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1 Introduction

The purpose of this paper is to analyze the dynamic effects of anticipated raw
materials price increases for small open economies and to discuss the impacts
of possible monetary policy responses to such price shocks.

The relevance of this paper follows from the strong fluctuations in com-
modity prices, especially the substantial increase in oil prices during the past
decades. It could be seen that raw materials price increases can be of temporary
as well as of permanent nature and that they generally are anticipated shocks.?

The analysis of the intertemporal effects of anticipated raw materials price
shocks is based on a calibrated New Keynesian open economy model with a
hybrid IS- and Phillips curve equation.? It can be shown that there are output
expansion and moderate inflation before the occurrence of the raw materials
price shock, whereas typical stagflationary effects only appear directly after
raw materials price increases. In the course of the adjustment, deflationary
phases and further output increases are possible.

In the second part of this paper it is analyzed in how far monetary policy
rules can contribute to a simultaneous stabilization of the cyclical development
of output and inflation rate caused by anticipated commodity price shocks.
Are interest rate rules of the type originally proposed by Taylor (1993) able
to reduce the increased volatility of output and inflation simultaneously or are
money growth rules rather able to do so? It will be shown that the inflation rate
volatility can clearly be reduced by targeting the money stock growth, whereas
in case of temporary input price shocks Taylor-type interest rate rules lead to
an increase in total inflation rate variance. Irrespective of the type of the input
price shock money growth rules are always linked to a lower total variance of the
inflation rate than interest rate rules of the Taylor type are, whereas exactly the
opposite applies for the output variance. In contrast, interest rate rules of the
Taylor type are compared to money growth rules more appropriate in order to
stabilize output variance. Both rules are nevertheless accompanied by a strong
increase in nominal interest rate volatility. This applies especially to interest
rate rules without interest rate smoothing or if perfect stabilization of inflation
rates is aimed at.

To our best knowledge, in economic literature there are no articles based on
open economy New Keynesian models yet that deal with the dynamic effects
of anticipated raw materials price shocks and the effects of alternative interest
rate rules and money growth rules, which are used by the central bank to simul-
taneously stabilize inflation and output. Kim and Loungani (1992), Rotemberg
and Woodford (1996) and Finn (2000) analyze the effects of oil price shocks in

'Bhandari and Turnovsky (1984) emphasize that most of the oil price increases in the 70’s and
early 80’s were anticipated. They analyze anticipated and unanticipated as well as permanent
and temporary raw materials price increases in a traditional open economy framework. More
recently, Schubert and Turnovsky (2006) consider anticipated fiscal policy changes in a rep-
resentative agent economy with investment adjustment costs. They also provide an overview
of economic literature that deals with anticipated shocks.

2Numerous empirical studies analyze the consequences of oil price shocks and the interplay
between oil price shocks and monetary policy responses. See, for example, Hamilton and
Herrera (2004) and the references therein.



dynamic general equilibrium models of closed economies. Backus and Crucini
(2000) consider an open-economy real business cycle model to study the ef-
fects of oil on the economy. All these studies are based on the assumption of
completely flexible prices. Hence, there is no role for monetary policy.

Leduc and Sill (2004) as well as Carlstrom and Fuerst (2006) include nominal
rigidities in dynamic general equilibrium models of oil-dependent economies to
study the interaction between oil price shocks and monetary policy. However,
by considering a closed economy they rule out the potentially important impacts
of changes in the nominal exchange rate and the terms of trade. The authors
of both studies, as we do too, attempt to isolate the impacts of an oil price
shock from the impacts of the endogenous response of monetary policy to this
oil price hike. In doing so Carlstrom and Fuerst (2006) challenge the empirical
work by Bernanke et al. (1997, 2004) by showing that anticipation effects
actually matter for the analysis of the interplay between oil price shocks and
monetary policy. We follow this line of thought and now analyze the effects of
anticipated oil price shocks under several monetary policy responses.

The remainder of the paper is organized as follows: Section 2 presents the
model. Section 3 deals with the dynamic effects of raw materials price increases
under a neutral monetary policy. Section 4 discusses the impacts of monetary
policy rules. Section 5 discusses the possibility of a perfect stabilization of the
consumer price inflation. Section 6 compares the monetary policy rules and
draws from this economic policy conclusions. At the end, the paper includes
an extensive mathematical appendix.

2 The Model

We consider a stylized hybrid New Keynesian model of a small open economy
which is dependent upon raw materials imports (like crude oil).? The building
blocks of our rational expectations model are a hybrid IS and a hybrid Phillips
curve, the uncovered interest parity condition and a money demand equation.
All variables — except for the interest rates — are in logs. Therefore, the positive
model parameters can be interpreted as elasticities or semi-elasticities.

The equilibrium of the goods market can be represented by the following IS
curve:

g = ar(Pye—1+ (1 — @) Erye1) — aolis — By Apfy ) (1)
+az(my — py) + g — brys + bayf — bz + bo

q denotes real output, y real income, ¢ the nominal interest rate, m; the nom-
inal money stock, g real government expenditure and p the domestic price
of domestic output. p* and y* denotes the foreign price and foreign income
respectively. 7 = p — (p* + e) are the terms of trade, where e is the nomi-
nal exchange rate defined as the domestic currency price of foreign currency.
pf = apt + (1 — o) (pf + e¢) is the consumer price index (CPI) where 1 — v can

3Similar models are used by e.g. van Aarle et al. (2004) to study monetary and fiscal policy in
the European Monetary Union or by Svensson (2000) to analyze inflation targeting in a small
open economy.



be interpreted as the degree of demand side openness. Apf, denotes the CPI
inflation rate between period t and t+1. b is a constant and E the expectations
operator where rational expectations are assumed.

Domestic output ¢; depends on past and expected future income, the real
interest rate i; — E; Apf, |, real government expenditure and the aggregate trade
balance, where the latter depends on income developments and on the terms of
trade. Our IS curve reflects the behavior of rational, intertemporally optimiz-
ing consumers as well as the assumption of habit formation in consumption.*
Moreover, we assume that the demand of goods depends directly on real money
balances m; — p{ where the nominal money stock is deflated by the consumer
price index to allow for the fact that in open economies money is also used for
the purchase of imported goods.?.

Money market equilibrium is given by a standard LM curve:

my — pf = lo 4+ lige — lody (2)

Money demand is assumed to depend on real output rather than on real income

which is considered as a more appropriate measure of the volume of transactions.
We assume perfect substitutability of domestic and foreign bonds and per-

fect capital mobility, so that the uncovered interest parity condition holds:

i = Z: + E; A€t+1 (3)

The domestic interest rate may only deviate from the foreign interest rate ¢* by
the rationally expected depreciation rate between period ¢t and t+1 (E; Aegiq).

The difference between the respective domestic production and real income
or gross national product is described by the following equation:

@ =Yt + V(PR + et —pi) +do (4)

P denotes the foreign nominal price of raw materials imports and dg a constant.
The difference between g and y results from imports of intermediate goods which
in turn depend on the respective real factor price. We assume that raw materials
imports (like crude oil) are denominated in terms of the foreign currency (US
dollars) so that the domestic real factor price p}j; +e—p depends on the nominal
exchange rate .5

The dynamics of inflation are given by a hybrid Phillips curve:

Apy = p(wApf_y + (1 = w) Bt Apfy) + pd(qe — ) + (1 — 1) (Apg,+Aer) (5)

4For a detailed derivation of a microfounded IS curve with habit formation in consumption see,
for example, McCallum and Nelson (1999).

The presence of the real money stock in the IS curve reflects the implicit assumption that the
utility function of the representative household is non-separable.

5The constant ¢ can be derived from a profit maximizing approach with a CES production
technology which allows for factor substitution between labor and raw materials imports. It
can be shown that in this case 9 is of the form (1 — u)(1 — 0)/u, where o is the elasticity
of substitution between labor and raw materials imports and where 1 measures the share of
labor in gross domestic output (Bhandari and Turnvosky (1984)). The constant 1 — p then
measures the share of imported inputs in gross output and can be interpreted as a measure
for the supply side openness of the domestic economy.



Inflation between period ¢t — 1 and ¢ depends on past and expected future CPI
inflation, the output gap ¢—¢ and the inflation of raw materials imports Ap¥, , +
Ae; between period t—1 and ¢. In the special case w = 0 we obtain a traditional
backward-looking Phillips curve, in the other special case w = 1 we obtain the
forward-looking New Keynesian Phillips curve. We assume that w lies between
0 and 1 to allow for both backward and forward-looking price setting behavior.”

In the long run, assuming labor market equilibrium where labor demand
is a negative function of the producer and labor supply a positive function of
the consumer real wage rate and, in addition, assuming a perfectly elastic raw
materials supply, output supply depends positively on the final goods terms of
trade and negatively on the domestic real oil price:®

7= fo+ 1T — f2(p, +e—Dp) (6)

where fy is a constant.
Since the economy is assumed to be small relative to the rest of the world,
the foreign variables y*, i*, p* and p} are exogenously given.

3 Dynamic Effects of Anticipated Raw Materials Price
Increases

In what follows we use the terms raw materials imports, oil imports and com-
modity imports interchangeably. We assume that at time ¢ = 0 the public
anticipates a one-unit price shock in raw materials imports to take effect at
some future time 7" > 0. For example, we can assume that in £ = 0 the OPEC
credibly announces a permanent or temporary price increase in crude oil to
occur at the future date 7' > 0. In what follows we will discuss the dynamic
effects of such commodity price shocks. In particular the anticipation effects of
announced oil price increases are analyzed. In this chapter we ask what effect
an oil price increase has on the economy if monetary policy is neutral or pas-
sive. We follow Leduc and Sill (2004) and define monetary policy as neutral, if
the money stock is held constant by the central bank (Am; = 0).? In the next
chapter we will discuss the impacts of various monetary policy rules in response
to anticipated raw materials price shocks. We assume that the foreign nominal
price of raw materials imports pJ, follows the autoregressive AR(1) process

Prt =BR Phe1+h, 0<Pr<1 (7)

"This assumption is in line with empirical evidence provided by e.g. Gali and Gertler (1999)
or Gali et al. (2001, 2005).

8 A more detailed theoretical derivation of the role of the terms of trade in aggregate supply is
given in Devereux and Purvis (1990). The supply equation (6) can also be derived by assuming
long run static price and wage equations of the form p = pw + (1 — u)(pg + €), W = p° + dg.
In this case the parameters fi, fo are of the form f1 = (1 — «)/d, fo = (1 — pu)/(ud) where
fa > fi.

9Carlstrom and Fuerst (2006) use the same definition of neutral monetary policy. They also
analyze alternative definitions of neutral monetary policy, namely an interest rate peg and a
so called “Wicksellian” interest rate policy.



where k; is the one-unit price shock

1 fort=T>0
K+ =
"Tlo fort£T

If the initial value of p¥, is normalized to zero (p} , = 0) then

. 0 for0<t<T
{ (9)

PRy = ﬁ}t{T fort >T

We assume further that a one-unit increase in the foreign nominal price of the
imported input is accompanied by a less than equivalent increase in the price
of the imported final good p*:

p; = (1= 1")PRes 0<p* <1 (10)

Then the nominal price shock represents a change in the real foreign price of
imported raw materials:

. . . 0 for0<t<T
Prt — Pt = K PRt = (11)

w ET fort >T

In case Br < 1 the increase in the real foreign input price is transitory whereas
it is of permanent nature if Sz = 1. In the following we will discuss both types
of input price disturbances. In case of anticipated price shocks the adjustment
dynamics involve two phases: the phase before and after the occurrence of the
commodity price increase. Figure 1 illustrates the response of the domestic
economy to an anticipated temporary and an anticipated permanent oil price
increase. It is assumed that the time span between the anticipation and the im-
plementation of the rise in p}, consists of two periods (7' = 2). The simulations
are based on a typical parameter set represented in table 1.

The initial steady state value of each endogenous variable is normalized to
zero. Each figure contains simultaneously the adjustment process of a domestic
variable in case Sr = 0.8 (temporary price shock) and Sz = 1 (permanent price
shock). In case of transitory commodity price increases no steady state effects
occur for the domestic economy so that the domestic variables return to their
initial steady state values.

Temporary raw materials price shocks
The dynamic effects of anticipated raw materials price shocks in case fp < 1
can be summarized as follows (see also the overview in table 2):

During the anticipation phase (periods ¢t = 0 and ¢ = 1) there is a moderate
increase in real output and national income, which is accompanied by a slight
increase in the inflation rates Ap and Ap®. The temporary increase in output
is traced to a short-term decrease in the real interest rate with simultaneous
increase in the terms of trade 7. Stagflation in the sense of a decrease in output
with a simultaneous increase in inflation does not take place until the period
of the commodity price increase t = T. During the periods after the shock



realization there is a strong decrease in inflation rates, which results from the
drop of the output gap ¢ — g, so that even deflation (Ap; < Apy = 0, Ap§ <
Ap§ = 0) occurs in the medium term of the adjustment. The output strongly
decreases first for ¢ = T and immediately thereafter, which can be explained by
increasing real interest rates, but increases again during the medium phase of
adjustment (due to real interest rate decreases and a real depreciation process).
As well as during the initial phase of adjustment, an overshooting of output over
the initial steady state value g, occurs, so that altogether we have a cyclical,
hump-shaped development for q.

The nominal exchange rate e also runs hump-shaped and except from the
impact phase above its initial level. The result during the shock period is a
strong increase in the exchange rate, which is reinforced in the following periods.
This delayed overshooting corresponds to strong increases in price level and in
price index in T and T4+1. A gradual nominal appreciation process then follows,
which is linked to strong decreases in the price level p and the price index p€, so
that the nominal appreciation process corresponds to a real devaluation process
in the medium term of the adjustment.

The development of the nominal interest rate i; follows the development of
the nominal depreciation rate Ae;y;. During the initial phase of adjustment
increases in nominal interest rates, which reach their maximum in ¢t = T, take
place; then a strong decrease in interest rates follows, so that an undershooting
arises during the medium phase of adjustment as it was already the case with
the inflation rates Ap and Ap®. A mostly parallel development of the real
interest rate iy — Apf,; corresponds to it, which is basically only during the
anticipation phase exactly opposite.

The development of real commodity imports impg can be determined with
the help of the equation

impy = gi + (1 =) (PR + € = pr) (12)

where pj + e — p is the domestic real commodity price and o the elasticity of
substitution between the factors labor and commodity.!°

The domestic real input price p}, + e — p increases strongly during the shock
period T = 2 and remains at a high level during the following periods (the
decline towards its initial steady state value only takes place in the long run). In
case of a low elasticity of substitution o it is accompanied by a strong increase
in commodity imports. The development of output that makes commodity
imports decrease immediately after the shock period T, is opposite to it. Since
in the longer run an increase in output at a high level of the real commodity
price takes place, there is once more an increase in real commodity imports
when t > T is sufficiently great; then temporarily imp is even above the level
of the shock period T'. During the entire adjustment after the realization of the
oil price shock, imp is bigger than its initial steady state value.

'0Cf. Bhandari and Turnovsky (1984) and Bhandari (1981). In Bhandari (1981) o is set to

zero.



Permanent raw materials price shocks

Next consider the case fr = 1 (permanent anticipated raw materials price
shock). This case is characterized by a permanent rise in the nominal exchange
rate, strong permanent price and price index effects and a long run reduction
in real output and national income. However, the interest rates i¢; and i; —
Apf,, as well as the inflation rates m; and 7f return to their initial values
in the long run. Here the inflation effects during period 7' are more strongly
developed than in case of a temporary commodity price shock. This is due
to the fact that the output gap ¢ — q increases in T, since the decrease in
the steady state output is bigger than the output contraction in 7. In the
same way, the output contraction after the shock period is due to a strong
real appreciation process more strongly developed than in case of frp < 1.
Furthermore, the expansion process during the anticipation phase turns out to
be stronger than at temporary commodity price shocks, which can be attributed
to a stronger decrease in real interest rates during this period. On the other
hand the real appreciation process is also more strongly developed, where -
under the parameter combination used - 7 lies also in the long term above its
initial steady state value.

The permanent increase in commodity prices causes a permanent increase
in domestic real commodity prices, which isolated seen permanently increases
real commodity import. On the other hand, the long-term output contraction
results in a permanent decrease in impg, so that the net effect is ambiguous.
Due to the chosen parameter values the output effect dominates the opposed
real factor price effect, so that i¢mpg runs parallel to the output development for
t>1T.

Remarks

Until now we have analyzed the effects that follow anticipated commodity price
increases. It was assumed that an increase in nominal input price p}, is at the
same time accompanied by an increase in real foreign input price pj — p*. In
the following we deal with the borderline case that the commodity price shock
is unanticipated and then treat the case of a pure nominal input price shock
(le. p*=0resp. pg, —p; =0 for all 7).

In case of an unanticipated oil price increase, the anticipation phase is omit-
ted, so that there is an immediate output contraction, which can be traced back
to an increase in real interest rate and terms of trade in ¢t = T'. The connected
inflation effects in t = T" are now stronger compared to the case of anticipation
and are again weakened after the realization of the unanticipated price shock
(figures 2 and 3). Furthermore, an immediate depreciation of the domestic cur-
rency takes place. Qualitatively, for ¢ > T we obtain the same development of
the endogenous variables as for the anticipated oil price increase. The tables 4
to 7 show the volatility of y, Ap® and ¢ (measured by the total variance) in case
of anticipated and unanticipated shocks. When passing from the unanticipated
into the anticipated case, a clear increase in variance can be observed in each
case, which can be explained by the hybrid character of the supply equation
and the demand equation as well as by the increase in y and Ap® during the
anticipation phase. The increase in volatility is clearly diminished and in case of



the CPI inflation rate even reduced, when passing into a purely forward-looking
model.

The case of u* = 0 (constant foreign real input price) provides stronger
positive output and income effects during the anticipation phase than the case
discussed until now, i.e., p* > 0. This can be explained by a stronger decrease
in real interest rates during the periods t = 0 and ¢ = 1 (figures 4 and 5). The
short-term real appreciation process that takes place during the anticipation
period, is not continued in the shock period T' = 2, so that the output con-
traction in 7T is weaker than in case of p* > 0. In case of a permanent input
price shock (Br = 1) the output level always runs above the time path of ¢ in
case of a real commodity price shock (u* > 0). Especially the long-term output
contraction turns out substantially weaker, which can be traced back to a much
less increase in domestic real commodity price p}, +e—p on the supply side and
to a less increase in terms of trade 7 on the demand side. Due to a permanent
nominal appreciation in case of Sr = 1 the real factor price py + e — p may
even decrease in the long run, so that a permanent output contraction does not
need to occur either. Furthermore, the case of a permanent input price shock
(Br = 1) shows that a purely nominal foreign price shock (p* = 0) is in the
short run accompanied by strong price decreases and in the long and medium
term only by slight price increases, so that overall only weak stagflationary ef-
fects occur. Nevertheless there are now stronger inflationary effects during the
shock period T both at permanent and at temporary commodity price shocks.

4 The Impacts of Monetary Policy Rules

In the last chapter we have shown that anticipated and unanticipated increases
in the price of oil or other raw materials import goods will involve oil-dependent
economies in temporary inflation and output contraction, the precise degree
of severity of these effects depending upon the reaction of the price level of
imported final goods. This section investigates the consequences of two types
of monetary policy rules that could be employed by the domestic central bank
in an effort to reduce the potentially disruptive effects of oil-price shocks.

On the one hand we examine an interest rate rule with interest rate smooth-
ing of the Taylor type'!, i.e.

i = Big—1 + (1 — B) (i + vi(Apf — AD°) + va(qe — 7)) (13)

on the other hand we discuss an analogous monetary policy rule for the growth
rate of money stock of the type

Amy = AT — U (Ap§ — AP°) — Da(qr — Q) (14)

Here, more importance is attached to the stabilization of inflation rates than
to the stabilization of output (v1 > 1 > ve > 0, v;1 > 1 > vy > 0). In the

111 economic literature numerous versions of monetary Taylor rules for closed and open
economies are discussed. Those may also be of the forward-looking-type proposed by Clarida,
Galf and Gertler (2000) and — referring to open economies — be explicitly dependent upon the
real or nominal exchange rate. See e.g. Ball (1999) or Taylor (2001).



first case the central bank pursues an interest rate targeting, in the second case
a monetary base targeting. By the assumption vy > 1 (v; > 1) the Taylor
principle is presumed, according to which an increase in inflation rate leads
isolated seen to a more than proportionately high increase (resp. decrease) in
nominal interest rate (in nominal growth in money supply), so that the real
interest rate decreases resp. the real growth in money supply declines.

In case of a permanent anticipated commodity price shock (Gr = 1,T = 2)
the Taylor rule with interest rate smoothing (5 = 0.8) ensures that the infla-
tionary effects during the anticipation phase and the shock period are slightly
reduced (see figure 7 and table 3); this diminution becomes particularly clear
when the interest rate smoothing is omitted (3 = 0). The deflationary process
that results in the course of the adjustment is also less developed so that in the
medium and long term the inflation rates lie above the inflation rate in case of
passive monetary policy (Am; = 0). The Taylor rule also ensures a stronger
short-term decrease in nominal interest rate and makes this variable increase
more subsequent to the shock period 7" than in case of passive monetary policy.
Furthermore, there is a stronger output contraction process subsequent to the
commodity price increase in T (see table 3). This becomes particularly clear
when interest rate smoothing is not pursued (5 = 0).

The case fr < 1 (temporary commodity price shock) clarifies that the Tay-
lor rule may also be accompanied by stronger inflationary effects during the
anticipation phase and the shock period T' (figure 6). Again this becomes clear
when the simple Taylor rule (8 = 0) is existent. Furthermore, the deflation-
ary process subsequent to the input price shock in 7' is now more strongly
developed, so that the stabilized inflation rate runs below the one in case of
non-stabilization in the longer run. In addition, in case of the Taylor rule, a
clear increase in volatility of the nominal interest rate is shown again.

If the Taylor rule (13) is substituted by the money growth rule (14), we
obtain qualitatively the same developments for the endogenous variables (fig-
ures 8 and 9). In case of the money growth rule the output expansion, which
results during the anticipation phase, is a little stronger developed than in case
of the interest rate rule (with smoothing). In case of temporary commodity
price shocks it is distinguishable that there is a stronger output contraction
subsequent to the oil price shock in case of the money growth rule than in case
of the interest rate rule with interest rate smoothing (8 = 0.8). When omit-
ting interest rate smoothing (5 = 0) the output contraction is slightly smaller
in case of the money growth rule, since the interest rate rule is linked to a
stronger contraction process in the case of § = 0 than in the case of 3 = 0.8.

In case of a temporary commodity price shock the inflationary effects are
weaker during the initial periods under the money growth rule than under
the interest rate rule (with and without smoothing). The deflationary process
subsequent to the raw materials price shock is also clearly less distinct in case
of the money growth rule than in case of the interest rate rule. Likewise, the
money growth rule ensures weaker inflationary effects in case of permanent
commodity price shocks than the interest rate rule. In particular, the money
growth rule is able to clearly diminish the strong increase in inflation during the
shock period T', whereas this does not work in case of the interest rate targeting.



This implies that the volatility of the CPI inflation rate under the money growth
rule is considerably weaker than under the interest rate rule (with and without
smoothing). Note also that the strongest volatility in interest rate occurs in
case of the simple interest rate rule, since it does not provide any smoothing of
the interest rate.

5 Perfect Stabilization of the CPI Inflation Rate

The previous chapter has shown, that an interest rate rule depending on infla-
tion and output gap Apf — Ap® resp. ¢ — ¢ is not able, to clearly reduce the
inflationary effects that result from temporary or permanent commodity price
shocks. On the contrary even intensifying effects may occur in case of this type
of interest rate targeting. As it can be shown, an equivalent statement is valid
for forward-looking interest rate rules (see tables 8 and 9). The question arises
whether a perfect stabilization of the CPI inflation rate is possible with the help
of another type of interest rate rules. Indeed, a perfect stabilization of 7¢ can
be achieved at the initial level, if the domestic interest rate is not attached to
the inflation rate and the output gap any more, but to the real depreciation
rate —ATyyq:

it =1 — Apjyy — (T — ) (15)

This interest rate rule is in close relationship to the uncovered interest parity
condition i; = i} + Ae;y1 whereby in small open economies interest rate target-
ing is equivalent to the targeting of the nominal depreciation rate Aey41. When
choosing the goal of pure inflation targeting this is equivalent to the targeting
of the real depreciation rate.

In case of temporary commodity price shocks there are stronger expansive
output effects during the anticipation phase than when using Taylor interest
rate rules with and without interest rate smoothing. This can be traced back
to high short-term decreases in real interest rate. In case of perfect inflation
targeting (Ap® = 0 for all t) those are identical to equal decreases in nominal
interest rate. During the shock period large increases in interest rate and terms
of trade occur, therefore there is a sharper output contraction (figures 10 and 11)
than in case of a Taylor rule with smoothing. In case of permanent commodity
price shocks the positive output effects of the anticipation phase are in case
of perfect inflation targeting reinforced compared to the Taylor rules. The
contraction process that appears in consequence of the commodity price shock,
is nearly identical to the development of output in case of a Taylor rule with
smoothing.

It has to be considered that by perfect stabilization of the CPI inflation rate
the domestic inflation rate Ap; is stabilized as well. Because of Apf = Ap® =0
and Ap; — Ap§ = (1 —«a)Ary, Ap; develops parallel to the real appreciation rate
A7y. In contrast, nominal and real interest rate run opposite to A7yq.

Remark

If the interest rule (15) that is linked to a perfect stabilization of the CPI in-
flation rate, is substituted by a money growth rule of the type (14), where the
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weight v of the inflation gap is chosen to be very large, (e.g. v; = 100), we
obtain almost the same time paths for the endogenous variables. From the
money market equation and the money growth rule the equation

Iy U la .
Ag — = — A 16
qt U1+1qt+l}1—|—1 5 (16)

Apf = —=

Dy DL+ 1
results for Ap©. For large values of v; Ap® is - apart from the starting phase of
adjustment - identical to its initial value Ap® = 0.

6 Comparison of Monetary Policy Rules and Con-
clusion

Comparing the volatility of the variables Ap®, y and ¢ under different monetary
policy rules relatively to the volatility of those variables in case of a passive
monetary policy, it becomes clear that all rules lead to a strong increase in
interest rate variance; the increase when applying the money growth rule is
almost identical to the increase in case of the baseline Taylor rule (table 8 and
table 11). The money growth rule causes a strong decrease in the total variance
of the CPI inflation rate, whereas the Taylor rules — except for the special case of
pure inflation targeting — are normally accompanied by intensifying effects. In
contrast, in case of the Taylor rule with and without smoothing the total output
variance is smaller than in case of the money growth rule. Here the output
volatility can even be below the volatility in case of a passive monetary policy.
Altogether seen a Taylor rule of the type (13) is more appropriate to output
stabilization than to stabilization of inflation rates. For a money growth rule of
the type (14) the exact opposite applies. The volatility in inflation rate caused
by commodity price shocks can be clearly reduced by a money growth rule,
whereas a strong decrease in output variance is realized by a Taylor-type interest
rate rule. However, both rules increase the volatility in interest rates to the same
degree. These results both hold if we only look at the period after the occurrence
of the oil price increase (table 9 and 12) and if we abandon the assumption
of anticipated oil price increases and instead consider an unanticipated shock
(table 10 and 13).

As it has been shown, an interest rate rule is also able to drastically reduce
the variance in the inflation rate; however this requires a policy of pure inflation
targeting which is expressed by an interest rate rule that is not of the type (13)
any more, but depends on the real depreciation rate. This interest rate rule
is yet accompanied by a strong increase in output variance if the input price
shock is anticipated by the public. Note that just the opposite holds in case of
an unanticipated permanent increase in commodity prices (table 13).

The economic policy conclusion which can be drawn from the theoretical
analysis of the effects of anticipated commodity price shocks and the appropri-
ate monetary policy reaction is from our point of view evident: A simultaneous
reduction of the increased volatility of output and inflation rates that is gen-
erated by anticipated commodity price shocks can be obtained neither by an
interest rate rule of the Taylor type nor by an analogous money growth rule.

11



If the goal of stabilizing inflation rate dominates the goal of stabilizing output,
targeting the growth rate of money stock is more appropriate than interest rate
targeting of the Taylor type. If in contrast the goal of stabilizing output is
dominant, the opposite applies. Relating to the European Monetary Union,
which attaches more importance to the goal of price stability, this means the
Furopean Central Bank should not renounce the money growth targeting.

Tables and Figures

Table 1: Baseline parameters
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Table 2: Qualitative effects of an anticipated increase in the price of raw
materials under a passive monetary policy

Variables Case t<T t=T t>T
derate further, temporary fall, there-
1 o sharp fall o i~
@y increase Shatp after rise with overshooting
tronger rise further, permanent fall with
2 ° sharp fall - bY
than in 1 shatp fa undershooting
c moderate ) . strong fall in T'+ 1, thereafter
Ap, Ap ! rise sharp rise cyclical development
moderate . strong fall in T'+ 1, thereafter
2 . sharp rise
rise monotonous development
B 1 1 1 further ri further increase, monotonous
Sthail rse UL TIse gl for sufficiently large t > T
2 fall rise further permanent rise
D, p° 1 moderate sharp further rise in T + 1, there-
’ increase increase after fall with undershooting
9 moderate sharp further permanent rise with
decrease increase overshooting
. . . temporary fall with under-
1 1 rise further rise . .
shooting, thereafter increase
fall on
2 impact rise monotonous fall

Note: Case 1 denotes a temporary oil price shock, case 2 denotes a permanent oil price shock.

Table 3: Qualitative effects of an anticipated oil price shock in case of the
baseline Taylor rule in comparison to the passive monetary policy case

Variables Case t<T t=T t>T
q, Yy 1 stronger rise weaker fall  nearly the same development
9 slightly slightly output and income contrac-
stronger rise  stronger fall  tion stronger
Ap, Ape 1 stronger rise shghtly. longer deﬂa‘?lonary process,
stronger rise  no overshooting
9 slightly sharp, but deflationary process weaker
weaker rise weaker rise  and more persistent
1 1 stror.lger Hse nearly Fhe stronger undershooting
on impact same rise
stronger fall . .
2 weaker rise  delayed overshooting

on impact

Note: Case 1 denotes a temporary oil price shock, case 2 denotes a permanent oil price shock.
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Table 4: Variances in case of a temporary raw materials price shock under a
passive monetary policy

VAR(Ap®) VAR(y) VAR(7)

Unanticipated 0.1135 1.165 0.0441
(68.37%) (87.07%) (59.92%)

Anticipated 0.1660 1.338 0.0736
(100%) (100%) (100%)

VAR(APC)‘@T VAR(y)ltzT VAR(i)ltZT

Unanticipated 0.1135 1.165 0.0441
(74.72%) (88.02%) (78.05%)

Anticipated 0.1519 1.3235 0.0565
(100%) (100%) (100%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case
of an anticipated raw materials price shock. The variances for = € {Ap®,y,i} are calculated

as follows: VAR(z) = .72, (z: — Z)” and VAR(2) |57 = 22 plae — 7)%

Table 5: Variances in case of a temporary raw materials price shock under a
passive monetary policy in a purely forward-looking model

VAR(Ap®) VAR(y) VAR(7)

Unanticipated 0.0441 0.4996 0.0021
(124.23%) (80.91%) (56.76%)

Anticipated 0.0355 0.6175 0.0037
(100%) (100%) (100%)

VAR(APC)‘@T VAR(Q)ltZT VAR(i)ltZT

Unanticipated 0.0441 0.4996 0.0021
(130.47%) (94.8%) (105%)

Anticipated 0.0338 0.527 0.002
(100%) (100%) (100%)

Notes: To obtain a purely forward-looking model we set w = & = 0. Numbers in parentheses
are the ratio of the variance relative to the variance in case of an anticipated raw materials price
shock. The variances for x € {Ap®,y,i} are calculated as follows: VAR(z) = 352 (z¢ — T)°
and VAR(x)bZT =2iop(® — 7)*.
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Table 6: Variances in case of a permanent raw materials price shock under
a passive monetary policy

VAR(Ap®) VAR(y) VAR(7)

Unanticipated 0.1292 0.3435 0.0199
(55.88%) (25.67%) (55.71%)

Anticipated 0.2312 0.615 0.0616
(100%) (100%) (100%)
VAR(APC)‘@T VAR(y)ltzT VAR(i)ltZT

Unanticipated 0.1292 0.3435 0.0199
(58.02%) (25.95%) (72.57%)

Anticipated 0.2227 0.531 0.0554
(100%) (100%) (100%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
an anticipated raw materials price shock. The variances for x € {Ap®,y,i} are calculated as
follows: VAR(z) = 37 M@ — To)? + 3072 p(ae — 71)? and VAR(2) |57 = 22 (e — 71)2

Table 7: Variances in case of a permanent raw materials price shock under
a passive monetary policy in a purely forward-looking model

VAR(Ap®) VAR(y) VAR(7)
Unanticipated 0.0698 0.0169 0.00007
(132.2%) (15.82%) (7.78%)
Anticipated 0.0528 0.1068 0.0009
(100%) (100%) (100%)
VAR(APC)‘@T VAR(Q)ltZT VAR(i)ltZT
Unanticipated 0.0698 0.0169 0.00007
(145.11%) (84.5%) (8750%)
Anticipated 0.0481 0.02 0.000008
(100%) (100%) (100%)

Notes: To obtain a purely forward-looking model we set w = ® = 0. Numbers in parentheses
are the ratio of the variance relative to the variance in case of an anticipated raw materials
price shock. The variances for z € {Ap®, y,4} are calculated as follows: VAR(x) = S35 ! (@, —

- t=0
T0)* + X2 p(xe — 71)* and VAR(@)|,5r = 22 p (e — )%
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Table 8: Variances in case of an anticipated temporary raw materials price
shock under alternative monetary policy responses

VAR(Ap©) VAR(y) VAR(:)
Passive 0.166 1.3338 0.0736
policy (100%) (100%) (100%)
Baseline 0.2894 1.2907 0.2419
Taylor rule (174.34%) (96.77%) (328.67%)
Taylor rule 1.0929 1.4227 1.4752
w/o smoothing (658.37%) (106.67%) (2004.35%)
Forward-look. 0.4304 1.2092 0.374
Taylor rule (259.28%) (90.66%) (508.15%)
Money growth 0.117 1.5639 0.2184
rule (70.48%) (117.25%) (296.74%)
Inflation 0 1.7388 0.322
Targeting (0%) (133.7%) (437.5%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x € {Ap©,y, i}
are calculated as follows: VAR(z) = 3°5° (2 — 7)°.

Table 9: Variances after the occurrence of the anticipated temporary oil price
increase under alternative monetary policy responses

VAR(APC)‘QT VAR(y)|tZT VAR(i)|t2T
Passive 0.1519 1.3235 0.0565
policy (100%) (100%) (100%)
Baseline 0.2582 1.2765 0.2185
Taylor rule (169.98%) (96.45%) (386.73%)
Taylor rule 0.9986 1.4195 1.2564
w/o smoothing (657.41%) (107.25%) (2223.72%)
Forward-look. 0.3752 1.2027 0.295
Taylor rule (247%) (90.87%) (522.12%)
Money growth 0.1126 1.5486 0.209
rule (74.13%) (117.01%) (369.91%)
Inflation 0 1.6895 0.1536
Targeting (0%) (127.65%) (271.86%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x € {Ap©,y, i}
are calculated as follows: VAR(z) = 352 /.(z: — 7)°.
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Table 10: Variances in case of an unanticipated temporary raw materials
price shock under alternative monetary policy responses

VAR(Ap©) VAR(y) VAR(i)
Passive 0.1135 1.165 0.0441
policy (100%) (100%) (100%)
Baseline 0.2459 1.1525 0.223
Taylor rule (216.65%) (98.93%) (505.67%)
Taylor rule 0.7604 1.0812 0.9807
w/o0 smoothing (669.96%) (92.81%) (2223.8%)
Forward-look. 0.3386 1.0537 0.3013
Taylor rule (298.33%) (90.45%) (683.22%)
Money growth 0.0856 1.3124 0.1569
rule (75.42%) (112.65%) (355.78%)
Inflation 0 1.8358 0.1457
Targeting (0%) (157.58%) (330.39%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x € {Ap©,y,}
are calculated as follows: VAR(z) = 3252 (2 — 7)°.

Table 11: Variances in case of an anticipated permanent raw materials price
shock under alternative monetary policy responses

VAR(Ap©) VAR(y) VAR(i)
Passive 0.2312 0.6150 0.0616
policy (100%) (100%) (100%)
Baseline 0.2192 0.6749 0.173
Taylor rule (94.81%) (109.74%) (280.84%)
Taylor rule 0.6695 0.477 1.0283
w/o smoothing (289.58%) (77.56%) (1669.32%)
Forward-look. 0.3092 0.6114 0.2321
Taylor rule (133.74%) (99.41%) (376.79%)
Money growth 0.0833 0.7027 0.1759
rule (36.03%) (114.26%) (285.55%)
Inflation 0 1.0257 0.3966
Targeting (0%) (166.78%) (643.83%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x € {Ap®©,y, i}
are calculated as follows: VAR(z) = 31! (ze — T0)? + 352 (2 — T1) %
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Table 12: Variances after the occurrence of the anticipated permanent oil

price increase under alternative monetary policy responses

VAR(APC)‘@T VAR(y)|t2T VAR(i)ltZT
Passive 0.2227 0.531 0.0554
policy (100%) (100%) (100%)
Baseline 0.2152 0.5678 0.1597
Taylor rule (96.63%) (106.93%) (288.27%)
Taylor rule 0.5344 0.3599 0.8016
w/o smoothing (239.96%) (67.78%) (1446.9%)
Forward-look. 0.3036 0.5247 0.2192
Taylor rule (136.33%) (98.81%) (395.67%)
Money growth 0.0701 0.5629 0.0721
rule (31.48%) (106.01%) (130.14%)
Inflation 0 0.7476 0.0252
Targeting (0%) (140.79%) (45.49%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for z € {Ap©,y, i}
are calculated as follows: VAR(z) = 3252 . (z¢ — 71)°.

Table 13: Variances in case of an unanticipated permanent raw materials
price shock under alternative monetary policy responses

VAR(Ap©) VAR(y) VAR(i)
Passive 0.1292 0.3435 0.0199
policy (100%) (100%) (100%)
Baseline 0.0848 0.3495 0.0354
Taylor rule (65.63%) (101.75%) (177.89%)
Taylor rule 0.1164 0.1647 0.1814
w/o smoothing (90.09%) (47.95%) (911.56%)
Forward-look. 0.1161 0.3611 0.0468
Taylor rule (89.86%) (105.12%) (235.18%)
Money growth 0.0315 0.2982 0.0162
rule (24.38%) (86.81%) (81.41%)
Inflation 0 0.2415 0.0073
Targeting (0%) (70.31%) (36.68%)

Notes: Numbers in parentheses are the ratio of the variance relative to the variance in case of
a raw materials price shock under passive monetary policy. The variances for x € {Ap©,y, i}
are calculated as follows: VAR(z) = 372 (2 — 71)°.
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(e) Terms of Trade (f) Real Interest Rate

Figure 1: Economy’s responses to an anticipated oil price increase taking
place in period T. Solid lines with circles are responses to a temporary oil
price increase; solid lines with plus signs are responses to a permanent oil
price increase.
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(k) Nominal Interest Rate (1) Nominal Exchange Rate

Figure 1: Continued
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(m) Real Oil Imports (n) Domestic Real Oil Price

Figure 1: Continued
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Figure 2: Economy’s responses to a temporary oil price increase. Solid lines
with circles are responses to an unanticipated oil price increase taking place
in period T’ solid lines with plus signs are responses to an anticipated oil price
increase taking place in period T
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Figure 2: — Continued
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(e) Terms of Trade (f) Real Interest Rate

Figure 3: Economy’s responses to a permanent oil price increase. Solid lines
with circles are responses to an unanticipated oil price increase taking place
in period T’; solid lines with plus signs are responses to an anticipated oil price
increase taking place in period T'.
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(m) Real Oil Imports (n) Domestic Real Oil Price

Figure 3: Continued
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(e) Real Oil Imports (f) Domestic Real Oil Price

Figure 4: Economy’s responses to an anticipated temporary oil price increase.
Solid lines with circles are baseline model responses; solid lines with plus signs
are responses in case of a constant foreign real oil price (u* = 0).
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Figure 4:
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Figure 5: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with circles are baseline model responses; solid lines with
plus signs are responses in case of a constant foreign real oil price (u* = 0).
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Figure 5: — Continued
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Figure 6: Economy’s responses to an anticipated temporary oil price in-
crease. Solid lines with plus signs are responses under a passive monetary
policy (Am; = 0); solid lines with circles are responses under a Taylor rule
with interest rate smoothing (8 = 0.8); solid lines with squares are responses
under a Taylor rule without interest rate smoothing (6 = 0).
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Figure 7: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with plus signs are responses under a passive monetary
policy (Am; = 0); solid lines with circles are responses under a Taylor rule
with interest rate smoothing (8 = 0.8); solid lines with squares are responses
under a Taylor rule without interest rate smoothing (8 = 0).
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Figure 8: Economy’s responses to an anticipated temporary oil price increase.
Solid lines with plus signs are responses under a money growth rule; solid lines
with circles are responses under a Taylor rule with interest rate smoothing
(8 = 0.8); solid lines with squares are responses under a Taylor rule without
interest rate smoothing (8 = 0).
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(c) Terms of Trade (d) CPI Inflation

0.5F T T T T T 5 T T T T T T

o T 5 10 15 20 25 o T 5 10 15 20 25

(e) Nominal Interest Rate (f) Real Interest Rate

Figure 9: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with plus signs are responses under a money growth rule;
solid lines with circles are responses under a Taylor rule with interest rate
smoothing (B8 = 0.8); solid lines with squares are responses under a Taylor
rule without interest rate smoothing (6 = 0).
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(c) Terms of Trade (d) CPI Inflation
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Figure 10: Economy’s responses to an anticipated temporary oil price in-
crease. Solid lines with plus signs are responses under a passive monetary
policy; solid lines with circles are responses under a Taylor rule with interest
rate smoothing; solid lines with squares are responses under a money growth
rule; solid lines with triangles are responses under inflation targeting.
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(c) Terms of Trade

25

o T 5 10 15 20 25 0o T 5 10 15 20

(e) Nominal Interest Rate (f) Real Interest Rate

Figure 11: Economy’s responses to an anticipated permanent oil price in-
crease. Solid lines with plus signs are responses under a passive monetary
policy; solid lines with circles are responses under a Taylor rule with interest
rate smoothing; solid lines with squares are responses under a money growth
rule; solid lines with triangles are responses under inflation targeting.
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Mathematical Appendix

The dynamics of the New Keynesian model of a small open economy can be
represented by the following set of equations:

a1(1 = @)yiq1 + (a2 + aslo)atip — azlomy, | = (A1)
(1+ b1 — ash)y — a1®ye—1 + ((a2 + asla)a + bs — (1 — asl)Y) 7
+ (1 = asl)Y(pry — pi) + (a2 + asla) (i — 7 1) — bay — gt
+ (1 — asly)do — agly — bo

—atppr + g = (1= 5)02:% — (14 B)a+ (1 = Bvay) 7 (A2)
+ (B + (1= Bor)ai + abrio1 + (1 = Boad (P — p7)
— (i — 7Tt+1)+5(2t | =)+ (1= B)i
— (1= B)v2(q — do) — (1 = B)oa7*

p(l = w)miyy = —pdye + (1 — po+ pé)m + pry — (1 — po) 71 (A3)
— pwmiy — pd(pry — ;) — (L= p)(wg, — 7) + 1d(q — do)

where 1§ = Ap = pf — pf_y, mf = Apf = pf —pj_y, and wh, = Aply, =

Prt — Pgr+_, denotes the rate of change of the domestic price index, the foreign

price level, and the raw materials price level respectively. Equation (Al) is

the combination of the model equations (1), (2), (4) and the real interest rate
equation

i — My =i — a7y — (A4)

Equation (A2) results from the Taylor rule (13) where we have substituted the
nominal interest rate by equation (A4). The last equation (A3) is the Phillips
curve equation (5). Let v; = (y¢, 7¢, )’ be the vector of current and w; = vy
the vector of lagged state variables. The matrix representation of the implicit
state equations (A1) to (A3) is then given by

B (Vt+1> —-C <"t> +k (A5)
Wi+t1 Wi

where the triangular matrix B = (b;;)1<i j<¢ and the matrix C = (¢45)1<4,5<6
are defined by'?

bi1 bz bz 0 0 O
0 bos bog O 0 0
o 0 by o0 0 o0
B = 0 0 0 by O 0 (A6)
0 0 0 0 b5 O
0 0 0 0 0 bgg

12Tn the case of the forward-looking Taylor rule
iv = Bir1 + (1= B) (i + va (i — T°) + valqe — 7))

the element ba3 of the matrix B has to be replaced by b33 = 1 — (1 — 3)v1, while the element
c23 of C must be replaced by ¢33 = (.
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with

b11 = a1(1 — (I)) b12 = (CLQ + aglg)a b13 = —a3l2
bao = —av bog =1 b3z = pu(l —w)
and
ci1 c12 0 ca O O
co1 C22 c23 0 co5 O
|31 c32 33 0 e35 36
C= C41 0 0 0 0 0 (A7>
0 C52 0 0 0 0
0 0 C63 0 0 0
with

ci1 =1+by —asly cio=(as +asla)a+bs— (1 —aslh)y ciqa=—a1®
c21 = (1 — B)vz c2 = —((1+ B+ (1 = Bvae) c23 =+ (1 - By

co5 = af c31 = — o ez =1 — pa+ pdy
c33 = cg5 = —(1 — par) C36 = —pw
cg1 =1 cs2 =1 ce3 =1

The input vector k; = (ki¢, kat, k3¢, 0,0,0)" contains the exogenous or forcing
functions

kit = (1 — asli)Y(pry — pr) + (a2 + aslo) (i — mp4q) (A8)
—boy; — gt + (1 — agly)dy — asly — by

ko = (1 = B)vav(Pry — pr) + T — Brf — iy + Biy_4 (A9)
+ (1= B)i — (1 = B)va(q — do) — (1 = B)viT°

kst = —uop(pry — pi) — (L — pu)(mpy — 7)) + ud(q — do) (A10)

We analyze the dynamic effects of anticipated raw materials price shocks which
take the form

Prt=Br Pri1+re , 0<Pr<1 (Al1)

with the impulse function

1 fort=T
mt:{ or >0 (A12)

0 fort#T

On the assumption pp, = 0 for the initial value of p}, the solution of the
difference equation (A11) is given by

fi T
N {O or ¢t < (A13)

PRt = ﬁgT fort>T
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Then
0 fort<T

TRt = PRt — PRt—1 = Prr=1 fort="T (A14)
(Br — 1)52_T_1 fort >T

We assume that an oil price shock of the form (A11) influences the foreign price
level p*, but leaves the foreign income and the foreign interest rate unchanged:

p; = (1= 1")PRy 0<p' <1 (A15)
ii=i, y=7 (A16)
Then
0 fort <T
m = (1= p )Ry = (1 —p) for t =T (A17)
(1—p)Br—-1BETY fort>T
implying
0 fort <T
Kook kR A18
PRt — Pt = I PRy {u* BT fort>T (A18)
and
0 fort <T
TRy — T = W TRy = p* fort =T (A19)

@ (Br - 15T fort>T

In the case of a permanent raw materials price shock, i.e. Sr = 1, equations
(A17) to (A19) simplify to

1—p* fort=T
=l if Br =1 (A20)
0 fort =T
0 fort<T
L pf = if =1 A21
PRy = Py {,u* fort>T br ( )

* fort=T
: {” o if B = 1 (A22)

0 fort#T

The input functions k1, kot and ks can be rewritten with the help of the steady
state equations

q=a1y — agf* + ag(lo + 119 — ZQT‘() + G — b1y + bayy" — b3T + by (A23)
Y=q+YT —Y(pp —p*) —do (A24)
q=(fi+ )T = fo(bkr —P*) + fo (A25)

(A23) is the steady state version of the IS equation (1) where we have used that
in the long run Y441 =yt = yt—1 =Y, 41 = 7t = -1 =T and ;= 7T =
mf_; = 7° = 0 holds (implying Ae = 0). (A24) is the steady state relationship
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between national income and output while (A25) is a reformulation of the long
run supply function (6). Equations (A23) and (A24) imply
(I—ai+b —ash)y+ (bs — (1 —ash)yY)T = (A26)
— (a2 + asla)i +boy* +7 — (1 — ash )¢ (ph — p*)
— (1 —asly)do + asly + by
J— VT + PR —p") =7 —do (A27)

Using (A26) and (A27) and the long run interest parity condition i = i the
forcing functions (A8) to (A10) can be written as

ki = (1= asl)$[(prye — pi) — 0k — )] — (a2 + aslo)myy (A28)
—(1—a1+b —a3lh)y — (bs — (1 —asl)yY)T

kot = (1= B)oat[(PRy — pi) — (P — P7)] + 7y — B7f (A29)
— (1= B)va(y —97)

kat = —pd[(phy — p7) — (0f — 9] — (1= p)(7hy — 77) (A30)
+ 16y — ¥T)

The foreign real raw materials price pj, —p* is exogenously given for the domestic
small open economy. If ¥y denotes the initial and ¥v; the new steady state level
of the state vector v after the occurrence of an oil price shock, v differs from
Vo only if Br =1, i.e, if a permanent shock takes place. In this case

dpp —p*) = 0 —P*)1 — (PR —P*)o = 4" (A31)

and the steady state change of y and 7 follows from the steady state equations
(A23) to (A25). The long run multipliers 9%/0(p}; — p*) and 97/0(p}; — p*)
result from the set of equations

l—a1+bi—ashh by—(1—asl)y) (dy\ _  ((I—ash)¥) , ———
( 1 —(f1+f2+¢))(df>— ( fat )‘“pR P’)

(A32)
Using the abbreviation
A= —(1 —a1+ b1 — a3l1)(f1 + fz + w) — (bg — (1 — agll)lb) (A33)
the multipliers are given by
g _ 1 _
W = A (14 f24+¢)(1 —asl)y (A34)
+ (bs — (1 — asl)¥)(f2 + )]
ot 1
=) = Z((l —asl)Y — (1 — a1 + by — asl)(f2 + ¥)) (A35)
On the assumption
bg — (1 — a3l1)¢ >0 (A36)
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the long run IS curve (A26) has a negative slope in §/7-space implying that
a permanent real appreciation of the domestic currency causes isolated seen a
long run decline in aggregate demand and national income. Then the multiplier
0y/0(py — p*) is unambiguously negative. The long run response of the terms
of trade to a permanent rise in the foreign real factor price pj — p* is not
uniquely determined. Assuming (A36), a necessary and sufficient condition for

a rise (fall) in 7 is given by
or
a(pR —p )

implying a stronger (weaker) increase in the domestic than the foreign price
level (the latter expressed in units of the domestic currency).
The input functions kq¢, ko and k3; can be written in the form

where
di=—(1—a1+b1 —a3l)y— (b3 — (1 — agly))T (A39)
dy = —(1 = B)va(y — ¢7) (A40)
35 = (g — ) (Ad1)
and
b1 = (1 — asl)¥((Pry — Pi) — (0 — p¥)) — (a2 + aslo) 7]y, (A42)
¢t = (1 — B)Uﬂ/)((lﬁz,t - ;) PR p*) ) + 7y — Brf (A43)
Pt = =6 (P — PY) — 0k — 1)) — (1= ) (TR — 7)) (A44)

For t < T the steady state values 7, 7 and (pj, — p*) are equal to their initial
values 3, 7o and (pj, — p*)o while for ¢ > T" they coincide with their new steady
state values 7y, 71 and (p}, — p*)1. Therefore,

- dig fort<T
d {30 ort< i=1,2,3 (A45)

77 Ejl fOI‘tZT

According to (A13) to (A22) the functions ¢4, ¢o; and ¢s; take the following
form:

e In case fr = 1 (permanent raw materials price shock)

0 fort<T —1
¢1t = { —(ag + agly)mwf,; = —(az +asly)(1 —p*) fort=T -1 (A46)
0 fort>T
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0 fort<T —1
Fio=1—pu* fort=T-1
oy = ¢ 1 " N (A47)
—pr; =—-p(1—p*) fort=T
0 fort >T
0 fort<T -1
Gt = —(L—p) (7R, — 7)) =—(L—pp* fort=T (A48)
0 fort > T
e In case S < 1 (temporary shock) we get
0 fort<T —1
- lo)(1 — p* fort=T-1
b= q sl =) o (A9
(1 — asl)vp
| —(a2 +asle)(1 — p*)(Br — 1)]B§%—T fort >T
0 fort <T —1
1—u* fort=T-1
P2 = § (L= Bogypp” + (1 = p*)(Br —1) =1 —p*) fort=T
[(1 = Byoat™ + (1 = w)(Br — D] B "
[ B —p)(Br—1)8; " for t > T
(A50)
0 fort <T
P3¢ = § —popp” — (1 — p)p* fort =T (A5l)
—popu* By T = (1= ) (Br = 1) T fort>T
The state equations (A5) can be rewritten as follows:
Vi+1 Vi -1/3
=A +B (d+ A52
(vt =a () +B @ o) (A52)
where
A=B!C (A53)
d = (di,ds,ds,0,0,0) (A54)
¢t = (¢1t7 ¢2t) ¢3ta 07 07 0)/ (A55)
The inverse matrix B~! has the structure
bit biz biz 0 0 0
b21 b22 523 0 00
Bfl _ 531 532 533 0 00 (A56)
0 0 0 1 00
0O O 0 010
0O 0 0 001
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~ 1 ~ 1
b1 = —Fau(l —w) bio = —— (a2 + asle)ap(l — w) (A57)
B B
~ 1 ~
biz = a0 bo1 =0
B
b L, (1-®)u(l—w) b L, (1— )
22 = ra1(l — - 23 = — a1l —
B B
~ ~ ~ 1
b31 = b3s =0 b3z = —7(11(1 - @)O&
B
and
IB| =detB = —a1(1 — ®)ap(l —w) <0 (A58)
Then

/
3 3 3
d= (Zﬁudj,z Z bs;d;.0,0,0 (A59)
j=1 j=1 j=1

and B~ ¢, is given by

3 3 3
B¢, = | > bijdje, > bajdje, D bsjhir, 0,0,0 (A60)
j=1 j=1 j=1
In case fr = 1 (permanent shock) (A60) takes the form
0 fort<T —1
0,@2,0,0,0,0) fort=T-1
B_1¢t: ( , 02, U, U, U, ) or (Aﬁl)
(a1, 9,03,0,0,0) fort=T
0 fort > T
where
~ 1 «
ay = Em(l = ®)u(l —w)(1 - p") (A62)
1
a) = B [(az + asly)ap(l —w)B(1 — p*) — aza(l — p)p] (A63)
1 * *
QZZEGI(l—q))[_N(l_w)/B(l_N )+ (1= p)p”] (A64)
1
ag = @al(l — D)l — p)p* (AG65)
If Br < 1 (temporary shock), B¢, is given by
fort <T —1
0,02,0,0,0,0 fort=T-1
Bfl(bt — (A7 2 ) or (A66>
(A1, &g, 3,0,0,0) fort=T

(41, B2, $5,0,0,0)' 85171 fort > T
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where o is defined in (A62) and

a1 = ﬁ [( —ap(l = w)y((1 — agly) + (az + aslz) (1 — B)v2) (AG6T7)
—aza(pdy + 1 — ) + ap(l — w)(az + azla) B(1 — p*)
g = ém(l ) [(u(l —w)(1 = B)ogyy + pdp +1 — p)p* (A68)

+p(l —w)(1 = p")(Br — 1 - 0)

43 = ﬁalu — B)a(ud+ 1 — )t (A69)
51 = _’;ﬂ [(a,u(l —w) [1 —agly + (az + asly)(1 — 5)”2]1/)61% (A70)
+ aga(pdBr + (1 — ) (Br — 1)) ) 1"
— ap(l —w)(az + agl2) B(1 — u*)(Br — 1)]
b= (- ) [(u(l — 0)(L — BYoswBr + uov B (A1)
(L (B — )i+ (L — @)1 — ) (B — 1) (B — m]
s = ﬁalu — ®)a[uovsn + (1 — 1)(Br — 1)) " (AT2)

Solution to Dynamics

The dynamical system (A52) can be solved by transforming it into canonical
form using the Jordan decomposition of the system matrix A = B~!C. A
has six different eigenvalues 71, ...,rs, where 71, ro and r3 are unstable (i.e.,
|rj| > 1 for j = 1,2,3) and r4, r5 and r¢ are stable characteristic roots (i.e.,
|ri| < 1 for i = 4,5,6). Since the vector v of state variables only consists
of non-predetermined variables, the number of unstable characteristic roots
coincides with the number of jump variables so that the system (A52) has the
saddlepath property. The system matrix A can be diagonalized by the similarity
transformation

A=HAH '=HAG (G=H) (A73)

where H = (hq, ..., hg) consists of the linear-independent (right-) eigenvectors
of A and G = (gij)i<i,j<6 denotes the inverse of H. A is a diagonal matrix
whose diagonal elements are the eigenvalues of A. Partition the matrices H, A
and G conformably with the state vectors v and w,

H11 H12 A1 0 Gll G12
H- . A= . G-= A74
<H21 H22> ( 0 A2> (G21 G22> (A74)
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and premultiplying both sides of the state equations (A52) with G. This yields

(Gn G12> (Vt+1> _ <A1 0) (Gn G12> (W) (A75)
Go1 Goo/) \ Wit 0 A2/ \Gor Gao/ \wy
G G 15 1
B "'d+B
* <G21 G22> | * %]

Using the transformation

x\ _ (G G2\ (Vv
()-(a e () 479
the canonical form of the state equations (A52) is given by

x¢11 = A1x; + (G11,G12) [B7'd + B¢, (A7)
Zir1 = AQZt + (Ggl, GQQ) [Bila + Bil(f)t] (A78)

If {x¢}i=0,1,...7—1,7,7+1,... and {z}4—0,1,... 7—1,7,7+1,... is a solution of (A77) and
(AT78) respectively, the solution of the original state variables v and w can be
obtained by using the inverse transformation

(=G ) ) o)

Note that the steady state of the canonical system (A77), (A78) is given by

<§> N <(13 _(.]Al)_l (I —[—)/\2)_1> GBTd (480)

where I3 is the 3 x 3 identity matrix and d defined in (A54), (A45), (A39),
(A40), (A41). According to (A79) and (A52) the steady state of the original
state vector is then given by

v (I3 — Aq)~! 0 1= 1S
(W> :H< 3 0 ! (13_A2)_1> GBld= (I — A)"'B'd (AS81)
(Is — A)™' = (Is - HAG) ™! = [H(Is — A)G] ™" (A82)
Q- gyt gy (T3 — AT 0
=G YIg— A) 1H1_H< 3 01 (Ig—Az)_1>G

Solution in case G < 1
We first consider the solution of the transformed system (A77), (A78) in case
of temporary raw materials price shocks. In this case d = dg = d; implying
X =Xo = X1 and z = zg = z; so that (A77), (A78) is equivalent to
Xpr1 — X = Ai(x; = X) + (G11, G12)B ™ ¢y (A83)
Zi+1 — 2 = Aa(2z — 2) + (Ga1, G22)B™ ¢y (A84)
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Let 01 and 02; be the input functions

01, = (G11,G12)B ¢, (A85)
02 = (G21,G22)B ', (A86)

According to (A66) 01, and 09, have the following structure:

0 fort<T -1
fort=T-1
0y = | 92 0) o (AST)
(é1,é2, eg) fort =T
( _27¢3) W for ¢t > T
0 fort<T—1
02t _ (g 95756)/ fort=T-1 (A88)
( 65, éﬁ)/ fort=T
( 47¢S7¢6) ﬂt —t for ¢ > T
where
éj = gleA‘l + ngdQ + gjgéég (] =1,... ,6) (AQO)

Let us first consider the subsystem (A83) where the system matrix A; only
consists of unstable eigenvalues. We are interested in the convergent solution
time path so that the transversality condition

tlim (xt —X)=0 (A92)

must hold. We start with the general solution of (A83). We can choose either
the backward-looking or the forward-looking solution and then apply the sta-
bility condition (A92). The general backward-looking solution of (A83) is given
by

t—1 t—1
X —X=AKi+ > A0, =AlK + > A6y, (A93)
s=0 s=T-1

where K is an arbitrary three-dimensional vector of constants and

t—1
Z A0, =0 fort—1<T—1,ie. t<T (A94)
s=T-1
Therefore
%o+ ALK, fort < T
x¢ = { X0 + AlK; + Zs 71 A0 (495)

=X+ A} (K1 + Zs 71 A1_5_1015> fort>T
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The transversality condition (A92) is satisfied only if

Ki+ Y A;*7'01,=0 (A96)
s=T-1
implying
Ki=- ) A0 (A97)
s=T-1
Thus

o0 oo
xe=Xo— ALY A0 =% — > A0, fort>T  (A%)
s=t s=t
The same convergent solution can be obtained with the help of the general
forward-looking solution
o0
xe — X =AlK; — Y A0y, (A99)
s=t
_ Agl:q — X AT fort< T -1
AlK) -2 Ao, fort>T -1

_JAYK +Ky) fort <T —1
ALK -, AT 0y,) fort>T —1

where the constant K, is arbitrary and K; defined by (A97). Equation (A99)
will converge only if B

K;i=0 (A100)
implying the equivalence of the uniquely determined convergent forward- and

backward-looking solution. The equivalence also holds at time ¢t =T — 1, since
(A95) and (A97) imply

oo oo
xpo1—Xo=A] Ky =-AT" > A0 =— Y AT R0,
s=T-1 s=T-1
(A101)
where the last expression is the convergent forward-looking solution at time
T — 1. Using the definition of the input function 61; the constant K; can be
written as

g1 €1 ?1/(r1 — Br)
Ki=-A7T |G| +A7 2] A7 | Ba/(r2 — ﬂR) (A102)
g3 é3 ©3/(r3 — BR)

The last expression follows from the fact that for j =1,2,3

11 > s

Tj
s=T+1 s=T+1
(5_R)T+1
B 11 T ~ 1 (T
=9 T+1 Br  Ti,.. _ J
Ty ﬂ 1-— ?? Ty ﬂR
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holds.™ This implies

o0 X - ?1/(r1 — Br)
= > AT = AT By/(r2 — BR) (A104)
s=T+1 ?s/(rs — Br)
(A95), (A98), (A101) and (A102) imply that the unique convergent solution
time path of the vector x can be expressed in the following form:

e Fort>T+1:

. PO\
Xt = Xqo — ZA§787 015 =X — @2/(77 - BR) /BR (A105)
s=t @3/(743 - 65’.)
since
[e’e] e o L 1 oo /8 s
Zﬁ BB = B Z (r_R> (A106)
s—t BR s=t J

t
Br
iy 1 ()

= 7. - Ti
J Jﬁ£+1 ri — Br J
_ 1 t—(T+1) )
Trj—Br "
e Fort=T1:14
o0 o0
xp=%o— Y Al 70, =% — A0 — D> A6 (A107)
s=T s=T+1
X é1 ) ?1/(r1 — Br)
=%o— A7 & | — AT B2/ (r2 — Br)
€3 ?3/(r3 — Br)
since
i JT—s—15 gs=T—1 _ T i ros—lp gsT-1 (A108)
J ¥PiPR — ' J PiPR
s=T+1 s=T+1
_ 1 —1
13Note that
oo . lit
;xil—x for |z| < 1

(x=PBr/rj, t=T+1).
' Note that (A107) also follows from (A83) for t = T by substituting (A105) for x74+1 —X: Since

X741 — Xo = A1(x7 — Xo) + 07,
we get

€3

®,/(r1 — Br) é1
xr — %o = A7 (X741 —%o) — A7 00 = —A7 [ By/(ra— Br) | — AT | &2
©3/(rs — Br)
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e Fort=T—1:15

[e%S)
xra =% - Y AT, (A109)
s=T—-1

=%0— A0 — AP0 — AT ) ATy,

s=T+1
: gl , 1 , ?1/(r1 — Br)
=Xo— A7 | g2 — AT | & | = AT 9/(r2 — OR)
g3 és ?3/(r3 — BR)
since
T o 1 T—1 A -T—1 #1/(r1 = Or)
ATE D> AT 0 = ATTATTT [ B/ (r2 — Br) (A110)
s=T+1 P3/(r3 — BRr)
) @1/(r1 — Br)
=A]" | @o/(r2 — BR) (cf. (A104)).
@3/ (rs — Br)
e Fort<T —1:
g1 é1
Xy = Xg + Athl =Xq — Atl_T g | — Aﬁ_T_l é9 (Alll)
93 €3
e ?1/(r1 — Br)
— AT | @/ (12 — BR)
?3/(r3s — Br)

Next consider the second subsystem (A84) where the diagonal matrix Ay only
consists of stable eigenvalues. The general backward-looking solution is given
by

t—1 t—1
2, —Z=ASKo + ) AL 05 = ALKy + Y A6y, (A112)
s=0 s=T-1
_JASK, fort—1<T—1,ie,t<T
ALKy + YL ALy, fort > T

with arbitrary constant Ks. The definition of the forcing function @95 (cf.
(A88)) implies

o fort="1T:
g4
ZT = Zg + AgK2 +Oor_1 =7Zg + AgKg + | g5 (All?))
g6

15(A109) also follows from the equation
x7_1 —Xo = AT (x7 — o) — AT 07—y

by substituting (A107) for xr — Xo.
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o fort=T+1:

T
zri1 =%+ AT Ko+ Y ALT0,, (A114)
s=T-1
g4 é4
=7y + AQTHKQ +A g5+ |65
g6 €6
o fort>T+1:
Zy = Zg + AZKQ + A§7T02T71 (A115)
t—1
+ AT 0r + > AL 6y,
s=T+1
g4 é4
=Zo+ ALKy + AT [ G5 | + AT | és
g6 €6
P4/ (14— Br) e P4/ (ra — Br)
— | ®s5/(rs = Br) | B~ +Ay " | ®5/(r5s — Br)
6/ (16 — Br) @6/ (16 — BR)
(A115) holds since!®
i—1 s
s=T+1 s=T+1
Gy
_r,'-; 1— /BRT 1 J - - J
o
J
1 1 51% s Br\"
ﬂ’ar — 8g ﬂTJrl - 7y
— 1 ( t—T—1 .
=B -3 = 4,56
¥j r; — Br (j )
and therefore
t=1 ) . @4/ (T4 — BR)
Y AT 0 = AT B3/ (s — BR) (A117)
s=T+1 @6/ (r6 — Br)
@4/ (ra — Br) e
— | @5/(rs = Br) | Br "~
6/ (16 — BRr)
6Note that
til S_til S7T71 . l—xti l—wTi T_xT_xti T_xT+1_wt
v v v :c T l—-x 11—z r= 11—z ro= 11—z
s=T+1 0 0
(x = Br/rj).



Note that (A115) is equivalent to (A114) in the special case t =T + 1.
The solution of the original state vector v = (y, 7, 7¢)" can be obtained using
the transformation (A79) and the solution of the canonical system. Since

vi = Hyix: + Higzs (A118)
and
v=H;1x+Hi:z (Allg)
we get
o fort>T+1:
g4
V¢ = Vg + ngAgKg + ngAg_T :gv5 (AlQO)
g6
. €4 ?P4/(ra — Br)
+HpAL ' [ és | + | @5/(r5 — Br) }
€6 6/ (16 — Br)
?1/(r1 — Br) ©4/(r4 — BR) s
- {Hn P2/ (r2 — Br) | +Hia | ©5/(r5 — Br) ] R
3/ (r3 — Br) 6/ (r6 — Or)
o fort=T+1:
g4
vri1 = Vo + HipAT T Ky + HigAs | G5 (A121)
g6
é4 ?1/(r1 — Br)
+Hipx | é5 | —Hi | $o/(r2 — Br)
€6 P3/(r3 — BRr)
o fort="1T:
g4
v = Vg + leAgKQ +His | g5 (A122)
g6
1 é1 @1/(r1 — Br)
—HuA & | —HuAT [ Gy/(r2 — Br)
é3 @3/ (r3s — Br)
o fort=T—1:
g1
Vr_1=Vg+ HlQAg_lKQ — H11A1_1 52 (A123)
g3
é1 ?1/(r1 — Br)
~HyuA| | é | + | B2/(r2 — BR)
és P3/(rs — Br)
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o fort<T —1:

Vi =V + HllAiKl + H12A§K2 (A124)

where K is defined in (A102). The second constant Ky can be determined
from the initial condition of the vector w of predetermined state variables:

w(0) = Wy (A125)
(A79), (A111) and (A112) imply

W(O) = H21X(0) + HQQZ(O) =Hoy (io + Kl) + HQQ(ZO + Kg) (A126)
=wo + H21 K1 + H Ko
so that
0=HxK; +Hy»K>s (A127)
and therefore
Ky = —Hy, Hy Ky (A128)

Note that the solution (A120) also holds in ¢ = 7'+ 1 since (A120) is equivalent
to (A121) in the special case t = T + 1. (A120) is also equivalent to (A122) if
we set t = T in (A120). This equivalence holds since

€1 €4
HiyA | éa | = —HpA! | 65 (A129)
€3 €6
and
?1/(r1 — Br) @4/ (14 — Br)
HyAr! | @y/(ro— Br) | = —HiaAS" | 85/(r5 — Br) (A130)
P3/(r3 — BR) @6/ (16 — Br)
?1/(r1 — Br) P4/(r4 — BR)
+ |Hu [ Bo/(r2 = Br) | + Hiz | 5/(r5 — Br) | |BR"
P3/(r3 — BRr) 6/ (r6 — BRr)

To show (A129) and (A130) note that w; = v;_1 and
w; = Ho1x; + Hoozy (A131)

According to (A124) we then have

Wi = Vg + HglAiKl + H22At2K2 = (A132)
Vi1 = Vo + H11A§_1K1 + HlQAg_lKQ fort<T -1
implying
Hy Ay = Hyy, H2 Ay = Hyo (A133)
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or

Hy = Hy A Hyy = HipA! (A134)
The identity
H;y Hip) (G G I3 0>
= A135
<H21 H22> <G21 G22> <0 I3 ( )
implies
H21G11 + HpGo1 =0 (A136)
or
G21Gy' = —Hy, Hy (A137)

According to (A90)

€1 a1
é2 | =G | G2 (A138)
é3 Qs
Cy &y
és | = Gar | G2 (A139)
€6 Qs
implying

€4 €1

é5 | = GG} | éa (A140)

€6 €3

Premultiplying (A140) with A;* and using (A137) and (A134) yields

e €1 €1
A7V [ és | = ASTGuGH | é2 | = A THL Hyy | é (A141)
é6 é3 é3
€1 €1
= A (AHD ) HpATY [ 6 | = —-H HuAT! | &
ég é3

Premultiplying this equation with —H;s yields (A129). To show (A130) note
that

) [ ) Y1
—H12A; Vs | = HllAI 72 (A142)
Ps P3

The proof is similar to the proof of (A129) since by definition

Y1 b (2 b1
P =Gu (o], @5 | =Gai | ¢ (A143)
P3 b3 Ve b3
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and therefore

2 . P1
?5 | = GaGyy | ¥ (A144)
' P3

According to (A141) this implies

2 2
AL iy = —H_ H;A7! z, A145
2 5 | = 12 11143 P2 ( )
Yo ©3

so that (A142) holds. Denote the elements of the modal matrix H by h;;
(1 <14,j <6). Using (A142) the right-hand-side of (A130) can be written as
follows:

6 _ hq 6 — hq
7 #j !
vyt hay | + b (AL46)
j=4 riri — BR 3; ]Z:; (T] - ﬁR)ﬂR hgj
6 @] 1 1 hlj 3 % hlj
S B (L) () 4 ¥
=1 r; — Br Tj Br hs = (""] 51%)51% hgj
6 — hlj 3 — h’lj
J ¥j
= ho + ha
j;l TJ/BR hgj j;l (Tj - ﬁR)BR h /
3 — hl' 3 hl
1 P; J 1 P J
=52 (e |+ g 2 hag
Br = Ty h3j Br = ry— Br h3j
?; 1 1y (M
- Z [3_ ri— 3 T haj
j=1 R 7 R J h3
3 ) haj ®1/(r1 — Br)
= Z —— | hy; | = HuA{' [ @y/(r2 — Br)
— rj(rj —PBr) \ >
j=1 hs; @3/ (13 — BR)

Therefore, (A130) holds so that the solution formula (A120) is also valid in
period ¢t = T. Similar to (A129) and (A142)

g1 94
HyA [ | = —HpA [ 5 (A147)
g3 g6

holds. The solution formula in 7" — 1 (i.e., (A123)) can then also be written in
the following form:

g4
vr_1 =vo + HpA 'Ky + HppAS?! | 55 (A148)
396
€1 ?1/(r1 — Br)
— H11A1_2 és | + @2/(7"2 - /BR)
é3 ?3/(r3 — Or)
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Now it is obvious that (A123) also follows from (A120) and (A121). But (A123)
can also be written in the form (A124), i.e.

vr_1 =Vo+ Hp Al 'Ky + HipAJ 'K (A149)
since
vVr_1 =Vg+ ngAg_lKg (A150)
. . g1 €1 ?1/(r1 — Br)
—HuA{ AT G | + AT [ é | + AT | /(2 — BR)
g3 €3 @3/ (rs — Br)

=%+ Hp AT Ky + Hj ATTK,

according to the definition of K; (cf. (A102)). Note that an analogous formula
does not hold in ¢t = T since

g4 7 7
His (95 | = Hi2Gu G |32 | # —Hu | &2 (A151)
g6 93 g3
(A135) implies
H11Gi1 + Hi2Go1 =13 (A152)
so that
H2G21Gy' = G —Hpy (A153)

Therefore, (A122) is equivalent to

94 g1
vr =Vo+ HpATKy + HATK +Hio | 35 | +Hu | 32 (A154)
g6 g3
g1
=vo + HpATKy, + HATK) + [H15Go G+ Hyl | 32
g3
0
=V + ngAgKg + HHA?Kl + [H12G21G1_11 + HH]GH 0
0
0
=%+ HpATK, + H ATK + [H12Goy + H1 1G] | a2
0
0
=V + HHA{Kl + HlQAgKQ + | as (A155)
0

In summary, the solution time path of the jump vector v in response to an
anticipated temporary raw materials price shock may be represented as follows:
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e Fort<T:

V¢ =V + HHAthl + H12A5K2 (A156)
e Fort="1T:
0
v = Vo + HHA?Kl + HlQAgKQ + | a9 (A157)
0
e Fort >1T:
Vi = Vg + H12A1:2K2 (A158)
. g4 1 é4 ®4/(r4 — Br)
+ H12A§_ gs + A2_ é5 + @5/(7‘5 — ﬁR)
g6 €6 ?6/(r6 — Br)
®1/(r1 — Br)
— (Hi1, Hyp) : frl
P6/ (16 — Br)

where (A158) also holds in ¢ = T and K; and Ky are defined by (A102) and

(A128) respectively.

Solution in case g =1

In case fr = 1 (permanent raw materials price shock) the canonical form of
the state equations (A52) is given by (cf. (A77), (A78))

xi+1 = A1x¢ + (G11, G12)[B~'d + B¢, (A159)
Zi41 = Aoz 4 (Goy, Goo)[B~1d + B~ 1g)] (A160)
where
- B-'dy fort<T
B~ld = Qo fort < (A161)
B-'d, fort>T
and
0 fort<T —1andt>T
B¢, = < (0,a2,0,0,0,0) fort=T—1 (A162)
(a1, 9,03,0,0,0) fort=T
(cf. (A45), (A59), ..., (A65)). Let
0 ~ ~
Qo G122 91
g220x2 g2
G 8 e (A163)
0 962002 g6
0
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(cf. (A89)) and

a1
Qo 91101 + g1202 + 91303 €1
92101 + g2o02 + gos3ar3 ()
G0l = , = . (A164)
8 ge101 + ge2x2 + G633 €6

We first consider the solution of the canonical system for t <T — 1 and t > T
and then develop the solution of the transformed state vectors in the periods
t=Tandt=1T—1. For t <T —1 the system (A159), (A160) is equivalent to
Xi+1 — X0 = A1 (x¢ — Xo) (A165)
Zit] — Zo = A2 (Zt - 20) (A166)
where the steady state vectors Xp and Zzp are defined in (A80). For ¢ > T
(A159), (A160) is equivalent to
Xt41 — X1 = A (x¢ — X1) (A167)
Zi11 — 21 = Ao (Zt — 21) (A168)
where X; and z; are the new steady states after the occurrence of the permanent
price shock. The general solution of the homogeneous system (A165), (A166)
for t <T — 1 is given by
Xy — X0 = Athl (A169)
Zi — Zo = AgKQ (A170)
where the constants K; and Ky are arbitrary. For ¢ > T' the system (A167),
(A168) has the general solution
X — X = Aiﬁl (Al?l)
Zy — 21 = Agﬁg (A172)

with arbitrary constants Rl and I~{2. The transversality condition (cf. (A92))

tlim (xt—%1) =0 (A173)
requires _
K;=0 (A174)
and therefore
X; = X1 fort >T (A175)

Next consider the period T' in which the foreign price shock is realized. Equation
(A159) then implies

x74+1 = Aixp + (G, Glg)[Bflal + Bfl(f)T] (A176)
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or equivalently

xp = A7 'xp1 — AT (G, Gi2)[B7'dy + B¢y (A177)
_ €1
= A7'% — AT (G11,G2)B M dr — A7 [ e
e3

according to (A161), (A164) and (A175). Since X; is given by
X1 = (I3 — A1) ' (G11,G12)B™'d; (A178)

(cf. (A80)) the first two expressions on the right-hand side of (A177) can be
summarized as follows:

AT'R — ATH(G11, Gi2)B7ldy = (A179)
ATH(X3 - A1) = 13](G11, Gi2) BTy =
ATHI3 — (I3 — A1) (X3 — A1) 7H(G11, G12)B7dy = ATTA X =%y
Therefore
€1
XT = il - Afl €2 (A180)
e3
Next consider the period t = T — 1. There are two possibilities to determine the

solution of the vector x in this period: the forward- and the backward-looking
solution. The forward-looking solution is given by

XT_1 = Al_le — Al_l(Gll, G12)[B*130 + Bilq’)T_l] (AlSl)
el - 7
= Al_l |:§1 — Al—l €o :| — AI—I(GH, Glg)B_ldg — Al_l §2
es §3
B 7 el
= A;lil — AII(GH, Glg)B_ldo — A;l 52 — AIQ ()
g3 es
Since
Al_lfl - Al_l(GH, Glg)B_lao = Al_l(fl — fo) (A182)

+ AT T3 = A1) (G11, Gr2)B g — AT (G11, Gi2)B
= A7lax + AT (I3 — A) 7 = I3] (G, Gi2) BT
= A7 AR+ A7 I — (Ts — Ay (T3 — A1) 7 (G11, Gi2)B™dy
= A[1dx + X0

(A181) is equivalent to

0 €1
xr 1 =Xo+ AT AR AT [ Go | — AT | e (A183)
g3 e3
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The backward-looking solution for x in period 7" — 1 is given by (cf. (A169))

xr-1 = A1xr_s + (G11,G12)B7'dg (A184)
= A (AT?K; + %) + (G11,G12) B! dg
= AT 'Ky + A1(T3 — A1) "H(G11, Gi2)B 7 + (Gi1, Gi2) By
= AT 'Ky + [A1(Is — A1) 7! + 13] (G, Gi2)B o
= A7 'Ky + [A1 4+ (I3 — A1) (I3 — A1) "1 (G11, Gi2)B My
= A{_lKl + Xo
Since the forward-looking and backward-looking solution must be equivalent,

equality of (A183) and (A184) yields a condition for the determination of the
constant K7:

g1 €1
AT K+ X =%+ A AT [ | A2 | ez (A185)
g3 es
Solving for K; yields the expression
g e1
Ki=A7T|dx— | G2 | — AT | e2 (A186)
§3 €3

The solution formula for K1 may also be obtained if the forward-looking solution
in period T, i.e., equation (A180), is compared with the equivalent backward-
looking solution in 7', the latter given by

B g1
x7 = Aix7_1 + (G11,G12)B 'dp + | 32 (A187)
g3
B g1
= A (AT + %) + (G11,Gr2)B7 dy + | 2
g3
B g1
= ATK; + [A1(T3 — A1)+ 5] (G11, Gi2)B Mo + | 92
g3
g1
=ATK +%+ | %
g3

Equality of (A187) and (A180) again yields (A186).

The next step is the determination of the solution of the second transformed
state vector z in the periods T" and T'— 1. The backward-looking solutions have
an analogous structure as the corresponding solutions of the state vector x (cf.
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(A184) and (A187)):

zr_1 = ATT'K, + 7 (A188)
94

ZT = AgKQ +zZo+ | g5 (A189)
96

where (44,75, gs)' is defined in (A163). The corresponding forward-looking so-
lutions are given by (cf. (A172))

€4
7z — A51ZT+1 — A;l(Ggl, G’22)B_1d1 — A;l €5 (A190)
€6
= A;l [A%UAKQ + Zl] — A;l(Ggl, GQQ)B_ldl — A;l es
€6
= AgKQ + A;l [(13 — Ag)_l — Id] (Ggl, G22)B_1d]_ — A;l es
€6
= Ang + A;l [13 — (13 — AQ)] (13 — Ag)_l(G21, GQQ)B_ldl — A;l es5
€6
= Ang +z —A;l €5
€6
and (cf. (A183))
) G
zyr_1 = AEIZT — AEI(GQL G’22)B_1d0 — A;l §5 (Algl)
g6
- €4 B g4
= A;l AgKg—l-Zl —A;l es _Agl(GQl,GQQ)B_ldO —Agl gg,
€6 g6
_ g4 €4
= AgilKQ — A;l gg, — A52 es | + A;l(zl — Zo)
9o €6
+ A (I3 — Ao) 7! = I3](Ga1, G2)B1dy
~ g4 €4
=AIT'Ky — AS! 9 | - A% es | + A az
9e €6
+ A2_1 [13 — (Ig — Ag)](Ig — AQ)il(Ggl, GQQ)Bfla()
_ g4 eq
= Ay Kz — Ay 95 — A% | es | + A5tz + 7
96 €6
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The solution formulas (A188) and (A191) as well as (A189) and (A190) are
equivalent. In both cases equality yields the condition

_ g4 e4
K2 — K2 = A;T dz — 55 - A;l €5 (A192)

ge €6

where — as before — Ky follows from the initial condition of the vector of pre-
determined variables w (cf. (A125) to (A128)):

Ky = —Hy Hy K (A193)

(A192), (A193) and (A186) imply

~ 94 €4
Ky = ~Hy Hy Ky — AT [dﬁ | A e } (A194)
g6 €6
g1 e1
= —Hy Hy ATl [dﬁ — @] -Ar e
g3 e3
g4 €4
o (3) - 5)]
ge €6
The solution of the original state vector is now given by:
o fort < T —1:
V¢ =V + HHAIiKl + H12A§K2 (A195)
o fort >1T:
Vi =V] + HlQA;RQ (A196>
o fort="1T:
g1 g4
vr =Vvg + HllA{K1 + HlQAgKQ +Hi1 |92 | +Hi2 | 95 (A197)
g3 g6
0
=Vg+ H11A?K1 + HlQAgKQ + | a9
0
N el e4
=1 +HpATKy —Hy A7 [ ea | —HipAS! [ es
€3 €g

— v, + HpATK,
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o fort=T—1;

vro1 = Vo +HuAT 'Ky + HpAl 'Ky (A198)
=vo+ H12A571K2 + HllAfldi + ngAgle
g1 g4
—HuA7 (G2 | —HpAS' (G5
g3 e
€1 €4
— H11A1_2 €2 | — H12A2_2 €5
€3 €6
€1 €4
— H11A1_2 €2 | — H12A2_2 €5
€3 €6

In compact form, the solution of the jump vector v in case of an anticipated
permanent raw materials price shock is given by:

o fort >1T:
Ve =V] + H12A§K2 (Algg)
o fort="1T:
B 0
vy =V1 + HpAJKy = Vo + HuATK + HpATKs + | a2 | (A200)
0
o fort <T:
Vi =V + HHAthl -+ H12A1:2K2 (AQOl)

where the constants K, Ky and Ky are defined in (A186), (A193) and (A194).
Note that the solution formulas in case of a permanent raw materials price shock
are similar to the corresponding solution of v in case of a temporary foreign
price shock (cf. (A156) to (A158)), but they are obviously not equivalent.

New Keynesian Model with exogenous money stock

If the interest rate rule (13) is replaced by a monetary policy rule for the growth
rate of money supply, the corresponding dynamic state equation results from
the first difference of the LM equation

Amy — 7§ = l(ys — ye—1) + W [0ky — 7)) — Phi—1 — Pio1)] (A202)
— a7y — ) + lea(r — 1) — l2(if —if_q)
— (lﬂ/) + lga)(Tt — Tt—l) + ZQ(W:JA — sz)
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where
Amy = A — 0 (7§ — 7°) — Balgr — ) (A203)

= Am + 07 + 02(q — do) — Oy — V2(ye — Y7 + V(R — D))

Inserting the monetary policy rule into (A202) yields the state equation
1

— QT4 1 + 7Tg+1 = l
2

(ll + 52)% — %((ll + 52)1b + 2[204)7} (A204)

1 o 1
+ -1+l +v)m — —1yt—1 + —(l1 + laa) -1
l2 la la

1 ~ * * llw * *

+ E(ll +02)Y (PR — Pt) — E(pR,t—l —Pi_1)
1 v V- N " v

= AT = T = (@ do) = (i i)
lo l2 l2

Equation (A204) now replaces the dynamic state equation (A2) while the other
state equations (A1) and (A3) remain unchanged. Obviously, the state matrix
B, defined in (A6), does not change while the second row of the matrix C (see
(AT7)) has to be replaced by

1 - 1 .
co1 = E(ll + Ua), a2 = _E((Zl + U2)¢) + 2lr0x) (A205)
1 - l1
023=l—(1+lz+vl), Cu =~
2 2
1
Co5 = E(llw + lha), c26 =0

In the long run the inflation rates m and 7€ as well as the nominal depreciation
rate Ae are determined by the growth rate of domestic money supply:

Am=7=7°"= Ae (A206)
The input function ky; is then given by (cf. (A9))

1 o
2

b = (1 + )bk = p1) = - (he —pi) + 7 =T (A200)

U2

la

Assuming A =7 =7 =0 and i} =i;_;, (A207) can be rewritten as

— (i = ii) - L BT = R 0T+ R )

kot = da + ¢ (A208)
where
&=~ 25— ) (A209)
and
20 = (0 — 1) — (Pir — )] (A210)
+ 222 [, — 90) - (= 9] + s —
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Note that on the assumption Am = 0 the steady state system (A23) to (A27)
and the input functions ki; and ks; do not change. According to (A13) to (A22)
the function ¢o; can be written as follows:

e In case Br = 1:

0 fort<T —1
1—u* fort=T-1
bu=14, " ) (A211)
pypt =1 —p*) fort=T
0 fort >T
e In case Or < 1:
0 fort<T —1
1—p* fort=T-1
1

P2t = B (lh +0)u* + (1 — p*)(Br—2) fort=T
[lﬁ “(Li(Br — 1) + 12fR)

+(1—p )(5R—1)]ﬂtT1 fort >T

In case Br = 1 the input vector B~1¢, has the representation (A61) where ay

and ag are again given by (A62) and (A65) respectively, while a3 and g are
now of the form

a1 = biigir + biagar + bizdar (A212)
. 1 ll * * 1 *
=~ e+ a1 —) on = (=) = rasalt =
ag = baaor + bazgar (A213)
1 l
— =) (u1 =)o - @)+ 0=

In case B < 1 the vector B~1¢, takes the form (A66) where ag, O3 and_@, do
not change (cf. (A62), (A69), (A72)) and the constants &1, Go, ¢; and ¢, are
now given by
&1 = biigrr + biador + bisesr (A214)
1 X %
= —Eau(l —w)[(1 = agh)yp” — (a2 + aslz)(1 — 1*)(Br — 1)]
1 1 ~ * *
_ H(ag + agla)ap(l — w) [EUI + Do) + (1 — p*)(Br — 2)]

- |é|a2a[/~t5¢ + (1= )l

(1 =) (1 = ash )" — grannlds + (1= )l

+ éau(l —w)(az + asly) [(1 — p7) — %(ll + o]
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Gy = baapor + bozdar (A215)

~ pall-o) (u(l ~ [+ B+ (1 )~ 2)]

s+ (1 u)]u*)

3 = _%(w@ —W)[(1 — azh)yp* — (as + azla)(1 — u*)(Br — 1)]8r (A216)

— L(a2 + agle)ap(l —w) [gﬂ*(ll(ﬂl% — 1) + v28g)
|B| la

=) Br 1>2] — grasaludvin + (1 - ) (B~ D

= —%0&#(1 —w) [(1 —agly )y Br + (a2 + QBZQ)%N*(ll(ﬁR — 1) 4+ U2R)

+ é'am — w)(az + agly) (1 — *) (B — 1)

_ ﬁaga[uw@% + (1= p)(Br — D"
_ 1

~ B
(- ) (B - 1>2) T (1B + (1 — p)(Br — D]

ar(1— ) [uu ) (%u*alm 1)+ 52Br) (A217)

Perfect Stabilization of the CPI Inflation Rate

Perfect stabilization of the CPI inflation rate ¢ is possible with the help of an
interest rate rule that depends on the real appreciation rate A7yyq. The real
interest rate definition and the uncovered interest parity condition yield the
equation

Bp — T =19 — QAT — Tpyy (A218)

The policy target
T =75 =7 =0 (A219)

then implies the interest rate rule
i =if — T — (T — Tr) (A220)

which differs from the Taylor-type rules. The dynamics of the stabilized system
can be represented by the state equations (Al) and (A3) with 7 | = 7§ = 0:

b11Yi+1 + b12Ti41 = c11ye + c127 + crayi—1 + ki (A221)
0 = c31yt + c32m + c35T4—1 + k3t (A222)

(A222) implies

1 .
Ytt+j = —a(cgﬂtﬂ‘ + 35Te4j—1 + k3i+j), Jj=-10,1 (A223)
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Inserting this equation in (A221) yields the following difference equation of
order three in the jump variable 7:

VITe+1 = V2Tt + V3Te—1 + YaTe—2 + b11ksi+1 (A224)
— c11kst — crakge—1 + c31kae
with
7 = —bi1csa + c31012 (A225)
Y2 = biicss — cr1c32 + cz1c12
73 = —(c11¢35 + C14¢32)
Y4 = —C14C35
Let
P (A226)
Wat = Wit—1 = T¢—2 (A227)

then the state equation (A224) is equivalent to the system

Tt4+1 Y2/ 3/ a/m Tt 1
Wi+l | = 1 0 0 wit | + 10 us (A228)
W2t+1 0 1 0 waot O

with the input function

1
U = %(b11k3t+1 — cnksy — craksi—1 + caikie) (A229)

The state matrix of the stabilized system (A228) has one unstable and two
stable eigenvalues (|ri| > 1, |r2] < 1, |rg| < 1) where r; is real and 72 and 73
are conjugate complex numbers. The system (A228) therefore exhibits saddle
point behavior, since the auxiliary variables w; and wy are predetermined. The
unique convergent solution time path for 7 can be obtained by transforming
(A228) into Jordan-canonical form given by (cf. (A73) to (A79))

- ~ - ~ ~ 1
X4l Al 0 Xy G Gio
- = _ = ~ ~ 0 A230
<Zt+1> < 0 A2> (Zt> * <G21 Gn)/\, Ut ( )
X\ _ (En (Em T (A231)
z Ga1 Go) \W

én 612 911 912 4913 ~ o~

~ ~ =\1g21 g22 ¢go3 | = G=H" (A232)

Go1 Gao
931 932 933

B 5 o hi1 hi2 s

H= (g“ g”> = | ha1 ho hos (A233)
2 e h31 hsz hs3

A = HAG (A234)

67



e ™ 0 0
A:(Z(\)l 9): 0 7 O (A235)

(- (R ) 6) s
A (Z;) (A237)

H consists of the (right-) eigenvectors of A, and G denotes its inverse. Accord-
ing to the definition of ki and k3¢ (cf. (A28) and (A30)) the input function wu,
takes the following form (cf. (A38) to (A51)):

e In case Br = 1:

o fort <T —1
g+my fort=T-—1
U= u +my fort=T (A238)
uy+m3 fort=T+1
U1 fort >T+1
where
1 _ _
U= - ((b11 — c11 — c14)d3 + c31dy) (A239)
b1 — _
my = —(ds1 — dso) (A240)
Y1
1
- %(611(1 — )i+ e31(az + asly) (1 — p*))
mo = %(831 — 830) + 2(1 — AL)AL* (A241)
2! 71
ms = (1 — pyu (A242)
71
ds = pd (g — ¥7) (A243)
81 = —(1 —a1+ by — agll)y — (b3 — (1 — agll)w)F (A244)

e In case fr < 1L:

U fort<T—1
To + M fort =T — 1
U = { Ug + Mo fort =T (A245)
ug + ms fort=T+1
kﬂo—l—'ffuﬁf{T_l fort >T+1
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where

1

my = " (bll)\2 + 031)\0) (A246)
N 1
Mo = %(—511)\3 + 112 + e31A1) (A247)
_ 1
ms = %(*511)\351% + 1123 + c1aX2 + 311 0R) (A248)

- 1 =
my = %(—511)\351% +ens + sl + csihifr)

(A249)
Ao = (az + aglz)(1 — p*) (A250)
A= (1— ash)vp® — (ag + asl)(1 — 1*)(Br — 1) (A251)
Ao = () + (1 — p))p* (A252)
Az = (u0YBr + (1 — p)(Br — 1))1* (A253)

We first discuss the canonical system (A230) in case of permanent raw materials
price shocks (g =1). For t < T — 1 it is equivalent to

Xip1 — X0 = AL (Xy — Xo) fort <T —1 (A254)
Ziy1 — 20 = Ao(Z — 20) fort <T —1 (A255)

where the steady-state values X and z are given by

§ = (Il - 1~X1)_1C-‘qlu (A256)
7= (12 — KQ)_lézlﬂ (A257)
For t > T + 1 it is equivalent to
Xep1 — X1 = Ay (Xp — %) for t > T + 1 (A258)
Zir1 — 21 = Ao(Z — 71) for t > T +1 (A259)

The bounded solution for ¢ < T — 1 and ¢ > T + 1 is given by (cf. (A169) to
(A175))

% = Xo + AK for t < T — 1 (A260)
7 = 7o + ApKo for t < T —1 (A261)
X =X fort>T+1 (A262)
7 =21 + AKo fort > T +1 (A263)

The solution for t =T +1,t =T and t =T — 1 can be derived from these
solution formulas and the state equations (A230) where u; is given by (A238)
in case Br = 1. Since

X749 = ]~\1)~(T+1 + 611UT+1 (A264)
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we get the forward-looking solution
Xri1 = A; Xroo — Ay Griuri (A265)
= K1_1§1 — Kl_léu(ﬂl +mg3) = X — Kl_léumg
(A265) implies
%r = A, Zre1 — A; Grur (A266)
— AR — Ay ' Guymg) — AL Gy (T +my)
— %1 — A, Gumg— A, Gims
For t =T — 1 the backward-looking solution of the variable X is given by
Xr_1 = AMiXr_2 + Griur—o (A267)
= A1 (%o + K1T72K1) + Gl = Xo + KirilK
while the forward-looking solution takes the form

Xro1= A Xp — K;lén(m +my) (A268)
= jNXl_l( A1 G11m3 — Kl_lénmg)
- ./le Guag— A, G
—A R —%) + Kl‘l(io — Gyiho)
- Al_génmg - A1 Gnmg A Gum
— A AR+ — Ay A Grams + AL Grmg + Grm)
Since (A267) and (A268) must be equivalent, the constant K; is given by
Ki = A, [dX— A, Gums — A, Giyma — Giymy] (A269)
The corresponding solution formulas for the variable z can be derived as follows:
Zr1 = Aozr_o + Gojur o (A270)
— Ay Kyt Aszo+ Golig =20 + Ay Ky
For t = T the backward-looking solution is given by
Zr = Aozp_1 + Gojup_1 = -/N\z(%o + INXgTile) + ém(% +my) (A271)
= %0 + Goymy + Ay Ky
while for t =T + 1 it takes the form
Zr1 = Aozp + Gojur (A272)
= Az + AsGoymy + Ay Ky + Goytiy + Goymo
= Asz1 + Go1Ty — Az (7 — 7o) + ASH
+ A2Garmy + Gaymo

= o+ = =T+l ~ ~
=71 — Aodz+ Ay Ko+ AyGoymy + Gaymag
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An alternative solution representation for zp;q follows from the equation

Zr12 = Aozt + Goruris (A273)
and (A263):
. ~—1
Z741 = AQ ZT+2 - A2 GQlUT+1 (A274)
~ + ~
= AQ Z1 + A2 Ky — A2 G’Ql (U1 + mg)

T+1 ~
= Z1 — A2 G21m3 + A2

Since (A272) and (A274) are equivalent, we get the equation
~ ~-T = =~ ~—1~ ~—2 ~
K2 — K2 = A2 [C[i — G21m1 — AQ G21m2 — A2 G21m3] (A275)
Note that condition (A275) also follows from the equality of (A271) and

e ~—1x
zr = Ay Zr41 — A2 Gojur (A276)
~_1 — ~_1~ ~ ~_1~
= A2 [ A2 G21m3 + A2 KQ] — A2 Ggl(ﬁl + mg)
~_9~
= Z1 + A2 Kz — A2 G21m2 — A2 Goims

After having derived the solution of the transformed state vector (X,z) we can
use (A236) to determine the solution time path of the terms of trade 7 in case
Br = 1. The time path for y; then follows from equation (A223). For ¢t < T —1
we get

7 =7To + HuA Ky + HipApKo fort <T—1 (A277)

where K; is defined by (A269) and Ko follows from the initial condition of the
predetermined state vector w (cf. (A193)):

Ky = —H3, Hy K, (A278)
For t > T + 1 the bounded solution of the state variable 7 is given by
7 =71 + HipAyKs for t > T + 1 (A279)
where K follows from (A275) and (A278). For t =T + 1 we get

T4l = -l 1~
mr+1 =71+ HigAy Ko —HipAy Giims — HigAy Garmg (A280)

~ ~T+1~
=71+ HiaA,
since . IS
Moreover,
~ ~_2~ ~ ~_92~
H11A1 Gll = —H12A2 G21 (A282)
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(A281) and (A282) imply that for t =T the solution of 7 is given by

~ T~ ~ o~ 1~ ~ o~ 1~
T =71+ H12A2 Ky — H11A1 Giimg — H12A2 Gaimo (A283)
~ ~_O~ ~ ~—9~
—HipAy Guimg — HipAy Gaimg
~ T~ ~ o~ ~ o~
=71+ HipAy Ko — [Hi1Ay G +HigAy Gog|ms

0

~ ~T~
=71+ HipA Ko

To show (A281) and (A282) note that

EIH IE112 (:}11 (}12 _ (11 0> (A284)
Hy Hx/ \Gor Goo 0 I
implying L L
Hj2Go1 = —Ha Gy (A285)
or
hao h23> <921> <h21>
— A286
<h32 h3s) \gs1 ha ) I ( )
Then
hoogo1 + ha3zgs1 = —ha1911 (A287)
h32g21 + h33g31 = —h31g11 (A288)

For t < T — 1 the solution of the predetermined state vector w is given by

W = <’UJ11}) = <ZO> + ﬁglxiKl + ﬁQQK;KQ (A289)
Wat 70

Since wyy = Tt—1 and wor = Tr_2, the following equations must also hold for
t<T—1:

~  ~t1 ~  ~t1

wi = 7—1 =70 + HnAy Ki+HigAy Ko (A290)
~ 2 ~ ~t-2

Wor = Ty—9 = To + H11A1 K, + H12A2 K, (A291)

Comparing these equations with (A289) yields

~ ~2~{-2 ~ 212
Hy A A K + HypAoAy Ky = (A292)
If:Ill-Kl ~t=2 I,:Im./’ig ~t—2
~ A, Ky + ~ Ay Ko
implying
H; A 2 HioA 2
L) = HyA 272 ) = HypA, (A293)
H; H,,
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According to (A233) and (A235) the equations (A293) are equivalent to

hi1ry = hoir? (A294)
hi1 = hgiri (A295)
hiara = hoors (A296)
hisrs = hosrj (A297)
implying
h11 = h21’l“1 (A298)
h21 = h31’l“1 (A299)
h12 = hgg’l“g (A300)
h13 = h237“3 (A301)
haog = h3ary (A302)
haos = hssrs (A303)
Then the left-hand side of (A281) is given by
~ ~—1~ _ _
Hi1Ay Gii = hiiry fgi1 = harriry “g11 = haign (A304)

Using (A287), (A300) and (A301), the right-hand side of (A281) can be written
as

~ ~—1~ —1 0
—Hi2Ay Go1 = —(hi2, hi3) (T% 1) <g21> (A305)
T3 g31
— _(h _l,h —1 <921> — —(haa, h <921>
(hiary 1373 ) g1 (ha2, has) g1

~ ~—1~
= —hoago1 — hazgs1 = haign = HuAy G
To show (A282) note that the left-hand side is given by
~ o~ ~ _ _ _

Hi1Ay " Gii = hiry 2gin = harri (7 2g11) = hoiry 'g11 = haign (A306)

(cf. (A299)). The right-hand side of (A282) is given by

~ ~_92~ -2 0
—Hi2Ay Go1 = —(h12, hi3) <r% 2> <921> (A307)
T3 931

_ —(h127“2_2, h13r§2) (921)

931

— —(h rfl,h pol <921)
( 2279 2373 ) g31
= —(h32, hs3) (gi) = —(h32921 + h33931) = h31911

(cf. (A288), (A302), (A303)). Therefore, (A282) holds.
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We now analyze the canonical system (A230) in case of temporary raw

materials price shocks (g < 1). For t < T — 1 its solution is given by (A260)
For t > T + 1 the forward-looking solution of X is given by (cf.

and (A261).
(A105), (A106))
> ts 1~
~ = TUl—s—
Xt =X— Z Ay Gyt (A308)
s=t
=X — gui Z .
_z_ 9uma (T fort>T+1
1 — BR
implying N
> = g111my
X =X — A309
ro =% P, (A309)
Since
iT+2 = K1)~CT+1 + 611UT+1 (ASlO)
we get
- ~—1
XT+1 = Al XT+2 - Al GlluT+1 (A311)
~-1 ~—1 m ~—1~ -
=A; X— A, e g, — Ay G (T + m3)
r -0
= ~—lx= ~—1~ m
=x—A; Gumz—A; Gy L Br
1 — Br
The forward-looking solution of X7 is then given by
~ ~—1_ ~—1
X7 = A1 XT4+1 — Al GnuT (A312)
~—2~ m
1 — Br
~—1~ ~—1~
— Al Giiug — Al Gi1msy
~—1~ ~—2 ~ m
—X— A, 'Gus — A, ‘Guing — A, G - fﬁRﬁR
Fort =T — 1 we get
(A313)

~_1~
X7-1 —A1 XT—A1 Griur—1
o

~—1= ~—=2~ ~—3~ ~—=3
:Al X—Al G11m2—A1 G11m3—A1 G11 R
1 — Br

1~ 1~
_Al GllﬁO_Al Giimy
~—2~ ~—3~ ~ -3~ m
Ay Gime — Ay Giimg — A, Gy L Br
r1— BRr

= ~—1~ ~
=X — Al G11m1 —
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The backward-looking solution at time ¢ =7 — 1 is given by

Xr_1 = AMiXr_s + Griur—s (A314)
~ =  ~T-1 ~ = ~T-1
=Ax+ Al K+ Giiug =x+ Al K,

Since (A313) and (A314) are equivalent, the constant K; must satisfy the con-
dition
I

~—T o~ ~—1~
K, = _Al Giimy + A1 Giimsa (A315)

my
3 Br]

1— MR

~_9~ ~_ ~
+A, Giims+ A, Gnr

The next step is the development of the solution time path of the transformed
vector z. Since s
ZT_9 =7+ A2 Ko (A316)

the backward-looking solution for t =T — 1, T, T+ 1 and T + 2 is given by

. ~ ~ = ~T-1
zr—1 = Aozp 2+ Gorur 2 =z+ Ay Ky (A317)
~ 2 o~ e = ~T ~ ~
zr = Aozr—1 + Garur—1 =z + Ay Ko + Gaymy (A318)
Zr+1 = Aozr + Gojur (A319)

= ~T+1 e ~ = ~
=z+A, Ky + AyGoyiy + G
Aijq.g = K2§T+1 + 621UT+1 (A320)
=  ~T+2 ~2~ o~~~
=7+ A, " K> + AyGoymy + AaGayma + Goyms
Let 6, be the input function of the difference equation (cf. (A230))
Ziy1 = Aoz + Gojuy (A321)

Then the definition of u; in case Br < 1 implies

0 fort <T —1
6217711 fort=T-1
0, = Gorug = { Goying fort =T (A322)
ézlﬁlg fort=T+1
lézlﬁ’mﬁﬁ;jﬂfl fort >T+1
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The general solution of (A321) for ¢ > T + 1 is then given by

Z=7+ AKo + Z Ay, (A323)
s=T-1

= ~t ~ ~t—T—1~
:z+A2K2+A2 HT 1+ A, 01

~tT2~ tsl~
+A2 T+1+ Z A s

s=T+42

-~ ~t ~ ~t—T—1 ~,
=Z+A2K2+A2 G21m1—|—A2 Ga1ma

~t—T— 2~ ~t 1~
+ A, Gorma + Z - Go1mafy, =1
s=T+2
Since
T+1 ot T42 T+2 ¢
s 1—=x T —x
Zx-Zx—Zm 1_33— -7 = 1—2 (A324)
s=T+2
we get for j = 2,3:
t—1 t—1 /BR s
> e g T = g Y () A4920)
s=T+2 s=T4+2 > J
s\ T2 8\t
e (%) - (%)
- r] g]1m4ﬂR 1 _ ﬁ_R
T
_ _ 1 1 ﬁ_R T+42 - ﬁ_ t
g9 o — Br 5T+1 r;
, 1 t—T—2 t—T 1]
= g]1m47’j ~ [Tj Br R
and therefore
~t—s—1 ~ ~t—T—2 my/(re —
Z Ay " Gomas T = A, <921~4/( 2 5R>) Br  (A326)
T g31m4/(r3 — BR)
s=T+2
_ (9217714/(""2 - ﬁR)) t—T—1
gsima/(rs — Pr)) " F
(A323) then implies
- =  ~t ~ ~t—T—1~
Zy = 7 + A2K2 + A2 Glel + A2 Go1mo (A327)

g31ma/(rs — Br)

 (9aama/(r2 = Br)\ st—1—1
<9317714/(r3 — ﬁR)> Br fort >T +2

~t—T— ~t—T— _
—|—At2 G21m3 —|—At2 2 <921T4/(T2 ﬁR)) ﬁR
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Note that (A327) also holds for ¢t = T + 2 (see (A320)).

The convergent solution time path of the state variable 7 = Hy1X + Ijllgi

in case Or < 1 is now given by the following expressions:
e Fort<T —1:
=T+ 1:1111~Xt1K1 + 1:1121~\;K2
e Fort="1T:

2~
7 =7—HpA, Gnmz —Hyj A, Guimg

— H11A1 G11 -

=7+ H12A2 K> + H11A1 K +my

since
H1,Goyiiy = (I — ﬁnéu)ﬁh
and
~T ~ ~_9~
Al K1 = —G11m1 Al G11m2 — Al G11m3
~_ 2~ my
~ A G
1 Hr —ﬁRﬁ

(cf. (A284), (A315)).
e Fort=T++1:
o
r1— ﬂRﬁR
~ Tyl - T S
+HippAy Ko+ HioAyGoymg + Hi2Goyma

[ U
741 =7 — Hi1tAy Giyms —HppAy Gy

e Fort =T+ 2:

A
ﬁ Br+ HipA,

Tr42 =T — ﬁnén —
~ ~2~ _
+Hi2AyGoymy + H15A2Go1ms + HisGoriing

e Fort >T + 2:

_ = gy
Tt:T—HH
7"1—5

~ ~t_

_ T
+ Hi2A, G21m2 + H12A2 G21m3
o~ t=T-2 (goymy /(12 —ﬁR)>
+ HisA -
12 <931m4/(7“3 — BRr) Pr

5 (9ma/(r2 = BR)\ s—T—1
Hi (931?714/(7”3 — 51%)) Ok

53 T+ H12A2K2 + H12A2 G21m1

where Ky is defined by (A278).
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(A328)

(A329)

(A330)

(A331)

(A332)

(A333)

(A334)



The solution formula (A334) also holds for t = T+ 2 (see (A333)). Moreover,
it also holds for ¢ =T + 1 since

~ -T2~ e ~ 1l

H12A2 G21m5 T = H12A2 G21m3 = _HllAl G11m3 (A335)

(according to (A281)) and
& gum -1 (ga1ma/(r2 — Br)
Hu T — ﬁ +Hod, ( 314/ (13 — 51%)) br (A336)

_H (92177%4/(7“2 — Br)
2\ gs1ma/(r3 — Br)

To show (A336), divide (A336) by (—(r) yielding the equivalent expression (cf.
(A130))

Soa-lgua ga1ma/(r2 — Br)
H11A1 - H12A2 <g31m4/(7"3 _ ﬂR) (A337)

~ g1y oy 9217714/(7“2 - 5R) -1
+ {Hu +Hjo <gglﬁ14/(7“3 B ﬂR))] Br

Using (A281) the right-hand side of (A337) can be summarized as follows:

1
B Z 9]17714 h i+ Z _ i (A338)
S =

> —H11A1 g11 - Br

— BR) ﬁR

m
gi1my h

ri @] i+ (r - Br)BR

3 ~
_ gj1mmy {l 1
- Br

T.
j=2"7

9317714 g11my m4
; h
s rife 0 - BB Z Yt

9'1 + Lgn
77 (r1— Br)

m h11 ) fﬁ4 < 1 1 >
hiiry + =—h ——+

ﬁR ( 117 911 ( " —ﬁR)gH B 11911 " - Br

_ 1 ~ -1 g11y

my 11911701(7,1 — ﬁR) 114} " — Br

Therefore, (A334) also holds for t =T + 1. In the following we will show that
the solution time path (A334) also holds for ¢t = T'. In case t = T the solution
formula (A334) is equivalent to (A329) if and only if

~ T N e PO

T+ H12A2 Ky + (Il — HllGll)ml — H11A1 G11m2 (A339)
P P ~ 2~ m

—HuA, Gums —HuAy Giy o _4 RBR =

T o~ o~ e~ e 2~
T+ Hi2Ay Ko + HioGoymg + HigAy Gormao + HigAy Goymg

Coguma oy & -2 (goma/(r2 — Or)
Hnﬁ — ﬂRﬁR +HizAy <g3177b4/(7“3 — 51?,)) br

—Hyp <g217?4/(7“2 — ﬁR)) ﬂél

g31m4/(r3 — BR)
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(A339) holds if and only if the following four equations hold simultaneously:

(I, — Hy1G11)imy = H12Goiig (A340)
~ ~—1~ ~ ~—1~
H12A2 Gglmg = _H11A1 G11m2 (A341)
~ ~—2~ ~ ~—2~ -~
H12A2 G2177’L3 = —H11A1 G11m3 (A342)

CHLACG 1~ Br = ok, <92”f‘4/ (7"2_53)) Br  (A343)

gs1ma/(rs — Br)
T g2a1ma/(r2 — BR)\ -1
Hi <931m4/(T3 - 5R)> Fr

~  gunu o, 4
—Hy ——08;,
1 — Br

(A340) is equivalent to (A330), (A341) follows from the identity (A281), while
(A342) follows from (A282). It remains to show equation (A343). (A282)
implies that (A343) is equivalent to

~ =2 (go1my/(r2 — BR) = (gamu/(r2—Br)\ -1
Hi2A, (9317%4/(7“3 — ﬁR)> Br — Hiz (gglﬁu/(rg B ﬁR)) Br (A344)
~Hy rfll_n;;ﬁ;zl = ﬁ121~X2_2(~}21 o n_MbR

Br

Dividing by my4 yields the equation

S ot i ) RS R ey I
T (103 ) 7 = B 2
\
) (7 52) (e ) s
~on (5 52) (52) uRﬂ
=) (02 ) ot = o

Since h12r2_2 = h22r2_1, h13r3_2 = h23r3_1, (A346) is equivalent to

(hars oy ) (Zi; EZ - gg) 61 (A347)

1
—(h Tfljh rol (921)
(haary ™, hzars 931) r1— ﬁRﬁ

921/(r2 — Br)
— (h12, h13) <g31/(7,3 _ 5R)) Br' = h11911

B Or’
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or

g21/(ra — Br) 921 1 _
(haz, hsa) (9 1/(7“3 - 51%)) Pr — (haz, haa) <931> T — 5RﬂR N (A348)

53 + (hi2, h13) (gi;g:z : gf;;) ﬁgl

h11911 ﬁ

since h22r2_1 = hso, hggrgl = hgs. (A348) is equivalent to

g11/(r1 — BRr) g11/(r1 — BRr)
(ha1, ha, hss) | g21/(r2 — Br) | Br = (h11, hi2,has) | ga1/(r2 — Br) | B
931/(r3 — BR) 931/(r3 — BR)

(A349)
since —hg2g21 — h33gs1 = h31911- (A349) is equivalent to
3
hl]g]l Z h’ljgjl
Z T (A350)
= (rj = Br)Br = rj(rj =
since hz; = hljrj72 (j =1,2,3). Equation (A350) holds if and only if
. hygn (Br 1 : Br+ 1
79; J
L hi;g;1 =0 A351
jz;rj—ﬁfz(qz ﬁR) jz; 7 Brry (A351)
or
3 -
—> hsign (1 - —]> =0 (A352)
— Br
J
(since hlj/rjz = hs3;). (A352) is equivalent to
3 13
- Z hgjgjl = — Z hgj’l“jgjl (A353)
— Br =
J J
But this equation holds since
3
> h3jgin =0 (A354)
and
3 3
Z hsjrigin = Z hejgj1 =0 (A355)
i=1 =1

according to (A287) and (A288).
The solution time path of 7, in case S < 1 is therefore given by (A328)
(for t <T —1), (A329) (for t =T) and (A334) (for t > T).
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