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1 Introduction

Economists have always had a great interest in understanding the determi-
nants and the mechanics of the dramatic economic and demographic changes
that accompanied the transition to modern society since the onset of the In-
dustrial Revolution. After stagnant development for most of the history,
from the second half of the 18th century onwards, aggregate and per capita
income displayed a virtual explosion, as depicted in Figure 1 by data from
the United Kingdom.1 However, this transition also involved simultane-
ous changes in other important dimensions of the human environment and
indicators of general living conditions such as life expectancy, population
density, and education. At the same time as the economic transition took
off, from the 18th century onwards, also the biological environment sharply
changed. Mortality fell significantly and average life expectancy at birth
as well as at later ages, which had virtually been unchanged for millennia,
increased sharply within just a few generations, as illustrated in Figure 2.2

Even though fertility declined substantially during the second half of the
19th century, see Galor and Weil (2000), the size of population started to
increase substantially in European countries, as illustrated in in Figure 3
for English data. The increase in population size even after the decrease of
fertility suggests that the reduction in reproduction is more than compen-
sated by an increase in lifetime duration. A long era of stagnant growth
of both output and population size was followed by an acceleration in the
development of both variables during the second half of the 18th century.
While GDP grows unboundedly ever since, population growth eventually
dips after the 1950s.

Some of these dramatic changes have previously been addressed in the
context of savings and population growth, see Komlos and Artzrouni (1990)
and Kremer (1993), and and specialization and technological change, see
Goodfriend and McDermott (1995). Unified theories of the transition from
Malthusian stagnation to growth, starting with the work by Galor and Weil
(2000), focus on the quantity-quality trade-off between fertility and educa-
tion of offspring, or on the accumulation of factors like capital, see Hansen
and Prescott (2002), or knowledge, see Jones (2001). Compare also Lucas
(2002), and Galor and Moav (2002a, 2002b) and the references therein.

Simultaneously to these early developments during the 18th century,
the traditional social environment changed profoundly, as the vast majority
of the population became educated, and acquired knowledge beyond the
working knowledge of performing a few manual tasks inherited by previous
generations. Literacy, which used to be the privilege of a little elite, became

1The data are taken from Maddison (1991) and exclude South Ireland. Missing inter-
mediate values are obtained by linear interpolation. Data for other European countries
exhibit similar patterns.

2Data are taken from Www.Mortality.Org (2002) and Floud and McCloskey (1994).
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widespread among the population, as is illustrated in Figure 4 for England
and Wales by the ability to sign documents.3 The process of human capital
accumulation accelerated as more and more people acquired the ability to
innovate, and to use innovations. On the other hand, the spread of new
technologies in turn made it more profitable to acquire knowledge.
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Figure 1: GDP per capita (U.K.)
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Figure 2: Average Life Expectancy (England and Wales)

The correlation in the timing and magnitude of these different dimen-
sions of development has triggered substantial efforts devoted to analyzing
the mechanisms at work. But, as Mokyr (1993) already pointed out, two
separate strands of the literature, one about the causes and mechanics of the
industrial revolution, and another about the decline in mortality, largely co-
exist without any obvious connection or compatibility between the two. On
the one hand, empirical evidence suggests that life expectancy affects the

3The data reflect the ability to sign marriage documents and are taken from Schofield
(1973) and West (1978). This measure of literacy has the advantage of being direct and
reflecting an intermediate level of literacy skills since “the proportion of the population
able to sign was less than the proportion able to read and greater than the proportion
able to write” (Schofield, 1973, p. 440), and roughly corresponds to the proportion of the
population able to read fluently. Moreover, writing skills are essential for acquiring other
skills like arithmetic or other substantative knowledge. For similar evidence concerning
France see Cipolla (1969) and Floud and McCloskey (1994).
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Figure 4: Average Literacy Levels in England and Wales

accumulation of human capital, which in turn determines growth. Swan-
son and Kopecky (1999) and Kalemli-Ozcan (2002) present evidence for
the effect of life expectancy on educational attainment, growth and fertility
choice.4 On the other hand, a large body of historical and demographic ev-
idence suggests that economic development and the level of human capital
profoundly affect life expectancy. This evidence suggests that tradition-
ally little education and knowledge about health and means to avoid illness
supported the outbreak, propagation and mal-treatment of diseases and ul-
timately led to high mortality. However, an increasing popular knowledge
of the treatment of common diseases and about the importance of hygiene
and sanitation, as well as the availability of respective technologies, helped
to increase life expectancy over time, see e.g. Mokyr (1993) and Easter-
lin (1999). There is also evidence that children’s life expectancy increases
in parents’ human capital or education (Schultz, 1993), and that the hu-
man capital intensive invention of new drugs increased life expectancy (see
Lichtenberg, 1998).5

4See also Reis-Soares (2001).
5Blackburn and Cipriani (2002) cite further empirical evidence for the view that life

expectancy depends on economic conditions. Moreover, the dissemination of knowledge
about hygiene was one of the purposes of the widespread introduction of voluntary or
mandatory home economics courses for women, see Huls (1993, ch. 7).
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Hence, there is a consensus in the literature that life expectancy is a cru-
cial determinant of human capital accumulation and economic development,
and that the level of human capital and development in general affects life-
time duration. However, the mechanisms at work during the early stages of
the industrial revolution are more difficult to explore. There is disagreement
among economic historians, see Riley (2001) and Easterlin (2002), about
whether the onset of increases in life expectancy can be precisely dated for
different countries. A similar disagreement concerns the question whether
this onset coincided with the beginning of the industrial revolution and the
transition to a faster regime of growth, or whether changes in life expectancy
preceeded or followed changes in the economic environment. The question,
which factor was causally responsible for all these profound changes, is still
the object of a lively discussion.6

As the evidence suggests, the relation between demographic variables
and human capital is crucial for understanding the patterns of long-term
development. An influential strand of literature concentrated attention on
the link between fertility choice and human capital formation by analyz-
ing the quantity-quality trade-off faced by parents regarding their offspring.
Kalemli-Ozcan et al.(2000), Kalemli-Ozcan (2002), De la Croix and Lican-
dro (1999), Boucekkine et al. (2002a, 2002b) and Blackburn and Cipriani
(2002) explicitly consider mortality in dynamic models of fertility choice.

This paper provides a unified framework complementary to models of
fertility to analyze the endogenous interactions between human capital for-
mation, technological progress and life expectancy in the context of long
term development. We provide a microfounded theory of human capital
formation, which focuses on the quantity-quality trade-off arising from the
availability of heterogeneous types of human capital and the corresponding
education technologies. The model has three basic building blocks. The
first is a microfounded theory of human capital formation in which overlap-
ping generations of heterogeneous individuals decide upon the type and the
amount of human capital to acquire during their lives. With this choice,
individuals maximize lifetime utility, taking life expectancy and the state

6Some authors explain the decline in mortality and the increase in life expectancy
by increases in household incomes and technological progress (see e. g. McKeown, 1977).
However, this view has been criticized on the basis of the empirical evidence, which sug-
gests that technological (medical) progress took off too late to explain early increases in
lifetime duration. Moreover, by and large, the standard of living in terms of income,
housing and nutrition of the majority of the population hardly changed before 1850, indi-
cating that this explanation does not tell the entire story, see Mokyr (1993). Others, like
Boucekkine, de la Croix, and Licandro (2002b) and the references therein, argue that at
the dawn of the industrial revolution mortality declined exogenously. They cite evidence
from life tables and parish registers from Geneva and Venice, which show that life ex-
pectancy as measured at age ten already increased between 1640 and 1740 in these urban
centers. Moreover, adult mortality seems to have fallen before child mortality declined
substantially. However, this line of argument leaves the cause of the industrial revolution
essentially unexplained.
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of technology into account. The second block reflects the idea that human
capital acquired by a given generation facilitates the formation of human
capital for future generations. However, what matters is not only the stock
of knowledge, but also the type of knowledge accumulated in the popula-
tion. The third block is motivated by the historical and demographic evi-
dence mentioned above and concerns the effects of the economic and social
environment on life expectancy.

In the human capital formation process at the center of the paper, hu-
man capital is viewed as knowledge embodied in people, which they opti-
mally acquire in order to generate income. Accumulating human capital
means getting to know, and being able to use, production technologies. In
this sense, human capital formation is not a modern phenomenon, since
throughout human history individuals devoted part of their lifetime to its
acquisition. Human capital is not a homogeneous production factor, but
captures multiple abilities ranging from the use of simple techniques to the
application of abstract knowledge in solving problems never faced before.
Correspondingly, the acquisition of different types of human capital requires
different education processes. In particular, for some types of human capital,
it is sufficient to observe and imitate tasks, to learn by doing, whereas other,
more abstract types of knowledge require a more formal, and more time con-
suming, education process.7 Therefore, the profitability of the acquisition of
different types of human capital depends, apart from individual attitudes,
on the technological and biological environment: a larger life horizon fa-
cilitates the acquisition of any type of human capital, but it particularly
favors the formation of human capital, which is time-intensive to acquire.
The observed changes in the patterns of human capital acquisition resemble
these arguments. The substantial increases in life expectancy shown above
were accompanied by ever higher average numbers of years of schooling in
England and Wales: from 2.3 years for children born around 1800 school-
ing increased to 5.2 years for children born around 1850 and to 9.1 years
for children born around 1900, and reached more than eleven years in the
1980s (see Maddison, 1991, and Galor and Weil, 2000). Moreover, while
almost all human capital was acquired through informal on-the-job learning
in apprenticeships before the industrial revolution, formal schooling repre-
sents the main channel of human capital formation afterwards (see Cipolla,
1976).8

7This reflects the mastery learning theory, according to which learning complicated
materials builds on the mastering of the elementary concepts, which in turn take time to
be understood, see Becker et al. (1990).

8Time devoted to learning in apprenticeships before the industrial revolution (Venice,
early 17th century) was substantial, involving 3 to 5 years with minimum starting ages of
between 7 to 10 years. Consequently, people completed education and started working at
10 to 15 years of age, while after the industrial revolution the starting age lied above 17
years, see Cipolla (1976).
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The main mechanism is as follows. Individuals’ decisions on human cap-
ital formation shape the structure of the economy and affect productivity
and life expectancy for future generations. This leads to a potential virtuous
circle of more human capital fromation, higher life expectancy and growth.
However, as long as the biological barrier of low life expectancy is binding,
the economy is trapped on a stagnant growth path. For a long time, the
economy develops with positive and almost negligible increments. Once life
expectancy is large enough and the level of technology is sufficiently ad-
vanced, however, ever larger proportions of the population acquire growth
enhancing human capital, and development takes off. A phase of fast growth
and a profound change in the structure of economy starts, and the economy
converges within a few generations to a sustained growth path. As a conse-
quence of the increase in life expectancy, population size grows even though
fertility behavior is unchanged. The mechanism underlying long-term devel-
opment does not depend on Malthusian features like land as fixed factor of
production, subsistence levels of consumption, an assumed positive correla-
tion between per capita income and fertility, or on any scale effects. Instead,
we emphasize the importance of life expectancy on individual education de-
cisions: only when it is individually optimal for a sufficiently large share of
the population to acquire growth enhancing human capital, an endogenous
transition occurs. Moreover, the same mechanism works throughout history,
although largely undetected at the early stages, without the need for any
external shift to trigger a transition towards different growth regime.

The paper is organized as follows. In section 2 we describe the eco-
nomic environment, we state and solve the individual problem of human
capital formation, and describe the dynamic links between generations of
individuals through technology and life expectancy. Section 3 presents a
characterization of the development process. Section 4 contains an illus-
trative simulation of the model, and section 5 concludes. All proofs are
collected in the appendix.

2 The Model

The economy is populated by an infinite sequence of overlapping genera-
tions of individuals. Generations will be denoted with subscript t. Every
generation is born lt = l periods after the birth of the respective previous
generation, and there is no fertility decision to be made.9 A generation
consists of a continuum of agents with population size normalized to one.
Individuals face a life expectancy Tt specific to their generation t, the deter-
minants of which will be discussed below. Every individual is endowed with

9Instead of assuming a fixed frequency of births, one could alternatively model the
length of the time spell between the births of two successive generations, hence the timing
of fertility, as a function of the life expectancy of the previous generation.
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ability a ∈ [a, a], which is distributed with density f (a).10

A Production of Human Capital

In order to make an income to be able to consume, individuals have to spend
their ability and some fraction of their living time to form some human
capital, which they can then supply on the labor market. Every generation
has to build up the stock of human capital from zero, since the peculiar
characteristic of human capital is that it is embodied in people (even if
the production can be easier if the previous generation had a lot of it).
In order to isolate the development effects related to life expectancy and
human capital accumulation, any links between generations through savings
or bequests are excluded. We abstract from real resources as input for
the human capital formation process, as well as issues related to capital
market development and public provision of education. Instead, we focus on
changes in the economic and biological environment creating the necessary
and sufficient conditions for large parts of the population to acquire human
capital.11

The heterogeneity of human capital discussed above, is reflected by the
consideration of two types of human capital, which differ with respect to
their production process and the returns they generate. The first type is
interpreted as high-quality, and growth enhancing. It is characterized by a
high content of abstract knowledge, and facilitates innovation and develop-
ment of new ideas. We refer to this as theoretical human capital and denote
it by h. The second type is labeled applied human capital, denoted by p,
and can be interpreted as the ability of using some existing technologies. It
contains less intellectual quality, but more manual and practical skills that
are important in performing tasks related to existing technologies.12

Time e and individual ability a are the only inputs of human capital
production: p = p(e, a), and h = h(e, a). In line with the previous dis-
cussion, these production processes are inherently different with respect to
the effectiveness of time in the education process. To acquire h, it is neces-
sary to first spend time on the building blocks of the elementary concepts
without being productive in the narrow sense. Once the basic concepts are
mastered, the remaining time spent on education is very productive. On
the other hand, the time devoted to acquire p is immediately effective, al-

10We assume that the ex ante distribution of innate ability or intelligence does not
change over the course of generations.

11Some recent contributions study the emergence of sufficient conditions for development
in the presence of market imperfections, and unequal distribution of economic and political
power, see e.g. Galor, Moav, and Vollrath (2002), and Galor and Moav (2002a).

12Hassler and Rodriguez-Mora (2000) use a related perception of abstract versus applied
knowledge. In the language of growth economics, theoretical human capital is the growth
enhancing type of labor, while applied human capital can be associated with the raw labor
input. In labor economics, h would be labeled as skilled labor, p as unskilled labor.

7



beit with a lower overall productivity. This characteristic is captured by
a fixed cost e measured in time units, which an agent needs to pay when
acquiring h, but not when acquiring p.13 Personal ability is relatively more
important in acquiring theoretical human capital. These characteristics of
the education processes are formalized as:

h =
{

α(e − e)a if e ≥ e
0 if e < e

(1)

and
p = βe . (2)

Any unit of time produces αa units of h and β units of p with α ≥ β. This
formulation captures two crucial features of the human capital formation
process: A larger life expectancy induces individuals to acquire more of any
type of human capital and makes theoretical, high quality human capital
relatively more attractive for individuals of any level of ability. Any alterna-
tive model of human capital formation reproducing these two features would
be entirely equivalent for the purpose of this paper. Alternative settings like
learning on-the-job could similarly be used to illustrate the importance of
lifetime duration for human capital formation.

B Aggregate Production

A unique final consumption good is produced by multiple sectors, in which
new technological vintages become available overtime. The stocks of hu-
man capital of both types available in the economy at any moment in time,
i.e. embodied in all generations alive at that date, are the only factors of
production. We model, along the line of Hansen and Prescott (2002), a
one-good-two-sectors economy.14 Sectors structurally differ with respect to
the intensity with which they use different human capital. Denote as P
the sector using p relatively more intensively and H the sector using h rel-
atively more intensively. Technological process takes place in both sectors
in the form of new production technologies characterized by a larger total
factor productivity becoming available over time. Technological improve-
ments are modeled as vintages in the sense that older production functions
are still available in each sector and can potentially be used along with the

13A sufficient condition for the results below is that for applied human capital p the
fixed cost in terms of time is smaller, so for simplicity it is normalized to zero. We abstract
from other costs of education, like tuition fees etc. Moreover, the fixed cost is assumed to
be constant and the same for every generation. Costs that increase or decrease along the
evolution of generations would leave the qualitative results of the paper unchanged.

14The focus of the paper is not on the macroeconomic role of demand for different
consumption goods. Equivalently, one could model different sectors as producing differ-
entiated intermediate goods to be used in the production of a unique final good. The role
of different income elasticities for different goods for structural change from agriculture to
industry has been studied by Laitner (2000).
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newest ones.15 Denote by AH.v(τ) (respectively AP.v(τ)) the total factor
productivity and by Y P

v (τ) (respectively Y H
v (τ)) the production realized in

sector P (respectively H) using vintage technology v at time τ . Then total
production at time τ is given by16

Y (τ) =
∑

v

Y P
v (τ) +

∑
v

Y H
v (τ) . (3)

Human capital is inherently heterogenous across generations, because
individuals acquire it in an environment characterized by the availability of
different vintages of technologies. Human capital acquired by agents of a
generation allows them to use technologies up to the latest available vintage.
Human capital is thus characteristic for a generation. This implies that a
generation’s stock of human capital of either type is not a perfect substitute
of that acquired by older and younger generations, and is sold at its own
price. Let the respective aggregate amounts of human capital acquired by
generation t be

Pt =
∫ a

a
pt(a)f(a)da , (4)

Ht =
∫ a

a
ht(a)f(a)da . (5)

Wage rates are determined in the macroeconomic competitive labor mar-
ket and equal marginal productivities.17 Denote by wh

t (τ) and wp
t (τ) the

wage rate paid at any moment in time τ to every unit of human capital
of type h or p, respectively, acquired by generation t. These instantaneous
wage rates are given by

wh
t (τ) =

δY (τ)
δHt

, and wp
t (τ) =

δY (τ)
δPt

. (6)

To make the model analytically tractable, we consider a Cobb-Douglas spec-
ification of the production function. Moreover, we assume that every vintage
of human capital fully specializes in the respective latest vintage of technol-
ogy, so that t = v.18 As a benchmark, we consider the extreme case in which

15This means that different technologies of productions are available at any moment in
time. If we interpret the different sectors e.g. as agricultural and industrial, the production
of corn can then take place using donkeys or tractors.

16The specification used by Hansen and Prescott (2002) is contained as the special case
when only the latest vintage can be used.

17Empirical evidence supports the view that different sectors competed for labor, and
wage payments reflected producitivities even at early stages of industrial development, see
e.g. Magnac and Postel-Vinay (1997).

18This specialization can be seen as the outcome of an optimization problem: A techno-
logical vintage goes out of use and becomes passive once the individuals working on it die.
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every sector uses only one type of human capital. The production functions
are thus:

Y P
t = AP.tP

γ
t , and Y H

t = AH.tH
γ
t , (7)

respectively, with γ ∈ (0, 1) and AP
v (τ), AH

v (τ) ∈ R+.19 The corresponding
instantaneous wage rates are given by:20

wh
t (τ) = AH.tγHγ−1

t , (8)
wp

t (τ) = AP.tγP γ−1
t . (9)

C The Individual Optimization Problem

Consider the decision problem for members of a given generation t of indi-
viduals. Agents face an intertemporal problem of maximizing their lifetime
utility. Individuals have to choose both the optimal quantity and quality of
human capital they want to acquire. The first decision regards the optimal
allocation of available lifetime between education and work. The second
decision is about which type of human capital to acquire.21 Utility is linear
in consumption and there is no discounting. Hence, utility maximization
implies maximization of total lifetime earnings.22 Moreover, while acquiring
human capital, an agent cannot work and therefore earns no income. The

Subsequent generations will find it more profitable to use new, more productive vintages
of technology than to revive old ones. In other words, this implies that e.g. a mechanic in
the late 20th century learns how to repair a common rail diesel engine, but not a steam
engine. However, as will become clear below, vintages build upon the advances of previous
vintages, e.g. common rail diesel engines incorporate technological principles that partly
derive from the use of steam engines.

19In principle, both sectors could be characterized by different productivity parameters
γH and γP . This case will be illustrated in the simulations below. However, while the
main results remain unaffected by asserting a common value to both sectors, it simplifies
the exposition of the model considerably. Encorporating both types of human capital in
both sectors of production does not alter the results as long as the difference in the relative
intensities of their use in the respective sector is maintained and no input is indispensable.

20Decreasing marginal productivity of human capital of any type insures interior equi-
libria. In the benchmark case with only one factor in each sector, this assumption implies
decreasing returns to scale with factor payments not exausting income. Since the crucial
feature for individual human capital decisions is that wages somehow reflect the produc-
tivity of the respective type of human capital, we simply assume a uniform distribution of
non-wage income across the population to close the economy. Equivalently one could set
wages to average productivity (since the wage ratio would just be scaled by a fixed fac-
tor) or additionally introduce fixed factors in both sectors (which would ensure constant
returns to scale and appropriate all rents without affecting education decisions) to obtain
the same results.

21We abstract from decisions about retirement and leisure. Allowing individuals to
acquire both types of human capital would not change the formal arguments, but would
imply a somewhat different interpretation of human capital.

22Concave utility, discounting and perfect capital markets could be introduced to model
life cycle considerations. Without affecting the main results, these issues are beyond the
scope of the current analysis.

10



problem of an agent with ability a born in generation t is therefore to choose
the type of human capital i ∈ {h, p} and the optimal education time spent
on its accumulation, ei, given life expectancy Tt and the wage wi

t such that

{i, ei} = arg maxV i(a, i, ei, Tt, w
i
t) =

∫ Tt

ei

iwi
t(τ)dτ (10)

subject to i ∈ {h, p} and 0 ≤ ei ≤ Tt .

For any individual of ability a, there is a unique time investment which
maximizes lifetime earnings from any type of human capital,

eh∗
t = arg max

(
Tt − eh

)
α(eh − e)awh

t =
Tt + e

2
, (11)

ep∗
t = arg max (Tt − ep) βepwp

t =
Tt

2
, (12)

respectively. The type of human capital an individual chooses to acquire
consequently depends on:

V p∗ (ep∗
t , a, wp

t

) >
< V h∗

(
eh∗
t , a, wh

t

)
.

Using (11) and (12), the respective levels of human capital in the two cases
are

h∗
t (Tt, a) = α

Tt − e

2
a , (13)

and
p∗t (Tt, a) = β

Tt

2
. (14)

Accordingly, the respective indirect lifetime utilities are given by:

V p∗ (p∗t , a, wp
t ) =

T 2
t

4
βwp

t , (15)

and

V h∗
(
h∗

t , a, wh
t

)
= αa

(Tt − e)2

4
wh

t . (16)

Agents with higher ability have a comparative advantage in the acquiring
h, and the lifetime utility for those investing in h increases monotonically
in the ability parameter. An agent is indifferent between acquiring h or p if
and only if

V p∗
t

(
ep∗
t , a, wp

t

)
= V h∗

t

(
eh∗
t , a, wh

t

)
. (17)

For every vector of wage rates there is only one level of ability ãt for which
the indirect utilities are equal,

ãt =
wp

t

wh
t

[(
β

α

)
T 2

t

(Tt − e)2

]
. (18)
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Due to the monotonicity of V h∗ in ability, all agents with a < ã will optimally
choose to acquire human capital p, while those with ability a > ã will
optimally choose to obtain h. The corresponding aggregate levels of human
capital of either type are then given by

Ht =
∫ a

�a
ht (Tt, a) f(a)da , (19)

and

Pt =
∫

�a

a
pt (Tt, a) f(a)da , (20)

respectively. All individuals with higher ability than ãt choosing to acquire
theoretical human capital actually enjoy larger lifetime earnings than those
endowed with an ability smaller than ãt acquiring p.

D Equilibrium on Factor Markets

Denote by λ(ãt) the fraction of the population acquiring human capital p,
and by (1 − λ(ãt)) the fraction of the population acquiring human capital
h:

λ(ãt) :=
∫

�at

a
f(a)da , (21)

1 − λ(ãt) :=
∫ a

�at

f(a)da . (22)

By equation (18) and since Tt−e > 0, the fraction [1 − λ(ãt)] increases with
lifetime duration Tt, with the relative wage wh

t /wp
t and with α/β.

The markets for human capital are in equilibrium when individually
optimal education decisions and the respective wages determined on the
macroeconomic level are mutually compatible:

Definition 1. The factor market equilibrium for generation t is character-
ized by a vector{

{h∗
t (Tt, at)}a∈[a,a] , {p∗t (Tt, at)}a∈[a,a] , H

∗
t , P ∗

t , wh∗
t , wp∗

t , ã∗t
}

such that, for any given Tt and distribution f (a), conditions (13), (14),
(19), (20), (8), (9), and (18) are simultaneously satisfied.

An equilibrium defines an implicit function in (ã∗t , Tt) linking the equilib-
rium cut-off level of ability ã∗t to lifetime duration Tt. For computational con-
venience, we assume uniform distribution of abilities on the support [0, 1].23

23In fact, the results can be generated in the model with any distribution of abilities
including a degenerate distribution with just one ability level for all members of the
population. However, the process of how individuals sort into equilibrium in this case
would be less clear, since there would be no ability cut-off separating the population. The
decomposition of the population into the two groups would just be given by equilibrium
conditions.
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In this case the aggregate levels of human capital can be explicitly computed:

Pt(ã∗t ) =
∫

�a∗
t

0
pt (Tt, a) da = ã∗t β

Tt

2
, (23)

Ht(ã∗t ) =
∫ 1

�a∗
t

ht (Tt, a) da =
(

1 − ã∗2t

2

)
α

Tt − e

2
. (24)

Substituting the equilibrium wage ratio resulting from Equations (8) and
(9) using Pt(ã∗t ) and Ht(ã∗t ) from Equation (23) and (24), respectively, into
the equilibrium ability threshold given by equation (18), we have, for any
given generation t:

ã∗t

(
(1 − ã∗2t )

2ã∗t

)γ−1

=
AP.t

AH.t

(
β

α

)γ ( Tt

Tt − e

)γ+1

. (25)

For notational convenience, we reformulate equation (25) by solving for
lifetime expectancy as a function of the ability threshold:

Tt(ã∗t ) =
e

1 − g(�a∗
t )

Ωt

, (26)

with

g(ã∗t ) ≡
(1 − ã∗2t )

1−γ
1+γ

ã
∗ 2−γ

1+γ

t

k , (27)

k ≡ 2−
1−γ
1+γ , and

Ωt ≡
[(

AH.t

AP.t

)(
α

β

)γ] 1
1+γ

, (28)

where g(ã∗t ) > 0, ∀ã∗t ∈ [0, 1], where Tt(ã∗t ) is defined for all ã∗t ∈ [ãt
∗, 1], with

ã∗t such that g(ã∗t ) = Ωt ⇔ lim
�a∗

t→�a∗
t
Tt(ã∗t ) = ∞, and that ∀ã∗t ∈ [ãt

∗, 1] :

1 − g(�a∗
t )

Ωt
> 0. The value ã∗t > 0 represents the maximum fraction of the

population that would optimally choose to acquire human capital h for a
given level of relative productivity AH/AP . This maximum fraction cannot
be exceeded, even if the biological constraint of finite lifetime duration would
disappear (i. e. if T → ∞).

The problem of determining the equilibrium vector is well defined, and
all variables characterizing the equilibrium human capital formation of each
generation are uniquely identified, since the implicit function relating the
cut off ã∗t to life expectancy Tt is monotonically decreasing in Tt. Formally:

Proposition 1. For any generation t, there exists exactly one factor market
equilibrium characterized by the a pair (ã∗t , T ∗

t ), with ã∗t ∈ [ã∗t , 1] and Tt ∈
[e,∞), which satisfies condition (25).
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In this context, it is worth noting that the maximum proportion of the
population that would acquire h in the absence of biological constraints,
(1 − ã∗t ), is increasing with the relative productivity of the sector using
theoretical human capital intensively, AH

AP
. This observation will prove useful

later on and is therefore summarized in:

Lemma 1. The lower bound on the support of ability thresholds decreases
as Ωt increases, that is ∂�a∗

t
∂Ωt

< 0.

The ability cut-off ã∗ identifying the indifferent agent is lower for higher
expected lifetime duration, which reflects the fact that ceteris paribus more
individuals decide to obtain human capital of type h if they expect to live
longer. With a being uniformly distributed on the support [0, 1], The thresh-
old ã∗ is identical to the share of population acquiring p, λ(ã∗). Moreover,
the function ã∗ (T ), representing the threshold ability defining the propor-
tion of the population acquiring human capital h, is S-shaped:

Proposition 2. The cut-off level ã∗t (T ), which identifies the equilibrium
fraction of members of a generation t acquiring human capital h, is a de-
creasing, S-shaped function of expected lifetime duration T of this generation,
with zero slope for T −→ 0 and T −→ ∞, and exactly one inflection point.

The S-shape relation between life expectancy T and the fraction of pop-
ulation acquiring h, λ, is a first central result. From Proposition 2 it is
clear that the higher the life expectancy, the more people will invest in the
time-consuming human capital acquisition of h. However, this relation is
stronger and more pronounced for intermediate values of T and λ. For low
levels of life expectancy, the share of population investing in h is small due
to the fixed cost involved with acquiring h, which prevents a large part of
the population to receive sufficient lifetime earnings to be worth the effort.
The larger the fixed cost, the more pronounced is the concavity of the equi-
librium locus. In this situation, it takes sufficiently large increases in life
expectancy to incentivate a noticable fraction of individuals to switch from
p-acquisition to h-acquisition. On the other hand, when the ability thresh-
old is very low, and a substantial share of the population is engaged in h,
very large increases in T are necessary to make even more individuals ac-
quire h instead of p: Due to decreasing returns in both sectors, the relative
wage wh/wp is very low when only few individuals decide to invest in p.
This dampens the attractivity of investing in h for the individuals with low
ability, even though life expectancy is very high, rendering the equilibrium
locus convex.

In what follows, denote the equilibrium relation between ã∗t and Tt im-
plicitly defined in equation (25) characterizing the process of human capital
formation of a given generation t by

ã∗t = Λ(Tt, At) . (29)
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E Life Expectancy

The empirical evidence discussed above suggests a positive relation between
the amount of human capital embodied in a generation, reflecting its level of
development and knowledge, and the life expectancy of future generations.24

With the available evidence in mind, we formalize this positive externality by
making the simple assumption that life expectancy of generation t increases
in the fraction of population the previous generation (t − 1) that acquired
human capital of type h:25

Tt = Υ(λt−1) = T + ρ(1 − λt−1) , (30)

where (1 − λt−1) = 1 − λ(ã∗t−1) =
∫ a
�a∗

t−1
f(a)da is the fraction of generation

(t− 1) that has acquired human capital of type h, and ρ > 0 is a parameter
describing the extent of the positive externality. This formulation implies
that the positive link and the dynamic process does not rely on scale effects.
Note also that by the definition of λ, life expectancy is a function of the
threshold ability level for the decision to acquire general human capital h of
the respective generation:

Tt = Υ(ã∗t−1) , (31)

There is a biological limit to extending life expectancy implicitly contained
in the specification of equation (30) since, by definition of λ as a fraction,
the lifetime duration is bounded from above and thus cannot be increased
beyond a certain level. We take this as a commonly agreed empirical reg-
ularity (see also Vaupel, 1998). The minimum lifetime duration without
any human capital of type h is given by T . The precise functional form of
this relation entails no consequences for the main results, and a (potentially
more intuitive) concave relationship would not change the main argument.

F Technological Progress

The second dynamic element concerns the notion that larger stocks of hu-
man capital acquired by a generation facilitates the accumulation of human

24Admittedly, this is only true to a certain extent. Of course, individuals can effectively
influence their life expectancy by their life style, smoking habits, drug and alcohol con-
sumption, sports and fitness behavior health care expenditures etc. However, during early
phases of development, individuals lacked a detailed knowledge about which factors and
activities are detrimental or advantageous for average life duration. Moreover, beneficial
factors, such as leisure, were simply not available. An explicit consideration of positive
correlation between life expectancy and the level of education would reinforce the results.

25Equivalently, life expectancy could be related to average or total human capital, see
Boucekkine, de la Croix, and Licandro (2002a), or income, see Blackburn and Cipriani
(2002), of the previous generation(s). If one accepts a positive effect of the level of human
capital on aggregate income, this assumption is also consistent with evidence indicating
that the aggregate income share spent on health care increases with aggregate income
levels, see Getzen (2000) and Gerdtham and Jönsson (2000) and the references there for
respective evidence.
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capital for future generations. This positive externality has been extensively
studied in the literature and can be formalized in several ways. The level of
human capital available in the economy may effect individual human capi-
tal acquisition directly. This channel has been considered by Becker et al.
(1990). Alternatively, the available human capital can indirectly make hu-
man capital more profitable to acquire in the future. This is the case if, for
example, human capital exerts an externality on productivity along Lucas
(1988) and Romer (1990), or when human capital induces a non-neutral
technological process, as studied e.g. by Nelson and Phelps (1966), Ace-
moglu (1998), and Galor and Moav (2000), among others. For the purpose
of this paper, these mechanisms are equivalent in terms of generating the
central results. Since the vintage structure of the production technology de-
scribed above is particularly suited to explicitly adopt technological change,
we formalize the positive externality of human capital along the this line.

The level of human capital acquired by a given generation increases total
factor productivity for subsequent techological vintages.26 This interpreta-
tion is similar to the idea that the stock of ideas transfers into the productiv-
ity of future generations suggested by Jones (2001). In the model, we adopt
Jones’ specification, which is a generalization of the original contribution of
Romer (1990). By its nature, theoretical human capital h is relatively more
productivity enhancing than practical human capital p. Moreover, the pos-
itive effect is stronger in the sector H that uses theoretical human capital
more intensively, since it is the more innovative sector, applying and imple-
menting new and innovative technologies faster. Consequently, total factor
productivity (TFP) growth the sector H is a function of H and the level of
productivity already achieved in this sector.27 Advances in technology are
embodied in the latest vintage according to:

ȦH.t =
AH.t − AH.t−1

AH.t−1
= δHφ

t−1A
χ
H.t−1 , (32)

where δ > 0, φ > 0, and χ > 0. This can be re-written to:

AH.t =
(
δHφ

t−1A
χ
H.t−1 + 1

)
AH.t−1 . (33)

What is important for the argument of the paper is the relative strength
of these impacts, so there is no loss in constraining the productivity effect
to AH only. Thus, for simplicity we assume ȦP.t = 0 so that total factor

26This formulation follows the conventional argument frequently made in growth theory,
see Nelson and Phelps (1966). Empirical evidence, see Doms, Dunne, and Troske (1997)
supports this view.

27In the specification used, this function exhibits decreasing returns, while Romer (1990)
assumed constant returns. The advantage of the present specification is that it is less rigid
and more realistic. It is important to note that there are no scale effects involved in this
specification. In fact, the crucial assumption for everything that follows is the relation
between TFP and the share of the previous generation (1 − λt−1) investing in h.
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productivity in the first sector is constant and can be normalized to 1: AP.t =
AP.0 = 1 ∀t ∈ [0,∞).28 For notational simplicity, we will denote the relative
total factor productivity of the two sectors as

At ≡
AH.t

AP.t
for every t ∈ {0,∞} . (34)

With a uniform ability distribution, we can substitute Ht−1 = α
2 (Tt−1 − e)

(1 − λt−1) from Equation (24) into (33), and obtain an explicit expression
for the dynamic evolution of relative productivity:

At =
{

δ
[α
2

(Tt−1 − e) (1 − λt−1)
]φ

Aχ
t−1 + 1

}
At−1 ≡ F (At−1, Tt−1, λt−1) .

(35)
This specification emphasizes the particular role of human capital h in

the accumulation of knowledge, and subsequently for technological progress.
The specific functional form has little impact. In fact every, functional spec-
ification alternative to (32), which implies a positive correlation between Ȧt

and Ht would yield qualitatively identical results. It is also worthwhile not-
ing that the qualitative features of the model are unaltered if technological
process is taken to be exogenous, that is if Ȧt = ε > 0.29 These dynamic
links close the model.

3 The Process of Economic Development

This section analyzes the dynamic evolution of the economy. The solution of
the model allows to characterize the process of development as an interplay of
individually rational behavior and macroeconomic externalities. The global
dynamics of the economy are fully described by the trajectories of lifetime
duration Tt, the fraction of the population acquiring human capital λt, and
relative productivity At. We therefore characterize the dynamic developent
of the economy over time by studying the evolution of the key variables
over generations.30 For notational simplicity, denote ã∗ simply as a. Taking
into consideration the one-to-one relationship between λt−1 and at−1, the

28In general, both types of human capital can have a positive intertemporal effect on
total factor productivity of both sectors, as long as the technological externality is biased
towards H-type human capital. In the simulations presented below, we actually allow
total factor productivity in the sector using practical human capital intensively to grow
according to:

AP.t =
�
δP HφP

t−1A
χP
P.t−1 + 1

�
AP.t−1 .

This reflects the historical fact that agricultural productivity also increased as produc-
tivity in other sectors went up, e. g. during the industrial revolution, see Streeten (1994).

29As will become clearer below, the only consequence of an exogenous change in relative
productivity Ȧ is the missing re-inforcing feedback effect of endogenous technological
progress after the industrial revolution.

30In the next section we simulate the model to illustrate the implied dynamics.
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dynamic path is fully described by the infinite sequence {at, Tt, At}t∈[0,∞),
resulting from the evolution of the three dimensional, nonlinear first-order
dynamic system derived from equations (29), (31) and (33):

at = Λ(Tt, At)
Tt = Υ(at−1)
At = F (At−1, Tt−1, at−1)

. (36)

For illustrative purposes, we analyze the behavior of the economy by
looking at the dynamic adjustment of human capital and lifetime duration
conditional on the value of the relative productivity. We consider the system:{

at = Λ(Tt, A)
Tt = Υ(at−1)

, (37)

which delivers the dynamics of human capital formation and life expectancy
for any given level of technology A > 0. From the previous discussion
we know that the first equation of the conditional system is defined for
at ∈ (at (A) , 1] and T ∈ [e,∞) . Denote by HH(A) the S-shaped locus
Tt = Λ−1(at, A) in the space {T, a} resulting from the factor market equilib-
rium equilibrium, and by TT the locus Tt = Υ(at−1) representing the inter-
generational externality on lifetime duration. Any steady state of the con-
ditional system is characterized by the intersection of the two loci HH (A )
and TT :

Definition 2. A steady state equilibrium of the dynamic system (37) is a
vector

{
aC , TC

}
with aC ∈ (a (A) , 1] and TC ∈ [e,∞), such that, for any

A ∈ (0,∞): {
aC = Λ(TC , A)
TC = Υ(aC)

.

The system (37) displays steady state equilibria of different types j with
different properties. The set of equilibria Ej (A) ≡

{
aj (A) , T j (A)

}
can be

characterized as:

Proposition 3. For any A ∈ (0,∞), a ∈ (a (A) , 1), and T ∈ (e,∞), the
conditional dynamic system (37) is characterized by:

(i) At least one steady state equilibrium;

(ii) H (A) > 0 and P (A) > 0 in any steady state;

(iii) At most three steady states denoted by EH (A), Eu (A), and EL (A)
with the following properties:

(a) aH (A) ≤ au (A) ≤ aL (A) and TH (A) ≥ T u (A) ≥ TL (A);

(b) EH (A) and EL (A) are locally stable;
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Figure 5: Phase Diagram of the Conditional Dynamic System

(c) Eu (A) is locally unstable;

(d) if there is a unique steady state, it is globally stable and it is of
type H or L, respectively, depending on whether HH(A) is locally
convex or concave in the steady state.

Hence, there exists at least one dynamic equilibrium while, due to the S-
shape of HH(A), there are at most three steady states, with the intermediate
one being unstable. Strictly positive amounts of both types of aggregate
human capital are acquired in any steady state. The High-type equilibria
are characterized by a relatively large fraction of the population acquiring
h, large lifetime expectancy, and the locus HH (A) being locally convex at
aH . The Low -type equilibria exhibit little lifetime duration, a small share
of the population acquiring h, and the locus HH (A) is locally concave at
aL. Figure 5 illustrates the system (37) in the case of three equilibria.

The analysis of the full dynamic system must account for the evolution
of all the variables. Human capital h helps in adopting new ideas and tech-
nologies, and thus creates higher productivity gains than practical human
capital p. This means that in the long run relative productivity At will tend
to increase. This result is summarized by

Lemma 2. Relative Productivity At increases monotonically over genera-
tions with limt−→∞ At = +∞.

The strict monotonicity of At over generations depends on the assump-
tion ȦP.t = 0. However, this assumption is not necessary for the main
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argument. What is crucial is that relative productivity will eventually be
increasing once a sufficiently large fraction of the population acquires h.31

As At increases, the fraction of the population investing in h also increases.
The levels of life expectancy necessary to make an agent of ability a indif-
ferent between acquiring either types of human capital tend to decrease and
the locus HH (A) shifts down for any a (excluding the extremes):

Proposition 4. The life expectancy required for any given level of ability to
be indifferent between acquiring h or p decreases, as relative productivity A

increases: ∂T (a,A)
∂A

∣∣∣
HH(A)

< 0, ∀ a ∈ (0, 1).

Thus, the more productive theoretical human capital h becomes rela-
tively to applied human capital p, the less restrictive is the fixed cost re-
quirement of acquiring it, as the break-even of the investment in education
is attained at a lower age.

Consider a non-developed economy in which life expectancy at birth is
low, as for example during the middle ages.32 Since A is low, investing in
h is relatively costly for a large part of the population as the importance of
the fixed cost for education, e, is large. This means that the concave part
of the HH(A)-locus is large and the conditional system is characterized by
a unique dynamic equilibrium of type

{
aL(A), TL(A)

}
, exhibiting low life

expectancy and a little class of individuals deciding to acquire theoretical
human capital. This situation is depicted in panel (1) of Figure 6. During
this early stage of development, the feedback effects on lifetime duration
and productivity are close to negligible, but just not quite negligible.

Over time, productivity growth makes investing in h more profitable
for everybody, and life expectancy increases slowly. Graphically, the locus
HH(A) shifts downwards as time passes, and the importance of the concave
part decreases. After a sufficiently long period of this early stage of develop-
ment, HH(A) exhibits a tangency point, and eventually three intersections
with TT . From this moment onwards, in addition to EL, also steady states
of type Eu and EH emerge. Since the intermediate equilibrium is locally un-
stable, the economy remains trapped in the area of attraction of the L-type
equilibria, as depicted in panel (2) of Figure 6.

31In the simulations below, we allow ȦP.t > 0 starting from large AP.0 and small AH.0.
Relative productivity At initially decreases, reflecting the larger innovative dynamics of
sector P during early stages of development. Since h is relatively more important for
technological progress, AH eventually leapfrogs AP . Therefore, At is eventually increasing
and keeps increasing from this point on. The qualitative prediction is unchanged, but
during early stages of development the high productivity in the P -sector induces the
acquisition of p and delays a widespread acquisition of h.

32As will become clear below, starting from this point is without loss of generality. How-
ever, even though the model is also capable of demonstrating the situation of developed
economies, the main contribution lies in the illustration of the transition from low to high
levels of development.
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Figure 6: The Process of Development

As generations pass, the dynamic equilibrium induced by initially low life
expectancy moves along TT . The consecutive downward shifts of HH(A),
however, eventually lead to a situation in which the initial dynamic equilib-
rium lies in the tangency of the two curves, as shown in panel (3) of Figure 6.
In the neighborhood of this tangency, the static equilibrium locus HH(A)
lies below the linear TT -locus, such that the equilibrium is not anymore
stable. Already the following generation faces a life expectancy that is high
enough to induce a substantially larger fraction to acquire human capital
h than in the previous generation. At this point a unique EH steady state
exists, as is shown in panel (4) of Figure 6. A period of extremely rapid
development is triggered, during which life expectancy virtually explodes,
and the human capital structure of the population changes dramatically
towards theoretical, h-type education. This phase of rapid change in gen-
eral living conditions and the economic environment reflects what happened
during the industrial revolution. This phase of fast development lasts for a
few consecutive generations. After this transition, life expectancy converges
slowly to its (biologically determined) upper bound ρ + T , which is never
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achieved. Even though the fraction of the population acquiring human cap-
ital h keeps growing, there will always be some fraction of the population
acquiring applied knowledge p.

In the following proposition, we summarize these global dynamics. The
evolution of the system is given by the sequence of ability thresholds, life
expectancies and relative productivities {at, Tt, At}t∈[0,∞), starting in a sit-
uation of an undeveloped economy:

Proposition 5. (Development Path of the Economy) A stagnant economy
with sufficiently large costs e of human capital acquisition and sufficiently
small initial life expectancy T , which is trapped in a sequence of L-type
equilibria, passes through the following phases of development:

1. Initially, the economy exhibits a sequence of unique L-type steady states
with low, but monotonically increasing, levels of life expectancy T and
shares of the population acquiring human capital (1 − λ).

2. H-type steady states, exibiting larger T and (1 − λ), emerge, while
the economy remains trapped in the area of attraction of L-type steady
states.

3. Eventually, the L-type steady state becomes unstable and disappears.
Growth accelerates, life expectancy T and human capital acquisition
(1 − λ) increase substantially as the economy converges towards a se-
quence of H-type equilibria.

4. The monotonic growth of T and (1 − λ) slows down as the economy
converges to the H-type steady states.

It is important to note that the actual trajectory of the system depends
on the initial conditions and cannot be precisely identified in general. Propo-
sition 5 in fact states that the system moves generation by generation in the
area of attraction of the locally stable conditional state EL during phases
(1) to (3). In phase (4), the system converges to a series of globally stable
steady states EH . In historical terms, the model therefore exemplifies the
different stages of development.33

Note that the inevitablility of the transition to EH -equilibria is driven
by the formulation of technological progress in the tradition of endogenous
growth theory. An alternative view of technological progress with stochastic

33Europe could be thought of as being trapped in a sequence of EL equilibria during
ancient times and the middle ages. At some point during the late 18th century develop-
ment took off, as the multiplicity of equilibria vanished. However, one could also think
that e. g. African economies are still trapped today in dynamic equilibria characterized by
low life expectancy and little theoretical knowledge (like literacy).
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elements, as destruction of knowledge, forgetting and non-continuous, peri-
odic improvements, could imply different predictions about the inevitability
of the industrial revolution.34

4 A Simulation of the Development Process

This section presents a simulation of the model to illustrate the mechanism
and its capability to replicate the patterns of long-term development. We
simulate the model using parameters reflecting empirical findings where pos-
sible. However, note that these simulations do not claim utmost realism, and
we do not calibrate and fine-tune the model in order to achieve an optimal
fit with real world data. Table 1 contains the values of the parameters and
initial conditions used in the simulation.

Table 1: Parameter Values Used for Simulation

α 0.5 δP 0.05 ρ 75.0 AP (0) 1.6
β 0.5 φH 0.95 e 15.0 ã(0) 0.9911
γ 0.6 φP 0.95 T 25.0
δH 0.11 χ 0.75 AH(0) 1.0

Marginal productivity of time spent in education, given a specific level of
ability, is assumed to be the same in the production of both types of human
capital. The assumption δH > δP implies that TFP grows relatively faster
in the H−sector. Both sectors exhibit the same extent of decreasing returns
to this stock of human capital γ. A maximal life expectancy of 100 years
cannot be exceeded, while the minimum life expectancy is assumed to be 25
years.35 The assumptions imply also that the total scope of extending life
expectancy by research, medical inventions and the like is 75 years (ρ). The
fixed cost of acquiring theoretical human capital h, e, is 15 years. Initially,
TFP in the P− sector is 1.6 times higher than in the H−sector.36 Clearly,
the model is capable of producing a deliberately long stagnancy period be-
fore the transition. For the illustration, we simulate the economy over 250

34For example, one could easily introduce random shocks affecting life expectancy
and/or the stock of theoretical human capital in the economy, representing events ex-
ogenous to the economic system such as wars. In this case the links between generations
through human capital are weakened or broken, which might prolong or even completely
prevent the economic and biological transitions characterized above.

35This is in line with Streeten (1994) who cites evidence that average life expectancy in
central Europe was even lower than 25 before 1650.

36This reflects the fact that at this point in time already a large number of generations
has acquired applied knowledge that has increased TFP over time. Initially, 0.89 percent
of the population acquire h.
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generations.37

Simulation results for life expectancy and the fraction of the population
acquiring theoretical human capital are depicted in Figure 7. Initially, life
expectancy is quite low for many generations, but it increases over time with
very little increments over the generations. At a certain point (around 1760)
a period of rapid growth in average lifetime duration begins. Within just
a few generations, life expectancy increases from mid-20 to over 60, then
the growth of life expectancy slows down again. Just when life expectancy
starts to take off, also the social structure of the economy starts chang-
ing rapidly, as ever larger proportions of the population acquire theoretical
human capital.38 However, also this evolution slows down from its initial
rapidness, as the share of educated people exceeds roughly three quarters
of the population. Nevertheless, due to the permanent growth in TFP, the
aggregate stock of theoretical human capital keeps increasing, even after the
transition, albeit at a somewhat slower rate. Simulation results for aggre-
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Figure 7: Life Expectancy T and the Proportion of the Population acquiring
Human Capital h, (1 − λ)

gate income, income created in the P-sector, and population size are shown
in Figure 8. After having grown only very slowly aggregate income virtually

37Interpreting every 5 years as the arrival of a new generation, this reflects roughly a
horizon from year 1000 to 2250, which includes the industrial revolution.

38This reflects in a rapid decrease of the ability threshold for abstract education.
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explodes and keeps growing rapidly, even when growth in life expectancy
and the fraction 1 − λ ebbs away. Despite permanent growth in income
generated in sector P, development is mainly driven by progress in sector
H.39
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Figure 8: Income, Income from P-sector, and Population Size

As life expectancy increases, more and more generations populate the
economy at the same time: the population grows and almost triples even
though individual fertility behavior is assumed to be constant and the same
throughout generations. This is illustrated in the lower panel of Figure 8.
Eventually, population size stabilizes.40 A final observation is the endoge-
nous structural transition from sector P to sector H, as is illustrated by
Figure 9.

5 Concluding Remarks

The process of long-term development of the Western world was charac-
terized by a lengthy period of stagnancy of economic conditions and life

39The simulations also reveal that about 250 years after the transition take-off, TFP
in the H−sector is about ten times higher than before the transition, while TFP in the
P−sector is about three to four times larger.

40The non-smooth, jagged development of the population size follows from the fact that
the number of populations alive at each point in time is an integer.
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Figure 9: Structural Change: Income Shares of P- (YP /Y (...)) and
H−sector (YH/Y (-))

expectancy. This was suddenly followed by a period of fast and dramatic
changes in both these dimensions. What eventually triggered this rapid
transition is the topic of a lively discussion within the profession. This pa-
per presents a simple microfoundation of human capital formation, which
allows to explain the historical patterns by explicitly taking complex inter-
actions between economic, social and biological factors into account. Both,
economic development and changes in life expectancy are modeled as en-
dogenous processes. An implication of this view is that even during the
apparently stagnant environment before the industrial revolution, economic
and biological factors affected each other.

Life expectancy is the crucial state variable in the individual education
decision. In turn, this education decision has implications for the education
decision of future generations, both through life expectancy and productivity
changes. Thus, advances in technological progress, human capital formation
and lifetime duration reinforce each other. However, the peculiarity of hu-
man capital is that every generation has to acquire it anew. But the costs
for human capital formation are prohibitively high for large parts of the pop-
ulation when the level of development is still low and when life expectancy
is low. At a certain point in time the entire system is sufficiently developed
so that the positive feedback loop has enough momentum to overcome the
retarding effects of costs for human capital formation. We analytically char-
acterize the resulting development path, which exhibits an S-shape with a
long period of economic and biological stagnation, followed by a relatively
short period of dramatic change in living conditions and the economic and
social environment.

In order to isolate the role of the individual human capital investment
problem for the dynamics of the system, we explicitly rule out Malthusian
features like scale effects related to population size or the stock of human
capital, fertility-education trade-offs, the presence of fixed factors of produc-
tion, like land, or the existence of consumption subsistency levels. Moreover,
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the mechanism presented in this paper is able to reproduce the observed
patterns of long-term economic development without the need of relying
on some exogenous events and strict temporal causalities. There is thus
no need for identifying a driving shock that triggered the transition. By
simulating the model for illustration purposes, we show that the long-run
behavior of key indicators of development like income, income growth, pro-
ductivity, lifetime duration, and population size implied by the model is in
line with empirical evidence and stylized facts.
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A Appendix

Proof of Proposition 1:

Proof. Consider Equation (26). For notational simplicity, denote ã∗ simply as a, e
as e. By standard calculus,

T ′(a) =
e g′(a)

Ω[
1 − g(a)

Ω

]2 < 0 , (38)

since g′(a) = − g(a)
1+γ

[
2−γ−γa2

2a2(1−a2)

]
< 0, ∀a ∈ [0, 1]. Therefore, we conclude that for a

given set of parameters γ ∈ (0, 1), A = AH

AP
, for every a ∈ [a, 1] there is one and

only one T > 0 such that (26) is satisfied.

Proof of Lemma 1:

Proof. The claim follows from the definition of ã∗ (Ω), and the fact that g(ã∗) is
strictly decreasing in ã∗.

Proof of Proposition 2:
The intuition of the proof proceeds as follows: We solve equilibrium condition

(25) for T as a function of ã∗ and investigate the behavior of this function. Due
to the fact that T (ã∗) is strictly monotonically decreasing within the admissible
support the function is invertible within this range of support. We then show that
there exists one and only one ã∗ for which the second derivative of this function
equals zero. Since the condition for the second derivative to equal zero cannot
readily be solved for ã∗, we decompose it into two components and show that one
is strictly monotonically increasing within the support while the other is strictly
monotonically decreasing, such that there must exist one and only one ã∗ for which
the condition is satisfied by the intermediate value theorem. But if T (a) has a
single inflection point and is invertible, also a(T ) has a single inflection point and
is therefore S-shaped.

Proof. Consider again Equation (26). We use the notational shorthands as in proof
of Proposition 1. Using standard calculus, one can now show that:

T ′(a) =
e g′(a)

Ω[
1 − g(a)

Ω

]2 , (39)

and

T ′′(a) =
e g′′(a)

Ω

[
1 − g(a)

Ω

]
+ 2e

[g′(a)]2
Ω2[

1 − g(a)
Ω

]3 . (40)

Due to the fact that T ′(a) < 0 ∀a ∈ [a, 1], we note that the function T (a) is
invertible in the range a ∈ [a, 1] of the support. Note also that T (a) ≥ T ∀a ∈ [0, 1],
so the inverse function a(T ) is strictly monotonically decreasing for all positive T .

It will prove useful to substitute a2 with b and to re-write g(a) ≡ h(b) =
(1−b)

1−γ
1+γ

b
2−γ

2(1+γ)
k, g′(a) ≡ h′(b), and g′′(a) ≡ h′′(b), where b = (a)2. Thus define T (a) =
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T (b), so the derivatives T ′(a) = T ′(b) and T ′′(a) = T ′′(b) can be re-written in
terms of b:

T ′(b) = − [T (b)]2

e

h′(b)
Ω

Existence of an inflection point can already be inferred from a closer examination.
Since

h′(b) = − k

2(1 + γ)
(1 − b)

−2γ
1+γ b

−1
1+γ (2 − γ − γb) = − k

1 + γ
h(b)B(b) < 0 ∀b ∈ [b, 1]

(where B(b) = 1−γ
1−b

2−γ
2b ), we know that also T ′(b) < 0 ∀b ∈ [b, 1]. Moreover, one

immediately sees that limb→1 h′(b) = −∞ ⇔ lima→1 T ′(a) = −∞, such that T has
infinitely negative slope at both boundaries of the admissible support, suggesting
that there must exist at least one inflection point. From these arguments it is
also clear that the slope of the inverse function, a′(T ), converges to zero at both
boundaries of the support.

Analysis of the second derivative T ′′(b) allows to show existence and uniqueness
of an inflection point. In particular, T ′′(b) = 0 requires:

h′′(b)
(

1 − h(b)
Ω

)
= − 2

Ω
(h′(b))2

⇔ kh(b)
1 + γ

[
B2(b)
1 + γ

− B′(b)
](

1 − h(b)
Ω

)
= − 2kh(b)

Ω(1 + γ)
B2(b)

⇔
(

−1
1 + γ

+
B′(b)
B2(b)

)
=

2k

Ω(1 + γ)

(
h(b)

1 − h(b)
Ω

)
. (41)

(LHS ) = (RHS)

Noting that
B′(b)
B2(b)

=
−2γb2 + 4b(2 − γ) + 2(γ − 2)

(2 − γ − γb)2
,

one finds that

∂
(

B′(b)
B2(b)

)
∂b

=
8(2 − γ)(1 − γ)
(2 − γ − γb)3

> 0, ∀γ ∈ (0, 1), b ∈ [0, 1] .

This implies that the LHS of the condition for an inflection point (T ′′(b) = 0),
equation (41), is strictly monotonically increasing in b. Furthermore, applying
calculus one can also verify that the RHS of condition (41) is strictly monotonically
decreasing in b on the support [0, 1]:

∂

(
h(b)

1−h(b)
Ω

)
∂b

=
h′(b)(

1 − h(b)
Ω

)2 < 0, ∀b ∈ [b, 1] .

In order to ensure that there is a value of b for which (41) is satisfied, it remains
to be shown that the value of the LHS is smaller than that of the RHS for b = b
and larger for a = b = 1. Noting that LHS(b = 1) = −1

1+γ + 1
1−γ > 0 and that

RHS(b = 1) = 0 since h(1) = 0, one sees that the latter claim is true. The facts
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that h′(b) < 0 ∀b ∈ [0, 1], and that limb↓b h(b) = ∞ indicate that h(b) exhibits a
saltus at b = (b). Since LHS(0) = −1

1+γ − 2
2−γ < 0 and due to the fact that the LHS

is strictly monotonically increasing ∀b ∈ [0, 1], the values of LHS and RHS can only
be equal for one single value of a. These arguments are illustrated in Figure 10.
This means that there exists one and only one level of b ∈ [b, 1] such that T ′′(b) = 0.

  RHS 

1/(1-γ)>1 

0   
b (=a2) 

-2/(2-γ)<0 LHS 

RHS 

b(=a2) 1 
Inflection Point 

Figure 10: Existence and Uniqueness of an Inflection Point

From the fact that the function is invertible in this range of the support, and since
there is a one-to-one relationship between a and b, we conclude that the function
a(T ) also exhibits exactly one inflection point.

Proof of Proposition 3:

Proof. Note: As long as there is no danger of confusion, we suppress the subscripts
’t’ for generation t for notational convenience (e. g. Tt(at) = T (a), etc.).

(i): Existence of a dynamic equilibrium for the conditional system. Recall that
the locus TT is linear with slope −ρ and values T (a = 0) = T +ρ and T (a = 1) = T .
From the proof of Proposition 2 we know that, for any A > 0, the locus HH (A)
is such that lima↓a(A) Tt(a, A) = ∞, and that its value is monotonically decreasing
∀a > a (A). Hence, if the value of this non-linear relation at a = 1 is smaller
than that of the linear relation of the intergenerational externality, there must
exist at least one intersection by the intermediate value theorem. However, note
that T (1) = e ∀t, and that by assumption e < T . That means the fixed cost for
theoretical education is always lower than any minimum life expectancy, otherwise
theoretical education would never be an alternative, not even for the most able
individual in the world. Hence a dynamic equilibrium exists for every generation t.

(ii): From the proof of (i) and noting that any steady state is characterized
by an interior solution with a < 1, since T (a = 1) = T > e, which in turn implies
that Ht > 0 and Pt > 0 for any t > 0.

(iii): The claims follow from Proposition 2: We know that HH (A) has always
a unique turning point and takes values above and below TT at the extremes a (A)
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and 1. Hence the two curves can intersect at most three times, while they intersect
at least once by (i). Claim ( a) follows from the negative slopes of both loci that
allow to rank steady states. Claims (b) and (c) are true since, in the extreme
equilibria EH and EL, HH (A) intersects TT from above, which means that the
system is locally stable, while the opposite happens in the intermediate equilibrium
Eu, since HH (A) must cut TT from below. Thus Eu is locally unstable. Claim
(d) follows from the fact that if only one steady state exists it must be stable
since HH (A) starts above TT and ends below so it must cut from above. The
concavity/convexity of HH (A) in the stable equilibria is used to identify them
since in case of multiplicity one must be in the concave and the other in the convex
part.

Proof of Lemma 2

Proof. By assumption, δ > 0, φ > 0, and χ > 0 in equation (33), such that
ȦH.t > 0, and AH.t > AH.t−1 ∀t. At−1 and At are linked in an autoregressive way,
and equation (35) is of the form At = (ct−1 + 1) At−1 = dt−1At−1 , where dt−1 =
δHφ

t Aχ
.t−1 + 1 > 1 for any t, since from Proposition 3 Ht > 0 for any t and δ > 0.

This means that the process is positive monotonous and non stationary. Starting
with any A0 > 0 we can rewrite At =

(∏t
i=1 di−1

)
A0, where

(∏t
i=1 di−1

)
> 1 and

limt−→∞
(∏t

i=1 di−1

)
= ∞.

Note: If there is TFP growth also in the P -sector, it is sufficient for the
argument to hold to assume that δ > δP ≥ 0, φ ≥ φP and χ ≥ χP in equation (33)
and footnote 28. Then, the relative increment to TFP each period is larger in the
H-sector, and the claim holds for identical initial values. For higher initial values
of AP it only holds after sufficiently many periods (generations) have passed.

Proof of Proposition 4

Proof. As in the proof of Proposition 2, solve equation (25) for T (a) to get:

Tt(at) =
e

1 − g(at)
Ωt

. (42)

The claim follows by partial derivation of equation (42), ∂
∂Ωt

Tt(at) = − g(at)e

(Ωt−g(at))
2 <

0 ∀at ∈ [at, 1].

Proof of Proposition 5:
Consider Equation (42), and denote the function characterizing the slope of the

HH(A) locus for any a by HH ′(A) ≡ ∂T (a,A)
∂a . Similarly, let HH ′′(A) ≡ ∂2T (a,A)

∂a2

denote the second derivative of the HH(A) locus for any a. From proposition
2, we know that HH ′(A) is U-shaped. It takes infinite value at the extremes of
the support {a (A) , 1}, and exhibits a unique global minimum corresponding to
the inflection point of HH (At). In the following, we denote aI

A as the level of
a corresponding to the global minimum of the function HH ′(A) (or, equivalently
corresponding to the unique inflection point of the function HH(A)), characterized
by HH ′′(A, aI

A) = 0. A useful intermediate result describes the effect of A on the
slope of the HH-locus:

Lemma 3. For any a ∈ [a (A) , 1], HH ′(A) decreases as A increases.
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Proof. The result follows from

∂

∂Ωt

∣∣∣∣∂Tt(at, At)
∂at

∣∣∣∣ = −Ωt + g(at) − 1(
1 − g(at)

Ωt

)3

Ω3
t

g′(at)e
1
Ωt

< 0 ∀at ∈ [at (At) , 1] ,

and the definitions of A and Ω in equation (28). Note also that limA−→∞
(

∂T (a,A)
∂a

)
=

0 ∀a 
= {0, 1}, limA−→0

(
∂T (a,A)

∂a

)
= +∞, ∀a ∈ [a (A) , 1] and limA−→0 a (A0) = 1,

therefore HH ′(A) eventually take zero value in the interior of the bounded support
as A −→ ∞, and HH(A) is basically a vertical line at a = 1 (with infinite slope)
as A −→ 0.

Figure 11 plots HH ′(A) for different A.
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Figure A1: Emergence of Multiple Equilibria 
 

Figure 11: Slope of the HH(A) Locus

Since HH ′(A) shifts downwards monotonically as A increases, there exists a
unique value A0, and by lemma 2 also a unique t0, such that HH ′(A0, aI

A0) =
ρ. For this level of A = A0, HH ′ and TT ′ in Figure 11 are tangent. Hence,

HH ′(A, aI
A)

>
< ρ ⇐⇒ A

<
> A0. Since HH ′(A) is globally convex, and by definition

of aI
A as extremum (or from graphical inspection of Figure 11), for any t ≥ t0 there

exist exactly two levels of a, a1
At

≤ aI
At

≤ a2
At

, where a1
At

lies in the convex and
a2

At
in the concave part of HH(A), such that HH ′ (At, a

1
At

)
= ρ = HH ′ (At, a

2
At

)
.

Existence of at least one equilibrium of the conditional dynamic system (37)
has been shown in Proposition 3. For any t < t0 the equilibrium is unique since
HH ′ (At) > ρ ∀a ∈ [a (A) , 1] and the loci HH (At) and TT necessarily intersect
only once. For t ≥ t0, multiple equilibria may arise if HH (A) is flatter than TT
in some range of the support. Thus, at t0 two scenarios are possible depending
on the nature of the unique equilibrium. If HH(A0, aI

A0) < TT (aI
A0), the unique

equilibrium is of type H since, by definition of aI
A as inflection point, the two

loci TT and HH intersect in the convex part of HH (A) . This is the case if and
only if the concave part of HH (A) is sufficiently small, which is true if the fixed
cost of acquiring human capital H, e is sufficiently small. In this case, nothing
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prevents agents from acquiring high quality human capital from early stages on,
and the economy develops smoothly as A increases overtime. In the other scenario,
HH(A0 , aI

A0) ≥ TT (aI
A0), so the unique equilibrium at t0 is of type L. In this case,

acquiring H is individually costly in an underdeveloped economy, or, equivalently,
e is sufficiently large to generate a development trap. The economy is characterized
by a lengthy sequence of L-equilibria which is eventually followed by a development
process as described in Proposition 5:

Given Lemma 2 on the monotonicity of A in t, Proposition 5 in the text is
formally equivalent to:

Proposition 5. Consider an economy characterized by a sufficiently large e, such
that the respective conditional system (37) is characterized by a sequence of unique
steady state equilibria of type L as formalized in Proposition 3 for A ≤ A0. Then
there exist two levels of productivity A1 and A2 with A0 < A1 < A2 < ∞ such that
the dynamical system (37) is characterized by

(i) a series of unique type L stationary equilibria with aL(At+1) < aL(At) and
TL(At) < TL(At+1) ∀At ≤ A1 (panel (a) in Figure 6);

(ii) two steady states Eu(A1) and EL(A1) at At = A1;

(iii) three steady states: EH(At), Eu(At) and EL(At), with the economy situated
in the area of attraction of the L-equilibrium with aL(At+1) < aL(At) and
TL(At+1) > TL(At) ∀At ∈ (A1, A2) (panel (b) Figure 6);

(iv) two steady states EH(A2) and Eu(A2) at At = A2 (panel (c) Figure 6);

(v) a sequence of unique and globally stable H-type steady states with aH(At+1) <
aH(At) and TL(At+1) > TL(At), ∀At > A2 (panel (d) Figure 6).

Proof. Consider first claims (i) and (v). By construction, at t0 the steady state is
L-type, so aI

A0 = a1
A0 = a2

A0 and HH(A0, aI
A0) > TT (aI

A0). Eventually there is a
unique equilibrium with aH

t close to zero since limA→∞ a(A) = 0 and HH(a, A) =
∞ for any A, so that the locus limA→∞ HH(A) exhibits infinite value at a = 0 and
value e elsewhere. Hence, from a certain period onwards there must exist a unique
H type equilibrium. This implies HH(∞, a1

∞) = HH(∞, aI
∞) = HH(∞, a2

∞) =
e < TT (a) for any a ∈ (0, 1). The dynamics of the system is determined by the posi-
tion of HH(At, a

I
t ), HH(At, a

1
t ), and HH(At, a

2
t ) with respect to the corresponding

values of the TT -locus. The system passes from a situation in which HH(A) lies
above TT for a level of a for which both HH and TT have the same slope, to a
situation in which HH lies below TT for the level of a for which both are parallel.

(ii), (iii) and (iv). From proposition 4 and lemma 3, HH(A) and HH ′(A)
decrease continuously and monotonically with A. By continuity, there exists a
level A1 such that HH(A1, a1

A1) = TT (a1
A1) but HH(A1, a2

A1) > TT (a2
A1) since

a2
A1 lies in the concave part of HH(A). For any A > A1: HH(A, a1

A) < TT (a1
A)

by proposition 4 and lemma 3. The same reasoning insures the existence of A2 :
HH(A2, a2

A2) = TT (a2
A2) and the fact that HH(A, a2

A) < TT (a2
A) for any A >

A2. Since HH(A, a) is continuous and monotonic in a: for any A ∈ (A1, A2)
HH(A, a1

A) < TT (a1
A1) and HH(A2, a2

A2) > TT (a2
A2) there exists a unique level

au(A) which determines a locally unstable steady state of the system (37).
The levels of T and a associated to any locally stable steady state change mono-

tonically as generations t pass because both loci HH(A) and TT increase in (1−a).
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Therefore, by comparative statics in supermodular settings (or simple graphical in-
spection) an increase in A shifts down HH(A) and leads to an unambiguous increase
(respectively decrease) in the level of T (respectively a) associated to any locally
stable equilibrium (the opposite is true for unstable ones).

Note that, since A changes discretely as generations pass, it may be the case that
not all the phases from (i) to (v) are exactly realized. In particular, stages (ii) and
(iv) with the system displaying exact tangency and two equilibria, may not realize
if the discrete change in A moves the system from one to three steady states within
just one generation, namely if, for some t: At < A1 < At+1 or At < A2 < At+1.
Nonetheless, the global evolution of the dynamical system (36) necessarily follows
the described phases with the full system evolving around an L-type locally stable
steady state before an endogenous rapid transition to a globally stable steady state
of type H.
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