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Abstract

In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian

analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series.

EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation

of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV

models as well as simulation smoothing where the latent volatilities are sampled at once. Based on

this EIS simulation smoother a Bayesian Markov Chain Monte Carlo (MCMC) posterior analysis

of the parameters of SV models can be performed.
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1. Introduction

This paper shows how to use Efficient Importance Sampling (EIS) (Richard and Zhang, 2004) to

perform a classical and Bayesian analysis of univariate and multivariate dynamic Stochastic Volatility

(SV) models.

The standard univariate SV model due to Taylor (1982, 1986) can be represented by

rt = βeλt/2εt, εt ∼ N(0, 1) (1)

λt = δλt−1 + νηt, ηt ∼ N(0, 1), (2)

where rt is the asset return in period t : 1 → T , λt is the latent log volatility of rt, and {εt, ηt}
are serially and mutually independent Gaussian random variables. The parameters to be estimated

are given by ω = (β, δ, ν)′. In order to ensure stationarity of rt, it is assumed that |δ| < 1. This

SV model is used as an alternative to the class of AutoRegressive Conditionally Heteroscedastic

(ARCH) models in accounting for the time-varying and persistent volatility. A complete description

of the properties of the SV model is provided, e.g., by Ghysels et al. (1996).

A natural extension of the standard SV model is the multivariate factor SV specification intro-

duced by Shephard (1996) and Jacquier et al. (1999). According to this model a set of asset returns

are driven by latent factors which are specified as SV processes. Such multivariate volatility models

are important for portfolio allocation and asset pricing which have to be discussed within a multi-

variate framework. Furthermore, multivariate volatility models might provide information about the

factors driving volatility processes. Consider n assets with returns rt = (r1,t, ..., rn,t)′. The simplest

version of a multivariate factor SV specification for rt is the following one-factor model:

rt = Dxt + et (3)

xt = β exp(λt/2)εt, εt ∼ N(0, 1) (4)

λt = δλt−1 + νηt, ηt ∼ N(0, 1), (5)

where D = (d1, ..., dn)′ denotes the factor loadings, xt a latent factor following a SV process, εt

and ηt serially independent Gaussian random variables, and et = (e1,t, ..., en,t)′ a vector of serially

independent idiosyncratic errors with et ∼ N(0,Σe) and Σe = diag(σ2
e,1, ..., σ

2
e,n). The errors εt, ηt

and ej,t are assumed to be mutually independent. In order to achieve identification, we impose the

restriction d1 = 1. This multivariate specification accounts not only for the volatility dynamics of

the individual assets but also, due to the common factor, for time varying correlations between the

the assets. Extensions of this basic multivariate framework recently analyzed by Pitt and Shephard
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(1999) and Aguilar and West (2000) allow for additional factors and for idiosyncratic errors which

also follow SV processes.

Liesenfeld and Richard (2003) used EIS to obtain Maximum Likelihood (ML) parameter esti-

mates and filtered volatility estimates for diagnostic tests of several extensions of the standard SV

model, including univariate specifications with semi-nonparametric error distributions, SV models

with two independent dynamic volatility processes and the multivariate model (3)-(5). Here, we

extend the application of EIS to a Markov Chain Monte Carlo (MCMC) posterior analysis of the

parameters of univariate and multivariate SV models. In particular, within a Gibbs sampling al-

gorithm for the conditional posterior distribution of the parameters and latent volatilities, EIS is

used to sample the volatilities. For this purpose the EIS procedure, which is designed to produce

an accurate approximation to the unknown highly multivariate conditional density of the volatil-

ities given the observed returns, is combined with the Acceptance-Rejection Metropolis Hastings

(AR-MH) algorithm of Tierney (1994).

An attractive feature of this EIS approach is that it allows for sampling the vector of latent

variables as one block. This eliminates the slow convergence due to high correlation between the

latent variables which typically arises in procedures where each element of the latent process is

sampled individually. Furthermore, the EIS procedure is highly generic. Hence, changes in the

model being analyzed can easily be accommodated. Moreover, the proposed approach can easily be

adapted to other unobserved component time series models with arbitrary conditional distributions

of the observed variable given the unobserved components. Examples are the dynamic parameter-

driven models involving counts (see, Chan and Ledolter, 1995 and Jung and Liesenfeld, 2001), the

stochastic autoregressive duration models (see, Bauwens and Hautsch, 2003) or the dynamic discrete

choice panel models analyzed by Liesenfeld and Richard (2004).

Alternative block-sampling procedures for sampling a latent process in a MCMC estimation

framework are the multi-move sampler of Shephard and Pitt (1997) and the ‘mixture sampler’

proposed by Kim et al. (1998). Using a Taylor expansion, the multi-move sampler is based on

local approximations to the conditional distribution of the latent process. In contrast, EIS relies

upon corresponding global approximations. The mixture sampler is based on mixture of normal

approximations to the conditional distribution for a linearized version of the SV model. However,

this approach does not seem able to easily deal with generalizations of the SV model (see, e.g., the

discussion to Pitt and Shephard, 1999).

The outline of this paper is as follows. Section 2 provides a description of the EIS procedure and
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its application to obtain ML estimations for univariate and multivariate SV models. In Section 3 we

discuss how to combine EIS with MCMC to perform a Bayesian analysis of those models. In section

4 we summarize our results and conclude.

2. Classical Estimation Based on EIS

2.1. EIS

The likelihood for the basic univariate SV model (1) and (2) and its multivariate extension (3)-(5)

is given by a T -fold integral of the form L(ω; R) =
∫

f(R, Λ;ω)dΛ, where R = {rt}T
t=1 denotes

the vector of observable returns and Λ = {λt}T
t=1 the vector of latent volatilities. The integrand

represents the joint density of R and Λ, which can be factorized into the sequence of conditional

densities ft for (rt, λt) given Rt−1 = {rτ}t−1
τ=1 and Λt−1 = {λτ}t−1

τ=1. Based on this factorization the

likelihood can be written as

L(ω; R) =
∫ T∏

t=1

ft(rt, λt|Rt−1, Λt−1;ω)dΛ (6)

and

ft(rt, λt|Rt−1, Λt−1;ω) = gt(rt|Rt−1, Λt; ω)pt(λt|Rt−1, Λt−1; ω), (7)

where gt represents the conditional density of rt given (Rt−1, Λt) and pt the conditional density of

λt given (Rt−1, Λt−1). Under the basic univariate SV model these densities are proportional to:

gt(rt|λt;ω) ∝ exp{−1
2
[(rt/β)2 exp(−λt) + λt]} (8)

pt(λt|λt−1;ω) ∝ exp{− 1
2ν2

(λt − δλt−1)}, (9)

where, for convenience, the initial value λ0 is assumed to be a known constant. Under the multivariate

SV model gt is replaced by

gt(rt|λt; ω) ∝ det(DD′β2 exp(λt) + Σe)−1/2 exp{−1
2
r′t[DD′ exp(λt) + Σe]−1rt}. (10)

It is well-known that direct MC estimation of L(ω; R) based on the natural sampler for the λt

process directly obtained from the statistical formulation of the model and given by the sequence

of pt densities is highly inefficient. This follows from the fact, that the simulated λt trajectories

from the ‘natural’ (or ‘initial’) sampling densities pt typically do not bear any resemblance to the

actual unobserved λt sequence under which the observed process rt is obtained. In other words,
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the implicit ‘posterior’ density of Λ is much tighter than its ‘prior’ (the natural sampler). Hence,

potential efficiency gains are enormous.

To improve the efficiency of the MC estimate of L(ω; R), EIS replaces the natural sampler by

importance sampling densities which provide close approximations to the implicit posterior of Λ. In

particular, let {mt(λt|Λt−1, at)}T
t=1 be a sequence of auxiliary importance samplers indexed by the

auxiliary parameters a = {at}T
t=1. Then for any choice of the auxiliary parameters, the integral in

(6) can be rewritten as

L(ω;R) =
∫ T∏

t=1

ft(rt, λt|Rt−1, Λt−1;ω)
mt(λt|Λt−1; at)

T∏

t=1

mt(λt|Λt−1; at)dΛ (11)

and the corresponding importance sampling MC estimate is given by

L̃N (ω;R, a) =
1
N

N∑

i=1

[
T∏

t=1

ft(rt, λ̃
(i)
t |Rt−1, Λ̃

(i)
t−1;ω)

mt(λ̃
(i)
t |Λ̃(i)

t−1; at)

]
, (12)

where {(λ̃(i)
1 , ..., λ̃

(i)
T ), i : 1 → N} are N independent trajectories drawn from the sequence of impor-

tance sampling densities mt.

As a natural choice, the importance sampler {mt} is specified as a parametric extension of the

natural sampler {pt}. EIS aims at selecting at’s that minimize the MC sampling variance of the

MC likelihood estimate (12). This requires that
∏

t mt be as close as possible to being proportional

to
∏

t ft. Feasibility necessitates that this high-dimensional optimization problem be decomposed

into a sequence of low-dimensional subproblems. However, due to the recursive structure of the λt

process it is not possible to secure a good approximation of ft by mt period by period independently

from one another which would essentially amount to factorizing the high dimensional integral in

(6) into a product of independent univariate integrals. Accordingly, EIS approximations involve

density kernels instead of densities. In particular, let kt(λt, λt−1, at) denote the density kernel of mt

satisfying

mt(λt|λt−1, at) =
kt(λt, λt−1, at)
χt(λt−1, at)

, where χt(λt−1, at) =
∫

kt(λt, λt−1, at)dλt. (13)

Note that the integrating constant χt does not depend on λt. Hence, an approximation of ft by kt

would leave χt unaccounted for. But χt can be transferred back into the subproblem of period t− 1

involving λt−1. Therefore, the sequential implementation of EIS requires solving a back-recursive

sequence of low-dimensional least-squares problems of the form

(ĉt, ât) = arg min
ct,at

N∑

i=1

{
ln

[
ft

(
rt, λ̆

(i)
t |Λ̆(i)

t−1, Rt−1, ω
) · χt+1

(
λ̆

(i)
t , ât+1

)]− ct − ln kt

(
λ̆

(i)
t , λ̆

(i)
t−1, at

)}2

(14)
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for t : T → 1, with χT+1(λT , ·) ≡ 1. The N independent trajectories {(λ̆(i)
1 , ..., λ̆

(i)
T ), i : 1 → N} are

drawn from the sequence of pt densities, and the ct’s are constants to be estimated jointly with the

at’s. In order to obtain maximally efficient EIS samplers, a small number of iterations of the EIS

algorithm are required, where the initial sampling densities pt are replaced by the previous stage

importance samplers until a fixed point solution {ât} is obtained. The final MC EIS estimate of

the likelihood is obtained by substituting â = {ât}T
t=1 for a in (12) and ML-EIS estimates of ω are

obtained by maximizing L̃N (ω; R, â) with respect to ω using a standard numerical optimizer. The

convergence of such an optimizer requires that L̃N be continuous and/or differentiable in ω. This

is achieved by computing L̃N for different values of ω under a set of Common Random Numbers

(CRNs). This means that all {λ̆(i)
t } and {λ̃(i)

t } draws for different values of ω are obtained by

transformation of a common set of canonical random numbers, here standardized normals. (For a

description of the implementation of EIS for SV models, see the Appendix.) Once the parameters

have been estimated, EIS also allows to compute filtered estimates of functions of λt. Diagnostics

on the model specification are then obtained as byproducts (for details, see Liesenfeld and Richard,

2003).

As mentioned above, once EIS is implemented for a baseline model, modifications in that model

only require minor adjustments of the program, essentially adjusting the regressand and regressors

in the auxiliary regressions (14). For example, transforming the EIS algorithm for the baseline SV

model (1) and (2) into an EIS algorithm for the multivariate factor model (3)-(5) only requires

replacing the conditional density (8) by the conditional density (10).

We conclude this description of EIS with a comment on its reliability. It has long been recognized

that if the importance sampling density
∏

t mt has thinner tails than the integrand
∏

t ft the variance

of
∏

t ft/mt might not exist in which case the consistency of the likelihood estimate L̃N (ω;R, a) is

not longer guaranteed (see, e.g., Geweke, 1989 and Koopman and Shephard, 2002). In order to

check the existence of the variance of importance samplers for the estimation of SV models, Lee and

Koopmann (2004) used diagnostics based upon extreme-value distributions. Their results indicate

that the EIS approach produces reliable importance sampler for univariate SV models. Another

highly sensitive test to assess the existence of the variance for the EIS sampler can be found in

Richard and Zhang (2004).
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2.2. Application

To illustrate the EIS procedure we analyze the daily observations on four exchange rates: Deutsche

Mark (DM), British Pound (BP), Swiss Franc (SF) and Japanese Yen (YEN), all against the US-

Dollar. These are weekday closing prices from October 1, 1981 to June 28, 1985. The prices

sj,t, (j = DM, BP,SF, YEN) are transformed into continuously compounded returns centered around

their sample mean: rj,t = 100 · [ln(sj,t/sj,t−1) − (1/T )
∑T

t=1 ln(sj,t/sj,t−1)]. The sample size for the

returns is T = 945. This data set is also analyzed by Kim et al. (1998) and the British Pound

exchange rate by Shephard and Pitt (1997).

The ML-EIS estimation results for the univariate SV model (1) and (2) for each of the exchange

rates are given in Table 1. The ML-EIS estimates are based upon a simulated sample size of only

N = 30 trajectories. They are numerically very accurate, as indicated by the small MC (numerical)

standard deviations reported between brackets which were computed from 20 ML-EIS estimations

conducted under different sets of CRNs. The estimates of the parameters for all four return series

are very similar to the MCMC estimates reported by Kim et al. (1998).

The ML-EIS results for the multivariate factor SV model (3)-(5) based on N = 50 trajectories

are summarized in Table 2. All parameter estimates are reasonable and numerically very accurate

as indicated by the small MC standard deviations. The estimates of the factor loadings dj indicate

that the European currencies load more heavily on the common factor than the YEN. Moreover,

the estimated volatility parameters of the factor are similar in magnitude to the those obtained

under univariate SV models, and the estimate of δ, which is close to one, implies that the common

factor exhibits a strongly persistent volatility process. The log-likelihood of the multivariate model

is −2, 590, which is substantially larger than the sum of the likelihood values obtained under the

four independent SV models which equals −3, 699. This significant difference reflects the fact that,

in contrast to the univariate specifications, the multivariate model can account for the correlation

between the returns.

3. A Bayesian MCMC Approach Based on EIS

So far we have discussed the application of EIS to evaluate the likelihood, which allows to perform

a classical analysis of the univariate and multivariate SV model. We now discuss how EIS can be

merged with MCMC simulation methods to perform a Bayesian posterior analysis.

Bayesian MCMC simulation methods such as Gibbs sampling construct a Markov Chain whose
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equilibrium distribution is the joint posterior distribution of the parameters given the data. For the

problem of simulating from the joint posterior of a vector with d blocks, say ψ = (ψ1, ..., ψd)′, the

Gibbs sampler draws the rth ψi from the conditional distribution f(ψ(r)
i |ψ̃(r)

1 , ..., ψ̃
(r)
i−1, ψ̃

(r−1)
i+1 , ..., ψ̃

(r−1)
d ),

i : 1 → d. Under weak regularity conditions, the Gibbs draws (ψ̃(r)
1 , ..., ψ̃

(r)
d ) converge to draws from

the joint posterior as the number of cycles r increases (see, e.g., Tierney, 1994). For the basic SV

model Jacquier et al. (1994) proposed to augment the parameter vector ω to include the vector of

latent variables Λ, and to use the conditional posterior distributions f(ω|Λ, R) for ω given (Λ, R) and

f(Λ|ω,R) for Λ given (ω, R) as two Gibbs blocks to simulate from the joint posterior distribution

f(ω, Λ|R). The parameter vector ω is then estimated by reporting appropriate statistics for the

simulations from f(ω, Λ|R).

The main difficulty with this MCMC approach for estimating SV models is that of efficiently

sampling from Λ: The multivariate posterior distribution f(Λ|ω, R) is high dimensional and has no

closed-form solution. One solution adopted, e.g., by Jacquier et al. (1994) consists of constructing a

Gibbs sampler based on the T univariate conditional posteriors for λt|Λ\t, ω,R, where Λ\t denotes Λ

without the tth element. Then, in order to sample each element in Λ individually, they use Tierney’s

(1994) AR-MH algorithm based on a proposal density, which is obtained from an inverse-gamma

approximation to the density of exp{λt/2}|Λ\t, ω, R. (For a detailed description of the AR-MH

procedure, see, Chib and Greenberg, 1995.) An attractive feature of such a ‘single-move’ algorithm

is that it is easy to obtain a fairly good approximation to the univariate conditional posterior for λt.

On the other hand, as illustrated by Pitt and Shephard (1997), high correlation between the elements

in Λ leads to a slow convergence of the corresponding MCMC-algorithm. In order to alleviate this

problem, one can consider factorizing Λ into a smaller number of multivariate blocks but doing so

requires being able to construct good approximations to the higher dimensional conditional posterior

densities of these blocks.

Here, we propose to use a combination of the EIS-sampler with Tierney’s (1994) AR-MH algorithm

to simulate Λ|ω,R as a single block. The basis of such a procedure is the fact that the EIS density

for Λ provides a very close approximation to f(Λ|ω,R). In particular, our experience is that the

integrand in equation (6) and hence f(Λ|ω,R) is a well behaved function in Λ given R which can

be very accurately approximated by the EIS sampling density as indicated by the fact that the R2

associated by the EIS least squares problems (14) are typically greater than 0.999. Hence, one can

expect that the EIS density provides an efficient proposal density for the target density f(Λ|ω, R) in

the AR-MH algorithm. In the following subsection, we first discuss the MCMC-EIS implementation

for the univariate SV models. The extension to the multivariate model presented in the subsequent
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subsection, is then largely straightforward.

3.1 A MCMC algorithm for the univariate SV model

The implementation of the AR-MH algorithm based on EIS for the simulation from the conditional

posterior f(Λ|ω, R) involves the following elements. First, note that this conditional posterior density

has the form

f(Λ|ω, R) ∝ f(R, Λ|ω) =
T∏

t=1

ft(rt, λt|Rt−1,Λt−1, ω), (15)

where ft is given by equations (7)-(9). As mentioned above, the EIS sampling density represents an

approximation to f(R, Λ|ω) and hence, apart from a proportionality constant, to f(Λ|ω,R). The

corresponding functional approximation is of the form

f(R, Λ|ω) ' M(Λ, R, ω) :=
T∏

t=1

mt(λt|λt−1, ât)eĉt , (16)

where ât and ĉt are the estimated coefficients of the EIS regression (14) and are implicit functions

of ω.

Standard acceptance-rejection sampling techniques, as described, e.g., by Robert and Casella

(2004) require finding a constant κ (as small as possible) such that f(R, Λ|ω) ≤ κM(Λ, R, ω) for

all Λ. In the absence of such a constant we follow Shephard and Pitt (1997) in applying instead

Tierney’s (1994) accept-reject method which does not require that κM(Λ, R, ω) is dominating. This

approach is based on an additional Metropolis–Hastings step applied to the Λ–trajectories that

come through the acceptance-rejection step in order to ensure that the target density is adequately

sampled in the absence of a dominating function.

In particular, in the accept-reject part of the AR-MH algorithm, candidate trajectories Z̃ are

drawn from the EIS sampler until acceptance with probability min{f(R, Z̃|ω)/M(Z̃, R, ω), 1}. Then,

in the Metropolis-Hastings step, given Λ̃(k) (the previously sampled trajectory) and Λ̃ (the candidate

trajectory from the acceptance-rejection step), the next trajectory Λ̃(k+1) is obtained by the following

scheme:

1. If f(R, Λ̃(k)|ω) < M(Λ̃(k), R, ω), set α = 1;

If f(R, Λ̃(k)|ω) ≥ M(Λ̃(k), R, ω) and f(R, Λ̃|ω) < M(Λ̃, R, ω), set

α =
M(Λ̃(k), R, ω)
f(R, Λ̃(k)|ω)

;
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If f(R, Λ̃(k)|ω) ≥ M(Λ̃(k), R, ω) and f(R, Λ̃|ω) ≥ M(Λ̃, R, ω), set

α = min

{
f(R, Λ̃|ω)M(Λ̃(k), R, ω)
f(R, Λ̃(k)|ω)M(Λ̃, R, ω)

, 1

}
.

2. Generate u from a uniform U[0,1];

If u ≤ α

– return Λ̃ (as Λ̃(k+1));

Else

– return Λ̃(k) (as Λ̃(k+1)).

As in any MCMC method, after a sufficient long ‘burn-in’ of say ` iterations, the draws {Λ̃(k), k :

(` + 1) → N} are regarded as a dependent sample from the target density. In fact, this convergence

occurs under mild regularity conditions (see, e.g., Chib and Greenberg, 1995). In the application

below, the AR-MH step for Λ is repeated 10 times before the parameters are updated in the Gibbs

sequence. This is very cheap since draws of Λ from the EIS proposal density for fixed ω can be

produced very fast and easily.

As mentioned above, alternative block sampling strategies to simulate Λ|R,ω are Shephard and

Pitt’s (1997) multi-move sampler and the mixture sampler of Kim et al. (1998). The multi-move

sampling procedure divides the vector of volatilities Λ into blocks and applies a Taylor expansion

in order to obtain local approximations to the conditional posterior densities of the corresponding

blocks of volatility shocks. These approximations lead to multivariate Gaussian densities which are

used as proposal densities to draw volatility blocks within an AR-MH procedure. In contrast, the

mixture sampler linearizes the return equation of the SV model and approximates the distribution of

the corresponding error term ln ε2t by a discrete mixture of normals. Thus, within the Gibbs sequence

ω and Λ are augmented to include a vector of auxiliary variables S which indicate from which of the

normal distributions a particular ln ε2t is drawn. Due to the linear form of the return equation it is

then possible to sample λ|ω, R, S as one block. In order to correct for the approximation error, the

Gibbs draws of the parameters are reweighted providing draws from the exact posterior densities.

To pursue a Bayesian analysis of the parameters ω, we need to specify the prior densities. For

lnβ we assume a flat prior. The resulting conditional posterior for β2 is an inverted chi-squared

distribution with β2|Λ, R, δ, ν ∼ (
∑T

t=1 r2
t e
−λt)/χ2

(T ). Furthermore, following Kim et al. (1998), we

employ for (δ + 1)/2 a Beta prior with parameters δ(1) > 1/2 and δ(2) > 1/2, which leads to a prior

9



for δ given by

π(δ) ∝
(1 + δ

2

)δ(1)−1(1− δ

2

)δ(2)−1
, δ ∈ (−1, 1). (17)

In our application we set δ(1) = 20 and δ(2) = 1.5, implying a prior mean of 0.86 and a prior standard

deviation of 0.11. The resulting conditional posterior is non-conjugate. To sample from this posterior

for δ we use an independent MH sampler based on a Gaussian proposal density (for details, see Kim

et al., 1998). Finally, for ν2 we assume an inverted chi-squared prior with p0s0/χ2
(p0). Then the

conditional posterior is also an inverted chi-squared distribution with ν2|Λ, R, δ, β ∼ [
∑T

t=1(λt −
δλt−1)2 + p0s0]/χ2

(T+p0). In the application we set p0 = 10 and s0 = 0.01.

The estimation results of the univariate SV model for each of the four exchange rates based on

the above MCMC-EIS sampling scheme are summarized in Table 3. The results are based on 12,000

Gibbs iterations on the parameters, where the first 2000 are discarded. The table shows the posterior

means, posterior standard deviations and MC standard errors. Following Shephard and Pitt (1997),

the MC standard errors are computed using a Parzen based spectral estimator for the variance of a

sample mean, which takes the serial correlation of the parameter draws into account. In particular,

for M draws of the parameter vector {ω(k)}M
k=1 the MC standard errors are the square root of the

diagonal elements of

JM =
1
M

[
Γ0 +

2M

M − 1

LM∑

`=1

K
( `

LM

)
Γ`

]
, where Γ` =

1
M

M∑

k=`+1

(ω(k) − ω̄)(ω(k−`) − ω̄)′, (18)

LM is the bandwidth, and K(·) represents the Parzen kernel.

The MC standard errors for the British Pound exchange rate series are nearly the same as those

reported by Shephard and Pitt (1997) for their multimove sampler applied to a posterior analysis

for the same series. Hence, the MCMC-EIS implementation meets the standard of efficiency applied

in the literature. This is also confirmed by the autocorrelation functions of the Gibbs draws of

the parameters for the British Pound. These are shown in Figure 1 and indicate comparably fast

diminishing correlations of the Gibbs draws. Figure 1 also shows the plot of the parameter draws

against iteration and the corresponding the histograms. Finally, note that the MCMC-EIS estimation

results for all four exchange rates given in Table 3 are very similar to the ML-EIS results shown in

Table 1.

An alternative to the above MCMC-EIS implementation is one in which the AR-MH step for

the Λ draws from the EIS sampler is omitted and replaced by a reweighting step applied to the

corresponding parameter and Λ draws (see, e.g. Kim et al. 1998). The reweighting step corrects the

error associated with the approximation of the true posterior for Λ by the EIS sampling density.
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In particular, let g(ω) denote the function to be estimated by the posterior mean. Then such an

estimate is obtained by reweighting the Gibbs parameter draws according to

Ê[g(ω)|R] =
M∑

k=1

g(ω(k)) · c(k), (19)

where the weights are given by

c(k) =
f(R, Λ(k)|ω(k))
M(Λ(k), R, ω(k))

/ M∑

k=1

f(R, Λ(k)|ω(k))
M(Λ(k), R, ω(k))

. (20)

It turned out that the MCMC-EIS results based on such a reweighting scheme (not presented here)

are nearly the same as those obtained from an AR-MH correction step.

3.2 A MCMC algorithm for the multivariate factor SV model

In this section we consider the extension of the above MCMC-EIS procedure to the multivariate factor

SV model (3)-(5). Following Jacquier et al. (1999), for such an extension we use the augmented joint

posterior f(X,D,Σe,Λ, θ|R), where X = {xt}T
t=1 is the vector of the latent factors and θ = (β, δ, ν)′

contains the parameters of the SV process for xt. Accordingly, the Gibbs algorithm cycles through

the conditional posterior distributions of X, D, Σe, Λ and θ, where (Λ, θ)|X, D, Σe, R can be sampled

by applying directly the MCMC-EIS implementation for the univariate SV model as described in

Section 3.1. The conditional posteriors of the remaining Gibbs blocks are obtained as follows.

The conditional posterior of the factors X is given by

f(X|D,Σe,Λ, θ, R) ∝ f(R|X,D,Σe)f(X|Λ, θ) (21)

∝ |Σe|−T/2 exp
{
− 1

2

T∑

t=1

(rt −Dxt)′Σ−1
e (rt −Dxt)

}
(22)

× exp{−1
2

T∑

t=1

x2
t

β2eλt
},

whose r.h.s. represents the kernel of a multivariate Normal distribution. It follows that the condi-

tional posterior of X is given by
∏T

t=1 N(µxt , σ
2
xt

) with µxt = r′tΣ−1
e Dσ2

xt
and σ2

xt
= 1/(D′Σ−1

e D +

β−2e−λt).

Let D̄ denote the sub-vector with the unrestricted elements of D. Assuming that the prior for

the vector D̄ is a multivariate Normal distribution with D̄ ∼ N(µD0 , ΣD0) and that the priors for the

elements of Σe = diag(σ2
e,1, ..., σ

2
e,n) are independent inverted chi-squared distributions with σ2

e,j ∼
pj0sj0/χ2

(pj0
), then one obtains the corresponding conditional posteriors from standard conjugate
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multivariate analysis. In particular, the conditional posterior for D̄ is a N(µD, ΣD)-distribution

with µD = ΣD[
∑T

t=1(Σ
−1
e rtxt) + Σ−1

D0
µD0 ] and ΣD = [(

∑T
t=1 x2

t )Σ
−1
e + Σ−1

D0
]−1. Furthermore, the

conditional posterior of σ2
e,j is an inverted chi-squared distribution with σ2

e,j |(·) ∼ [
∑T

t=1(rj,t −
djxt)2 + pj0sj0 ]/χ2

(T+pj0
).

In the application we set the hyper-parameters for D̄, following Pitt and Shephard (1999),

to µD0 = (1, 1, 1)′ and ΣD0 = diag(25, 25, 25), reflecting a large prior uncertainty. The hyper-

parameters for σ2
e,j are set to pj0 = 10 and sj0 = 0.01 for all j : 1 → 4. Finally, for the θ parameters

of the SV factor process xt, we use the same prior specification as in the MCMC-EIS implementation

for the univariate SV model.

The estimation results of the multivariate factor model based on the above sampling scheme are

summarized in Table 4; the corresponding time series, histograms and autocorrelation functions of

the θ parameters are plotted in Figure 2 and the autocorrelation functions of the remaining para-

meters are shown in Figure 3. The results are based on 22,000 Gibbs iterations on the parameters,

where the first 2000 are discarded. Note from the MC standard errors given in Table 4 and the

autocorrelation functions in the Figures 2 and 3 that the MCMC-EIS procedure applied to the

multivariate factor model is reasonably efficient. In particular, the correlations of the θ parameters

become negligible within 500 lags and those of the D and Σe parameters within 50 and 150 lags,

respectively. Furthermore, note that the MCMC-EIS results of the multivariate model are very sim-

ilar to those obtained from the ML-EIS estimation and given in Table 2. Especially, for the D and

Σe parameters the two estimation procedures deliver quasi-identical results which indicates that the

likelihood is very informative about the factor loadings and the idiosyncratic variances.

As mentioned above, the performance of the multivariate SV model (3)-(5) might be improved

further by considering extensions of the model, for example, one that allows for a second latent

factor and/or idiosyncratic errors also following SV processes. The application of EIS to such

extensions, which are analyzed by Pitt and Shephard (1999) and Aguilar and West (2000) using

MCMC methods, is left to future research. However note that once a Gibbs algorithm for the basic

one-factor SV model is implemented, the augmentation to include additional latent SV processes is

straightforward and just requires to add additional steps in the Gibbs sequence of the same form as

described above (for further details, see also, Pitt and Shephard, 1999). Since the Gibbs step for a

particular SV process is conditional on the Gibbs draws for the remaining SV processes, the MCMC-

EIS implementation for such a generalization seems to be more convenient than the corresponding

ML-EIS approach, which would require an approximation of the joint ‘posterior’ of all latent SV

12



processes simultaneously.

4. Conclusion

This paper uses Efficient Importance Sampling (EIS) to provide the basis for ML-estimation and a

Bayesian Markov Chain Monte Carlo (MCMC) analysis for univariate and multivariate SV-models.

EIS is a Monte Carlo procedure for the evaluation of high-dimensional interdependent integrals

which can be used to accurately compute the likelihood of dynamic latent variable models. It is

based upon a global approximation to the implicit ‘posterior’ of the vector of latent variables given

all observable variables and the parameters. The resulting importance sampling density can also be

used to construct within a Gibbs approach a simulation smoother for the generation of draws from

the full conditional posterior of the volatility vector.

An attractive feature of the EIS procedure is that it is highly generic. Hence, changes in the model

being analyzed can be easily accommodated. Here we have focused on the ML-EIS and MCMC-EIS

analysis of the standard univariate SV model and a simple multivariate factor SV specification but,

in principle, extensions to appropriate generalizations of these baseline specifications are straight-

forward. For the ML-EIS approach this flexibility has already been illustrated by Liesenfeld and

Richard (2003). A further advantage of the EIS procedure is that it allows within a MCMC analysis

to sample the vector of latent volatilities as one block. This avoids the negative impacts of highly

correlated elements in the volatility vector on the convergence of algorithms where the volatility

elements are sampled individually.
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Appendix: The implementation of the EIS-algorithm

The EIS implementation for the likelihood evaluation of the univariate SV model (1) and (2) starts with the

selection of the class of auxiliary samplers. Using a parametric extension of the initial sampler pt given by

Equation (9), the corresponding density kernel of the Gaussian auxiliary sampler mt can be parameterized as

kt(λt, λt−1, at) = pt(λt|λt−1;ω)ζt(λt, at), (A.1)

with

ζt(λt, at) = exp{a1tλt + a2tλ
2
t}, at = (a1t, a2t)′, (A.2)

where ζt is an auxiliary function. Under this parametrization the initial sampler pt cancels out in the EIS

auxiliary regression (14). Inserting the functional forms of pt and ζt into Equation (A.1), leads to

kt(λt, λt−1, at) ∝ exp
{
− 1

2

[(δλt−1

ν

)2

− 2
(δλt−1

ν2
+ a1t

)
λt +

( 1
ν2
− 2a2t

)
λ2

t

]}
. (A.3)

Hence, the auxiliary sampler is a Gaussian density N(µt, σ
2
t ), where

µt = σ2
t

(δλt−1

ν2
+ a1t

)
, σ2

t =
ν2

1− 2ν2a2t
. (A.4)

Integrating kt with respect to λt leads to the following expression for the integrating constant

χt(λt−1; at) ∝ exp
{

µ2
t

2σ2
t

− (δλt−1)2

2ν2

}
. (A.5)

Based on these functional forms the computation of an EIS MC estimate of the likelihood requires the

following steps:

Step (1): Generate N independent trajectories {(λ̆(i)
1 , ..., λ̆

(i)
T ), i : 1 → N} from the pt densities.

Step (2): Use these trajectories to solve for each period t : T → 1 the least squares problem defined in

Equation (14). The step t regression is

ln gt(rt|λ̆(i)
t , ω) + lnχt+1(λ̆

(i)
t ; ât+1) = ct + a1tλ̆

(i)
t + a2t[λ̆

(i)
t ]2 + u

(i)
t , i : 1 → N, (A.6)

where u
(i)
t denotes the regression error term and gt is the Gaussian density for rt given λt according to

Equation (8). The initial condition for the integrating constant is given by χT+1(·) ≡ 1.

Step (3): Use the estimates of the regression coefficients a1t, a2t to obtain the Gaussian EIS sampler

{m(λt|λt−1, ât)}T
t=1 characterized by the means and variances given in Equation (A.4). Then generate N

trajectories from this EIS sampler from which the EIS MC estimate of the likelihood is calculated according

to Equation (12).

The implementation for the multivariate extension of the standard SV model (3)-(5) only requires the

replacement of the density (8) by density (10) in the EIS regression (A.6) and in the final EIS MC estimate

(12).
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Table 1. ML-EIS Estimation Results for the Univariate SV Model

DM BP SF YEN

β .686 .675 .724 .567
(.068) (.088) (.053) (.072)
[.0009] [.0021] [.0009] [.0015]

δ .962 .977 .940 .984
(.019) (.013) (.026) (.015)
[.0004] [.0004] [.0008] [.0005]

ν .170 .168 .236 .117
(.037) (.037) (.048) (.050)
[.0010] [.0014] [.0019] [.0020]

Log-likel. −949.7 −919.0 −1, 045.1 −785.6
[.097] [.104] [.134] [.060]

NOTE: Asymptotic (statistical) standard errors obtained from a numerical approximation to the Hessian
are in parentheses and MC (numerical) standard errors are in brackets. The ML-EIS estimates are based
on a MC sample size N = 30 and three EIS iterations.
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Table 2. ML-EIS Estimation Results for the Factor SV Model

DM BP SF YEN

dj 1.000 −.843 1.050 .644
(.023) (.024) (.021)

[<.0001] [<.0001] [<.0001]

σe,j .169 .431 .393 .406
(.017) (.011) (.013) (.010)
[.0001] [<.0001] [<.0001] [<.0001]

β δ ν Log-Likel.

.679 .971 .152 −2, 590.2
(.076) (.017) (.032)
[.0004] [.0001] [.0004] [.0494]

NOTE: Asymptotic (statistical) standard errors obtained from a numerical approximation to the Hessian
are in parentheses and MC (numerical) standard errors are in brackets. The ML-EIS estimates are based
on a MC sample size N = 50 and three EIS iterations.
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Table 3. MCMC-EIS Posterior Analysis of the Univariate SV Model

DM BP SF YEN

β .787 .739 .801 .584
(.135) (.120) (.122) (.070)
[.0121] [.0106] [.0121] [.0037]

δ .977 .983 .964 .984
(.015) (.009) (.017) (.008)
[.0014] [.0005] [.0015] [.0004]

ν .139 .140 .185 .111
(.026) (.025) (.029) (.020)
[.0029] [.0022] [.0028] [.0021]

NOTE: The first number is the posterior mean based on 12,000 Gibbs iterations (discarding the first
2000 draws). The posterior standard deviation is in parentheses and the MC standard error in brackets.
The MC standard errors are computed using a Parzen window with bandwidth LM = 1000. The EIS
simulation smoother is based on a MC sample size N = 30 and three EIS iterations.
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Table 4. MCMC-EIS Posterior Analysis of the Factor SV Model

DM BP SF YEN

dj 1.000 −.839 1.045 .641
(.024) (.025) (.022)
[.0005] [.0008] [.0004]

σe,j .159 .431 .395 .405
(.019) (.011) (.013) (.010)
[.0011] [.0002] [.0004] [.0001]

β δ ν

.757 .978 .134
(.137) (.013) (.024)
[.0110] [.0009] [.0019]

NOTE: The first number is the posterior mean based on 22,000 Gibbs iterations (discarding the first
2000 draws). The posterior standard deviation is in parentheses and the MC standard error in brackets.
The MC standard errors are computed using a Parzen window with bandwidth LM = 1000. The EIS
simulation smoother is based on a MC sample size N = 30 and three EIS iterations.
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Fig. 1. Parameter draws for the univariate SV model for the British Pound/US Dollar returns from 10,000
Gibbs iterations: Draws against the Gibbs iteration (top row), histograms of the draws (middle row),

autocorrelation functions of the draws (bottom row).
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Fig. 2. Draws of the parameters β, δ, ν for the factor process in the multivariate SV model from 20,000
Gibbs iterations: Draws against the Gibbs iteration (top row), histograms of the draws (middle row),

autocorrelation functions of the draws (bottom row).
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Fig. 3. Autocorrelation functions of the draws of the D and Σe parameters in the multivariate SV model
from 20,000 Gibbs iterations. The functions for d2, d3, d4 are in the left panel and for σe,1, σe,2, σe,3, σe,4 in

the right panel.
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