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ABSTRACT

Nonparametric IV Estimation of Local Average Treatment
Effects with Covariates”

In this paper nonparametric instrumental variable estimation of local average treatment
effects (LATE) is extended to incorporate confounding covariates. Estimation of local average
treatment effects is appealing since their identification relies on much weaker assumptions
than the identification of average treatment effects in other nonparametric instrumental
variable models. Including covariates in the estimation of LATE is necessary when the
instrumental variable itself is endogenous (e.g. when the instrument is self-selected).
However, all previous approaches to handle covariates in the estimation of LATE rely on
parametric or semiparametric methods. In this paper, a nonparametric estimator for the
estimation of LATE with covariates is suggested that is root-n asymptotically normal and
efficient.
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1 Introduction

Instrumental variables regression is a fundamental approach to causal reasoning in economet-
rics. In many applications one wants to uncover the causal relationship between a variable D
and an outcome variable Y, where the variable D is itself endogenous. For example, if D is
years of schooling and Y is wages, it is of interest to learn by how much wages increase due
to an additional year of schooling. In another example, where D is union membership and Y
is wages, one would like to know which wages would be observed if the union members were
non-members or vice versa. Or, if D represents participation in a training programme and Y
is subsequent employment status, it is of interest how the employment probability is affected
by participation in the training programme. In these examples, one would like to know how D
causally affects Y, i.e. how an exogenous variation in D would change the variable Y. Since
the variable D is endogenous, a regression of Y on D does not uncover a causal (structural)
relationship. Nevertheless, if a variable Z exists that affects only D but not Y, then an exoge-
nous variation in Z induces an exogenous variation in D and thus overcomes the endogeneity
of D. Such a variable Z is called an instrumental variable and has been exploited in numerous
studies to identify the effects of D on Y.

If the values of the instrumental variable Z are assigned completely at random, any variation
in Z is exogenous and thus generates an unconfounded variation in D, which identifies the
relationship between D and Y. For example, Hearst, Newman, and Hulley (1986) and Angrist
(1990) use the Vietnam era conscription lottery as an instrument to identify the effects of
mandatory military conscription on subsequent civilian mortality and earnings. Imbens, Rubin,
and Sacerdote (2001) use ‘winning a prize in the lottery’ as an instrument to identify the effects
of unearned income on subsequent labour supply, earnings and consumption behaviour. In both
examples the instrument is randomly assigned (by a lottery).

However, in many applications the instrument Z itself is endogenous and confounded with
D or Y. For example, college proximity may be used as an instrument to identify the returns
to schooling, noting that living close to a college during childhood may induce some children to
go to college but is unlikely to affect the wages earned in their adulthood directly (Card 1995).
Nevertheless, the instrument college proximity is not randomly assigned but chosen by the
parents. Their choice, however, might itself be related to characteristics that affect their

children’s subsequent wages directly. Parental education is another example of an instrumental



variable that is often used to identify the returns to schooling. It appears reasonable that
parental schooling itself has no direct impact on their children’s wages. Nevertheless, it is
likely to be correlated with parents’ profession, family income and wealth, which may directly
affect the wage prospects of their offspring. In these cases it is necessary to control for these
confounding covariates X to handle the endogeneity of the instrumental variable Z.
Conventional approaches to accommodate covariates X in instrumental variables
estimation (for example two-stage least squares) proceed by specifying functional form
restrictions on the conditional expectation functions of Y and D. Recently, nonparametric
identification and estimation in instrumental variable models, avoiding such delicate
functional form assumptions, has received a lot of interest, see Newey and Powell (first draft
1988, revised 2002), Newey, Powell, and Vella (1999), Das (2000), Blundell and Powell
(2001), Darolles, Florens, and Renault (2001), Imbens and Newey (2001), Florens (2002)
and Florens, Heckman, Meghir, and Vytlacil (2002). However, their approaches still impose
identifying assumptions which may not be satisfied in many applications. Most models rely
on additive separability in the error term, which amounts to assuming that, conditional on
X, the relationship between D and Y is identical for each individual up to an intercept. In
other words, a constant treatment effect for individuals with the same value of X is assumed.
Additively-separable models, thus, rule out unobserved heterogeneity and therefore may
not be appropriate in many applications. In non-separable models, however, identification
essentially requires that the instrument is sufficiently powerful to move the value of D; (for
any individual 7) over the entire support of the variable D, see Blundell and Powell (2001),
Florens, Heckman, Meghir, and Vytlacil (2002) and Imbens and Newey (2001).! Yet, such
powerful instruments are often not available. In this case, the relationship between D and Y

can only be uncovered for the subpopulation that reacts on changes of the instrument Z.

This is the concept of the local average treatment effect (LATE) of Imbens and Angrist
(1994). The local average treatment effect is the mean effect on Y of a change in D for the sub-
population of compliers, where the compliers are all individuals whose value of D would change
if the instrument Z were modified exogenously. In spite of its appealing properties, however,
the LATE-concept has not been fully extended to accommodate covariates X. Although iden-

tification of local average treatment effects with covariates is straightforward, nonparametric

! This is similar to the identification-at-infinity argument in selection models.



estimation with covariates has not been attempted so far. All previous approaches to incor-
porate covariates for estimating local average treatment effects (e.g. Abadie (2001), Angrist,
Graddy, and Imbens (2000), Hirano, Imbens, Rubin, and Zhou (2000), Yau and Little (2001)
among many others) always resorted to parametric or semiparametric approaches. They re-
frained from nonparametric estimation methods because of their low precision and the curse
of dimensionality.

In this paper it is shown that the average treatment effect for the compliers can be estimated
fully nonparametrically at y/n-convergence rate even with covariates. The proposed estimator
is asymptotically normal and efficient. Thus using nonparametric regression to accommodate
covariates X in the estimation of local average treatment effects does not give rise to the curse
of dimensionality. This result is similar to the /n-convergence of nonparametric matching
estimators in the treatment evaluation literature, see Heckman, Ichimura, and Todd (1998).
(Indeed, the proposed conditional LATE estimator corresponds to a ratio of two matching
estimators. )

Section 2 gives an overview of nonparametric instrumental variables methods. Section
3 introduces the nonparametric conditional LATE estimator and derives its properties. In

addition, several extensions are discussed. Section 4 concludes.

2 Instrumental variable regression

Nonparametric instrumental variable estimation of the relationship between an endogenous

variable D and an outcome variable Y is often analyzed in an additively separable model
Y = ¢ (Di, Xi) + wi,

where 7 denotes an element (unit/individual) of the population, D; is the observed value of the
endogenous regressor for unit ¢, X; is the observed value of a (possibly empty) set of exogenous
variables and w; is an error term. ¢ is a structural (causal) function based on the following
potential outcomes concept: For unit ¢ the variables D, X and w take the values D;, X; and
u; and the outcome Y; = ¢ (D;, X;) + u; is observed. If the variable D; were manipulated by
an external intervention to take the value d (without changing the values of X; and wu;), the
outcome ¢ (d, X;) + u; would be observed. For instance, if D € {0,1} is union status and Y is

wages, the potential wages for unit ¢ are the wage that unit ¢ would receive if union membership



were set by some external intervention to 0 and the wage that unit ¢ would receive if union
membership were set to 1, ceteris paribus. Analogously, if D is years of schooling, the potential
wages for unit ¢ are the wages that unit ¢ would receive if years of schooling of unit ¢ were set
externally to different levels. Accordingly, the difference ¢ (d = 1,x) —¢ (d = 0, ) is the causal
effect of union-membership or of one versus zero years of schooling, respectively, on wages, for
units with characteristics X = . The defining feature of the additively separable model is that
it is conceived that D; could be manipulated without affecting X; or u,.

If instrumental variables Z are available that are related to D but unrelated to u (given X)
Eu|lZ,X] =0,

the structural function ¢ is identified, see Newey and Powell (first draft 1988, revised 2002),
Newey, Powell, and Vella (1999), Das (2000), Darolles, Florens, and Renault (2001), Florens
(2002) and the survey article of Blundell and Powell (2001).2

*However, consistent estimation of ¢ is rather difficult, because the reduced form relationship
ElY|Z=2X=1] = [¢(d,z)dFy., needs to be inverted with respect to the integral operator. Since the
inverse of the integral operator is discontinuous, small changes in E[Y|Z, X] may give rise to large changes in ¢.
To overcome this ill-posed inverse problem, Newey and Powell (first draft 1988, revised 2002) restrict the set of
possible ¢ (d) functions and introduce a series approximation to ¢ (d). Darolles, Florens, and Renault (2001),
Florens (2002) propose a regularization of the integral equation for estimating ¢ (d). Das (2000) avoids the dis-
continuity problem by restricting the endogenous regressor D; to be discrete. Newey, Powell, and Vella (1999)
consider an alternative additively-separable model, which is more restrictive but easier to estimate than the model
based on the assumption E [u]|Z, X] = 0 alone. They specify additionally an additively-separable structure for
the endogenous regressor: D; = ¢ (Z;, X;) +v; and suppose that E [v|Z, X] = 0 and E [u]v, Z, X] = E [u|v]. The
basic assumption of this model is that the endogeneity of D (i.e. the difference E[p (d)] # E[p (d)|D =d] ) is
entirely driven by v and not by any interaction between v and Z or X. This model implies that the error term

v; is identified as v; = D; — E [D|Z = Z;, X = X;] and hence

EYID=d,Z=2X=1] = ¢(dz)+EuD=d2%=zX =1
= pdr)+EuZ=2X=2,V=d—E[D|Z=2X=21] ]
= ¢(da)+EuV=d—E[D|Z=2X=a] ]
= ¢(d,x) + ()

where £(v) is a function of v and v(d, z,2) = d — E[D|Z = 2z, X = z]. The function £(v) is called the control
function and captures all the endogeneity that comes through the relation between w; and v;. Independent
variation in v and z, induced by variation in the instruments z, separates the structural function ¢ (d, z) from

the endogeneity correction term &(v).



However, the assumption of an additively-separable structure is often inadequate, since
it heavily restricts the permitted heterogeneity among units: Although units may differ in
their unit-specific error terms wu;, the causal effect of setting D; to dy versus setting D; to
dy is supposed to be identical for all units with the same x value: ¢ (dy,x) — ¢ (dg, ). This
amounts to assuming that the effect of union membership or of an additional year of schooling
is identical for all units ¢ with the same characteristics X. This constant treatment effect
assumption (conditional on z) is in many situations, depending on which X variables are
observed by the econometrician, rather implausible (Heckman 1997). For example, the return
to schooling may be interacted with unobserved ability. In such cases, different units react
differently on an external intervention on D, and the structural function ¢ itself varies among
units:

Yi =g, (Dz)

The function ¢; is still conceived in a counterfactual sense: ; (D;) is the observed outcome
and ¢; (d) is the outcome that would be observed if D; had been set to d. However, ¢, may
now differ among units in an arbitrary way. Identification of the average structural function
E [p; (d)] or of average treatment effects E [p; (d1) — ¢; (d2)] in such non additively-separable
models is analyzed by Blundell and Powell (2001), Florens, Heckman, Meghir, and Vytlacil
(2002)% and Imbens and Newey (2001), using a control function approach. Suppose Dj; is
generated by

Di = ¢ (Zi,vi), (1)

where v; is an error term. If ¢ (Z;,v;) is assumed to be additive in Z; and v; (Florens, Heckman,
Meghir, and Vytlacil 2002) or to be strictly monotone in v; (Imbens and Newey 2001), v; can
be identified from D; and Z;. If one assumes that the endogeneity of D; is generated entirely
through the error term wv;, similarly to Newey, Powell, and Vella (1999), then the endogeneity
(i.e. Elp;(d)] # Elp; (d) |D; =d] ) can be controlled for by conditioning on v:

Elp; (d) |Di = d,V; = v] = E[p; (d) |[Vi = v]. (2)
3Florens, Heckman, Meghir, and Vytlacil (2002) analyze identification of F[p; (d)]/dd when D is continuous.

They also consider a local instrumental variable (LIV) condition, which essentially assumes that the average

treatment effect and a local average treatment effect (discussed below) are identical.



With this assumption, the average structural function E[p; (d)] can be identified by
/E[Y\D:d,V:v}dFv - /E[%. (d) |D; = d, V; = v] dF,

— /E [p; (d) |V; = v] dF, = Elg; (d)],

since v; is identified by the additivity or monotonicity assumption in (1).*

Yet, a central condition for identification is that the conditional expectation E[Y|D =
d,V = v] is defined at every v in the support of V. This requires that the support of the
distribution of V' given D = d is the same as the support of the marginal distribution of V.

This condition, thus, requires either that the distribution of V' is somehow restricted or,
otherwise, that every unit ¢ could be induced to take the value D; = d through a change in Z;.
In other words, the instrument Z; must be sufficiently powerful to move the regressor D;, for

every unit ¢, to any value d where E[yp; (d)] shall be estimated (Imbens and Newey 2001).

2.1 Local average treatment effects

However, in many applications the instruments available are not so powerful. It is often highly
unreasonable to assume that all units ¢ could be induced, through a modification of the in-
strument Z;, to change D; to a particular value. Consider the situation where D and Z are
binary. The above assumption would require that all units switch D from 0 to 1 or vice versa
if Z is changed from 0 to 1. If this assumption does not hold, the relationship between D and
Y can be analyzed only for the subpopulation which is affected by the instrumental variable.
Hence an average causal effect can no longer be identified for the full population, but only a
local average treatment effect (LATE) for the subpopulation of units that could be induced to
change D through a variation in the instrumental variable.

The local average treatment effect has been introduced by Imbens and Angrist (1994) and
further analyzed by Angrist and Imbens (1995), Angrist, Imbens, and Rubin (1996), Imbens
and Rubin (1997), Heckman and Vytlacil (1999), Abadie (2001) and Imbens (2001), among
others. Most of the discussion on LATE focuses on the case where the instrumental variable Z

itself is exogenous, i.e. not confounded with D or Y. Identification of local average treatment

f¢ (Zi, v:) is monotone in v;, then v; = Fp|z(Ds, Zi), see Imbens and Newey (2001). If ¢ (Zi, vi) = £ (Zi)+vi
is additive, then v; = D; — E[D|Z = Z;], see Blundell and Powell (2001) and Florens, Heckman, Meghir, and
Vytlacil (2002).



effects with confounding covariates X has been discussed in Angrist and Imbens (1995),
Heckman and Vytlacil (1999), Abadie (2001) and Imbens (2001). However, nonparametric
estimation of local average treatment effects with confounding covariates X has not been
attempted so far. Extensions to embed covariates X in the estimation of LATE have usually
resorted to parametric or to semiparametric approaches. Angrist, Graddy, and Imbens (2000)
and Yau and Little (2001) incorporate covariates by assuming that they enter linearly in
the conditional expectation functions. Hirano, Imbens, Rubin, and Zhou (2000) suggest to
model the probability of being an always-taker, never-taker or a complier given covariates
X by a trinomial logistic distribution and to model the outcome distributions separately
for these types. Abadie (2001) initially introduces covariates in a nonparametric way but
proposes parametric and semiparametric methods to avoid the curse of dimensionality of
nonparametric regression.

In the next section a fully nonparametric estimator of the local average treatment effect in
the presence of covariates X is proposed, which is y/n-consistent, asymptotically normal and

efficient. These results advocate the use of nonparametric regression in LATE estimation.

Before presenting the estimator, the identifying conditions of local average treatment effects
are discussed and motivated. Consider first the case where the endogenous regressor D &€
{0,1} and the instrument Z € {0,1} are both binary. (Extensions are discussed in Section
3.2). D could be attending/not attending college and Z could be living close to or far from a
college. The value of D might be influenced by the instrumental variable: D; = (;(Z;), where
¢; is unknown and might differ among individuals. To allow for a more compact notation,
let D; z, = (;(Z;) denote the observed value of D for unit 4, and let D; . = (;(2) denote the
potential value the endogenous regressor would take if Z; were set exogenously to 2.9 According
to the potential values of D the population can be partitioned into 4 subpopulations: Children
with D; o = D;1 = 1 will attend college irrespective of the distance to it. On the other hand,
children with D; o = D;1 = 0 will not attend college. Children with D;o =0 and D;; =1 go
to college only if living close to it, whereas children with D; o =1 and D; ;1 = 0 attend college

only if living far away from it. Thus each unit can be classified either as an always-taker, a

®This notation is very similar to Imbens and Angrist (1994) and Imbens (2001), with the exception that the

arguments D and Z are indicated by super- and subscripts to avoid confusing the order of these arguments.



never-taker, a complier or a defier. Let 7; denote the type of unit i:

Definition of types

Ti=mn|if Dip=0and D;; =0 | Never-taker
Ti=c |if Dijp=0and D;; =1 Complier
Ti=d | if Dijp=1and D;; =0 Defier

T = Q if Di70 =1 and Di71 =1 Always—taker.

Since the units of type always-taker and of type never-taker cannot be induced do change
D through a variation in the instrumental variable, the impact of D on Y can at most be
ascertained for the subpopulations of compliers and defiers. Denote the observed outcome for
unit ¢ as YzDi =Y = ¢;(D;, Z;) and let Yidz = ¢,(d, z) denote the potential outcomes. Yilei is
the outcome that would be observed if D; were set exogenously to d, and Yfz is the outcome
observed if both D; and Z; were fixed externally. On the other hand, Yle is the outcome if
only the instrument were set exogenously.

The conceptual difference between Yfz and ngl is that in the former case both Z and D
are fixed by external intervention, whereas in the latter case only Z is set exogenously and D;
is determined by the behaviour of unit ¢. In other words, the former potential outcomes isolate
the direct effect of the instrument Z on Y, while the latter combine the direct effect and the
indirect effect of Z on Y via the endogenous regressor D.

With a variety of assumptions, the average treatment effect on the subpopulation of com-
pliers can be identified. The following exposition proceeds conditional on a (possibly empty)
set of covariates X, since the instrumental variable assumptions may often be satisfied only
conditional on confounding covariates. (When the set of covariates X is empty, the derivation
corresponds to the unconditional identification.) Under the following assumptions, the aver-
age treatment effect on the subpopulation of compliers with characteristics X is identified, see
Imbens (2001).

[Assumption 1: Exogenous covariates] The covariates X are exogenous in the sense that
Xip;z; = Xian  Vd,z,

where X 4. is the potential value of X that would be observed for unit 7 if D; and Z; were set
by external intervention.

Assumption 1 precludes that X; itself is caused by the instrument Z; or the endogenous



regressor D;. In other words, the value of X; would remain the same even if Z; or D; were
manipulated externally.® Furthermore assume the following:

[Assumption 2: Monotonicity] The subpopulation of defiers has probability measure zero:

[Assumption 3: Existence of compliers] The subpopulation of compliers has positive probability

measure:

[Assumption 4: Unconfounded type] The relative size of the subpopulations always-takers,

never-takers and compliers is independent of the instrument:
Pri=t|Xi=2,Z;=0)=P(r;=t|Xs =2,Z;=1) for t € {a,n,c}.

[Assumption 5: Mean exclusion restriction/ The potential outcomes are mean independent of

the instrumental variable Z in each subpopulation:

E [Yi?zi|Xz- =,Z; =0,7; =t E [Yi?zi X =, Z; = 1,7, =] for t € {n,c}

EY' | Xi=2,Zi=0,1i=t| = E[Y,|Xi=2,Zi=1,7;=t]  forte{a,c}
[Assumption 6: Common support] The support of X is identical in both subpopulations:
Supp (X|Z =1) = Supp (X|Z =0).

An equivalent representation of the common support condition is that the conditional proba-
bility 7(x) = P(Z = 1|X = z) is bounded away from 0 and 1 for all x with positive density:
0 < m(x) <1 Ve with fz(z) > 0.

Assumptions 2 and 3 rule out the existence of subpopulations that are affected by the
instrument in an opposite direction. Since changes in the instrument Z would trigger changes
in D as well for the compliers as for the defiers, but with opposite sign, any causal effect on the
compliers could be offset by opposite flows of defiers. Monotonicity ensures that the effect of
Z on D has the same direction for all units. The monotonicity and the existence assumption

together ensure that D; 1 > D;o for all ¢ and that the instrument has an effect on D, such

SImplicit in the discussion on estimating the effect of D on Y is the assumption that D; is not caused by Y;

and that Z; is neither caused by D; nor by Y;.



that D;1 > D;o for at least some units. When college proximity is used as an instrument to
identify the returns to attending college, monotonicity requires that any child which would not
have attended college if living close to a college, would also not have done so if living far from
a college. The existence assumption requires that the college attendance decision depends, for
at least some children, on the proximity to the nearest college.

The mean exclusion restriction (Assumption 5) rules out a direct effect of Z on Y. It
combines two conceptually distinct assumptions: An exclusion restriction on the unit level
and an unconfoundedness assumption on the population level. Rewrite Assumption 5 for the

potential outcome Y as

E Yol Xi =22 =07, =t
= FE [Yzll|X1 =u,72;=0,1; =] (Assumption 5a)

= FE [Yzll|X1 =ux,7Z;=1,1; =] (Assumption 5b)

for t € {a,c}. The first equality sign (Assumption 5a) corresponds to an exclusion assumption
on the unit level. It is assumed that the potential outcome YleZ for unit ¢ is unaffected by an
exogenous change in Z;. For example, if Yi}0 = Yi}l, college proximity itself has no direct effect
on the child’s wages in its later career. Assumption 5a thus rules out any systematic impact of
Z on the potential outcomes on a unit level. Assumption 5b, on the other hand, represents an
unconfoundedness assumption on the population level. It assumes that the potential outcome
Yi}1 is identically distributed in the subpopulation of units for whom the instrument Z; actually
takes the value 0 and in the subpopulation of units with Z; = 1. This assumption rules out
selection effects that are related to the potential outcomes: The families who decided to reside
close to a college should be identical in all characteristics (that affect their children’s subsequent
wages) to the families who decided to live far from a college. Thus, whereas Assumption 5b
refers to the composition of units for whom Z =1 or Z = 0 is observed, Assumption 5a refers
to how the instrument affects the outcome Y of a particular unit.

Assumption 5b is trivially satisfied if the instrument 7 is randomly assigned. Nevertheless
randomization of Z does not guarantee that the exclusion assumption holds on the unit level
(Assumption 5a). On the other hand, if Z is chosen by the unit itself, selection effects may
often invalidate Assumption 5b: The families who decide to reside nearer to or farther from a

college might be rather different, for example, if the districts were colleges are located also offer

10



other job opportunities. In this case it is necessary to include in X all variables that affect the
choice of residence Z as well as the potential outcomes Yi?Zi and YleZ

Assumption 4 allows to identify the effect of Z on D and to estimate the fraction of com-
pliers. It requires that the fraction of always-takers, never-takers and compliers is independent
of the instrument. Without conditioning on covariates X this assumption may often be invali-
dated because of selection effects, unless the instrument Z is randomly assigned. For example,
parents who would like their children to attend college but could not avoid that their children
might not want to go if living too far away, might decide to reside closer to a college. In this
case, the subpopulation living close to a college would contain a higher fraction of compliers
than those living far away. Validity of Assumption 4 requires that the vector X contains all
variables that affect the (ex ante) choice of residence Z as well as the type 7 (which is deter-
mined by D; o, D;1).

Thus in applications where the instrumental variables Z itself is endogenous, conditioning
on a vector of confounding covariates X will be necessary to identify a local average treatment

effect. Assumption 6 ensures that it is well defined for all x.

Under these assumptions, the size of the complier-subpopulation with characteristics z is

identified as
P(r=c¢X=2)=EDX=2,Z2=1-E[DX=2,Z=0], (3)

and the local average treatment effect y(x) on the compliers with characteristics x is

EYIX=2,Z=1-E[Y|X =7 =0
—FElY, -Y° | Xi=a,7s=c| = ’ ’ 4
W)= B Yz =Yz, \Xi= 27 = EDX=r2=1 EDX=2,2=0"

see Imbens and Angrist (1994) or Appendix A.1.7

If the instrument Z is not confounded with D or Y, the Assumptions 2 to 5 are valid without

conditioning on any covariates X, and g%giﬂ:g%‘éj}] identifies the average treatment effect

for the subpopulation of units who are induced to switch from D; = 0 to 1 when the instrument
changes from Z; = 0 to 1. For example, if Z represents college proximity, the returns to
attending college are estimated only for those children who go to college when living near a

college and who would not attend college otherwise.

"For identification of y(z), Assumption 3 needs to hold conditional on X. For the identification of the local
average treatment effect v on all compliers (discussed below), P (7 = ¢) > 0 suffices, because any z values with

P(1 = ¢|X = z) = 0 receive zero weight in the weighting function.
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3 Nonparametric conditional LATE estimation

In many applications, however, the instrumental variable is endogenous and the Assumptions
2 to 5 are invalid without conditioning on confounding covariates X. In this case, (4) identifies
only the treatment effect y(x) for the compliers with characteristics X = x. More interesting,
however, would often be an estimate of the average treatment effect for the subpopulation of
all compliers, which is the largest subpopulation for which a treatment effect is identified. To
obtain the average treatment effect « for all compliers, the conditional effects y(x) need to be

weighted by the distribution of z in the all-compliers subpopulation:

V= E [YZ}ZT o }/Z?ZZ |Ti = C] - / 7(1") ' dFZ“T:w

where Fj,—. denotes the distribution function of X in the subpopulation of all compliers. By

Bayes’ theorem « can be written as

= [t PO o,

Inserting (4) and noting that the fraction of compliers corresponds to (3) gives

J((EY|X=2,Z=1—-EY|X =2,Z=0]) fo(x)dzx
P(r=c¢) '

With P (1 =¢) = [ P(7 = c¢|X = x)dF, and using (3), the local average treatment effect on

all compliers is

 JEY|X=2,Z=1-FEY|X =2,Z =0]) fo(x)dz (5)
" [(EDIX =2,Z=1]-E[D|X =x,Z =0)]) fu(z)dx’

Hence by Assumption 6 the average treatment effect on all compliers is nonparametrically

identified.®
Define the conditional mean functions m,(z) = E[Y|X = x,Z = 2] and p,(z) = E[D|X =

x,Z = z| and let m,(z) and fi,(x) be corresponding nonparametric regression estimators

thereof. A nonparametric imputation estimator of = is
Z m1(X;) — mo(X;)
N (3
Y= ~ ~ )
Z f11(Xi) = fro(X3)
(2

8Estimating population average parameters in IV models has also been suggested for instance by Das

(2000) and others. Those estimators, adapted to the binary setting, are of the form [~y(z)dF, =

f E[Y|X=x,Z=1]—E|Y|X=2,2=0
E

(DIX—s Z=1—BED[X== Z:O]] fz(x)dx, which has no properly defined causal meaning.
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where the expected values E [Y|X, Z] and F [D|X, Z| are imputed for each observation Xj.
Using the observed values Y; and D; as estimates of E [Y;|X;,Z = 2] and E [D;|X;, Z = 2]

whenever z = Z;, gives the conditional LATE estimator ¥
Y. Yi—mo(Xy) — > (Yi—nmu(Xi))
:Z;=1 i:Z;=0

S D e~ Y (D) ©)

;=1 i:Z;=0

The estimator 4 corresponds to a ratio of two matching estimators, which are frequently used
in treatment evaluation to estimate average treatment effects when the endogeneity of the
regressor D can be completely controlled for by observed covariates (Angrist and Krueger

1999, Heckman, LaLonde, and Smith 1999).7

3.1 Properties of the conditional LATE estimator

In the following two theorems \/n-asymptotic normality and efficiency of the estimator ¥ is
shown. In Theorem 1 the asymptotic distribution of 4 is derived and conditions on the pre-
liminary estimators m,(z) and fi,(x) are given. In Theorem 2 the semiparametric efficiency
bound for the estimation of the local average treatment effect v is derived, which is identical
to the asymptotic variance of the estimator 4. Finally, it is shown that nonparametric kernel
regression and local linear regression estimators satisfy the conditions of Theorem 1. Hence
the local average treatment effect v can be estimated without any functional form assumptions

at the parametric rate.

Theorem 1 (Asymptotic normality of 4) Suppose that

i) the local average treatment effect «y is identified,

it) {(Yi, Ds, Z;, X3) Y1y are iid with Z; € {0,1} and hm = Ilzg (1); where n, = Zl( = 2)
iii) the moments E' [Y|X, Z], DY |X, Z], Var [Y|X, Z] Var [D|X, Z] and Cov Y, D|X Z| exist

for all x € Supp(X) and z € {0,1},

iv) the nonparametric regression estimator my of mi(x) = E[Y|X = x,Z = 1] can be written

 An alternative estimator based on weighting by the probability m(z) = P(Z = 1|X = ) is

YiZ; Yi(1—Z;)
P > (X)) 1-7(X;)
RSy ey Ay

™(X4) 1—-m(Xy)

This estimator is not further studied, because weighting estimators appear to have worse finite-sample properties

than imputation estimators, see Frolich (2001).
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in the asymptotically linear form

1
(@) —m (@) = - > &P, X @) + b (2) + R (2),
j:Zi=1

with the properties

iv A) B I7'(Y;, X5, X) |X = 2,2, = 1] = 0

w B) E[€M"(Y;,X;,X:)%Z; =1,Z; = 0] = o(n)
v C) J= X)) = 0p(1)

l:ZiZO
D) s R = o0,(1)
v E) h
Y X XY X 7 = 1. 7 = O] = (V) \y falz=0 (X5)
BIE(Y5, X5 XY, X5, 25 = 1,2 = 0] = (¥ = ma () $E2 200+ 0,0),
z|z=1 J

and analogously for my, v, fig. Then the estimator (6) of the local average treatment effect

is asymptotically normal distributed

Vn(y=7)—=N(0,V) (7)

with asymptotic variance

1 _ |03, (X) = 2708, p (X) + %05, (X) N 03, (X) = 2y0%, p, (X) +72%0%, (X)
2 7(X) 1 —7(X)

+ %E (M1 (X) —mo(X) =y (X) + WO(X))Q}

where I’ = [ (puy(x) — po(2)) fo(x)da is the denominator in (5), n(x) = P (Z = 1|X = x) is the
probability that Z takes the value one given X, and 03, (x), 03, (x) and 03, }, (x) are the condi-
tional variances and covariances in the Z = z subpopulation: o3 (X) = Var[Y|X =z, Z = 1],

and 0%, , (x) = Cov [Y,D|X = x,Z = 1] etc. (Proof in Appendiz A.2.)

Condition (i) requires that the local average treatment effect y is identified by the Assump-
tions 1 to 6 discussed previously. Condition (ii) supposes random sampling. This condition
readily could be relaxed to allow for stratified sampling on X and/or Z,'” as long as the pop-
ulation density function fz(z) can be recovered, for example through known sampling weights.

Condition (iii) requires the existence of the first two conditional moments of Y and D.

0For example, iid sampling within (Y, D, X)|Z =1 and (Y, D, X)|Z = 0.
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Condition (iv) gives conditions on the nonparametric estimators m,(z) and ji,(x). These
conditions are satisfied by kernel and local linear regression as discussed below. £7'(Y}, X, )
is the mean-zero local influence function of 7, (x), which captures its variance. bJ*(x) is the
local bias of 71, (x), and RJ'(x) is a residual term. Condition (iv B) requires that the variance
of £7' does not grow too fast. Condition (iv C) constrains the local bias term to be of order
op(n_%). This assumption could be relaxed to permit a local bias term of order Op(n_%), but
this would introduce an asymptotic bias term in (7). Analogously, the residual term could be
permitted to be of order Op(nfé) in Condition (iv D). The condition (iv E) is not necessary

for \/n-asymptotic normality, but is imposed to characterize the variance expression V.

In the following theorem the semiparametric variance bound for the estimation of the local
average treatment effect «y is derived. As this variance bound is equal to the asymptotic variance

V of 4 under the conditions of Theorem 1, the conditional LATE estimator ¥ is efficient.

Theorem 2 (Efficiency of 4) The semiparametric variance bound of vy is V. (Proof in Ap-
pendiz A.3).

It remains to find nonparametric estimators m,(x) and fi,(x) that satisfy condition (iv) of
Theorem 1. Heckman, Ichimura, and Todd (1998, Theorem 3) analyzed the local polynomial
kernel regression estimator and showed its asymptotic linearity. Under the conditions that
A1) my(x) is p-times continuously differentiable and its p-th derivative is Holder continuous,'*
where p > k and k is the number of continuous regressors in X,

A2) the bandwidth sequence hy,, satisfies nlhle /Inn; — oo and ny h%}? — 0,

A3) the Kernel function K is symmetric, compact and Lipschitz continuous,'?

the local polynomial regression estimator 11 of polynomial order p is asymptotically linear
@) = ma(a) = - 37 €Y X,) + B (a) + RP (o) )

JiZj=1

with b7*(z) = o (h},) and = ZZ 1R’1”(:z:) = op(1).
Jidj=

Asymptotic linearity of local polynomial estimators with polynomial order p < p requires
additionally that

"' Hslder continuity of a function ((z) at o means that there exist a € (0,1] and C > 0 such that
[¢(z) — ¢(=o)| < C - ||z — zo|* for all z.

12

Lipschitz continuous means Hélder continuous of order o = 1.
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A4) the Kernel function K has moments of order 1 through p — 1 equal to zero,'3

Ab5) the density f; of X is p-times continuously differentiable with its p-th derivative Holder
continuous,

A6) my(x) is estimated at an interior point of the support Supp(X|Z = 1).14

Under conditions Al to A6 also the local polynomial estimator with p < p is asymptotically
linear (8) with b7*(x) = O (h},) and —= Z Rm( ) = 0p(1), and satisfies the conditions (iv
A), (iv C) and (iv D) of Theorem 1. i ~

It remains to verify conditions (iv B) and (iv E). The influence function for the Nadaraya-

Watson kernel estimator and for the local linear estimator with product kernel is

K ()
& (Y5, Xj) = (V) = (X)) - 7 4 0y (1),
where A = [ K (u)du (Heckman, Ichimura, and Todd 1998). Verify first condition (iv E):

k()
— (Vi —m (X)) E | =" X, 7= 1,7 = 0] +o(1)
-\ 1 J hE f| 1(X))\ Jo&g — Ly Ll —

n1dx|z= 1

RN K (%50)

A hnlfm|z 1( )
(Y- m1 / K (u) folo=0 (Xj —uhn,)
= - hy, du+o(1
n1 fq:\z 1 Uhnl) ' ( )

with the change in variables (X; — X;) /hy, = u. Since the densities f;.—o, fz.—1 are contin-

uously differentiable, fy,—o (X; — whn,) = fz).=0 (Xj) + O(hn,) by a Taylor series expansion

and thus
_ (Yj—nll (X5)) . »;z=?((§j))18(<2)) (w) du + o(1)
0, fue g))K () du + (1)
- 000 T

13Conditions A3 and A4 are satisfied by most compact higher-order kernels. For a discussion on higher-order

kernels see, for instance, Pagan and Ullah (1999).
14 This requires a trimming function to trim observations in the boundary.
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Condition (iv B) is a rather weak condition and can be verified using a similar argument:

ek (%)
h2k h.

2 ny
E (Y —m (X5))"-

‘Zj = 1,Zi =0 +0(1)

x2\2=1< Z)AQ
_ L[ o) 1 (X - X 1Z: =1,2; = 0| +o(1)
N A 1(X') hik I, T

o2 1 X —X;\2
= Yl . WK ) a1 (X5) fajamo (Xi) dXd X + o(1)
X 2 o,

m\z 1

fzzz (X)fzzz (X'_Uhrn)
= h’f )\2//(7Y1 (u)? | 1f§::1(Xj0—uh]m) dX;du+ o(1)

with the change in variables (X; — X;) /hy, = u. Hence the conditional LATE estimator 4 with
a Nadaraya-Watson or local linear regression estimator (with product kernel) of the conditional

expectation functions m,(x) and p,(z) is v/n-asymptotically normal and efficient.

3.2 Extensions

The conditional LATE estimator 4 corresponds to a ratio of two matching estimators, which
have been thoroughly studied in the treatment evaluation literature, see e.g. Rubin (1974),
Heckman, Ichimura, and Todd (1998) or Frolich (2001). As is well known for matching esti-
mators, adjusting for the distribution of the X characteristics is equivalent to adjusting for
the distribution of the propensity score m(x) = P (Z = 1|X = z). This is the balancing score
property of the propensity score (Rosenbaum and Rubin 1983, Imbens 2000, Lechner 2001),
which implies that

N JEY|X=2,2Z=1-EY|X =2,Z=0]) fo(x)dz
J(EDIX=2,Z=1—-ED|X =2,Z = O])fw(:z:)d:v
_ JEYITX)=p,Z=1-E[Y|n(X)=p,Z=0])- fr)(p)d .
~ [(EDIr(X)=p,Z=1]-E[Dlr(X)=p,Z=0))- fw(m)(p)

where fr) is the density function of m(x) in the population. An advantage of the
latter representation is that the conditional expectation functions E [Y|7(X) = p,Z] and
E[D|r (X) = p, Z] depend only on the one-dimensional propensity score 7 () and no longer
on the full set of covariates. Hence these conditional expectation functions can be estimated

more precisely than E[Y|X,Z] and E[D|X,Z], particularly if X is high-dimensional.
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Replacing 7, (X;) and fi,(X;) in (6) by corresponding estimates of E[Y|m;,Z = z] and
E[D|m;, Z = z|, where m; = 7w (X;), gives the propensity-score-matching LATE estimator 4.

However, in most applications the propensity score 7 (x) is unknown and needs to be esti-
mated. The propensity score LATE estimator 4, is then computed with the estimated propen-
sity scores 7;. In this case the estimator 4, is still \/n-asymptotically normal, provided the
propensity scores were consistently estimated by parametric or by local polynomial regression.
This follows from the results in Heckman, Ichimura, and Todd (1998), which extend to esti-
mated propensity scores and show that local polynomial regression on the estimated propen-

sity score is still asymptotically linear.

Another result in Heckman, Ichimura, and Todd (1998) covers also the situation where the
common support condition (Assumption 6) is not satisfied and the supports Supp (X|Z = 1)
and Supp (X|Z = 0) are unknown. Then the local average treatment effect is only identified
with respect to the complier subpopulation with characteristics = belonging to the common
support. Since the common support is unknown, Heckman, Ichimura, and Todd (1998) intro-
duce an estimator of it and give conditions under which the local polynomial regression es-
timators m,(x) and fi,(x) are asymptotically linear (with trimming). If these conditions are

satisfied, the nonparametric LATE estimators remain /n-asymptotically normal.

Finally, consider situations where the instrumental variable Z and/or the endogenous re-
gressor D are non-binary. Below it will be seen that the conditional LATE estimator 4 is also
applicable for estimating complier average treatment effects when D is discrete (with bounded
support) and Z is non-binary or vector-valued. First of all, pair-wise comparisons for any two
different values z, 2’ of Z can always be conducted, to estimate the average treatment effect on
the subpopulation which is induced to change D by a change in the instrument from z to 2’.
In the case where Z is continuous, estimates of lim,_, s E[Y1 —Y? |D;,. = 0,D; . = 1] give the
marginal treatment effect on the subpopulation which is just about to change D (Heckman and
Vytlacil 2001). Estimating a variety of pair-wise local average treatment effect provides some
indications about treatment effect heterogeneity in the population. However, instead of a mul-
titude of pair-wise effects, one would often prefer to estimate the (aggregate) average treatment

effect for the largest subpopulation for which an effect can be identified.
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Local average treatment effect with non-binary instrument Z

Consider first the situation where D is binary and Z a scalar, non-binary variable. If 7 is
discrete (and the Assumptions 2 to 5 hold without conditioning on X), Imbens and Angrist
(1994) have shown that the conventional linear instrumental variables estimator can be written
as a weighted average of pair-wise local average treatment effects. However, as pointed out
in Heckman and Vytlacil (2001), the weighting implicit in the linear instrumental variables
estimator does not correspond to a well-defined causal parameter. Particularly, the linear
IV estimator does not estimate the average treatment effect on the compliers. Instead the
appropriate estimator that estimates the average treatment effect in the subpopulation of all
compliers (with characteristics X) is

E[Y|X,Z = 2oy — E[Y|X, Z = 2]
E[D|X,Z = zmax] — E [D|X, Z = 2]

when the support of Z is Supp(Z) = (Zmin, Zmax). This corresponds to (4), where the endpoints
of the support of Z are used as the binary instrument. To illustrate the argument, consider the
case were Z is discrete and can take the values Z € {0,1,2}. (A full elaboration for continuous
Z is given in Heckman and Vytlacil (2001)). The monotonicity assumption now requires that
D;> > D;1 > D;, and according to their reaction on Z the population can be partitioned into

4 types (excluding the defiers, which have probability measure zero):

Definition of types

I
S

T; if Di70 =0 and Di71 =0 and Di72 =0 Never-taker
Ti=ci2 | if D;jo=0and D;; =0 and D;> =1 | Complier at 1-2
Ti=co | if Djg=0and D;; =1and D;3 =1 | Complier at 0-1

T = a if Di70 =1 and Di71 =1 and Di72 =1 Always—taker.

The subpopulations of never-takers and always-takers do not react on changes in the instru-
mental variable and hence the effect cannot be identified for these subpopulations. The sub-
population of compliers consists now of two groups: Those units who change D; from 0 to 1
when the instrument Z; is changed from 0 to 1 and those units who react when the instru-
ment Z; is changed from 1 to 2. The average treatment effect on the first group of compliers
(conditional on X) is identified as

EY|X,Z=1]-E[Y|X,Z =] .
E[DIX,Z=1]-E[D|X,Z =] (9)

EY'-YX, 7T =cn| =
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and the treatment effect on the second group of compliers is

EY|X,Z=2-E[Y|X,Z=1]
EDX,Z=2-ED|X,Z=1]

EY'-YX,7=cp] = (10)

To obtain the average treatment effect on both complier groups, the average effect on the first

group and on the second group need to be weighted by their relative sizes:

FE [Yl —YO‘X,T = Cp1 Or 612] =F [Yl —YOIX,T = 001] . P(T = Cp1 ‘X,T = Cp1 Or 612)

+ F [Yl —YO‘X,T:CH] 'P(Tzclz ’X,T:C[)l or 012).

Noting that P(T = co1 | X, 7 = cp1 or c12) = P(1 = co1 |X)/ (P(T = co1|X) + P(1T = 12| X))
and that E[D|X,Z = 1] — E[D|X,Z = 0] = P(r = c1|X) and E[D|X,Z = 2| — E[D|X, Z =
1] = P(r = c12|X) and E[D|X,Z = 2] — E[D|X,Z = 0] = P(T = c1|X) + P(r = c12|X) it
follows that

[D|X,Z =1] - E[D|X,Z = (]
[D|X,Z =2] - FE[D|X,Z =0
E[D|X,Z=2]-E[D|X,Z = 1]
FE[D|X,Z=2-E[D|X,Z =]
_ElY|X,Z=2-E[Y|X,Z=0]
- E[D|X,Z=2]-E[D|X,Z=0]

E
EDA—Y%KT:%“HQﬂ:EDA—Y%KT:%ﬂ-E

+E[Y' =Y X, 7 =] -

after inserting (9) and (10). Hence the average treatment effect on both complier groups is
identified by a binary instrumental variable estimator of the type (4), with the binary instru-
ment corresponding to the endpoints of the support of Z. An analogous reasoning as in (5)

leads to
_ J((EY|X =2,Z = 2max) — EY|X =2, Z = 2min)) fa(2)dx
- J(EDIX =2,Z = 2max]) — E[D|X = 2,7 = 2min)) fo(z)da’

(1)

which is the average treatment effect on the largest subpopulation for which an effect can be

identified.!?

15 A bias-variance trade-off in the estimation of the local average treatment effect with non-binary Z becomes
visible from (11). Although (11) incorporates the proper weighting of the different complier subgroups and leads
to an unbiased estimator of v, only observations with Z; equal (or close) t0 Zmin OT Zmax are used for estimation.
Observations with Z; between the endpoints zmin and zmax are neglected, which might lead to a large variance.
Variance could be reduced, at the expense of a larger bias, by weighting the complier subgroups differently or
by choosing larger bandwidth values for the estimators 1. (z) and fi,(z). This is beyond the scope of this paper

and will be analyzed in future research.
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A similar reasoning applies when the instrumental variable Z is vector valued and the
monotonicity condition holds with respect to all components of Z. Angrist and Imbens (1995)
have shown that the linear instrumental variables estimator with multiple instruments can be
written as a weighted average of pair-wise binary local average treatment effect estimators.
However, again, the weights are not derived from the definition of a meaningful causal
parameter, as argued in Heckman and Vytlacil (2001). Since the different instrumental
variables act trough their effect on D, a convenient way to summarize the different
components of Z is to consider the probability p(z,x) = P(D = 1|X =z, Z = z) that D takes
the value 1 given X and Z. The average treatment effect for the largest subpopulation (with
characteristics x) for which a treatment effect can be identified is the subpopulation of all
units for whom D;, is a non-trivial function of z (denoted by type 7 = ¢). The average
treatment effect for this all-compliers subpopulation with characteristics x is

EY|X,Z=2Y-FE[Y|X,Z=2]
E[D|X,Z = 24| = E[D|X, Z = 2]’

EY'-Y'X,7=¢] =

I _—

where z;, = rnzin p(z,x) corresponds to the value of Z where the probability that D = 1 is lowest
(i.e. where only the always-takers have D = 1) and 2¥ = max p(z,x) corresponds to the value
of Z where only the never-takers have D = 0, see Heckman and Vytlacil (2001). An analogous
reasoning as in (5) and (11) gives then the average treatment effect on the subpopulation of
all compliers as

(EY|X =2,Z=24—E[Y|X =,Z =2]) fo(x)dx

(EDIX =x,Z =24 —-F[D|X =2,Z =2.]) fo(x)dx"

o
T

Local average treatment effect with non-binary regressor D

For the situation where D is discrete and takes on more than two distinct values (and Z is
binary), Angrist and Imbens (1995) have shown that the estimator corresponding to the right-
hand side of (4) identifies a weighted average causal effect for the subpopulation of compliers.
With D taking many different values, the compliance intensity can differ among units. Some
units might be induced to change from D; = d to D; = d+1 as a reaction on changing Z; from
0 to 1. Other units might change, for example, from D; = d’ to D; = d'+2. Suppose D is years
of schooling and Z a valid instrument that influences the schooling decision (for example the

quarter-of-birth instrument in Angrist and Krueger (1991)). If Z were changed exogenously,
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some units might respond by increasing school attendance by an additional year. However,
some units might increase school attendance even by two or three years. Furthermore, even if
Z were set to zero for all units, they would attend different years of schooling. Hence a change
in Z induces a variety of different reactions in D, which cannot be disentangled. Consequently
only a weighted average of these effects can be identified. Suppose D is discrete and takes values
in D €{0,..,K}. According to their reaction on a change in Z from 0 to 1, the population can

be partitioned into the types:
Ti = Cg,l if Dz’70 = k and D@l =1. (12)

Assuming monotonicity, the defier-types c;; for £ > [ do not exist. The types cy j represent
those units that do not react on a change in Z (these are the always-takers and the never-takers
in the setup where D is binary). The types c; for k <[ are the compliers, which comply by
increasing D; from k to . These compliers comply at different base levels k£ and with different

intensities [ — k. Define the weighted average treatment effect v, (x) for the compliers with

characteristics = as'®
K K l .
S EY -YFX, T =] - P (T =iyl X)
Yool X) = 222 : (13)

(l — k‘) -P(T = Ck7l|X)

?s-MN
M=

Vv

1>k

V() is the effect of the induced treatment change divided by the intensity of compliance,
averaged over the different complier groups ¢y ;. In the returns to schooling example, v,,(x) is
the expected return to one additional year of schooling. It is defined as the average of the return
to one additional year of schooling (divided by one), for those who continue schooling by one
year, and the return to two additional years of schooling (divided by two), for those who extend
schooling by two years, and the return to three additional years of schooling (divided by three),
for those who prolong schooling by three years etc. Thus, the effect of the increase in schooling
is divided by the intensity of compliance (i.e. how many additional years of schooling) for each
complying unit, to obtain the average effect of one additional year of schooling, for units with

characteristics . The denominator of ~,,(x) thus represents the number of intensity-weighted

compliers.

Y6 The presentation in Angrist and Imbens (1995) looks different from the definition of v,, used here, as they

present the effect in terms of overlapping subpopulations. Nevertheless, both definitions are equivalent.

22



When the unconfoundedness and the exclusion restrictions (Assumptions 4 and 5) are ex-

tended to hold for all types defined in (12), 7,,(x) is identified as'”

_ElY|X,Z=1]-E[Y|X,Z =0
 E[D|IX,Z=1]-E[D|X,Z=0]

Vo (X) (14)

To obtain the weighted average effect for the subpopulation of all compliers (i.e. all subpopu-
lations ¢ for k < 1), one would need to weight v,, () by the distribution of X in the complier

subpopulation:
/ Yw (ZL‘) ’ dFJ:\compliera

where Fijcompiier is the distribution of X in the all-compliers subpopulation.

Unfortunately, the distribution of X in the all-compliers subpopulation is not identified if D
takes more than 2 different values. In particular, the size of the all-compliers subpopulation is no
longer identified by the distribution of D and Z. Consider the following example: For D taking
values in {0, 1,2}, the population can be partitioned in the subpopulations: {cgo, co1, co2, €11,
12, c22} with the all-compliers subpopulation consisting of {cg1, cg2, c12}. The two partitions
{co0, co1, co2, c11, c12, c22} = {0.1, 0.1, 0.3, 0.3, 0.1, 0.1} and {0.1, 0.2, 0.2, 0.2, 0.2, 0.1}
generate the same distribution of D given Z: P(D = 0|Z =0) = 0.5, P(D = 1|Z =0) = 0.4,
P(D=2Z=0)=01,P(D=0/Z=1)=01,P(D=1Z=1)=04, P(D=2|Z=1)=0.5.
However, the size of the all-compliers subpopulation is different for the two partitions (0.5 and
0.6, respectively). Hence the size of the all-compliers subpopulation is not identified from the
observable variables, see also Imbens and Rubin (1997).

Nevertheless, if one defines the all-compliers subpopulation in terms of compliance intensity
units, the distribution of X in this complier subpopulation is identified. In the intensity-
weighted complier subpopulation, each complier is weighted by its compliance intensity. In the
case where D € {0, 1,2}, the subpopulation ¢ 2 receives twice the weight of the subpopulation
cp,1- In the years-of-schooling example, the subpopulation cp 2 complies with 2 additional years
of schooling. If the returns to a year of schooling are the same for each year of schooling, a

unit which complies with 2 additional years can be thought of as an observation that measures

"The proof is immediate, noting that the population is partitioned by 7 = ¢, for k < 1. Hence
SP(r=cpy|X)=1and EY|X,Z =1 = Y E[Y|X,Z = 1,7 =cii]P(t=cri| X, Z=1) = S E[Y'|X,7 =
k<l k<l k<l

C;Z]P(T = ¢k,1|X) by the exclusion and the unconfoundedness assumption. Analogously, E[Y|_X,Z =0 =

S EYFIX,T = exy)P(t=cp|X) and E[D|X,Z = 1] = Y 1-P(r=cy|X) and E[D|X,Z = 0] =
k<l k<l

Zk}'P(T:Ckyl‘X).

k<l
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twice the effect of one additional year of schooling. Or, as two (correlated) measurements of
the return to a year of schooling. Unless these two measurements are perfectly correlated, the
unit which complies with 2 additional years contributes more to the estimation of the return
to schooling than a unit which complies with one additional year. Consequently, the units that
comply with more than one year should receive a higher weight when averaging the return to
schooling over the distribution of X. If each unit is weighted by its number of additional years,
the weighted distribution function of X in the all-compliers subpopulation, in the case where
D e€{0,1,2}, is

w o fa:|T:co,1P (1= 60,1) + f$|7'101,2P (= 0172) - 2f$|7:0072p (= 60’2)
x|complier — P (7- — 0071) + P (7’ = 0172) + 2P (7’ = CO,Z)

or in the general case

K K
ZZfz\T:ckylP (T = Ck,l) : (l - k;)

w K>k
x|complier — K K : (15)
22 P(r=cp)-(1—k)
k 1>k

Using Bayes’ theorem fy|;—c, , = P (7 = c|X) fu/P (T = cx1), the weighted distribution func-

tion of X in the all-compliers subpopulation is

K K
2.0 P(1=cp|X) - (L= k)

w ki>k
z|complier — T K K * fas (16)
22 P(r=cpp) (L—k)
k >k

where f;(x) is the density function of X in the full population. With this weighted distribution
function the treatment effect in the subpopulation of all compliers is identified by (13) and (14):

o = / @)+ L ot (@)
B /’E[Y!X:x,Z: | -E[Y|X =2,7=0
B YO P(r=cpp)-(I—k)

k I>k
JEY|X=2,Z=1-FEY|X =2,Z=0] fp(x)dx
JEXP(r=cp|X =a)-(1-k) fo(x)dx

k >k
JEY|X=2,Z=1-EY|X=2,Z=0])- fo(x)dz
J(EDIX =2,Z=1-FED|X =2,Z=0]) - fo(x)da’

< fo(z)dx

which is identical to expression (5). Hence the conditional LATE estimator (6) is also applicable

when D is a discrete random variable taking more than 2 different values.
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4 Conclusions

In this paper nonparametric instrumental variables estimation of local average treatment effects
has been extended to accommodate confounding covariates X, which is necessary whenever the
instrumental variable Z itself is endogenous. A nonparametric conditional LATE estimator has
been proposed and its asymptotic properties have been derived.

Identification of properties of the relationship between an endogenous regressor D and an
outcome variable Y based on instrumental variables is appealing, since it allows for (almost)
arbitrary unobserved heterogeneity in the population. Although the average treatment effect
on the subpopulation of compliers is usually not the primary causal parameter of interest, it is
often the only causal effect that is identified. Alternative nonparametric instrumental variable
regression models impose assumptions (conditional constant treatment effect, instrument moves
regressor over entire support) that are often not credible in many applications. Then only
treatment effects for subpopulations that react on changes of the instrument can be identified.

Identification and estimation of local average treatment effects is often discussed without
covariates. However, when the instrument is not randomly assigned but itself endogenous,
the instrumental variable assumptions are only valid conditional on a vector of confounding
covariates X. Usually covariates X have been included via parametric modelling. The proposed
conditional LATE estimator, in contrast, incorporates covariates X in a fully nonparametric
way. This estimator corresponds to a ratio of two matching estimators and it is /n-consistent,
asymptotically normal and efficient. In addition, a propensity score matching LATE estimator
has been presented, which might perform better in small samples.

Extensions to cases where the endogenous regressor or the instrumental variable are non-
binary have also been considered. The proposed conditional LATE estimator remains applica-
ble even in these situations (although its interpretation may become more involved). These
results support the use of nonparametric regression methods in the estimation of local average

treatment effects.
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A Appendix

A.1 Derivation of the local average treatment effect v(x)

It is shown that the Assumptions 1 to 5 identify the local average treatment effect v(x) accord-
ing to (4). The derivation is similar to Imbens and Angrist (1994), conditional on X. Using the
exogeneity of X (Assumption 1) and the partitioning of the population into the subpopulations
always-takers, never-takers, compliers and defiers, the expected value of Y given X and Z can

be written as

+E Y;%L\Xz =x,2; = 2,T; :c} P(ri=dX;=12,Z; = 2)
+E Y;%L\Xz =2,Z; = 2,T; :d} P(ri=d|X; =x,Z; = 2)
+E _YZ.%JXi:x,ZZ':z,Ti:a} "P(ri=alX;=x,7; = 2)
= E[Y;?ZJXi:fBaZi:Z,Ti:TL}-P(Ti:n|XZ-:x)

+E _Yz’%JXi =T, 7 = 2,7 :C} P (1; = c|X; = x)

+E YZ%JXZ =T, 2 = 2,7 :d} - P(1; =d|X; = x)

+E [}/;}ZJX’L =u,Z;=271i=a]-P(1; =a|lX; =)

where the second equality makes use of the assumption of unconfounded type (Assumption
4). By the mean exclusion restriction (Assumption 5) the potential outcomes are independent
of Z in the always- and in the never-taker subpopulation. Hence when taking the difference
ElY|X,Z = 1] — E[Y|X, Z = 0] the respective terms for the always- and for the never-takers

cancel:

E[Y1|Xz ZZE,Zz’ = 1] _ED/%|X1 ::B,Zi :0]

+(EY | Xi=2,Zi=1,7i=d| —E Y, |Xi=2,Z;=0,7; =d]) - P(1; = d|X; = x)
and exploiting the mean exclusion restriction for the compliers and the defiers gives

=F [Yzlz - }/z'(,)Zi | Xi =27 =c| - P(1; = ¢|X; = x)

—EYl, =YY, | Xi=z,mi=d|-P(ri=dX;=x). (17)
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Hence the difference E[Y|X,Z =1] — E[Y|X,Z = 0] represents the difference between the
average treatment effect on the compliers (who switch from D; = 0 to 1 as a reaction on a
change in the instrument from 0 to 1) and the average treatment effect on the defiers (who
switch from D; = 1 to 0). This is the net average treatment effect on all units that are
induced to switch D due to a change in the instrumental variable. An estimate of (17) is not
very informative since, for example, an estimate of zero could be the result of D having no
effect on Y as well as the result of D having a large impact which is offset by opposite flows of
compliers and defiers. Hence the exclusion restriction (Assumption 5) is not sufficient to isolate
a meaningful treatment effect. However, as (17) indicates, a treatment effect could be identified
if either no compliers P (7; = ¢) = 0 or no defiers P (7; = d) = 0 existed. If an instrumental
variable is found that affects all units in the ’same direction’, e.g. that either induces units to
switch to D; = 1 or leaves D; unchanged, but does not induce any unit to switch to D; = 0,
then the average treatment effect on the responsive subpopulation is identified.

The monotonicity assumption (Assumption 2) rules out the existence of defiers. It follows
from (17) that

EYi|X; =72 =1 - EY|X; = x,Z = 0]
V(@) = B [Vl = Vi, X =y = o] = S m R S USRS

Noticing that E[D|X,Z=0] = P(D = 1|X,Z = 0) = P(r=a|X) + P(r=d|X) and
ED|\X,Z =1 =PD =1|X,Z =1) = P(1 =a|X) + P (7 = ¢|X), the relative size of the

subpopulation of compliers is identified as
P(Tz' = C|Xi ::13) = E[D1|Xz = ZE,Zz' = 1] —E[D1|Xz = ZE,Zz’ = 0],

and it follows that the average treatment effect in the subpopulation of compliers is

xXr) = .
) EDi|Xi = x,Z; = 1] - E[Di| X; = x, Z; = 0]

A.2 Proof of Theorem 1

Let 4 = A denote the estimator (6) of the average treatment effect on the compliers (5):
T=% g p

y= A J (my(z) —mo(x)) fo(x)dx
r J (1 (2) = po(2)) folw)de

To derive the asymptotic distribution of 4, note that 4 — v can be written as
A A [A-A T-T r-r
y—9)==——== — 11— —= . 18
G-N=F-7 ( VT ) ( : > (18)
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The derivation proceeds in two steps. First it is shown that the last term (1 - %) in (18) is

1 4 0p(1). Hence the first-order behaviour of 4 — ~ is determined by the term % — ,yf%r in
) A-A T-T
7—7=< — T >~(1+0p(1))- (19)

In the second step the asymptotic distribution of this first-order term is derived.

In a preliminary step the term A — A is analyzed. (The derivations for I'—T are analogous.)

Write A — A as

~

A—A:% S i Sy - S vi— S wwe(Xe) | = Elmi(X) = mo(X)]

0 7;=1 i:2;=0 :2;=0 ©Z;=1
= % ( (Y; —mi(X;)) + Z (11(X;) — m1(X;))
1 2;=1 4:2;=0
— % ( (Y; —mo(X;)) + Z (10 (X5) — mo(X3))
i:2;=0 Zi=1

+ %Z (m1(Xi) = mo(Xy)) = E[ma(X) —mo(X)],

and introducing the asymptotic linear representation of the nonparametric estimators 7,

1 1
= > Yi—mi(Xy) - - D (Vi —mo(Xy))
i Zi—1 §+2i—0
. Z Z &Y, X5, Xi) + — Z 07" (X5) + R (X5)]
O G Zi=05: 2, =1 §7,=0
I Z Z o' (Y5, X5, Xq) — - Z 06" (X3) + R (X5)]
O . Zi=15:2,=0 i Zi=1

- %Z (m1(Xy) —mo (X)) — B [ma (X) —mo(X)].

The terms nolnl ZZ: y ZZ: 1§m represent mean-zero two-sample U-statistics, to which a pro-
1:4;=U) 4=

jection theorem can be applied:

1 1
— DD YL X X) = . BT (Y1, X1, Xo) [ Xy = X
1:2;=0j5:Z;=1 i:2;=0
1
T ET (Y1, X1,X2) Y1 =Y, X4 ZXj]+0p(”_%)
liz.—1
1 _1
= B (Y5, X5, X) Y}, Xj] + op(n™2),
jiZ=1
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where the latter equality follows from condition (iv A) of Theorem 1. Application of the
projection theorem requires that E |||€7(Y;, X;, Xi)||*| = o(n), see Hoeffding (1948), Serfling
(1980) or Heckman, Ichimura, and Todd (1998), which is satisfied from condition (iv B) of
Theorem 1.

With this projection theorem it follows that

A-A=13 -mx) -~ 3 (% —mol(X)

n n
i Z;=1 1:2;=0
ni
E E ‘51 Y}anvX) ‘YvJvX} E[an(Y},X],X) ’YVJGX]']
nn1 nno
JjiZj=1 J:2;=0

L3 1 (X0) — mo(X0) — B s (X) — mo(X)] + op(n ), (20

where it has also been taken into account that the average bias and residual terms 1 = 0™(XG)
and 1 3> R™(X;) are op(n~ 2) by the conditions (iv C) and (iv D) of Theorem 1.

By a weak law of large numbers, sample means converge to their expectations and thus
A — A = 0,(1) and analogously I' — T' = 0,(1). Hence

L For\ ' (T-T
Fff = <1+¥> <?) = Op(1) - 0p(1) = 0p(1),

because (14 0,(1))™" = O,(1) (van der Vaart 1998, p. 13). This implies (19).

Hence the leading term in (19) is (A A 7 T ) The approximation to \/n (¥ — ) up to

first order is thus

ﬁ(?—v)zﬁ(A;A—vF;F)

Inserting the expression (20) and the analogous expression for I-r gives

up to first order, where

B = Zi(Yi—-mi(Xy) — (1= Z;) (Vi — mo(X5)) + mi(X;) —mo(X;)
+Z—TZZE (€ (Y5, X5, X) Y5, X5] Z—; (1 - Z) E (65 (Y3, X5, X) Y5, X}]
72 (Di = iy (X)) + 7 (1= Z3) (D — po(X2)) = (1 (X3) = pp( X))
Yno

yni
—IRZE |6 (5,5, XY, X5 + T (1= Z) B |6 (3, X5, X) ¥, X

—B [m1(X) = mo(X)] +7E [111(X) = po(X)] -
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Note that the last row is zero, because —E [m(X) — mo(X)] + vE [p(X) — po(X)] = —A +
I'=-A+ %F = 0. By condition (iv E) the influence functions ™ and ¢4 have the form

fq:|z:0 (XJ)

fz|z:1 (XJ)

P(Z=1)1—-7(X;
( ) 7T( .7) + Op(l)

P(Z=0) =n(Xj)

where m(z) = P (Z = 1|X = z) is the probability that Z takes the value one given character-

istics X. With ¢ = % + 0p(1) it follows that

E[E7(Y;, X5, X0)|Y;,X5,Z; =1,Z; =0] = (Y; —mi(Xjy))

+ 0p(1)

= (Y —mi(Xj;))

= o= Z (Yé—ml(Xi)Jf(Y;’_ml(Xi))%ﬁgi))
m(X;) )
1 —7(X;)

2 (D= )+ (01 = (6 50 )

+y(1-2Z) (Dz’ = Ho(Xi) + (Di = 1o(Xs)) i(ﬁ;)()>

+ma (Xi) — mo(Xs) — v (1 (Xi) — po(Xi))

-z (Y ~mp(X3) + (Y; — mo(X3)

plus an op,(1) term. Collecting terms gives

_ o (i —ma(XG)) — 7 (Di — (X))
= < m(Xi) >

[1]

7

+(1-2) (7 (Di = “O(ff)w_()gi - WO(Xi)))

+m(X;) —mo(Xi) — v (1 (Xi) — po(Xi)) -
Computing the variance of Z; gives:
Var (5;)

72 ((Yz’ —ma(Xi)) =y (Di — #1(Xi))>2

= (X,)

A mo<Xz»>>>2]
+ B [(m1(X0) = mo(X:) = (i (X) — pol(X0)))?]

(1 7 (LRI — = (X))

+E :21-(( '

+E|Z

+FE



where the fourth term is zero because Z(1 — Z) = 0 and the fifth and sixth terms are zero

conditional on X and Z. Since Z? = Z, it follows

Var (E) = FE

L —mi (X)) =y (D - (X))
m(X)?

+FE

(1 - 7y DD = o(X) - <Y2—mo<x>>}2]
(1 - (X))

+ B [(m1(X) = mo(X) = 30 (X) + 1(X))?]

= [E[B [0 -0 -1 0= 1z =1] 2L 1)

+ 8B [B [l (0 - o)) — (v — a0 X, Z—o} Pl(Z o]

(
+E [(ml(X) mo(X) = pr (X) +vho(X ))2}

_ g | W) = 1993, (X) +170, (X) N 03, (X) — 2705, p (X) + 720, (X)
N m(X) 1—7(X)

+ B | (m1(X) = mo(X) =y (X) +#(X))?|

by iterated expectations, where 0% (z) = Var[Y|X,Z = 1] = E[(Y —m; (X)X =2, Z = 1],
and 02Y1D1 (x) = Cov]Y, D|X,Z = 1], and chDl (x), o*%/o (x), 0'%0 (z), O'QYODO(LE) defined analogously.

Applying the Lindberg-Levy central limit theorem to

gives that the estimator 4 is root-n asymptotically normal

\/ﬁ(})/—’)/) _>N(07V)

with asymptotic variance

V=—FE

1 |03, (X) — 2708, b (X) + %05, (X) N 03, (X) = 2y0%, p, (X) +720%, (X)
2 7(X) 1 —7(X)

lE (m1(X) —mo(X) — vy (X) + W0<X))2} '

F2
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A.3 Proof of Theorem 2

Semiparametric efficiency bounds were introduced by Stein (1956) and developed by Koshevnik
and Levit (1976), Pfanzagl and Wefelmeyer (1982), Begun, Hall, Huang, and Wellner (1983)
and Bickel, Klaassen, Ritov, and Wellner (1993). See also the survey of Newey (1990) or Newey
(1994). The approach followed here is similar to Hahn (1998).

The joint density of (Y, D, Z, X) with Z binary can be written as

f(y,d,z,0) = [ (y,d|z,2) f (z|2) f(z) = {1 (y,d|2) 7 ()} {fo(y,dlx) (1—7(2))}' 7" f(x)

where fi (y,d|x) = f(y,d|z = 1,z) and 7(x) = P(Z = 1|X = z).
Consider a regular parametric submodel indexed by 6 with 6y corresponding to the true

model: f (y,d,z,x|0p) = f (y,d, z,x). The density f(y,d, z,x|f) can be written as

f(y,d,z,210) = {1 (y,d|z,0) 7 (2,0)} {fo (y,d|z,0) (1—m(2,0))}' 7 f(,6),
and the corresponding score of f (y,d, z,z|0) is
dln f (y,d, z, x|0)

00

) . - 0
=z-f (y,d|x,9)—|—(1—2)'fo(y,d|$a9)+%&9§

where fi (y,d|z,0) = dln f1 (y,d|x,6) /86, and f analogously, and #(z,0) = dlnn(x,0)/0
and f(z,0) = dln f(x,0)/00.

S(y,d,z,x|0) =

#(x,0) + f(x,0)

At the true value 0 the expectation of the score is zero. The tangent space of the model

is the set of functions that are mean zero and satisfy the additive structure of the score:
S={z-s1(y,dlx) + (1 = 2) 50 (y,d|x) + (z = 7 (2)) - () + s2(2)} (21)

for any functions s1, sg, 57, 5z satisfying the mean-zero property:
[ s1(y,dlz) fi (y,d|z) dydd= 0 Yz
[ s0(y,d|z) fo (y,d|z) dydd= 0 Va
J sz (2) f(2)dz =0

and sr(z) being a square-integrable measurable function of z.

The semiparametric variance bound of v is the variance of the projection on & of a function

(Y, D, Z,X) (with E[i)] = 0 and E[||[¢(-)||*] < oo) that satisfies for all regular parametric
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submodels

Ov(Fp)
20 9—o, =FEyY,D,Z,X)- S(Y,D,Z,X)hg:g0 (22)
Write v as
v - A [(BlY|X,Z=1-E[Y|X,Z=0])- f(x,0)dx

T~ [(Eg[DIX,Z=1]—E4[D|X,Z=0)]) - f(,0)dx

S Jyfi(y, dl=,0) dydd — [ [yfo(y, d|z,0) dydd) - f(x,0)dx

i (ffdfl (y, d|x,0)dydd — [ [ dfo(y,d|x,0) dydd) - f(x,0)dx

J S Jyfi(y, dlz,0) f(x,0)dydddx — [ [ [yfo(y, d|x,0) f(x,0)dydddx
J I afi(y,dlz,0) f(z,0)dyddde — [ [ [ dfo(y, d|z,0) f(z,0)dydddx
since E[Y|X,Z =1] = [ [yfi (y,d|z) dydd.'®

Computing the pathwise derivative and evaluating it at 6y gives:

Oy(Fy) BT A% _0AJ0®  9T/08
20 |9—=00 2 o—to T T |oos
TSy (f1f+ f1f) dydddz — [ [ [y (fof + fof) dydddz
- T

fffd(ﬁf+ﬁf)wmux—fffd(ﬁf+ﬁﬁ)@m¢m

JJ Sy {fi = fo} rayddde fffd{ﬁ fo} fdyddda
r r

J (m (@) — mo(x) — v (x) +ypg () f(z)de
r

+

where fi = 2 f1 (y, d[,0)5_,, fo = £ fo (v, d|2,0)p_g, and f = Zf (,60)5_g,-
Choose ¢(Y, D, Z, X) as

w@ﬁzaﬂz%y_mﬂ@;@f+7muﬁ+1gzwﬁﬂw¥?&$+mdm
L ma@) = mo(@) = () + (@)
- .

(23)
Notice that 1 satisfies (22)

v (Fp)
00 10=0,

=FEY,D,Z,X)- S(Y,D,Z,X)}w:go

and that 1 lies in the tangent space (21)!

Y e
¥ And analogously for E[D|X,Z = 1], E[Y|X,Z = 0] and E[D|X,Z = 0.
9 The calculations are available from the author.
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Since ¢ lies in the tangent space, the variance bound is the expected square of :

1 Y —my(X) =D+ ym(X)\?
E[4(Y,D,2,X)’] = 5E Z( ! %) L > ]
D — g (X) =Y +mo(X)\?
+F2E (1-2) (7 W01<—)7r(X)+ of ))]
o [ DU 1, 06) — () = (X) + )
g8 (1 - 2) 222 O () —na(0) = 24 () + 20000
+ %E [(m1<X) —mo(X) =y (X) + w()(X))Q}
1

= E [E {(Y—ml(X) — D+ (X)) X, Z = 1} %}

# 3o (B[00 =) = 0 3.2 = 0] ZEZ]

4 5B [(ma (%) = mo(X) = 71 (X) + 1m0 (X))’

by iterated expectations. Defining 0¥, (z) = Var[Y|X,Z = 1], 0%, (x) = Var[D|X, Z = 1] and
chYlDl(:v) = CovlY, D|X, Z = 1] and analogously cr%o (), 0'2D0 (x), U%/ODO (z) for Z = 0, gives the

asymptotic variance bound:

5 0'%/1 (X)— 270%1131 (X) + 720%1 (X) o*%/o (X)— 270%0130 (X) + 720%0 (X)
T27(X) * T2 (1 — 7(X))
o [ () =m0 i (X) + wO<X>>2] |
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