominal price of the
imported input is accompanied by a less than equivalent increase in the price
of the imported final good p∗:

p∗t = (1− µ
∗)p∗R,t, 0 < µ∗ < 1 (10)

Then the nominal price shock represents a change in the real foreign price of
imported raw materials:

p∗R,t − p
∗
t = µ∗p∗R,t =

{
0 for 0 ≤ t ≤ T

µ∗βt−TR for t ≥ T
(11)

In case βR < 1 the increase in the real foreign input price is transitory whereas
it is of permanent nature if βR = 1. In the following we will discuss both types
of input price disturbances. In case of anticipated price shocks the adjustment
dynamics involve two phases: the phase before and after the occurrence of the
commodity price increase. Figure 1 illustrates the response of the domestic
economy to an anticipated temporary and an anticipated permanent oil price
increase. It is assumed that the time span between the anticipation and the im-
plementation of the rise in p∗R consists of two periods (T = 2). The simulations
are based on a typical parameter set represented in table 1.
The initial steady state value of each endogenous variable is normalized to

zero. Each figure contains simultaneously the adjustment process of a domestic
variable in case βR = 0.8 (temporary price shock) and βR = 1 (permanent price
shock). In case of transitory commodity price increases no steady state effects
occur for the domestic economy so that the domestic variables return to their
initial steady state values.

Temporary raw materials price shocks
The dynamic effects of anticipated raw materials price shocks in case βR < 1
can be summarized as follows (see also the overview in table 2):
During the anticipation phase (periods t = 0 and t = 1) there is a moderate

increase in real output and national income, which is accompanied by a slight
increase in the inflation rates ∆p and ∆pc. The temporary increase in output
is traced to a short-term decrease in the real interest rate with simultaneous
increase in the terms of trade τ . Stagflation in the sense of a decrease in output
with a simultaneous increase in inflation does not take place until the period
of the commodity price increase t = T . During the periods after the shock
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realization there is a strong decrease in inflation rates, which results from the
drop of the output gap q − q, so that even deflation (∆pt < ∆p0 = 0, ∆p

c
t <

∆pc0 = 0) occurs in the medium term of the adjustment. The output strongly
decreases first for t = T and immediately thereafter, which can be explained by
increasing real interest rates, but increases again during the medium phase of
adjustment (due to real interest rate decreases and a real depreciation process).
As well as during the initial phase of adjustment, an overshooting of output over
the initial steady state value q0 occurs, so that altogether we have a cyclical,
hump-shaped development for q.
The nominal exchange rate e also runs hump-shaped and except from the

impact phase above its initial level. The result during the shock period is a
strong increase in the exchange rate, which is reinforced in the following periods.
This delayed overshooting corresponds to strong increases in price level and in
price index in T and T+1. A gradual nominal appreciation process then follows,
which is linked to strong decreases in the price level p and the price index pc, so
that the nominal appreciation process corresponds to a real devaluation process
in the medium term of the adjustment.
The development of the nominal interest rate it follows the development of

the nominal depreciation rate ∆et+1. During the initial phase of adjustment
increases in nominal interest rates, which reach their maximum in t = T , take
place; then a strong decrease in interest rates follows, so that an undershooting
arises during the medium phase of adjustment as it was already the case with
the inflation rates ∆p and ∆pc. A mostly parallel development of the real
interest rate it − ∆p

c
t+1 corresponds to it, which is basically only during the

anticipation phase exactly opposite.
The development of real commodity imports imR can be determined with

the help of the equation

imR,t = qt + (1− σ)(p
∗
R,t + et − pt) (12)

where p∗R + e − p is the domestic real commodity price and σ the elasticity of
substitution between the factors labor and commodity.10

The domestic real input price p∗R+e−p increases strongly during the shock
period T = 2 and remains at a high level during the following periods (the
decline towards its initial steady state value only takes place in the long run). In
case of a low elasticity of substitution σ it is accompanied by a strong increase
in commodity imports. The development of output that makes commodity
imports decrease immediately after the shock period T , is opposite to it. Since
in the longer run an increase in output at a high level of the real commodity
price takes place, there is once more an increase in real commodity imports
when t > T is sufficiently great; then temporarily imR is even above the level
of the shock period T . During the entire adjustment after the realization of the
oil price shock, imR is bigger than its initial steady state value.

10Cf. Bhandari and Turnovsky (1984) and Bhandari (1981). In Bhandari (1981) σ is set to
zero.
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Permanent raw materials price shocks
Next consider the case βR = 1 (permanent anticipated raw materials price
shock). This case is characterized by a permanent rise in the nominal exchange
rate, strong permanent price and price index effects and a long run reduction
in real output and national income. However, the interest rates it and it −
∆pct+1 as well as the inflation rates πt and πct return to their initial values
in the long run. Here the inflation effects during period T are more strongly
developed than in case of a temporary commodity price shock. This is due
to the fact that the output gap q − q increases in T , since the decrease in
the steady state output is bigger than the output contraction in T . In the
same way, the output contraction after the shock period is due to a strong
real appreciation process more strongly developed than in case of βR < 1.
Furthermore, the expansion process during the anticipation phase turns out to
be stronger than at temporary commodity price shocks, which can be attributed
to a stronger decrease in real interest rates during this period. On the other
hand the real appreciation process is also more strongly developed, where -
under the parameter combination used - τ lies also in the long term above its
initial steady state value.
The permanent increase in commodity prices causes a permanent increase

in domestic real commodity prices, which isolated seen permanently increases
real commodity import. On the other hand, the long-term output contraction
results in a permanent decrease in imR, so that the net effect is ambiguous.
Due to the chosen parameter values the output effect dominates the opposed
real factor price effect, so that imR runs parallel to the output development for
t > T .

Remarks
Until now we have analyzed the effects that follow anticipated commodity price
increases. It was assumed that an increase in nominal input price p∗R is at the
same time accompanied by an increase in real foreign input price p∗R − p∗. In
the following we deal with the borderline case that the commodity price shock
is unanticipated and then treat the case of a pure nominal input price shock

(i.e. µ∗ = 0 resp. p∗R,t − p
∗
t = 0 for all t).

In case of an unanticipated oil price increase, the anticipation phase is omit-
ted, so that there is an immediate output contraction, which can be traced back
to an increase in real interest rate and terms of trade in t = T . The connected
inflation effects in t = T are now stronger compared to the case of anticipation
and are again weakened after the realization of the unanticipated price shock
(figures 2 and 3). Furthermore, an immediate depreciation of the domestic cur-
rency takes place. Qualitatively, for t > T we obtain the same development of
the endogenous variables as for the anticipated oil price increase. The tables 4
to 7 show the volatility of y, ∆pc and i (measured by the total variance) in case
of anticipated and unanticipated shocks. When passing from the unanticipated
into the anticipated case, a clear increase in variance can be observed in each
case, which can be explained by the hybrid character of the supply equation
and the demand equation as well as by the increase in y and ∆pc during the
anticipation phase. The increase in volatility is clearly diminished and in case of

7



the CPI inflation rate even reduced, when passing into a purely forward-looking
model.
The case of µ∗ = 0 (constant foreign real input price) provides stronger

positive output and income effects during the anticipation phase than the case
discussed until now, i.e., µ∗ > 0. This can be explained by a stronger decrease
in real interest rates during the periods t = 0 and t = 1 (figures 4 and 5). The
short-term real appreciation process that takes place during the anticipation
period, is not continued in the shock period T = 2, so that the output con-
traction in T is weaker than in case of µ∗ > 0. In case of a permanent input
price shock (βR = 1) the output level always runs above the time path of q in
case of a real commodity price shock (µ∗ > 0). Especially the long-term output
contraction turns out substantially weaker, which can be traced back to a much
less increase in domestic real commodity price p∗R+e−p on the supply side and
to a less increase in terms of trade τ on the demand side. Due to a permanent
nominal appreciation in case of βR = 1 the real factor price p

∗
R + e − p may

even decrease in the long run, so that a permanent output contraction does not
need to occur either. Furthermore, the case of a permanent input price shock
(βR = 1) shows that a purely nominal foreign price shock (µ

∗ = 0) is in the
short run accompanied by strong price decreases and in the long and medium
term only by slight price increases, so that overall only weak stagflationary ef-
fects occur. Nevertheless there are now stronger inflationary effects during the
shock period T both at permanent and at temporary commodity price shocks.

4 The Impacts of Monetary Policy Rules

In the last chapter we have shown that anticipated and unanticipated increases
in the price of oil or other raw materials import goods will involve oil-dependent
economies in temporary inflation and output contraction, the precise degree
of severity of these effects depending upon the reaction of the price level of
imported final goods. This section investigates the consequences of two types
of monetary policy rules that could be employed by the domestic central bank
in an effort to reduce the potentially disruptive effects of oil-price shocks.
On the one hand we examine an interest rate rule with interest rate smooth-

ing of the Taylor type11, i.e.

it = βit−1 + (1− β)
(
i+ v1(∆p

c
t −∆p

c) + v2(qt − q)
)

(13)

on the other hand we discuss an analogous monetary policy rule for the growth
rate of money stock of the type

∆mt = ∆m− ṽ1(∆p
c
t −∆p

c)− ṽ2(qt − q) (14)

Here, more importance is attached to the stabilization of inflation rates than
to the stabilization of output (v1 > 1 > v2 > 0, ṽ1 > 1 > ṽ2 > 0). In the

11In economic literature numerous versions of monetary Taylor rules for closed and open
economies are discussed. Those may also be of the forward-looking-type proposed by Clarida,
Gaĺı and Gertler (2000) and – referring to open economies – be explicitly dependent upon the
real or nominal exchange rate. See e.g. Ball (1999) or Taylor (2001).
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first case the central bank pursues an interest rate targeting, in the second case
a monetary base targeting. By the assumption v1 > 1 (ṽ1 > 1) the Taylor
principle is presumed, according to which an increase in inflation rate leads
isolated seen to a more than proportionately high increase (resp. decrease) in
nominal interest rate (in nominal growth in money supply), so that the real
interest rate decreases resp. the real growth in money supply declines.
In case of a permanent anticipated commodity price shock (βR = 1, T = 2)

the Taylor rule with interest rate smoothing (β = 0.8) ensures that the infla-
tionary effects during the anticipation phase and the shock period are slightly
reduced (see figure 7 and table 3); this diminution becomes particularly clear
when the interest rate smoothing is omitted (β = 0). The deflationary process
that results in the course of the adjustment is also less developed so that in the
medium and long term the inflation rates lie above the inflation rate in case of
passive monetary policy (∆mt = 0). The Taylor rule also ensures a stronger
short-term decrease in nominal interest rate and makes this variable increase
more subsequent to the shock period T than in case of passive monetary policy.
Furthermore, there is a stronger output contraction process subsequent to the
commodity price increase in T (see table 3). This becomes particularly clear
when interest rate smoothing is not pursued (β = 0).
The case βR < 1 (temporary commodity price shock) clarifies that the Tay-

lor rule may also be accompanied by stronger inflationary effects during the
anticipation phase and the shock period T (figure 6). Again this becomes clear
when the simple Taylor rule (β = 0) is existent. Furthermore, the deflation-
ary process subsequent to the input price shock in T is now more strongly
developed, so that the stabilized inflation rate runs below the one in case of
non-stabilization in the longer run. In addition, in case of the Taylor rule, a
clear increase in volatility of the nominal interest rate is shown again.
If the Taylor rule (13) is substituted by the money growth rule (14), we

obtain qualitatively the same developments for the endogenous variables (fig-
ures 8 and 9). In case of the money growth rule the output expansion, which
results during the anticipation phase, is a little stronger developed than in case
of the interest rate rule (with smoothing). In case of temporary commodity
price shocks it is distinguishable that there is a stronger output contraction
subsequent to the oil price shock in case of the money growth rule than in case
of the interest rate rule with interest rate smoothing (β = 0.8). When omit-
ting interest rate smoothing (β = 0) the output contraction is slightly smaller
in case of the money growth rule, since the interest rate rule is linked to a
stronger contraction process in the case of β = 0 than in the case of β = 0.8.
In case of a temporary commodity price shock the inflationary effects are

weaker during the initial periods under the money growth rule than under
the interest rate rule (with and without smoothing). The deflationary process
subsequent to the raw materials price shock is also clearly less distinct in case
of the money growth rule than in case of the interest rate rule. Likewise, the
money growth rule ensures weaker inflationary effects in case of permanent

commodity price shocks than the interest rate rule. In particular, the money
growth rule is able to clearly diminish the strong increase in inflation during the
shock period T , whereas this does not work in case of the interest rate targeting.
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This implies that the volatility of the CPI inflation rate under the money growth
rule is considerably weaker than under the interest rate rule (with and without
smoothing). Note also that the strongest volatility in interest rate occurs in
case of the simple interest rate rule, since it does not provide any smoothing of
the interest rate.

5 Perfect Stabilization of the CPI Inflation Rate

The previous chapter has shown, that an interest rate rule depending on infla-
tion and output gap ∆pct −∆p

c resp. qt − q is not able, to clearly reduce the
inflationary effects that result from temporary or permanent commodity price
shocks. On the contrary even intensifying effects may occur in case of this type
of interest rate targeting. As it can be shown, an equivalent statement is valid
for forward-looking interest rate rules (see tables 8 and 9). The question arises
whether a perfect stabilization of the CPI inflation rate is possible with the help
of another type of interest rate rules. Indeed, a perfect stabilization of πc can
be achieved at the initial level, if the domestic interest rate is not attached to
the inflation rate and the output gap any more, but to the real depreciation
rate −∆τt+1:

it = i∗t −∆p
∗
t+1 − α(τt+1 − τt) (15)

This interest rate rule is in close relationship to the uncovered interest parity
condition it = i∗t +∆et+1 whereby in small open economies interest rate target-
ing is equivalent to the targeting of the nominal depreciation rate ∆et+1. When
choosing the goal of pure inflation targeting this is equivalent to the targeting
of the real depreciation rate.
In case of temporary commodity price shocks there are stronger expansive

output effects during the anticipation phase than when using Taylor interest
rate rules with and without interest rate smoothing. This can be traced back
to high short-term decreases in real interest rate. In case of perfect inflation
targeting (∆pc = 0 for all t) those are identical to equal decreases in nominal
interest rate. During the shock period large increases in interest rate and terms
of trade occur, therefore there is a sharper output contraction (figures 10 and 11)
than in case of a Taylor rule with smoothing. In case of permanent commodity
price shocks the positive output effects of the anticipation phase are in case
of perfect inflation targeting reinforced compared to the Taylor rules. The
contraction process that appears in consequence of the commodity price shock,
is nearly identical to the development of output in case of a Taylor rule with
smoothing.
It has to be considered that by perfect stabilization of the CPI inflation rate

the domestic inflation rate ∆pt is stabilized as well. Because of ∆p
c
t = ∆p

c = 0
and ∆pt−∆p

c
t = (1−α)∆τt, ∆pt develops parallel to the real appreciation rate

∆τt. In contrast, nominal and real interest rate run opposite to ∆τt+1.

Remark
If the interest rule (15) that is linked to a perfect stabilization of the CPI in-
flation rate, is substituted by a money growth rule of the type (14), where the
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weight ṽ1 of the inflation gap is chosen to be very large, (e.g. ṽ1 = 100), we
obtain almost the same time paths for the endogenous variables. From the
money market equation and the money growth rule the equation

∆pct = −
l1

ṽ1 + 1
∆qt −

ṽ2
ṽ1 + 1

qt +
l2

ṽ1 + 1
∆it (16)

results for ∆pc. For large values of ṽ1 ∆p
c is - apart from the starting phase of

adjustment - identical to its initial value ∆pc = 0.

6 Comparison of Monetary Policy Rules and Con-

clusion

Comparing the volatility of the variables ∆pc, y and i under different monetary
policy rules relatively to the volatility of those variables in case of a passive
monetary policy, it becomes clear that all rules lead to a strong increase in
interest rate variance; the increase when applying the money growth rule is
almost identical to the increase in case of the baseline Taylor rule (table 8 and
table 11). The money growth rule causes a strong decrease in the total variance
of the CPI inflation rate, whereas the Taylor rules – except for the special case of
pure inflation targeting – are normally accompanied by intensifying effects. In
contrast, in case of the Taylor rule with and without smoothing the total output
variance is smaller than in case of the money growth rule. Here the output
volatility can even be below the volatility in case of a passive monetary policy.
Altogether seen a Taylor rule of the type (13) is more appropriate to output
stabilization than to stabilization of inflation rates. For a money growth rule of
the type (14) the exact opposite applies. The volatility in inflation rate caused
by commodity price shocks can be clearly reduced by a money growth rule,
whereas a strong decrease in output variance is realized by a Taylor-type interest
rate rule. However, both rules increase the volatility in interest rates to the same
degree. These results both hold if we only look at the period after the occurrence
of the oil price increase (table 9 and 12) and if we abandon the assumption
of anticipated oil price increases and instead consider an unanticipated shock
(table 10 and 13).
As it has been shown, an interest rate rule is also able to drastically reduce

the variance in the inflation rate; however this requires a policy of pure inflation
targeting which is expressed by an interest rate rule that is not of the type (13)
any more, but depends on the real depreciation rate. This interest rate rule
is yet accompanied by a strong increase in output variance if the input price
shock is anticipated by the public. Note that just the opposite holds in case of
an unanticipated permanent increase in commodity prices (table 13).
The economic policy conclusion which can be drawn from the theoretical

analysis of the effects of anticipated commodity price shocks and the appropri-
ate monetary policy reaction is from our point of view evident: A simultaneous
reduction of the increased volatility of output and inflation rates that is gen-
erated by anticipated commodity price shocks can be obtained neither by an
interest rate rule of the Taylor type nor by an analogous money growth rule.

11



If the goal of stabilizing inflation rate dominates the goal of stabilizing output,
targeting the growth rate of money stock is more appropriate than interest rate
targeting of the Taylor type. If in contrast the goal of stabilizing output is
dominant, the opposite applies. Relating to the European Monetary Union,
which attaches more importance to the goal of price stability, this means the
European Central Bank should not renounce the money growth targeting.

Tables and Figures

Table 1: Baseline parameters

a1 0.8 a2 0.8 a3 0.03

b1 0.2 b2 0.2 b3 0.3
b0 0 α 0.75 Φ 0.8
l1 1 l2 1.5 l0 0
ψ 0.233 d0 0 β 0.8
v1 1.5 v2 0.5 ṽ1 1.5
ṽ2 0.5 ω 0.5 δ 0.2
µ 0.75 µ∗ 0.95 f0 0
f1 1.25 f2 1.67 ∆m 0
g 0 i

∗
0 y∗ 0
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Table 2: Qualitative effects of an anticipated increase in the price of raw
materials under a passive monetary policy

Variables Case t < T t = T t > T

q, y 1
moderate
increase

sharp fall
further, temporary fall, there-
after rise with overshooting

2
stronger rise
than in 1

sharp fall
further, permanent fall with
undershooting

∆p, ∆pc 1
moderate
rise

sharp rise
strong fall in T +1, thereafter
cyclical development

2
moderate
rise

sharp rise
strong fall in T +1, thereafter
monotonous development

e 1 small rise further rise
further increase, monotonous
fall for sufficiently large t > T

2 fall rise further permanent rise

p, pc 1
moderate
increase

sharp
increase

further rise in T + 1, there-
after fall with undershooting

2
moderate
decrease

sharp
increase

further permanent rise with
overshooting

i 1 rise further rise
temporary fall with under-
shooting, thereafter increase

2
fall on
impact

rise monotonous fall

Note: Case 1 denotes a temporary oil price shock, case 2 denotes a permanent oil price shock.

Table 3: Qualitative effects of an anticipated oil price shock in case of the
baseline Taylor rule in comparison to the passive monetary policy case

Variables Case t < T t = T t > T

q, y 1 stronger rise weaker fall nearly the same development

2
slightly

stronger rise
slightly

stronger fall
output and income contrac-
tion stronger

∆p, ∆pc 1 stronger rise
slightly

stronger rise
longer deflationary process,
no overshooting

2
slightly
weaker rise

sharp, but
weaker rise

deflationary process weaker
and more persistent

i 1
stronger rise
on impact

nearly the
same rise

stronger undershooting

2
stronger fall
on impact

weaker rise delayed overshooting

Note: Case 1 denotes a temporary oil price shock, case 2 denotes a permanent oil price shock.
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Table 4: Variances in case of a temporary raw materials price shock under a
passive monetary policy

VAR(∆pc) VAR(y) VAR(i)

Unanticipated 0.1135 1.165 0.0441

(68.37%) (87.07%) (59.92%)

Anticipated 0.1660 1.338 0.0736

(100%) (100%) (100%)

VAR(∆pc)|t≥T VAR(y)|t≥T VAR(i)|t≥T

Unanticipated 0.1135 1.165 0.0441

(74.72%) (88.02%) (78.05%)

Anticipated 0.1519 1.3235 0.0565

(100%) (100%) (100%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case
of an anticipated raw materials price shock. The variances for x ∈ {∆pc, y, i} are calculated
as follows: VAR(x) =

∑∞

t=0(xt − x)
2 and VAR(x)|t≥T =

∑∞

t=T (xt − x)
2.

Table 5: Variances in case of a temporary raw materials price shock under a
passive monetary policy in a purely forward-looking model

VAR(∆pc) VAR(y) VAR(i)

Unanticipated 0.0441 0.4996 0.0021

(124.23%) (80.91%) (56.76%)

Anticipated 0.0355 0.6175 0.0037

(100%) (100%) (100%)

VAR(∆pc)|t≥T VAR(y)|t≥T VAR(i)|t≥T

Unanticipated 0.0441 0.4996 0.0021

(130.47%) (94.8%) (105%)

Anticipated 0.0338 0.527 0.002

(100%) (100%) (100%)

Notes: To obtain a purely forward-looking model we set ω = Φ = 0. Numbers in parentheses
are the ratio of the variance relative to the variance in case of an anticipated raw materials price
shock. The variances for x ∈ {∆pc, y, i} are calculated as follows: VAR(x) =

∑∞

t=0
(xt − x)2

and VAR(x)|t≥T =
∑∞

t=T (xt − x)
2.
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Table 6: Variances in case of a permanent raw materials price shock under
a passive monetary policy

VAR(∆pc) VAR(y) VAR(i)

Unanticipated 0.1292 0.3435 0.0199

(55.88%) (25.67%) (55.71%)

Anticipated 0.2312 0.615 0.0616

(100%) (100%) (100%)

VAR(∆pc)|t≥T VAR(y)|t≥T VAR(i)|t≥T

Unanticipated 0.1292 0.3435 0.0199

(58.02%) (25.95%) (72.57%)

Anticipated 0.2227 0.531 0.0554

(100%) (100%) (100%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
an anticipated raw materials price shock. The variances for x ∈ {∆pc, y, i} are calculated as
follows: VAR(x) =

∑T−1

t=0 (xt − x0)
2 +

∑∞

t=T (xt − x1)
2 and VAR(x)|t≥T =

∑∞

t=T (xt − x1)
2.

Table 7: Variances in case of a permanent raw materials price shock under
a passive monetary policy in a purely forward-looking model

VAR(∆pc) VAR(y) VAR(i)

Unanticipated 0.0698 0.0169 0.00007

(132.2%) (15.82%) (7.78%)

Anticipated 0.0528 0.1068 0.0009

(100%) (100%) (100%)

VAR(∆pc)|t≥T VAR(y)|t≥T VAR(i)|t≥T

Unanticipated 0.0698 0.0169 0.00007

(145.11%) (84.5%) (8750%)

Anticipated 0.0481 0.02 0.000008

(100%) (100%) (100%)

Notes: To obtain a purely forward-looking model we set ω = Φ = 0. Numbers in parentheses
are the ratio of the variance relative to the variance in case of an anticipated raw materials
price shock. The variances for x ∈ {∆pc, y, i} are calculated as follows: VAR(x) =

∑T−1

t=0
(xt−

x0)
2 +

∑∞

t=T (xt − x1)
2 and VAR(x)|t≥T =

∑∞

t=T (xt − x1)
2.
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Table 8: Variances in case of an anticipated temporary raw materials price
shock under alternative monetary policy responses

VAR(∆pc) VAR(y) VAR(i)

Passive 0.166 1.3338 0.0736

policy (100%) (100%) (100%)

Baseline 0.2894 1.2907 0.2419

Taylor rule (174.34%) (96.77%) (328.67%)

Taylor rule 1.0929 1.4227 1.4752

w/o smoothing (658.37%) (106.67%) (2004.35%)

Forward-look. 0.4304 1.2092 0.374

Taylor rule (259.28%) (90.66%) (508.15%)

Money growth 0.117 1.5639 0.2184

rule (70.48%) (117.25%) (296.74%)

Inflation 0 1.7388 0.322

Targeting (0%) (133.7%) (437.5%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x ∈ {∆pc, y, i}
are calculated as follows: VAR(x) =

∑∞

t=0
(xt − x)

2.

Table 9: Variances after the occurrence of the anticipated temporary oil price
increase under alternative monetary policy responses

VAR(∆pc)|t≥T VAR(y)|t≥T VAR(i)|t≥T

Passive 0.1519 1.3235 0.0565

policy (100%) (100%) (100%)

Baseline 0.2582 1.2765 0.2185

Taylor rule (169.98%) (96.45%) (386.73%)

Taylor rule 0.9986 1.4195 1.2564

w/o smoothing (657.41%) (107.25%) (2223.72%)

Forward-look. 0.3752 1.2027 0.295

Taylor rule (247%) (90.87%) (522.12%)

Money growth 0.1126 1.5486 0.209

rule (74.13%) (117.01%) (369.91%)

Inflation 0 1.6895 0.1536

Targeting (0%) (127.65%) (271.86%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x ∈ {∆pc, y, i}
are calculated as follows: VAR(x) =

∑∞

t=T (xt − x)
2.
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Table 10: Variances in case of an unanticipated temporary raw materials
price shock under alternative monetary policy responses

VAR(∆pc) VAR(y) VAR(i)

Passive 0.1135 1.165 0.0441

policy (100%) (100%) (100%)

Baseline 0.2459 1.1525 0.223

Taylor rule (216.65%) (98.93%) (505.67%)

Taylor rule 0.7604 1.0812 0.9807

w/o smoothing (669.96%) (92.81%) (2223.8%)

Forward-look. 0.3386 1.0537 0.3013

Taylor rule (298.33%) (90.45%) (683.22%)

Money growth 0.0856 1.3124 0.1569

rule (75.42%) (112.65%) (355.78%)

Inflation 0 1.8358 0.1457

Targeting (0%) (157.58%) (330.39%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x ∈ {∆pc, y, i}
are calculated as follows: VAR(x) =

∑∞

t=0(xt − x)
2.

Table 11: Variances in case of an anticipated permanent raw materials price
shock under alternative monetary policy responses

VAR(∆pc) VAR(y) VAR(i)

Passive 0.2312 0.6150 0.0616

policy (100%) (100%) (100%)

Baseline 0.2192 0.6749 0.173

Taylor rule (94.81%) (109.74%) (280.84%)

Taylor rule 0.6695 0.477 1.0283

w/o smoothing (289.58%) (77.56%) (1669.32%)

Forward-look. 0.3092 0.6114 0.2321

Taylor rule (133.74%) (99.41%) (376.79%)

Money growth 0.0833 0.7027 0.1759

rule (36.03%) (114.26%) (285.55%)

Inflation 0 1.0257 0.3966

Targeting (0%) (166.78%) (643.83%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x ∈ {∆pc, y, i}
are calculated as follows: VAR(x) =

∑T−1

t=0 (xt − x0)
2 +

∑∞

t=T (xt − x1)
2.
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Table 12: Variances after the occurrence of the anticipated permanent oil
price increase under alternative monetary policy responses

VAR(∆pc)|t≥T VAR(y)|t≥T VAR(i)|t≥T

Passive 0.2227 0.531 0.0554

policy (100%) (100%) (100%)

Baseline 0.2152 0.5678 0.1597

Taylor rule (96.63%) (106.93%) (288.27%)

Taylor rule 0.5344 0.3599 0.8016

w/o smoothing (239.96%) (67.78%) (1446.9%)

Forward-look. 0.3036 0.5247 0.2192

Taylor rule (136.33%) (98.81%) (395.67%)

Money growth 0.0701 0.5629 0.0721

rule (31.48%) (106.01%) (130.14%)

Inflation 0 0.7476 0.0252

Targeting (0%) (140.79%) (45.49%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x ∈ {∆pc, y, i}
are calculated as follows: VAR(x) =

∑∞

t=T (xt − x1)
2.

Table 13: Variances in case of an unanticipated permanent raw materials
price shock under alternative monetary policy responses

VAR(∆pc) VAR(y) VAR(i)

Passive 0.1292 0.3435 0.0199

policy (100%) (100%) (100%)

Baseline 0.0848 0.3495 0.0354

Taylor rule (65.63%) (101.75%) (177.89%)

Taylor rule 0.1164 0.1647 0.1814

w/o smoothing (90.09%) (47.95%) (911.56%)

Forward-look. 0.1161 0.3611 0.0468

Taylor rule (89.86%) (105.12%) (235.18%)

Money growth 0.0315 0.2982 0.0162

rule (24.38%) (86.81%) (81.41%)

Inflation 0 0.2415 0.0073

Targeting (0%) (70.31%) (36.68%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x ∈ {∆pc, y, i}
are calculated as follows: VAR(x) =

∑∞

t=0(xt − x1)
2.
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Figure 1: Economy’s responses to an anticipated oil price increase taking
place in period T . Solid lines with circles are responses to a temporary oil
price increase; solid lines with plus signs are responses to a permanent oil
price increase.
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Figure 1: — Continued
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Figure 2: Economy’s responses to a temporary oil price increase. Solid lines
with circles are responses to an unanticipated oil price increase taking place
in period T ; solid lines with plus signs are responses to an anticipated oil price
increase taking place in period T .
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Figure 3: Economy’s responses to a permanent oil price increase. Solid lines
with circles are responses to an unanticipated oil price increase taking place
in period T ; solid lines with plus signs are responses to an anticipated oil price
increase taking place in period T .
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Figure 4: Economy’s responses to an anticipated temporary oil price increase.
Solid lines with circles are baseline model responses; solid lines with plus signs
are responses in case of a constant foreign real oil price (µ∗ = 0).

27



0 T 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(g) Inflation

0 T 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(h) CPI Inflation

0 T 5 10 15 20 25

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(i) Price

0 T 5 10 15 20 25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(j) Consumer Price Index

0 T 5 10 15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(k) Nominal Interest Rate

0 T 5 10 15 20 25

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(l) Nominal Exchange Rate

Figure 4: — Continued
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Figure 5: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with circles are baseline model responses; solid lines with
plus signs are responses in case of a constant foreign real oil price (µ∗ = 0).
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Figure 6: Economy’s responses to an anticipated temporary oil price in-
crease. Solid lines with plus signs are responses under a passive monetary

policy (∆mt = 0); solid lines with circles are responses under a Taylor rule
with interest rate smoothing (β = 0.8); solid lines with squares are responses
under a Taylor rule without interest rate smoothing (β = 0).
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Figure 7: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with plus signs are responses under a passive monetary

policy (∆mt = 0); solid lines with circles are responses under a Taylor rule
with interest rate smoothing (β = 0.8); solid lines with squares are responses
under a Taylor rule without interest rate smoothing (β = 0).
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Figure 8: Economy’s responses to an anticipated temporary oil price increase.
Solid lines with plus signs are responses under a money growth rule; solid lines
with circles are responses under a Taylor rule with interest rate smoothing

(β = 0.8); solid lines with squares are responses under a Taylor rule without
interest rate smoothing (β = 0).
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Figure 9: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with plus signs are responses under a money growth rule;
solid lines with circles are responses under a Taylor rule with interest rate

smoothing (β = 0.8); solid lines with squares are responses under a Taylor
rule without interest rate smoothing (β = 0).
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Figure 10: Economy’s responses to an anticipated temporary oil price in-
crease. Solid lines with plus signs are responses under a passive monetary

policy ; solid lines with circles are responses under a Taylor rule with interest
rate smoothing ; solid lines with squares are responses under a money growth
rule; solid lines with triangles are responses under inflation targeting.
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Figure 11: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with plus signs are responses under a passive monetary

policy ; solid lines with circles are responses under a Taylor rule with interest
rate smoothing ; solid lines with squares are responses under a money growth
rule; solid lines with triangles are responses under inflation targeting.
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Mathematical Appendix

The dynamics of the New Keynesian model of a small open economy can be
represented by the following set of equations:

a1(1− Φ)yt+1 + (a2 + a3l2)ατt+1 − a3l2π
c
t+1 = (A1)

(1 + b1 − a3l1)yt − a1Φyt−1 +
(
(a2 + a3l2)α+ b3 − (1− a3l1)ψ

)
τt

+ (1− a3l1)ψ(p
∗
R,t − p

∗
t ) + (a2 + a3l2)(i

∗
t − π

∗
t+1)− b2y

∗
t − gt

+ (1− a3l1)d0 − a3l0 − b0

−ατt+1 + π
c
t+1 = (1− β)v2yt −

(
(1 + β)α+ (1− β)v2ψ

)
τt (A2)

+
(
β + (1− β)v1

)
πct + αβτt−1 + (1− β)v2ψ(p

∗
R,t − p

∗
t )

− (i∗t − π
∗
t+1) + β(i

∗
t−1 − π

∗
t ) + (1− β)i

− (1− β)v2(q − d0)− (1− β)v1π
c

µ(1− ω)πct+1 = −µδyt + (1− µα+ µδψ)τt + µπ
c
t − (1− µα)τt−1 (A3)

− µωπct−1 − µδψ(p
∗
R,t − p

∗
t )− (1− µ)(π

∗
R,t − π

∗
t ) + µδ(q − d0)

where πct = ∆p
c
t = pct − pct−1, π

∗
t = ∆p

∗
t = p∗t − p∗t−1, and π

∗
R,t = ∆p

∗
R,t =

p∗R,t− p
∗
R,t−1 denotes the rate of change of the domestic price index, the foreign

price level, and the raw materials price level respectively. Equation (A1) is
the combination of the model equations (1), (2), (4) and the real interest rate
equation

it − π
c
t+1 = i∗t − α∆τt+1 − π

∗
t+1 (A4)

Equation (A2) results from the Taylor rule (13) where we have substituted the
nominal interest rate by equation (A4). The last equation (A3) is the Phillips
curve equation (5). Let vt = (yt, τt, π

c
t )
′ be the vector of current and wt = vt−1

the vector of lagged state variables. The matrix representation of the implicit
state equations (A1) to (A3) is then given by

B

(
vt+1

wt+1

)
= C

(
vt
wt

)
+ kt (A5)

where the triangular matrix B = (bij)1≤i,j≤6 and the matrix C = (cij)1≤i,j≤6

are defined by12

B =




b11 b12 b13 0 0 0
0 b22 b23 0 0 0
0 0 b33 0 0 0
0 0 0 b44 0 0
0 0 0 0 b55 0
0 0 0 0 0 b66




(A6)

12In the case of the forward-looking Taylor rule

it = βit−1 + (1− β)
(
i+ v1(π

c
t+1 − π

c) + v2(qt − q)
)

the element b23 of the matrix B has to be replaced by b?
23 = 1− (1− β)v1, while the element

c23 of C must be replaced by c?
23 = β.
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with

b11 = a1(1− Φ) b12 = (a2 + a3l2)α b13 = −a3l2

b22 = −α b23 = 1 b33 = µ(1− ω)

b44 = 1 b55 = 1 b66 = 1

and

C =




c11 c12 0 c14 0 0
c21 c22 c23 0 c25 0
c31 c32 c33 0 c35 c36
c41 0 0 0 0 0
0 c52 0 0 0 0
0 0 c63 0 0 0




(A7)

with

c11 = 1 + b1 − a3l1 c12 = (a2 + a3l2)α+ b3 − (1− a3l1)ψ c14 = −a1Φ

c21 = (1− β)v2 c22 = −
(
(1 + β)α+ (1− β)v2ψ

)
c23 = β + (1− β)v1

c25 = αβ c31 = −µδ c32 = 1− µα+ µδψ

c33 = µ c35 = −(1− µα) c36 = −µω

c41 = 1 c52 = 1 c63 = 1

The input vector kt = (k1t, k2t, k3t, 0, 0, 0)
′ contains the exogenous or forcing

functions

k1t = (1− a3l1)ψ(p
∗
R,t − p

∗
t ) + (a2 + a3l2)(i

∗
t − π

∗
t+1) (A8)

− b2y
∗
t − gt + (1− a3l1)d0 − a3l0 − b0

k2t = (1− β)v2ψ(p
∗
R,t − p

∗
t ) + π

∗
t+1 − βπ

∗
t − i

∗
t + βi

∗
t−1 (A9)

+ (1− β)i− (1− β)v2(q − d0)− (1− β)v1π
c

k3t = −µδψ(p
∗
R,t − p

∗
t )− (1− µ)(π

∗
R,t − π

∗
t ) + µδ(q − d0) (A10)

We analyze the dynamic effects of anticipated raw materials price shocks which
take the form

p∗R,t = βR · p
∗
R,t−1 + κt , 0 ≤ βR ≤ 1 (A11)

with the impulse function

κt =

{
1 for t = T > 0

0 for t 6= T
(A12)

On the assumption p∗R,0 = 0 for the initial value of p∗R, the solution of the
difference equation (A11) is given by

p∗R,t =

{
0 for t < T

βt−TR for t ≥ T
(A13)
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Then

π∗R,t = p∗R,t − p
∗
R,t−1 =





0 for t < T

p∗R,T = 1 for t = T

(βR − 1)β
t−T−1
R for t > T

(A14)

We assume that an oil price shock of the form (A11) influences the foreign price
level p∗, but leaves the foreign income and the foreign interest rate unchanged:

p∗t = (1− µ
∗)p∗R,t 0 < µ∗ < 1 (A15)

i∗t = i
∗
, y∗t = y∗ (A16)

Then

π∗t = (1− µ
∗)π∗R,t =





0 for t < T

(1− µ∗) for t = T

(1− µ∗)(βR − 1)β
t−T−1
R for t > T

(A17)

implying

p∗R,t − p
∗
t = µ∗p∗R,t =

{
0 for t < T

µ∗βt−TR for t ≥ T
(A18)

and

π∗R,t − π
∗
t = µ∗π∗R,t =





0 for t < T

µ∗ for t = T

µ∗(βR − 1)β
t−T−1
R for t > T

(A19)

In the case of a permanent raw materials price shock, i.e. βR = 1, equations
(A17) to (A19) simplify to

π∗t =

{
1− µ∗ for t = T

0 for t 6= T
if βR = 1 (A20)

p∗R,t − p
∗
t =

{
0 for t < T

µ∗ for t ≥ T
if βR = 1 (A21)

π∗R,t − π
∗
t =

{
µ∗ for t = T

0 for t 6= T
if βR = 1 (A22)

The input functions k1t, k2t and k3t can be rewritten with the help of the steady
state equations

q = a1y − a2i
∗
+ a3(l0 + l1q − l2i

∗
) + g − b1y + b2y

∗ − b3τ + b0 (A23)

y = q + ψτ − ψ(p∗R − p
∗)− d0 (A24)

q = (f1 + f2)τ − f2(p∗R − p
∗) + f0 (A25)

(A23) is the steady state version of the IS equation (1) where we have used that
in the long run yt+1 = yt = yt−1 = y, τt+1 = τt = τt−1 = τ and πct+1 = πct =
πct−1 = πc = 0 holds (implying ∆e = 0). (A24) is the steady state relationship
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between national income and output while (A25) is a reformulation of the long
run supply function (6). Equations (A23) and (A24) imply

(1− a1 + b1 − a3l1)y + (b3 − (1− a3l1)ψ)τ = (A26)

− (a2 + a3l2)i
∗
+ b2y

∗ + g − (1− a3l1)ψ(p∗R − p
∗)

− (1− a3l1)d0 + a3l0 + b0

y − ψτ + ψ(p∗R − p
∗) = q − d0 (A27)

Using (A26) and (A27) and the long run interest parity condition i = i
∗
the

forcing functions (A8) to (A10) can be written as

k1t = (1− a3l1)ψ
[
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
]
− (a2 + a3l2)π

∗
t+1 (A28)

− (1− a1 + b1 − a3l1)y − (b3 − (1− a3l1)ψ)τ

k2t = (1− β)v2ψ
[
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
]
+ π∗t+1 − βπ

∗
t (A29)

− (1− β)v2(y − ψτ)

k3t = −µδψ
[
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
]
− (1− µ)(π∗R,t − π

∗
t ) (A30)

+ µδ(y − ψτ)

The foreign real raw materials price p∗R−p
∗ is exogenously given for the domestic

small open economy. If v0 denotes the initial and v1 the new steady state level
of the state vector v after the occurrence of an oil price shock, v1 differs from
v0 only if βR = 1, i.e, if a permanent shock takes place. In this case

d(p∗R − p
∗) = (p∗R − p

∗)1 − (p∗R − p
∗)0 = µ∗ (A31)

and the steady state change of y and τ follows from the steady state equations
(A23) to (A25). The long run multipliers ∂y/∂(p∗R − p

∗) and ∂τ/∂(p∗R − p
∗)

result from the set of equations

(
1− a1 + b1 − a3l1 b3 − (1− a3l1)ψ

1 −(f1 + f2 + ψ)

)(
dy
dτ

)
= −

(
(1− a3l1)ψ
f2 + ψ

)
d(p∗R − p

∗)

(A32)

Using the abbreviation

∆ = −(1− a1 + b1 − a3l1)(f1 + f2 + ψ)− (b3 − (1− a3l1)ψ) (A33)

the multipliers are given by

∂y

∂(p∗R − p
∗)
=
1

∆

[
(f1 + f2 + ψ)(1− a3l1)ψ (A34)

+ (b3 − (1− a3l1)ψ)(f2 + ψ)
]

∂τ

∂(p∗R − p
∗)
=
1

∆

(
(1− a3l1)ψ − (1− a1 + b1 − a3l1)(f2 + ψ)

)
(A35)

On the assumption
b3 − (1− a3l1)ψ > 0 (A36)
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the long run IS curve (A26) has a negative slope in y/τ -space implying that
a permanent real appreciation of the domestic currency causes isolated seen a
long run decline in aggregate demand and national income. Then the multiplier
∂y/∂(p∗R − p

∗) is unambiguously negative. The long run response of the terms
of trade to a permanent rise in the foreign real factor price p∗R − p∗ is not
uniquely determined. Assuming (A36), a necessary and sufficient condition for
a rise (fall) in τ is given by

∂τ

∂(p∗R − p
∗)
> (<)0 ⇔ (a1 − b1)ψ < (>)(1− a1 + b1 − a3l1)f2 (A37)

implying a stronger (weaker) increase in the domestic than the foreign price
level (the latter expressed in units of the domestic currency).
The input functions k1t, k2t and k3t can be written in the form

kjt = dj + φjt j = 1, 2, 3 (A38)

where

d1 = −(1− a1 + b1 − a3l1)y − (b3 − (1− a3l1)ψ)τ (A39)

d2 = −(1− β)v2(y − ψτ) (A40)

d3 = µδ(y − ψτ) (A41)

and

φ1t = (1− a3l1)ψ
(
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
)
− (a2 + a3l2)π

∗
t+1 (A42)

φ2t = (1− β)v2ψ
(
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
)
+ π∗t+1 − βπ

∗
t (A43)

φ3t = −µδψ
(
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
)
− (1− µ)(π∗R,t − π

∗
t ) (A44)

For t < T the steady state values y, τ and (p∗R − p
∗) are equal to their initial

values y0, τ0 and (p∗R − p
∗)0 while for t ≥ T they coincide with their new steady

state values y1, τ1 and (p∗R − p
∗)1. Therefore,

dj =

{
dj0 for t < T

dj1 for t ≥ T
j = 1, 2, 3 (A45)

According to (A13) to (A22) the functions φ1t, φ2t and φ3t take the following
form:

• In case βR = 1 (permanent raw materials price shock)

φ1t =





0 for t < T − 1

−(a2 + a3l2)π
∗
t+1 = −(a2 + a3l2)(1− µ

∗) for t = T − 1

0 for t ≥ T

(A46)
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φ2t =





0 for t < T − 1

π∗t+1 = 1− µ
∗ for t = T − 1

−βπ∗t = −β(1− µ
∗) for t = T

0 for t > T

(A47)

φ3t =





0 for t < T − 1

−(1− µ)(π∗R,t − π
∗
t ) = −(1− µ)µ

∗ for t = T

0 for t > T

(A48)

• In case βR < 1 (temporary shock) we get

φ1t =





0 for t < T − 1

−(a2 + a3l2)(1− µ
∗) for t = T − 1[

(1− a3l1)ψµ
∗

−(a2 + a3l2)(1− µ
∗)(βR − 1)

]
βt−TR for t ≥ T

(A49)

φ2t =





0 for t < T − 1

1− µ∗ for t = T − 1

(1− β)v2ψµ
∗ + (1− µ∗)(βR − 1)− β(1− µ

∗) for t = T[
(1− β)v2ψµ

∗ + (1− µ∗)(βR − 1)
]
βt−TR

−β(1− µ∗)(βR − 1)β
t−T−1
R for t > T

(A50)

φ3t =





0 for t < T

−µδψµ∗ − (1− µ)µ∗ for t = T

−µδψµ∗βt−TR − (1− µ)µ∗(βR − 1)β
t−T−1
R for t > T

(A51)

The state equations (A5) can be rewritten as follows:

(
vt+1

wt+1

)
= A

(
vt
wt

)
+B−1(d+ φt) (A52)

where

A = B−1C (A53)

d = (d1, d2, d3, 0, 0, 0)
′ (A54)

φt = (φ1t, φ2t, φ3t, 0, 0, 0)
′ (A55)

The inverse matrix B−1 has the structure

B−1 =




b̃11 b̃12 b̃13 0 0 0

b̃21 b̃22 b̃23 0 0 0

b̃31 b̃32 b̃33 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(A56)
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where

b̃11 = −
1

|B|
αµ(1− ω) b̃12 = −

1

|B|
(a2 + a3l2)αµ(1− ω) (A57)

b̃13 =
1

|B|
a2α b̃21 = 0

b̃22 =
1

|B|
a1(1− Φ)µ(1− ω) b̃23 = −

1

|B|
a1(1− Φ)

b̃31 = b̃32 = 0 b̃33 = −
1

|B|
a1(1− Φ)α

and
|B| = detB = −a1(1− Φ)αµ(1− ω) < 0 (A58)

Then

B−1d =




3∑

j=1

b̃1jdj ,

3∑

j=1

b̃2jdj ,

3∑

j=1

b̃3jdj , 0, 0, 0



′

(A59)

and B−1φt is given by

B−1φt =




3∑

j=1

b̃1jφjt,

3∑

j=1

b̃2jφjt,

3∑

j=1

b̃3jφjt, 0, 0, 0



′

(A60)

In case βR = 1 (permanent shock) (A60) takes the form

B−1φt =





0 for t < T − 1

(0, α̃2, 0, 0, 0, 0)
′ for t = T − 1

(α1, α2, α3, 0, 0, 0)
′ for t = T

0 for t > T

(A61)

where

α̃2 =
1

|B|
a1(1− Φ)µ(1− ω)(1− µ

∗) (A62)

α1 =
1

|B|

[
(a2 + a3l2)αµ(1− ω)β(1− µ

∗)− a2α(1− µ)µ
∗
]

(A63)

α2 =
1

|B|
a1(1− Φ)

[
− µ(1− ω)β(1− µ∗) + (1− µ)µ∗

]
(A64)

α3 =
1

|B|
a1(1− Φ)α(1− µ)µ

∗ (A65)

If βR < 1 (temporary shock), B
−1φt is given by

B−1φt =





0 for t < T − 1

(0, α̃2, 0, 0, 0, 0)
′ for t = T − 1

(α̂1, α̂2, α̂3, 0, 0, 0)
′ for t = T

(φ1, φ2, φ3, 0, 0, 0)
′βt−T−1
R for t > T

(A66)
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where α̃2 is defined in (A62) and

α̂1 =
1

|B|

[(
− αµ(1− ω)ψ

(
(1− a3l1) + (a2 + a3l2)(1− β)v2

)
(A67)

− a2α(µδψ + 1− µ)
)
µ∗ + αµ(1− ω)(a2 + a3l2)β(1− µ

∗)

]

α̂2 =
1

|B|
a1(1− Φ)

[(
µ(1− ω)(1− β)v2ψ + µδψ + 1− µ

)
µ∗ (A68)

+ µ(1− ω)(1− µ∗)(βR − 1− β)

]

α̂3 =
1

|B|
a1(1− Φ)α(µδψ + 1− µ)µ

∗ (A69)

φ1 = −
1

|B|

[(
αµ(1− ω)

[
1− a3l1 + (a2 + a3l2)(1− β)v2

]
ψβR (A70)

+ a2α
(
µδψβR + (1− µ)(βR − 1)

))
µ∗

− αµ(1− ω)(a2 + a3l2)β(1− µ
∗)(βR − 1)

]

φ2 =
1

|B|
a1(1− Φ)

[(
µ(1− ω)(1− β)v2ψβR + µδψβR (A71)

+ (1− µ)(βR − 1)
)
µ∗ + µ(1− ω)(1− µ∗)(βR − 1)(βR − β)

]

φ3 =
1

|B|
a1(1− Φ)α

[
µδψβR + (1− µ)(βR − 1)

]
µ∗ (A72)

Solution to Dynamics
The dynamical system (A52) can be solved by transforming it into canonical
form using the Jordan decomposition of the system matrix A = B−1C. A
has six different eigenvalues r1, . . . , r6, where r1, r2 and r3 are unstable (i.e.,
|rj | > 1 for j = 1, 2, 3) and r4, r5 and r6 are stable characteristic roots (i.e.,
|ri| < 1 for i = 4, 5, 6). Since the vector v of state variables only consists
of non-predetermined variables, the number of unstable characteristic roots
coincides with the number of jump variables so that the system (A52) has the
saddlepath property. The system matrixA can be diagonalized by the similarity
transformation

A = HΛH−1 = HΛG (G = H−1) (A73)

where H = (h1, . . . , h6) consists of the linear-independent (right-) eigenvectors
of A and G = (gij)1≤i,j≤6 denotes the inverse of H. Λ is a diagonal matrix
whose diagonal elements are the eigenvalues of A. Partition the matrices H, Λ
and G conformably with the state vectors v and w,

H =

(
H11 H12

H21 H22

)
, Λ =

(
Λ1 0
0 Λ2

)
, G =

(
G11 G12

G21 G22

)
(A74)
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and premultiplying both sides of the state equations (A52) with G. This yields

(
G11 G12

G21 G22

)(
vt+1

wt+1

)
=

(
Λ1 0
0 Λ2

)(
G11 G12

G21 G22

)(
vt
wt

)
(A75)

+

(
G11 G12

G21 G22

)[
B−1d+B−1φt

]

Using the transformation

(
x
z

)
=

(
G11 G12

G21 G22

)(
v
w

)
(A76)

the canonical form of the state equations (A52) is given by

xt+1 = Λ1xt + (G11,G12)
[
B−1d+B−1φt

]
(A77)

zt+1 = Λ2zt + (G21,G22)
[
B−1d+B−1φt

]
(A78)

If {xt}t=0,1,...,T−1,T,T+1,... and {zt}t=0,1,...,T−1,T,T+1,... is a solution of (A77) and
(A78) respectively, the solution of the original state variables v and w can be
obtained by using the inverse transformation

(
v
w

)
=

(
H11 H12

H21 H22

)(
x
z

)
(A79)

Note that the steady state of the canonical system (A77), (A78) is given by

(
x
z

)
=

(
(I3 −Λ1)

−1 0
0 (I3 −Λ2)

−1

)
GB−1d (A80)

where I3 is the 3 × 3 identity matrix and d defined in (A54), (A45), (A39),
(A40), (A41). According to (A79) and (A52) the steady state of the original
state vector is then given by

(
v
w

)
= H

(
(I3 −Λ1)

−1 0
0 (I3 −Λ2)

−1

)
GB−1d = (I6 −A)−1B−1d (A81)

since

(I6 −A)−1 = (I6 −HΛG)−1 = [H(I6 −Λ)G]−1 (A82)

= G−1(I6 −Λ)−1H−1 = H

(
(I3 −Λ1)

−1 0
0 (I3 −Λ2)

−1

)
G

Solution in case βR < 1
We first consider the solution of the transformed system (A77), (A78) in case
of temporary raw materials price shocks. In this case d = d0 = d1 implying
x = x0 = x1 and z = z0 = z1 so that (A77), (A78) is equivalent to

xt+1 − x = Λ1(xt − x) + (G11,G12)B
−1φt (A83)

zt+1 − z = Λ2(zt − z) + (G21,G22)B
−1φt (A84)
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Let θ1t and θ2t be the input functions

θ1t = (G11,G12)B
−1φt (A85)

θ2t = (G21,G22)B
−1φt (A86)

According to (A66) θ1t and θ2t have the following structure:

θ1t =





0 for t < T − 1

(g̃1, g̃2, g̃3)
′ for t = T − 1

(ê1, ê2, ê3)
′ for t = T

(ϕ1, ϕ2, ϕ3)
′βt−T−1
R for t > T

(A87)

θ2t =





0 for t < T − 1

(g̃4, g̃5, g̃6)
′ for t = T − 1

(ê4, ê5, ê6)
′ for t = T

(ϕ4, ϕ5, ϕ6)
′βt−T−1
R for t > T

(A88)

where

g̃j = gj2α̃2 (j = 1, . . . , 6) (A89)

êj = gj1α̂1 + gj2α̂2 + gj3α̂3 (j = 1, . . . , 6) (A90)

ϕj = gj1φ1 + gj2φ2 + gj3φ3 (j = 1, . . . , 6) (A91)

Let us first consider the subsystem (A83) where the system matrix Λ1 only
consists of unstable eigenvalues. We are interested in the convergent solution
time path so that the transversality condition

lim
t→∞

(xt − x) = 0 (A92)

must hold. We start with the general solution of (A83). We can choose either
the backward-looking or the forward-looking solution and then apply the sta-
bility condition (A92). The general backward-looking solution of (A83) is given
by

xt − x = Λt
1K1 +

t−1∑

s=0

Λt−s−1
1 θ1s = Λt

1K1 +
t−1∑

s=T−1

Λt−s−1
1 θ1s (A93)

where K1 is an arbitrary three-dimensional vector of constants and

t−1∑

s=T−1

Λt−s−1
1 θ1s = 0 for t− 1 < T − 1, i.e. t < T (A94)

Therefore

xt =





x0 +Λt
1K1 for t < T

x0 +Λt
1K1 +

∑t−1
s=T−1 Λ

t−s−1
1 θ1s

= x0 +Λt
1

(
K1 +

∑t−1
s=T−1 Λ

−s−1
1 θ1s

)
for t ≥ T

(A95)
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The transversality condition (A92) is satisfied only if

K1 +
∞∑

s=T−1

Λ−s−1
1 θ1s = 0 (A96)

implying

K1 = −
∞∑

s=T−1

Λ−s−1
1 θ1s (A97)

Thus

xt = x0 −Λt
1

∞∑

s=t

Λ−s−1
1 θ1s = x0 −

∞∑

s=t

Λt−s−1
1 θ1s for t ≥ T (A98)

The same convergent solution can be obtained with the help of the general
forward-looking solution

xt − x = Λt
1K̃1 −

∞∑

s=t

Λt−s−1
1 θ1s (A99)

=

{
Λt

1K̃1 −
∑∞

s=T−1 Λ
t−s−1
1 θ1s for t < T − 1

Λt
1K̃1 −

∑∞
s=tΛ

t−s−1
1 θ1s for t ≥ T − 1

=

{
Λt

1(K̃1 +K1) for t < T − 1

Λt
1(K̃1 −

∑∞
s=tΛ

−s−1
1 θ1s) for t ≥ T − 1

where the constant K̃1 is arbitrary and K1 defined by (A97). Equation (A99)
will converge only if

K̃1 = 0 (A100)

implying the equivalence of the uniquely determined convergent forward- and
backward-looking solution. The equivalence also holds at time t = T − 1, since
(A95) and (A97) imply

xT−1 − x0 = ΛT−1
1 K1 = −Λ

T−1
1

∞∑

s=T−1

Λ−s−1
1 θ1s = −

∞∑

s=T−1

ΛT−s−2
1 θ1s

(A101)

where the last expression is the convergent forward-looking solution at time
T − 1. Using the definition of the input function θ1t the constant K1 can be
written as

K1 = −Λ
−T
1





g̃1
g̃2
g̃3


+Λ−1

1



ê1
ê2
ê3


+Λ−1

1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




 (A102)

The last expression follows from the fact that for j = 1, 2, 3

−
∞∑

s=T+1

r−s−1
j ϕjβ

s−T−1
R = −ϕj

1

rj

1

βT+1
R

∞∑

s=T+1

(
βR
rj

)s
(A103)

= −ϕj
1

rj

1

βT+1
R

(
βR

rj

)T+1

1− βR

rj

= −ϕj
1

rj − βR
r
−(T+1)
j
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holds.13 This implies

−
∞∑

s=T+1

Λ−s−1
1 θ1s = −Λ

−T−1
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


 (A104)

(A95), (A98), (A101) and (A102) imply that the unique convergent solution
time path of the vector x can be expressed in the following form:

• For t ≥ T + 1:

xt = x0 −

∞∑

s=t

Λt−s−1
1 θ1s = x0 −



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


β

t−(T+1)
R (A105)

since
∞∑

s=t

rt−s−1
j ϕjβ

s−T−1
R = rt−1

j ϕj
1

βT+1
R

∞∑

s=t

(
βR
rj

)s
(A106)

= rt−1
j ϕj

1

βT+1
R

(
βR

rj

)t

rj − βR
rj

= ϕj
1

rj − βR
β
t−(T+1)
R (j = 1, 2, 3)

• For t = T :14

xT = x0 −
∞∑

s=T

ΛT−s−1
1 θ1s = x0 −Λ−1

1 θ1T −
∞∑

s=T+1

ΛT−s−1
1 θ1s (A107)

= x0 −Λ−1
1



ê1
ê2
ê3


−Λ−1

1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




since
∞∑

s=T+1

rT−s−1
j ϕjβ

s−T−1
R = rTj

∞∑

s=T+1

r−s−1
j ϕjβ

s−T−1
R (A108)

= ϕj
1

rj − βR
r−1
j (cf. (A103)).

13Note that
∞∑

s=t

xs =
xt

1− x
for |x| < 1

(x = βR/rj , t = T + 1).
14Note that (A107) also follows from (A83) for t = T by substituting (A105) for xT+1−x: Since

xT+1 − x0 = Λ1(xT − x0) + θT ,

we get

xT − x0 = Λ−1
1 (xT+1 − x0)−Λ

−1
1 θT = −Λ−1

1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


−Λ−1

1



ê1
ê2
ê3



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• For t = T − 1:15

xT−1 = x0 −
∞∑

s=T−1

ΛT−s−2
1 θ1s (A109)

= x0 −Λ−1
1 θ1T−1 −Λ−2

1 θ1T −ΛT−1
1

∞∑

s=T+1

Λ−s−1
1 θ1s

= x0 −Λ−1
1



g̃1
g̃2
g̃3


−Λ−2

1



ê1
ê2
ê3


−Λ−2

1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




since

ΛT−1
1

∞∑

s=T+1

Λ−s−1
1 θ1s = ΛT−1

1 Λ−T−1
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


 (A110)

= Λ−2
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


 (cf. (A104)).

• For t < T − 1:

xt = x0 +Λt
1K1 = x0 −Λt−T

1



g̃1
g̃2
g̃3


−Λt−T−1

1



ê1
ê2
ê3


 (A111)

−Λt−T−1
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




Next consider the second subsystem (A84) where the diagonal matrix Λ2 only
consists of stable eigenvalues. The general backward-looking solution is given
by

zt − z = Λt
2K2 +

t−1∑

s=0

Λt−s−1
2 θ2s = Λt

2K2 +
t−1∑

s=T−1

Λt−s−1
2 θ2s (A112)

=

{
Λt

2K2 for t− 1 < T − 1, i.e., t < T

Λt
2K2 +

∑t−1
s=T−1 Λ

t−s−1
2 θ2s for t ≥ T

with arbitrary constant K2. The definition of the forcing function θ2s (cf.
(A88)) implies

• for t = T :

zT = z0 +ΛT
2 K2 + θ2T−1 = z0 +ΛT

2 K2 +



g̃4
g̃5
g̃6


 (A113)

15(A109) also follows from the equation

xT−1 − x0 = Λ−1
1 (xT − x0)−Λ

−1
1 θT−1

by substituting (A107) for xT − x0.
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• for t = T + 1:

zT+1 = z0 +ΛT+1
2 K2 +

T∑

s=T−1

ΛT−s
2 θ2s (A114)

= z0 +ΛT+1
2 K2 +Λ2



g̃4
g̃5
g̃6


+



ê4
ê5
ê6




• for t > T + 1:

zt = z0 +Λt
2K2 +Λt−T

2 θ2T−1 (A115)

+Λt−T−1
2 θ2T +

t−1∑

s=T+1

Λt−s−1
2 θ2s

= z0 +Λt
2K2 +Λt−T

2



g̃4
g̃5
g̃6


+Λt−T−1

2



ê4
ê5
ê6




−



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)


βt−T−1

R +Λt−T−1
2



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)




(A115) holds since16

t−1∑

s=T+1

rt−s−1
j ϕjβ

s−T−1
R = rt−1

j ϕjβ
−T−1
R

t−1∑

s=T+1

(
βR
rj

)s
(A116)

= rt−1
j ϕjβ

−T−1
R




(
βR

rj

)T+1
−
(
βR

rj

)t

1− βR

rj




= rtjϕj
1

rj − βR

1

βT+1
R

((
βR
rj

)T+1

−

(
βR
rj

)t)

= ϕj
1

rj − βR

(
rt−T−1
j − βt−T−1

R

)
(j = 4, 5, 6)

and therefore

t−1∑

s=T+1

Λt−s−1
2 θ2s = Λt−T−1

2



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)


 (A117)

−



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)


βt−T−1

R

16Note that

t−1∑

s=T+1

xs =

t−1∑

s=0

xs −

T−1∑

s=0

xs − xT =
1− xt

1− x
−

1− xT

1− x
− xT =

xT − xt

1− x
− xT =

xT+1 − xt

1− x

(x = βR/rj).
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Note that (A115) is equivalent to (A114) in the special case t = T + 1.
The solution of the original state vector v = (y, τ, πc)′ can be obtained using

the transformation (A79) and the solution of the canonical system. Since

vt = H11xt +H12zt (A118)

and
v = H11x+H12z (A119)

we get

• for t > T + 1:

vt = v0 +H12Λ
t
2K2 +H12Λ

t−T
2



g̃4
g̃5
g̃6


 (A120)

+H12Λ
t−T−1
2

[

ê4
ê5
ê6


+



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)



]

−

[
H11



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


+H12



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)



]
βt−T−1
R

• for t = T + 1:

vT+1 = v0 +H12Λ
T+1
2 K2 +H12Λ2



g̃4
g̃5
g̃6


 (A121)

+H12



ê4
ê5
ê6


−H11



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




• for t = T :

vT = v0 +H12Λ
T
2 K2 +H12



g̃4
g̃5
g̃6


 (A122)

−H11Λ
−1
1



ê1
ê2
ê3


−H11Λ

−1
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




• for t = T − 1:

vT−1 = v0 +H12Λ
T−1
2 K2 −H11Λ

−1
1



g̃1
g̃2
g̃3


 (A123)

−H11Λ
−2
1

[

ê1
ê2
ê3


+



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)



]
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• for t < T − 1:

vt = v0 +H11Λ
t
1K1 +H12Λ

t
2K2 (A124)

where K1 is defined in (A102). The second constant K2 can be determined
from the initial condition of the vector w of predetermined state variables:

w(0) = w0 (A125)

(A79), (A111) and (A112) imply

w(0) = H21x(0) +H22z(0) = H21(x0 +K1) +H22(z0 +K2) (A126)

= w0 +H21K1 +H22K2

so that
0 = H21K1 +H22K2 (A127)

and therefore
K2 = −H

−1
22 H21K1 (A128)

Note that the solution (A120) also holds in t = T +1 since (A120) is equivalent
to (A121) in the special case t = T + 1. (A120) is also equivalent to (A122) if
we set t = T in (A120). This equivalence holds since

H11Λ
−1
1



ê1
ê2
ê3


 = −H12Λ

−1
2



ê4
ê5
ê6


 (A129)

and

H11Λ
−1
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


 = −H12Λ

−1
2



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)


 (A130)

+

[
H11



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)


+H12



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)



]
β−1
R

To show (A129) and (A130) note that wt = vt−1 and

wt = H21xt +H22zt (A131)

According to (A124) we then have

wt = v0 +H21Λ
t
1K1 +H22Λ

t
2K2 = (A132)

vt−1 = v0 +H11Λ
t−1
1 K1 +H12Λ

t−1
2 K2 for t < T − 1

implying

H21Λ1 = H11, H22Λ2 = H12 (A133)
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or

H21 = H11Λ
−1
1 , H22 = H12Λ

−1
2 (A134)

The identity (
H11 H12

H21 H22

)(
G11 G12

G21 G22

)
=

(
I3 0
0 I3

)
(A135)

implies
H21G11 +H22G21 = 0 (A136)

or
G21G

−1
11 = −H

−1
22 H21 (A137)

According to (A90)



ê1
ê2
ê3


 = G11



α̂1

α̂2

α̂3


 (A138)



ê4
ê5
ê6


 = G21



α̂1

α̂2

α̂3


 (A139)

implying



ê4
ê5
ê6


 = G21G

−1
11



ê1
ê2
ê3


 (A140)

Premultiplying (A140) with Λ−1
2 and using (A137) and (A134) yields

Λ−1
2



ê4
ê5
ê6


 = Λ−1

2 G21G
−1
11



ê1
ê2
ê3


 = −Λ−1

2 H−1
22 H21



ê1
ê2
ê3


 (A141)

= −Λ−1
2 (Λ2H

−1
12 )(H11Λ

−1
1 )



ê1
ê2
ê3


 = −H−1

12 H11Λ
−1
1



ê1
ê2
ê3




Premultiplying this equation with −H12 yields (A129). To show (A130) note
that

−H12Λ
−1
2



ϕ4

ϕ5

ϕ6


 = H11Λ

−1
1



ϕ1

ϕ2

ϕ3


 (A142)

The proof is similar to the proof of (A129) since by definition



ϕ1

ϕ2

ϕ3


 = G11



φ1

φ2

φ3


 ,



ϕ4

ϕ5

ϕ6


 = G21



φ1

φ2

φ3


 (A143)

54



and therefore 

ϕ4

ϕ5

ϕ6


 = G21G

−1
11



ϕ1

ϕ2

ϕ3


 (A144)

According to (A141) this implies

Λ−1
2



ϕ4

ϕ5

ϕ6


 = −H−1

12 H11Λ
−1
1



ϕ1

ϕ2

ϕ3


 (A145)

so that (A142) holds. Denote the elements of the modal matrix H by hij
(1 ≤ i, j ≤ 6). Using (A142) the right-hand-side of (A130) can be written as
follows:

−
6∑

j=4

1

rj

ϕj
rj − βR



h1j

h2j

h3j


+

6∑

j=1

ϕj
(rj − βR)βR



h1j

h2j

h3j


 (A146)

= −
6∑

j=4

ϕj
rj − βR

(
1

rj
−
1

βR

)

h1j

h2j

h3j


+

3∑

j=1

ϕj
(rj − βR)βR



h1j

h2j

h3j




=
6∑

j=4

ϕj
rjβR



h1j

h2j

h3j


+

3∑

j=1

ϕj
(rj − βR)βR



h1j

h2j

h3j




= −
1

βR

3∑

j=1

ϕj
rj



h1j

h2j

h3j


+ 1

βR

3∑

j=1

ϕj
rj − βR



h1j

h2j

h3j




=
3∑

j=1

ϕj
βR

(
1

rj − βR
−
1

rj

)

h1j

h2j

h3j




=
3∑

j=1

ϕj
rj(rj − βR)



h1j

h2j

h3j


 = H11Λ

−1
1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)




Therefore, (A130) holds so that the solution formula (A120) is also valid in
period t = T . Similar to (A129) and (A142)

H11Λ
−1
1



g̃1
g̃2
g̃3


 = −H12Λ

−1
2



g̃4
g̃5
g̃6


 (A147)

holds. The solution formula in T − 1 (i.e., (A123)) can then also be written in
the following form:

vT−1 = v0 +H12Λ
T−1
2 K2 +H12Λ

−1
2



g̃4
g̃5
g̃6


 (A148)

−H11Λ
−2
1

[

ê1
ê2
ê3


+



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)



]
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Now it is obvious that (A123) also follows from (A120) and (A121). But (A123)
can also be written in the form (A124), i.e.

vT−1 = v0 +H11Λ
T−1
1 K1 +H12Λ

T−1
2 K2 (A149)

since

vT−1 = v0 +H12Λ
T−1
2 K2 (A150)

−H11Λ
T−1
1 Λ−T1

[

g̃1
g̃2
g̃3


+Λ−1

1



ê1
ê2
ê3


+Λ−1

1



ϕ1/(r1 − βR)
ϕ2/(r2 − βR)
ϕ3/(r3 − βR)



]

= v0 +H12Λ
T−1
2 K2 +H11Λ

T−1
1 K1

according to the definition of K1 (cf. (A102)). Note that an analogous formula
does not hold in t = T since

H12



g̃4
g̃5
g̃6


 = H12G21G

−1
11



g̃1
g̃2
g̃3


 6= −H11



g̃1
g̃2
g̃3


 (A151)

(A135) implies
H11G11 +H12G21 = I3 (A152)

so that
H12G21G

−1
11 = G−1

11 −H11 (A153)

Therefore, (A122) is equivalent to

vT = v0 +H12Λ
T
2 K2 +H11Λ

T
1 K1 +H12



g̃4
g̃5
g̃6


+H11



g̃1
g̃2
g̃3


 (A154)

= v0 +H12Λ
T
2 K2 +H11Λ

T
1 K1 + [H12G21G

−1
11 +H11]



g̃1
g̃2
g̃3




= v0 +H12Λ
T
2 K2 +H11Λ

T
1 K1 + [H12G21G

−1
11 +H11]G11



0
α̃2

0




= v0 +H12Λ
T
2 K2 +H11Λ

T
1 K1 + [H12G21 +H11G11]



0
α̃2

0




= v0 +H11Λ
T
1 K1 +H12Λ

T
2 K2 +



0
α̃2

0


 (A155)

In summary, the solution time path of the jump vector v in response to an
anticipated temporary raw materials price shock may be represented as follows:
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• For t < T :
vt = v0 +H11Λ

t
1K1 +H12Λ

t
2K2 (A156)

• For t = T :

vT = v0 +H11Λ
T
1 K1 +H12Λ

T
2 K2 +



0
α̃2

0


 (A157)

• For t > T :

vt = v0 +H12Λ
t
2K2 (A158)

+H12Λ
t−T
2





g̃4
g̃5
g̃6


+Λ−1

2

[

ê4
ê5
ê6


+



ϕ4/(r4 − βR)
ϕ5/(r5 − βR)
ϕ6/(r6 − βR)



]


− (H11,H12)



ϕ1/(r1 − βR)

...
ϕ6/(r6 − βR)


βt−T−1

R

where (A158) also holds in t = T and K1 and K2 are defined by (A102) and
(A128) respectively.

Solution in case βR = 1
In case βR = 1 (permanent raw materials price shock) the canonical form of
the state equations (A52) is given by (cf. (A77), (A78))

xt+1 = Λ1xt + (G11,G12)[B
−1d+B−1φt] (A159)

zt+1 = Λ2zt + (G21,G22)[B
−1d+B−1φt] (A160)

where

B−1d =

{
B−1d0 for t < T

B−1d1 for t ≥ T
(A161)

and

B−1φt =





0 for t < T − 1 and t > T

(0, α̃2, 0, 0, 0, 0)
′ for t = T − 1

(α1, α2, α3, 0, 0, 0)
′ for t = T

(A162)

(cf. (A45), (A59), . . . , (A65)). Let

G




0
α̃2

0
0
0
0



=




g12α̃2

g22α̃2
...

g62α̃2


 =




g̃1
g̃2
...
g̃6


 (A163)
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(cf. (A89)) and

G




α1

α2

α3

0
0
0



=




g11α1 + g12α2 + g13α3

g21α1 + g22α2 + g23α3
...

g61α1 + g62α2 + g63α3


 =




e1
e2
...
e6


 (A164)

We first consider the solution of the canonical system for t < T − 1 and t > T
and then develop the solution of the transformed state vectors in the periods
t = T and t = T − 1. For t < T − 1 the system (A159), (A160) is equivalent to

xt+1 − x0 = Λ1(xt − x0) (A165)

zt+1 − z0 = Λ2(zt − z0) (A166)

where the steady state vectors x0 and z0 are defined in (A80). For t > T
(A159), (A160) is equivalent to

xt+1 − x1 = Λ1(xt − x1) (A167)

zt+1 − z1 = Λ2(zt − z1) (A168)

where x1 and z1 are the new steady states after the occurrence of the permanent
price shock. The general solution of the homogeneous system (A165), (A166)
for t < T − 1 is given by

xt − x0 = Λt
1K1 (A169)

zt − z0 = Λt
2K2 (A170)

where the constants K1 and K2 are arbitrary. For t > T the system (A167),
(A168) has the general solution

xt − x1 = Λt
1K̃1 (A171)

zt − z1 = Λt
2K̃2 (A172)

with arbitrary constants K̃1 and K̃2. The transversality condition (cf. (A92))

lim
t→∞

(xt − x1) = 0 (A173)

requires
K̃1 = 0 (A174)

and therefore
xt = x1 for t > T (A175)

Next consider the period T in which the foreign price shock is realized. Equation
(A159) then implies

xT+1 = Λ1xT + (G11,G12)[B
−1d1 +B−1φT ] (A176)
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or equivalently

xT = Λ−1
1 xT+1 −Λ−1

1 (G11,G12)[B
−1d1 +B−1φT ] (A177)

= Λ−1
1 x1 −Λ−1

1 (G11,G12)B
−1d1 −Λ−1

1



e1
e2
e3




according to (A161), (A164) and (A175). Since x1 is given by

x1 = (I3 −Λ1)
−1(G11,G12)B

−1d1 (A178)

(cf. (A80)) the first two expressions on the right-hand side of (A177) can be
summarized as follows:

Λ−1
1 x1 −Λ−1

1 (G11,G12)B
−1d1 = (A179)

Λ−1
1

[
(I3 −Λ1)

−1 − I3
]
(G11,G12)B

−1d1 =

Λ−1
1

[
I3 − (I3 −Λ1)

]
(I3 −Λ1)

−1(G11,G12)B
−1d1 = Λ−1

1 Λ1x1 = x1

Therefore

xT = x1 −Λ−1
1



e1
e2
e3


 (A180)

Next consider the period t = T −1. There are two possibilities to determine the
solution of the vector x in this period: the forward- and the backward-looking
solution. The forward-looking solution is given by

xT−1 = Λ−1
1 xT −Λ−1

1 (G11,G12)[B
−1d0 +B−1φT−1] (A181)

= Λ−1
1

[
x1 −Λ−1

1



e1
e2
e3



]
−Λ−1

1 (G11,G12)B
−1d0 −Λ−1

1



g̃1
g̃2
g̃3




= Λ−1
1 x1 −Λ−1

1 (G11,G12)B
−1d0 −Λ−1

1



g̃1
g̃2
g̃3


−Λ−2

1



e1
e2
e3




Since

Λ−1
1 x1 −Λ−1

1 (G11,G12)B
−1d0 = Λ−1

1 (x1 − x0) (A182)

+Λ−1
1 (I3 −Λ1)

−1(G11,G12)B
−1d0 −Λ−1

1 (G11,G12)B
−1d0

= Λ−1
1 dx+Λ−1

1

[
(I3 −Λ1)

−1 − I3
]
(G11,G12)B

−1d0

= Λ−1
1 dx+Λ−1

1

[
I3 − (I3 −Λ1)

]
(I3 −Λ1)

−1(G11,G12)B
−1d0

= Λ−1
1 dx+ x0

(A181) is equivalent to

xT−1 = x0 +Λ−1
1 dx−Λ−1

1



g̃1
g̃2
g̃3


−Λ−2

1



e1
e2
e3


 (A183)
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The backward-looking solution for x in period T − 1 is given by (cf. (A169))

xT−1 = Λ1xT−2 + (G11,G12)B
−1d0 (A184)

= Λ1(Λ
T−2
1 K1 + x0) + (G11,G12)B

−1d0

= ΛT−1
1 K1 +Λ1(I3 −Λ1)

−1(G11,G12)B
−1d0 + (G11,G12)B

−1d0

= ΛT−1
1 K1 +

[
Λ1(I3 −Λ1)

−1 + I3
]
(G11,G12)B

−1d0

= ΛT−1
1 K1 +

[
Λ1 + (I3 −Λ1)

]
(I3 −Λ1)

−1(G11,G12)B
−1d0

= ΛT−1
1 K1 + x0

Since the forward-looking and backward-looking solution must be equivalent,
equality of (A183) and (A184) yields a condition for the determination of the
constant K1:

ΛT−1
1 K1 + x0 = x0 +Λ−1

1 dx−Λ−1
1



g̃1
g̃2
g̃3


−Λ−2

1



e1
e2
e3


 (A185)

Solving for K1 yields the expression

K1 = Λ−T1

[
dx−



g̃1
g̃2
g̃3


−Λ−1

1



e1
e2
e3



]

(A186)

The solution formula forK1 may also be obtained if the forward-looking solution
in period T , i.e., equation (A180), is compared with the equivalent backward-
looking solution in T , the latter given by

xT = Λ1xT−1 + (G11,G12)B
−1d0 +



g̃1
g̃2
g̃3


 (A187)

= Λ1(Λ
T−1
1 K1 + x0) + (G11,G12)B

−1d0 +



g̃1
g̃2
g̃3




= ΛT
1 K1 +

[
Λ1(I3 −Λ1)

−1 + I3
]
(G11,G12)B

−1d0 +



g̃1
g̃2
g̃3




= ΛT
1 K1 + x0 +



g̃1
g̃2
g̃3




Equality of (A187) and (A180) again yields (A186).
The next step is the determination of the solution of the second transformed

state vector z in the periods T and T −1. The backward-looking solutions have
an analogous structure as the corresponding solutions of the state vector x (cf.
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(A184) and (A187)):

zT−1 = ΛT−1
2 K2 + z0 (A188)

zT = ΛT
2 K2 + z0 +



g̃4
g̃5
g̃6


 (A189)

where (g̃4, g̃5, g̃6)
′ is defined in (A163). The corresponding forward-looking so-

lutions are given by (cf. (A172))

zT = Λ−1
2 zT+1 −Λ−1

2 (G21,G22)B
−1d1 −Λ−1

2



e4
e5
e6


 (A190)

= Λ−1
2

[
ΛT+1

2 K̃2 + z1

]
−Λ−1

2 (G21,G22)B
−1d1 −Λ−1

2



e4
e5
e6




= ΛT
2 K̃2 +Λ−1

2

[
(I3 −Λ2)

−1 − I3
]
(G21,G22)B

−1d1 −Λ−1
2



e4
e5
e6




= ΛT
2 K̃2 +Λ−1

2

[
I3 − (I3 −Λ2)

]
(I3 −Λ2)

−1(G21,G22)B
−1d1 −Λ−1

2



e4
e5
e6




= ΛT
2 K̃2 + z1 −Λ−1

2



e4
e5
e6




and (cf. (A183))

zT−1 = Λ−1
2 zT −Λ−1

2 (G21,G22)B
−1d0 −Λ−1

2



g̃4
g̃5
g̃6


 (A191)

= Λ−1
2

[
ΛT

2 K̃2 + z1 −Λ−1
2



e4
e5
e6



]
−Λ−1

2 (G21,G22)B
−1d0 −Λ−1

2



g̃4
g̃5
g̃6




= ΛT−1
2 K̃2 −Λ−1

2



g̃4
g̃5
g̃6


−Λ−2

2



e4
e5
e6


+Λ−1

2 (z1 − z0)

+Λ−1
2

[
(I3 −Λ2)

−1 − I3
]
(G21,G22)B

−1d0

= ΛT−1
2 K̃2 −Λ−1

2



g̃4
g̃5
g̃6


−Λ−2

2



e4
e5
e6


+Λ−1

2 dz

+Λ−1
2

[
I3 − (I3 −Λ2)](I3 −Λ2)

−1(G21,G22)B
−1d0

= ΛT−1
2 K̃2 −Λ−1

2



g̃4
g̃5
g̃6


−Λ−2

2



e4
e5
e6


+Λ−1

2 dz+ z0
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The solution formulas (A188) and (A191) as well as (A189) and (A190) are
equivalent. In both cases equality yields the condition

K2 − K̃2 = Λ−T2

[
dz−



g̃4
g̃5
g̃6


−Λ−1

2



e4
e5
e6



]

(A192)

where – as before – K2 follows from the initial condition of the vector of pre-
determined variables w (cf. (A125) to (A128)):

K2 = −H
−1
22 H21K1 (A193)

(A192), (A193) and (A186) imply

K̃2 = −H
−1
22 H21K1 −Λ−T2

[
dz−



g̃4
g̃5
g̃6


−Λ−1

2



e4
e5
e6



]

(A194)

= −H−1
22 H21Λ

−T
1

[
dx−



g̃1
g̃2
g̃3


−Λ−1

1



e1
e2
e3



]

−Λ−T2

[
dz−



g̃4
g̃5
g̃6


−Λ−1

2



e4
e5
e6



]

The solution of the original state vector is now given by:

• for t < T − 1:

vt = v0 +H11Λ
t
1K1 +H12Λ

t
2K2 (A195)

• for t > T :

vt = v1 +H12Λ
t
2K̃2 (A196)

• for t = T :

vT = v0 +H11Λ
T
1 K1 +H12Λ

T
2 K2 +H11



g̃1
g̃2
g̃3


+H12



g̃4
g̃5
g̃6


 (A197)

= v0 +H11Λ
T
1 K1 +H12Λ

T
2 K2 +



0
α̃2

0




= v1 +H12Λ
T
2 K̃2 −H11Λ

−1
1



e1
e2
e3


−H12Λ

−1
2



e4
e5
e6




= v1 +H12Λ
T
2 K̃2
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• for t = T − 1;

vT−1 = v0 +H11Λ
T−1
1 K1 +H12Λ

T−1
2 K2 (A198)

= v0 +H12Λ
T−1
2 K̃2 +H11Λ

−1
1 dx+H12Λ

−1
2 dz

−H11Λ
−1
1



g̃1
g̃2
g̃3


−H12Λ

−1
2



g̃4
g̃5
g̃6




−H11Λ
−2
1



e1
e2
e3


−H12Λ

−2
2



e4
e5
e6




= v0 +H12Λ
T−1
2 K̃2 +H11Λ

−1
1 dx+H12Λ

−1
2 dz

−H11Λ
−2
1



e1
e2
e3


−H12Λ

−2
2



e4
e5
e6




In compact form, the solution of the jump vector v in case of an anticipated
permanent raw materials price shock is given by:

• for t > T :

vt = v1 +H12Λ
t
2K̃2 (A199)

• for t = T :

vT = v1 +H12Λ
T
2 K̃2 = v0 +H11Λ

T
1 K1 +H12Λ

T
2 K2 +



0
α̃2

0


 (A200)

• for t < T :

vt = v0 +H11Λ
t
1K1 +H12Λ

t
2K2 (A201)

where the constants K1, K2 and K̃2 are defined in (A186), (A193) and (A194).
Note that the solution formulas in case of a permanent raw materials price shock
are similar to the corresponding solution of v in case of a temporary foreign
price shock (cf. (A156) to (A158)), but they are obviously not equivalent.

New Keynesian Model with exogenous money stock
If the interest rate rule (13) is replaced by a monetary policy rule for the growth
rate of money supply, the corresponding dynamic state equation results from
the first difference of the LM equation

∆mt − π
c
t = l1(yt − yt−1) + l1ψ[(p

∗
R,t − p

∗
t )− (p

∗
R,t−1 − p

∗
t−1)] (A202)

− l2(π
c
t+1 − π

c
t ) + l2α(τt+1 − τt)− l2(i

∗
t − i

∗
t−1)

− (l1ψ + l2α)(τt − τt−1) + l2(π
∗
t+1 − π

∗
t )
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where

∆mt = ∆m− ṽ1(π
c
t − π

c)− ṽ2(qt − q) (A203)

= ∆m+ ṽ1π
c + ṽ2(q − d0)− ṽ1π

c
t − ṽ2(yt − ψτt + ψ(p

∗
R − p

∗
t ))

Inserting the monetary policy rule into (A202) yields the state equation

−ατt+1 + π
c
t+1 =

1

l2
(l1 + ṽ2)yt −

1

l2

(
(l1 + ṽ2)ψ + 2l2α

)
τt (A204)

+
1

l2
(1 + l2 + ṽ1)π

c
t −

l1
l2
yt−1 +

1

l2
(l1ψ + l2α)τt−1

+
1

l2
(l1 + ṽ2)ψ(p

∗
R,t − p

∗
t )−

l1ψ

l2
(p∗R,t−1 − p

∗
t−1)

−
1

l2
∆m−

ṽ1
l2
πc −

ṽ2
l2
(q − d0) + π

∗
t+1 − π

∗
t − (i

∗
t − i

∗
t−1)

Equation (A204) now replaces the dynamic state equation (A2) while the other
state equations (A1) and (A3) remain unchanged. Obviously, the state matrix
B, defined in (A6), does not change while the second row of the matrix C (see
(A7)) has to be replaced by

c21 =
1

l2
(l1 + ṽ2), c22 = −

1

l2

(
(l1 + ṽ2)ψ + 2l2α

)
(A205)

c23 =
1

l2
(1 + l2 + ṽ1), c24 = −

l1
l2

c25 =
1

l2
(l1ψ + l2α), c26 = 0

In the long run the inflation rates π and πc as well as the nominal depreciation
rate ∆e are determined by the growth rate of domestic money supply:

∆m = π = πc = ∆e (A206)

The input function k2t is then given by (cf. (A9))

k2t =
1

l2
(l1 + ṽ2)ψ(p

∗
R,t − p

∗
t )−

l1ψ

l2
(p∗R,t−1 − p

∗
t−1) + π

∗
t+1 − π

∗
t (A207)

− (i∗t − i
∗
t−1)−

1

l2
(1 + ṽ1)π

c −
ṽ2
l2

(
y − ψτ + ψ(p∗R − p

∗)
)

Assuming ∆m = π = πc = 0 and i∗t = i∗t−1, (A207) can be rewritten as

k2t = d2 + φ2t (A208)

where

d2 = −
ṽ2
l2
(y − ψτ) (A209)

and

φ2t =
l1
l2
ψ
[
(p∗R,t − p

∗
t )− (p

∗
R,t−1 − p

∗
t−1)

]
(A210)

+
ṽ2ψ

l2

[
(p∗R,t − p

∗
t )− (p

∗
R − p

∗)
]
+ π∗t+1 − π

∗
t
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Note that on the assumption ∆m = 0 the steady state system (A23) to (A27)
and the input functions k1t and k3t do not change. According to (A13) to (A22)
the function φ2t can be written as follows:

• In case βR = 1:

φ2t =





0 for t < T − 1

1− µ∗ for t = T − 1
l1
l2
ψµ∗ − (1− µ∗) for t = T

0 for t > T

(A211)

• In case βR < 1:

φ2t =





0 for t < T − 1

1− µ∗ for t = T − 1
1
l2
(l1 + ṽ2)ψµ

∗ + (1− µ∗)(βR − 2) for t = T[
ψ
l2
µ∗
(
l1(βR − 1) + ṽ2βR

)

+(1− µ∗)(βR − 1)
2
]
βt−T−1
R for t > T

In case βR = 1 the input vector B
−1φt has the representation (A61) where α̃2

and α3 are again given by (A62) and (A65) respectively, while α1 and α2 are
now of the form

α1 = b̃11φ1T + b̃12φ2T + b̃13φ3T (A212)

= −
1

|B|
(a2 + a3l2)αµ(1− ω)

[
l1
l2
ψµ∗ − (1− µ∗)

]
−
1

|B|
a2α(1− µ)µ

∗

α2 = b̃22φ2T + b̃23φ3T (A213)

=
1

|B|
a1(1− Φ)

(
µ(1− ω)

[
l1
l2
ψµ∗ − (1− µ∗)

]
+ (1− µ)µ∗

)

In case βR < 1 the vector B
−1φt takes the form (A66) where α̃2, α̂3 and φ3 do

not change (cf. (A62), (A69), (A72)) and the constants α̂1, α̂2, φ1 and φ2 are
now given by

α̂1 = b̃11φ1T + b̃12φ2T + b̃13φ3T (A214)

= −
1

|B|
αµ(1− ω)

[
(1− a3l1)ψµ

∗ − (a2 + a3l2)(1− µ
∗)(βR − 1)

]

−
1

|B|
(a2 + a3l2)αµ(1− ω)

[ 1
l2
(l1 + ṽ2)ψµ

∗ + (1− µ∗)(βR − 2)
]

−
1

|B|
a2α[µδψ + (1− µ)]µ

∗

= −
1

|B|
αµ(1− ω)(1− a3l1)ψµ

∗ −
1

|B|
a2α[µδψ + (1− µ)]µ

∗

+
1

|B|
αµ(1− ω)(a2 + a3l2)

[
(1− µ∗)−

1

l2
(l1 + ṽ2)ψµ

∗
]
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α̂2 = b̃22φ2T + b̃23φ3T (A215)

=
1

|B|
a1(1− Φ)

(
µ(1− ω)

[ 1
l2
(l1 + ṽ2)ψµ

∗ + (1− µ∗)(βR − 2)
]

+ [µδψ + (1− µ)]µ∗
)

φ1 = −
1

|B|
αµ(1− ω)[(1− a3l1)ψµ

∗ − (a2 + a3l2)(1− µ
∗)(βR − 1)]βR (A216)

−
1

|B|
(a2 + a3l2)αµ(1− ω)

[
ψ

l2
µ∗(l1(βR − 1) + ṽ2βR)

+ (1− µ∗)(βR − 1)
2

]
−
1

|B|
a2α[µδψβR + (1− µ)(βR − 1)]µ

∗

= −
1

|B|
αµ(1− ω)

[
(1− a3l1)ψµ

∗βR + (a2 + a3l2)
ψ

l2
µ∗(l1(βR − 1) + ṽ2βR)

]

+
1

|B|
αµ(1− ω)(a2 + a3l2)(1− µ

∗)(βR − 1)

−
1

|B|
a2α[µδψβR + (1− µ)(βR − 1)]µ

∗

φ2 =
1

|B|
a1(1− Φ)

[
µ(1− ω)

(
ψ

l2
µ∗(l1(βR − 1) + ṽ2βR) (A217)

+ (1− µ∗)(βR − 1)
2

)
+ [µδψβR + (1− µ)(βR − 1)]µ

∗

]

Perfect Stabilization of the CPI Inflation Rate
Perfect stabilization of the CPI inflation rate πc is possible with the help of an
interest rate rule that depends on the real appreciation rate ∆τt+1. The real
interest rate definition and the uncovered interest parity condition yield the
equation

it − π
c
t+1 = i∗t − α∆τt+1 − π

∗
t+1 (A218)

The policy target
πct+1 = πct = πc = 0 (A219)

then implies the interest rate rule

it = i∗t − π
∗
t+1 − α(τt+1 − τt) (A220)

which differs from the Taylor-type rules. The dynamics of the stabilized system
can be represented by the state equations (A1) and (A3) with πct+1 = πct = 0:

b11yt+1 + b12τt+1 = c11yt + c12τt + c14yt−1 + k1t (A221)

0 = c31yt + c32τt + c35τt−1 + k3t (A222)

(A222) implies

yt+j = −
1

c31
(c32τt+j + c35τt+j−1 + k3t+j), j = −1, 0, 1 (A223)
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Inserting this equation in (A221) yields the following difference equation of
order three in the jump variable τ :

γ1τt+1 = γ2τt + γ3τt−1 + γ4τt−2 + b11k3t+1 (A224)

− c11k3t − c14k3t−1 + c31k1t

with

γ1 = −b11c32 + c31b12 (A225)

γ2 = b11c35 − c11c32 + c31c12

γ3 = −(c11c35 + c14c32)

γ4 = −c14c35

Let

w1t = τt−1 (A226)

w2t = w1t−1 = τt−2 (A227)

then the state equation (A224) is equivalent to the system


τt+1

w1t+1

w2t+1


 =



γ2/γ1 γ3/γ1 γ4/γ1

1 0 0
0 1 0





τt
w1t

w2t


+



1
0
0


ut (A228)

with the input function

ut =
1

γ1
(b11k3t+1 − c11k3t − c14k3t−1 + c31k1t) (A229)

The state matrix of the stabilized system (A228) has one unstable and two
stable eigenvalues (|r1| > 1, |r2| < 1, |r3| < 1) where r1 is real and r2 and r3
are conjugate complex numbers. The system (A228) therefore exhibits saddle
point behavior, since the auxiliary variables w1 and w2 are predetermined. The
unique convergent solution time path for τ can be obtained by transforming
(A228) into Jordan-canonical form given by (cf. (A73) to (A79))

(
x̃t+1

z̃t+1

)
=

(
Λ̃1 0

0 Λ̃2

)(
x̃t
z̃t

)
+

(
G̃11 G̃12

G̃21 G̃22

)

1
0
0


ut (A230)

(
x̃
z̃

)
=

(
G̃11 G̃12

G̃21 G̃22

)(
τ
w

)
(A231)

(
G̃11 G̃12

G̃21 G̃22

)
=



g11 g12 g13
g21 g22 g23
g31 g32 g33


 = G̃ = H̃−1 (A232)

H̃ =

(
H̃11 H̃12

H̃21 H̃22

)
=



h11 h12 h13

h21 h22 h23

h31 h32 h33


 (A233)

Ã = H̃Λ̃G̃ (A234)
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Λ̃ =

(
Λ̃1 0

0 Λ̃2

)
=



r1 0 0
0 r2 0
0 0 r3


 (A235)

(
τ
w

)
=

(
H̃11 H̃12

H̃21 H̃22

)(
x̃
z̃

)
(A236)

w =

(
w1

w2

)
(A237)

H̃ consists of the (right-) eigenvectors of Ã, and G̃ denotes its inverse. Accord-
ing to the definition of k1t and k3t (cf. (A28) and (A30)) the input function ut
takes the following form (cf. (A38) to (A51)):

• In case βR = 1:

ut =





u0 for t < T − 1

u0 +m1 for t = T − 1

u1 +m2 for t = T

u1 +m3 for t = T + 1

u1 for t > T + 1

(A238)

where

u =
1

γ1

(
(b11 − c11 − c14)d3 + c31d1

)
(A239)

m1 =
b11
γ1
(d31 − d30) (A240)

−
1

γ1

(
b11(1− µ)µ

∗ + c31(a2 + a3l2)(1− µ
∗)
)

m2 =
c14
γ1
(d31 − d30) +

c11
γ1
(1− µ)µ∗ (A241)

m3 =
c14
γ1
(1− µ)µ∗ (A242)

d3 = µδ(y − ψτ) (A243)

d1 = −(1− a1 + b1 − a3l1)y − (b3 − (1− a3l1)ψ)τ (A244)

• In case βR < 1:

ut =





u0 for t < T − 1

u0 + m̃1 for t = T − 1

u0 + m̃2 for t = T

u0 + m̃3 for t = T + 1

u0 + m̃4β
t−T−1
R for t > T + 1

(A245)

68



where

m̃1 = −
1

γ1
(b11λ2 + c31λ0) (A246)

m̃2 =
1

γ1
(−b11λ3 + c11λ2 + c31λ1) (A247)

m̃3 =
1

γ1
(−b11λ3βR + c11λ3 + c14λ2 + c31λ1βR) (A248)

m̃4 =
1

γ1
(−b11λ3βR + c11λ3 + c14λ3β

−1
R + c31λ1βR) (A249)

λ0 = (a2 + a3l2)(1− µ
∗) (A250)

λ1 = (1− a3l1)ψµ
∗ − (a2 + a3l2)(1− µ

∗)(βR − 1) (A251)

λ2 = (µδψ + (1− µ))µ
∗ (A252)

λ3 = (µδψβR + (1− µ)(βR − 1))µ
∗ (A253)

We first discuss the canonical system (A230) in case of permanent raw materials
price shocks (βR = 1). For t < T − 1 it is equivalent to

x̃t+1 − x̃0 = Λ̃1(x̃t − x̃0) for t < T − 1 (A254)

z̃t+1 − z̃0 = Λ̃2(z̃t − z̃0) for t < T − 1 (A255)

where the steady-state values x̃ and z̃ are given by

x̃ = (I1 − Λ̃1)
−1G̃11u (A256)

z̃ = (I2 − Λ̃2)
−1G̃21u (A257)

For t > T + 1 it is equivalent to

x̃t+1 − x̃1 = Λ̃1(x̃t − x̃1) for t > T + 1 (A258)

z̃t+1 − z̃1 = Λ̃2(z̃t − z̃1) for t > T + 1 (A259)

The bounded solution for t < T − 1 and t > T + 1 is given by (cf. (A169) to
(A175))

x̃t = x̃0 + Λ̃
t

1K1 for t < T − 1 (A260)

z̃t = z̃0 + Λ̃
t

2K2 for t < T − 1 (A261)

x̃t = x̃1 for t > T + 1 (A262)

z̃t = z̃1 + Λ̃
t

2K̃2 for t > T + 1 (A263)

The solution for t = T + 1, t = T and t = T − 1 can be derived from these
solution formulas and the state equations (A230) where ut is given by (A238)
in case βR = 1. Since

x̃T+2 = Λ̃1x̃T+1 + G̃11uT+1 (A264)
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we get the forward-looking solution

x̃T+1 = Λ̃
−1

1 x̃T+2 − Λ̃
−1

1 G̃11uT+1 (A265)

= Λ̃
−1

1 x̃1 − Λ̃
−1

1 G̃11(u1 +m3) = x̃1 − Λ̃
−1

1 G̃11m3

(A265) implies

x̃T = Λ̃
−1

1 x̃T+1 − Λ̃
−1

1 G̃11uT (A266)

= Λ̃1(x̃1 − Λ̃
−1

1 G̃11m3)− Λ̃
−1

1 G̃11(u1 +m2)

= x̃1 − Λ̃
−2

1 G̃11m3 − Λ̃
−1

1 G̃11m2

For t = T − 1 the backward-looking solution of the variable x̃ is given by

x̃T−1 = Λ̃1x̃T−2 + G̃11uT−2 (A267)

= Λ̃1(x̃0 + Λ̃
T−2

1 K1) + G̃11u0 = x̃0 + Λ̃
T−1

1 K1

while the forward-looking solution takes the form

x̃T−1 = Λ̃
−1

1 x̃T − Λ̃
−1

1 G̃11(u0 +m1) (A268)

= Λ̃
−1

1 (x̃1 − Λ̃
−2

1 G̃11m3 − Λ̃
−1

1 G̃11m2)

− Λ̃
−1

1 G̃11u0 − Λ̃
−1

1 G̃11m1

= Λ̃
−1

1 (x̃1 − x̃0) + Λ̃
−1

1 (x̃0 − G̃11u0)

− Λ̃
−3

1 G̃11m3 − Λ̃
−2

1 G̃11m2 − Λ̃
−1

1 G̃11m1

= Λ̃
−1

1 dx̃+ x̃0 − Λ̃
−1

1 [Λ̃
−2

1 G̃11m3 + Λ̃
−1

1 G̃11m2 + G̃11m1]

Since (A267) and (A268) must be equivalent, the constant K1 is given by

K1 = Λ̃
−T

1 [dx̃− Λ̃
−2

1 G̃11m3 − Λ̃
−1

1 G̃11m2 − G̃11m1] (A269)

The corresponding solution formulas for the variable z̃ can be derived as follows:

z̃T−1 = Λ̃2z̃T−2 + G̃21uT−2 (A270)

= Λ̃
T−1

2 K2 + Λ̃2z̃0 + G̃21u0 = z̃0 + Λ̃
T−1

2 K2

For t = T the backward-looking solution is given by

z̃T = Λ̃2z̃T−1 + G̃21uT−1 = Λ̃2(z̃0 + Λ̃
T−1

2 K2) + G̃21(u0 +m1) (A271)

= z̃0 + G̃21m1 + Λ̃
T

2 K2

while for t = T + 1 it takes the form

z̃T+1 = Λ̃2z̃T + G̃21uT (A272)

= Λ̃2z̃0 + Λ̃2G̃21m1 + Λ̃
T+1

2 K2 + G̃21u1 + G̃21m2

= Λ̃2z̃1 + G̃21u1 − Λ̃2(z̃1 − z̃0) + Λ̃
T+1

2 K2

+ Λ̃2G̃21m1 + G̃21m2

= z̃1 − Λ̃2dz̃+ Λ̃
T+1

2 K2 + Λ̃2G̃21m1 + G̃21m2
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An alternative solution representation for z̃T+1 follows from the equation

z̃T+2 = Λ̃2z̃T+1 + G̃21uT+1 (A273)

and (A263):

z̃T+1 = Λ̃
−1

2 z̃T+2 − Λ̃
−1

2 G̃21uT+1 (A274)

= Λ̃
−1

2 z̃1 + Λ̃
T+1

2 K̃2 − Λ̃
−1

2 G̃21(u1 +m3)

= z̃1 − Λ̃
−1

2 G̃21m3 + Λ̃
T+1

2 K̃2

Since (A272) and (A274) are equivalent, we get the equation

K2 − K̃2 = Λ̃
−T

2 [dz̃− G̃21m1 − Λ̃
−1

2 G̃21m2 − Λ̃
−2

2 G̃21m3] (A275)

Note that condition (A275) also follows from the equality of (A271) and

z̃T = Λ̃
−1

2 z̃T+1 − Λ̃
−1

2 G̃21uT (A276)

= Λ̃
−1

2 [z̃1 − Λ̃
−1

2 G̃21m3 + Λ̃
T+1

2 K̃2]− Λ̃
−1

2 G̃21(u1 +m2)

= z̃1 + Λ̃
T

2 K̃2 − Λ̃
−1

2 G̃21m2 − Λ̃
−2

2 G̃21m3

After having derived the solution of the transformed state vector (x̃, z̃) we can
use (A236) to determine the solution time path of the terms of trade τ in case
βR = 1. The time path for yt then follows from equation (A223). For t ≤ T − 1
we get

τt = τ0 + H̃11Λ̃
t

1K1 + H̃12Λ̃
t

2K2 for t ≤ T − 1 (A277)

where K1 is defined by (A269) and K2 follows from the initial condition of the
predetermined state vector w (cf. (A193)):

K2 = −H̃
−1
22 H̃21K1 (A278)

For t > T + 1 the bounded solution of the state variable τ is given by

τt = τ1 + H̃12Λ̃
t

2K̃2 for t > T + 1 (A279)

where K̃2 follows from (A275) and (A278). For t = T + 1 we get

τT+1 = τ1 + H̃12Λ̃
T+1

2 K̃2 − H̃11Λ̃
−1

1 G̃11m3 − H̃12Λ̃
−1

2 G̃21m3 (A280)

= τ1 + H̃12Λ̃
T+1

2 K̃2

since
H̃11Λ̃

−1

1 G̃11 = −H̃12Λ̃
−1

2 G̃21 (A281)

Moreover,

H̃11Λ̃
−2

1 G̃11 = −H̃12Λ̃
−2

2 G̃21 (A282)
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(A281) and (A282) imply that for t = T the solution of τ is given by

τT = τ1 + H̃12Λ̃
T

2 K̃2 − H̃11Λ̃
−1

1 G̃11m2 − H̃12Λ̃
−1

2 G̃21m2 (A283)

− H̃11Λ̃
−2

1 G̃11m3 − H̃12Λ̃
−2

2 G̃21m3

= τ1 + H̃12Λ̃
T

2 K̃2 − [H̃11Λ̃
−2

1 G̃11 + H̃12Λ̃
−2

2 G̃21]︸ ︷︷ ︸
0

m3

= τ1 + H̃12Λ̃
T

2 K̃2

To show (A281) and (A282) note that

(
H̃11 H̃12

H̃21 H̃22

)(
G̃11 G̃12

G̃21 G̃22

)
=

(
I1 0
0 I2

)
(A284)

implying
H̃22G̃21 = −H̃21G̃11 (A285)

or
(
h22 h23

h32 h33

)(
g21
g31

)
= −

(
h21

h31

)
g11 (A286)

Then

h22g21 + h23g31 = −h21g11 (A287)

h32g21 + h33g31 = −h31g11 (A288)

For t < T − 1 the solution of the predetermined state vector w is given by

wt =

(
w1t

w2t

)
=

(
τ0

τ0

)
+ H̃21Λ̃

t

1K1 + H̃22Λ̃
t

2K2 (A289)

Since w1t = τt−1 and w2t = τt−2, the following equations must also hold for
t < T − 1:

w1t = τt−1 = τ0 + H̃11Λ̃
t−1

1 K1 + H̃12Λ̃
t−1

2 K2 (A290)

w2t = τt−2 = τ0 + H̃11Λ̃
t−2

1 K1 + H̃12Λ̃
t−2

2 K2 (A291)

Comparing these equations with (A289) yields

H̃21Λ̃
2

1Λ̃
t−2

1 K1 + H̃22Λ̃
2

2Λ̃
t−2

2 K2 = (A292)
(
H̃11Λ̃1

H̃11

)
Λ̃
t−2

1 K1 +

(
H̃12Λ̃2

H̃12

)
Λ̃
t−2

2 K2

implying

(
H̃11Λ̃1

H̃11

)
= H̃21Λ̃

2

1 ,

(
H̃12Λ̃2

H̃12

)
= H̃22Λ̃

2

2 (A293)
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According to (A233) and (A235) the equations (A293) are equivalent to

h11r1 = h21r
2
1 (A294)

h11 = h31r
2
1 (A295)

h12r2 = h22r
2
2 (A296)

h13r3 = h23r
2
3 (A297)

implying

h11 = h21r1 (A298)

h21 = h31r1 (A299)

h12 = h22r2 (A300)

h13 = h23r3 (A301)

h22 = h32r2 (A302)

h23 = h33r3 (A303)

Then the left-hand side of (A281) is given by

H̃11Λ̃
−1

1 G̃11 = h11r
−1
1 g11 = h21r1r

−1
1 g11 = h21g11 (A304)

Using (A287), (A300) and (A301), the right-hand side of (A281) can be written
as

−H̃12Λ̃
−1

2 G̃21 = −(h12, h13)

(
r−1
2 0

0 r−1
3

)(
g21
g31

)
(A305)

= −(h12r
−1
2 , h13r

−1
3 )

(
g21
g31

)
= −(h22, h23)

(
g21
g31

)

= −h22g21 − h23g31 = h21g11 = H̃11Λ̃
−1

1 G̃11

To show (A282) note that the left-hand side is given by

H̃11Λ̃
−2

1 G̃11 = h11r
−2
1 g11 = h21r1(r

−2
1 g11) = h21r

−1
1 g11 = h31g11 (A306)

(cf. (A299)). The right-hand side of (A282) is given by

−H̃12Λ̃
−2

2 G̃21 = −(h12, h13)

(
r−2
2 0

0 r−2
3

)(
g21
g31

)
(A307)

= −(h12r
−2
2 , h13r

−2
3 )

(
g21
g31

)

= −(h22r
−1
2 , h23r

−1
3 )

(
g21
g31

)

= −(h32, h33)

(
g21
g31

)
= −(h32g21 + h33g31) = h31g11

(cf. (A288), (A302), (A303)). Therefore, (A282) holds.
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We now analyze the canonical system (A230) in case of temporary raw
materials price shocks (βR < 1). For t < T − 1 its solution is given by (A260)
and (A261). For t > T + 1 the forward-looking solution of x̃ is given by (cf.
(A105), (A106))

x̃t = x̃−
∞∑

s=t

Λ̃
t−s−1

1 G̃11m̃4β
s−T−1
R (A308)

= x̃− g11m̃4

∞∑

s=t

rt−s−1
1 βs−T−1

R

= x̃−
g11m̃4

r1 − βR
β
t−(T+1)
R for t > T + 1

implying

x̃T+2 = x̃−
g11m̃4

r1 − βR
βR (A309)

Since

x̃T+2 = Λ̃1x̃T+1 + G̃11uT+1 (A310)

we get

x̃T+1 = Λ̃
−1

1 x̃T+2 − Λ̃
−1

1 G̃11uT+1 (A311)

= Λ̃
−1

1 x̃− Λ̃
−1

1

g11m̃4

r1 − βR
βR − Λ̃

−1

1 G̃11(u0 + m̃3)

= x̃− Λ̃
−1

1 G̃11m̃3 − Λ̃
−1

1 G̃11
m̃4

r1 − βR
βR

The forward-looking solution of x̃T is then given by

x̃T = Λ̃
−1

1 x̃T+1 − Λ̃
−1

1 G̃11uT (A312)

= Λ̃
−1

1 x̃− Λ̃
−2

1 G̃11m̃3 − Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR

− Λ̃
−1

1 G̃11u0 − Λ̃
−1

1 G̃11m̃2

= x̃− Λ̃
−1

1 G̃11m̃2 − Λ̃
−2

1 G̃11m̃3 − Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR

For t = T − 1 we get

x̃T−1 = Λ̃
−1

1 x̃T − Λ̃
−1

1 G̃11uT−1 (A313)

= Λ̃
−1

1 x̃− Λ̃
−2

1 G̃11m̃2 − Λ̃
−3

1 G̃11m̃3 − Λ̃
−3

1 G̃11
m̃4

r1 − βR
βR

− Λ̃
−1

1 G̃11u0 − Λ̃
−1

1 G̃11m̃1

= x̃− Λ̃
−1

1 G̃11m̃1 − Λ̃
−2

1 G̃11m̃2 − Λ̃
−3

1 G̃11m̃3 − Λ̃
−3

1 G̃11
m̃4

r1 − βR
βR
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The backward-looking solution at time t = T − 1 is given by

x̃T−1 = Λ̃1x̃T−2 + G̃11uT−2 (A314)

= Λ̃1x̃+ Λ̃
T−1

1 K1 + G̃11u0 = x̃+ Λ̃
T−1

1 K1

Since (A313) and (A314) are equivalent, the constant K1 must satisfy the con-
dition

K1 = −Λ̃
−T

1

[
G̃11m̃1 + Λ̃

−1

1 G̃11m̃2 (A315)

+ Λ̃
−2

1 G̃11m̃3 + Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR
]

The next step is the development of the solution time path of the transformed
vector z̃. Since

z̃T−2 = z̃+ Λ̃
T−2

2 K2 (A316)

the backward-looking solution for t = T − 1, T , T + 1 and T + 2 is given by

z̃T−1 = Λ̃2z̃T−2 + G̃21uT−2 = z̃+ Λ̃
T−1

2 K2 (A317)

z̃T = Λ̃2z̃T−1 + G̃21uT−1 = z̃+ Λ̃
T

2 K2 + G̃21m̃1 (A318)

z̃T+1 = Λ̃2z̃T + G̃21uT (A319)

= z̃+ Λ̃
T+1

2 K2 + Λ̃2G̃21m̃1 + G̃21m̃2

z̃T+2 = Λ̃2z̃T+1 + G̃21uT+1 (A320)

= z̃+ Λ̃
T+2

2 K2 + Λ̃
2

2G̃21m̃1 + Λ̃2G̃21m̃2 + G̃21m̃3

Let θ̃t be the input function of the difference equation (cf. (A230))

z̃t+1 = Λ̃2z̃t + G̃21ut (A321)

Then the definition of ut in case βR < 1 implies

θ̃t = G̃21ut =





0 for t < T − 1

G̃21m̃1 for t = T − 1

G̃21m̃2 for t = T

G̃21m̃3 for t = T + 1

G̃21m̃4β
t−T−1
R for t > T + 1

(A322)
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The general solution of (A321) for t > T + 1 is then given by

z̃t = z̃+ Λ̃
t

2K2 +
t−1∑

s=T−1

Λ̃
t−s−1

2 θ̃s (A323)

= z̃+ Λ̃
t

2K2 + Λ̃
t−T

2 θ̃T−1 + Λ̃
t−T−1

2 θ̃T

+ Λ̃
t−T−2

2 θ̃T+1 +

t−1∑

s=T+2

Λ̃
t−s−1

2 θ̃s

= z̃+ Λ̃
t

2K2 + Λ̃
t−T

2 G̃21m̃1 + Λ̃
t−T−1

2 G̃21m̃2

+ Λ̃
t−T−2

2 G̃21m̃3 +
t−1∑

s=T+2

Λ̃
t−s−1

2 G̃21m̃4β
s−T−1
R

Since

t−1∑

s=T+2

xs =

t−1∑

s=0

xs −

T+1∑

s=0

xs =
1− xt

1− x
−
1− xT+2

1− x
=
xT+2 − xt

1− x
(A324)

we get for j = 2, 3:

t−1∑

s=T+2

rt−s−1
j gj1m̃4β

s−T−1
R = rt−1

j gj1m̃4β
−T−1
R

t−1∑

s=T+2

(
βR
rj

)s
(A325)

= rt−1
j gj1m̃4β

−T−1
R




(
βR

rj

)T+2
−
(
βR

rj

)t

1− βR

rj




= rtjgj1m̃4
1

rj − βR

1

βT+1
R

[(
βR
rj

)T+2

−

(
βR
rj

)t]

= gj1m̃4
1

rj − βR

[
rt−T−2
j βR − β

t−T−1
R

]

and therefore

t−1∑

s=T+2

Λ̃
t−s−1

2 G̃21m̃4β
s−T−1
R = Λ̃

t−T−2

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR (A326)

−

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βt−T−1
R

(A323) then implies

z̃t = z̃+ Λ̃
t

2K2 + Λ̃
t−T

2 G̃21m̃1 + Λ̃
t−T−1

2 G̃21m̃2 (A327)

+ Λ̃
t−T−2

2 G̃21m̃3 + Λ̃
t−T−2

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR

−

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βt−T−1
R for t > T + 2
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Note that (A327) also holds for t = T + 2 (see (A320)).
The convergent solution time path of the state variable τ = H̃11x̃ + H̃12z̃

in case βR < 1 is now given by the following expressions:

• For t ≤ T − 1:

τt = τ + H̃11Λ̃
t

1K1 + H̃12Λ̃
t

2K2 (A328)

• For t = T :

τt = τ − H̃11Λ̃
−1

1 G̃11m̃2 − H̃11Λ̃
−2

1 G̃11m̃3 (A329)

− H̃11Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR + H̃12Λ̃

T

2 K2 + H̃12G̃21m̃1

= τ + H̃12Λ̃
T

2 K2 + H̃11Λ̃
T

1 K1 + m̃1

since

H̃12G̃21m̃1 = (I1 − H̃11G̃11)m̃1 (A330)

and

Λ̃
T

1 K1 = −G̃11m̃1 − Λ̃
−1

1 G̃11m̃2 − Λ̃
−2

1 G̃11m̃3 (A331)

− Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR

(cf. (A284), (A315)).

• For t = T + 1:

τT+1 = τ − H̃11Λ̃
−1

1 G̃11m̃3 − H̃11Λ̃
−1

1 G̃11
m̃4

r1 − βR
βR (A332)

+ H̃12Λ̃
T+1

2 K2 + H̃12Λ̃2G̃21m̃1 + H̃12G̃21m̃2

• For t = T + 2:

τT+2 = τ − H̃11G̃11
m̃4

r1 − βR
βR + H̃12Λ̃

T+2

2 K2 (A333)

+ H̃12Λ̃
2

2G̃21m̃1 + H̃12Λ̃2G̃21m̃2 + H̃12G̃21m̃3

• For t > T + 2:

τt = τ − H̃11
g11m̃4

r1 − βR
β
t−(T+1)
R + H̃12Λ̃

t

2K2 + H̃12Λ̃
t−T

2 G̃21m̃1 (A334)

+ H̃12Λ̃
t−T−1

2 G̃21m̃2 + H̃12Λ̃
t−T−2

2 G̃21m̃3

+ H̃12Λ̃
t−T−2

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR

− H̃12

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βt−T−1
R

where K2 is defined by (A278).
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The solution formula (A334) also holds for t = T + 2 (see (A333)). Moreover,
it also holds for t = T + 1 since

H̃12Λ̃
t−T−2

2 G̃21m̃3

∣∣∣
t=T+1

= H̃12Λ̃
−1

2 G̃21m̃3 = −H̃11Λ̃
−1

1 G̃11m̃3 (A335)

(according to (A281)) and

− H̃11
g11m̃4

r1 − βR
+ H̃12Λ̃

−1

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR (A336)

− H̃12

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
= −H̃11Λ̃

−1

1 g11
m̃4

r1 − βR
βR

To show (A336), divide (A336) by (−βR) yielding the equivalent expression (cf.
(A130))

H̃11Λ̃
−1

1

g11m̃4

r1 − βR
= −H̃12Λ̃

−1

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
(A337)

+

[
H̃11

g11m̃4

r1 − βR
+ H̃12

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)]
β−1
R

Using (A281) the right-hand side of (A337) can be summarized as follows:

−
3∑

j=2

1

rj

gj1m̃4

rj − βR
h1j +

3∑

j=1

gj1m̃4

(rj − βR)βR
h1j (A338)

= −
3∑

j=2

gj1m̃4

rj − βR

[
1

rj
−
1

βR

]
h1j +

g11m̃4

(r1 − βR)βR
h11

=
3∑

j=2

gj1m̃4

rjβR
h1j +

g11m̃4

(r1 − βR)βR
h11 =

m̃4

βR




3∑

j=2

h1jr
−1
j gj1 +

h11

(r1 − βR)
g11




=
m̃4

βR

(
−h11r

−1
1 g11 +

h11

(r1 − βR)
g11

)
=
m̃4

βR
h11g11

(
−
1

r1
+

1

r1 − βR

)

= m̃4h11g11
1

r1(r1 − βR)
= H̃11Λ̃

−1

1

g11m̃4

r1 − βR

Therefore, (A334) also holds for t = T + 1. In the following we will show that
the solution time path (A334) also holds for t = T . In case t = T the solution
formula (A334) is equivalent to (A329) if and only if

τ + H̃12Λ̃
T

2 K2 + (I1 − H̃11G̃11)m̃1 − H̃11Λ̃
−1

1 G̃11m̃2 (A339)

− H̃11Λ̃
−2

1 G̃11m̃3 − H̃11Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR =

τ + H̃12Λ̃
T

2 K2 + H̃12G̃21m̃1 + H̃12Λ̃
−1

2 G̃21m̃2 + H̃12Λ̃
−2

2 G̃21m̃3

− H̃11
g11m̃4

r1 − βR
β−1
R + H̃12Λ̃

−2

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR

− H̃12

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
β−1
R

78



(A339) holds if and only if the following four equations hold simultaneously:

(I1 − H̃11G̃11)m̃1 = H̃12G̃21m̃1 (A340)

H̃12Λ̃
−1

2 G̃21m̃2 = −H̃11Λ̃
−1

1 G̃11m̃2 (A341)

H̃12Λ̃
−2

2 G̃21m̃3 = −H̃11Λ̃
−2

1 G̃11m̃3 (A342)

−H̃11Λ̃
−2

1 G̃11
m̃4

r1 − βR
βR = H̃12Λ̃

−2

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR (A343)

− H̃12

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
β−1
R

− H̃11
g11m̃4

r1 − βR
β−1
R

(A340) is equivalent to (A330), (A341) follows from the identity (A281), while
(A342) follows from (A282). It remains to show equation (A343). (A282)
implies that (A343) is equivalent to

H̃12Λ̃
−2

2

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
βR − H̃12

(
g21m̃4/(r2 − βR)
g31m̃4/(r3 − βR)

)
β−1
R (A344)

− H̃11
g11m̃4

r1 − βR
β−1
R = H̃12Λ̃

−2

2 G̃21
m̃4

r1 − βR
βR

Dividing by m̃4 yields the equation

H̃12Λ̃
−2

2

(
g21/(r2 − βR)
g31/(r3 − βR)

)
βR − H̃12Λ̃

−2

2 G̃21
1

r1 − βR
βR (A345)

− H̃12

(
g21/(r2 − βR)
g31/(r3 − βR)

)
β−1
R = H̃11

g11
r1 − βR

β−1
R

or

(h12, h13)

(
r−2
2 0

0 r−2
3

)(
g21/(r2 − βR)
g31/(r3 − βR)

)
βR (A346)

− (h12, h13)

(
r−2
2 0

0 r−2
3

)(
g21
g31

)
1

r1 − βR
βR

− (h12, h13)

(
g21/(r2 − βR)
g31/(r3 − βR)

)
β−1
R = h11g11

1

r1 − βR
β−1
R

Since h12r
−2
2 = h22r

−1
2 , h13r

−2
3 = h23r

−1
3 , (A346) is equivalent to

(h22r
−1
2 , h23r

−1
3 )

(
g21/(r2 − βR)
g31/(r3 − βR)

)
βR (A347)

− (h22r
−1
2 , h23r

−1
3

(
g21
g31

)
1

r1 − βR
βR

− (h12, h13)

(
g21/(r2 − βR)
g31/(r3 − βR)

)
β−1
R = h11g11

1

r1 − βR
β−1
R
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or

(h32, h33)

(
g21/(r2 − βR)
g31/(r3 − βR)

)
βR − (h32, h33)

(
g21
g31

)
1

r1 − βR
βR = (A348)

h11g11
1

r1 − βR
β−1
R + (h12, h13)

(
g21/(r2 − βR)
g31/(r3 − βR)

)
β−1
R

since h22r
−1
2 = h32, h23r

−1
3 = h33. (A348) is equivalent to

(h31, h32, h33)



g11/(r1 − βR)
g21/(r2 − βR)
g31/(r3 − βR)


βR = (h11, h12, h13)



g11/(r1 − βR)
g21/(r2 − βR)
g31/(r3 − βR)


β−1

R

(A349)

since −h32g21 − h33g31 = h31g11. (A349) is equivalent to

3∑

j=1

h1jgj1
(rj − βR)βR

=
3∑

j=1

h1jgj1
r2j (rj − βR)

βR (A350)

since h3j = h1jr
−2
j (j = 1, 2, 3). Equation (A350) holds if and only if

3∑

j=1

h1jgj1
rj − βR

(
βR
r2j
−
1

βR

)
= −

3∑

j=1

h1jgj1
βR + rj
βRr2j

= 0 (A351)

or

−
3∑

j=1

h3jgj1

(
1 +

rj
βR

)
= 0 (A352)

(since h1j/r
2
j = h3j). (A352) is equivalent to

−
3∑

j=1

h3jgj1 =
1

βR

3∑

j=1

h3jrjgj1 (A353)

But this equation holds since

3∑

j=1

h3jgj1 = 0 (A354)

and

3∑

j=1

h3jrjgj1 =
3∑

j=1

h2jgj1 = 0 (A355)

according to (A287) and (A288).
The solution time path of τt in case βR < 1 is therefore given by (A328)

(for t ≤ T − 1), (A329) (for t = T ) and (A334) (for t ≥ T ).
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