

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Basu, Swati; Estrin, Saul; Svejnar, Jan

Working Paper

Employment Determination in Enterprises under Communism and in Transition: Evidence from Central Europe

IZA Discussion Papers, No. 1370

Provided in Cooperation with:

IZA - Institute of Labor Economics

Suggested Citation: Basu, Swati; Estrin, Saul; Svejnar, Jan (2004): Employment Determination in Enterprises under Communism and in Transition: Evidence from Central Europe, IZA Discussion Papers, No. 1370, Institute for the Study of Labor (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/20667

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

IZA DP No. 1370

Employment Determination in Enterprises under Communism and in Transition: Evidence from Central Europe

Swati Basu Saul Estrin Jan Svejnar

October 2004

Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor

Employment Determination in Enterprises under Communism and in Transition: Evidence from Central Europe

Swati Basu

McGill University

Saul Estrin

London Business School and IZA Bonn

Jan Svejnar

University of Michigan and IZA Bonn

Discussion Paper No. 1370 October 2004

IZA

P.O. Box 7240 53072 Bonn Germany

Phone: +49-228-3894-0 Fax: +49-228-3894-180 Email: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of the institute. Research disseminated by IZA may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit company supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ABSTRACT

Employment Determination in Enterprises under Communism and in Transition: Evidence from Central Europe*

In this paper, we present a comparative analysis of employment determination in four transition economies as they move from central planning to a market economy in the early 1990s. We use firm level panel data sets from the Czech Republic, Hungary, Poland and Slovakia to estimate dynamic employment equations for the period immediately before and after the start of transition. We find evidence that firms behave for the most part as if they were on their labor demand curves, with little evidence of labor hoarding. There were significant cross-country variations in the determinants of employment during the reform process however. Hungarian and Polish firms started the transition already substantially reformed, and became even more responsive to market signals as transition proceeded. In contrast, firms in the Czech and Slovak republics started in the completely unresponsive mode characteristic of central planning, but rapidly caught up with their counterparts in Hungary and Poland.

JEL Classification: J23, J50, J66

Keywords: employment determination, transition economies

Corresponding author:

Saul Estrin
Department of Economics
London Business School
Regent's Park
London NW1 4SH
United Kingdom

Email: sestrin@london.edu

^{*} In undertaking the research for this paper, Saul Estrin and Jan Svejnar were in part supported by World Bank research grants on Enterprises in Transition and Labor Markets in Transition, respectively, and by ACE PHARE grant No. P96-6095-R. Svejnar in part also benefited from NSF grant No. SES 0111783. The authors would like to thank Olivier Blanchard, Tito Boeri, Simon Commander, George Johnson, and participants of seminars at Princeton University, the London Business School, University of Pittsburgh, and the Davidson Institute Annual Workshop on Transition Economics for valuable comments. They are also indebted to Lubomir Lizal, Miroslav Singer, Lina Takla, and Chris Walters for valuable computer assistance.

1. Introduction

In this paper we present a comparative analysis of the employment behavior of firms as they moved from the communist economic system of the late 1980s into the transition to a market economy in the early 1990s. Large panels of annual data on industrial enterprises in the Czech Republic, Hungary, Poland, and Slovakia are used to explore employment determination at the enterprise level, across countries and with the change in the economic system. Dynamic labor demand equations are estimated using two year panels with firm level data for these Central European countries before and during the transition from central planning. We find that enterprises appear to behave as if they were on labor demand curves, with only limited evidence of labor hoarding in the planning era. We also validate significant cross country differences in the pattern of employment determination, consistent with differences in preconditions and transition policies.

In our analysis, we address some important questions that have arisen in the debate about the nature of the centrally planned system and the subsequent transition to a market economy. The first concerns the extent to which significant inter-country differences existed in the behavior of firms under the communist system up to late 1980s and whether these differences began to disappear after the transition was launched. An influential school of thought has argued, but not proved with micro data, that the behavior of firms in Hungary and to a lesser extent Poland in the pre-transitional period reflected the decentralizing reforms of the previous decade, while firms in the Czech Republic and Slovakia operated under a classical communist system of central planning (World Bank, 1996). Our findings, based on estimates of firm-level employment elasticities with respect to sales, suggest that firms in Hungary indeed entered transition substantially reformed (having high, positive and statistically significant elasticities) and advanced further as the transition proceeded, while firms in Poland went into the transition less reformed but maintained a positive and statistically significant

elasticity through the transition years. In contrast, firms in the Czech and Slovak republics started from what could be termed a stereotypical planned mode (zero or very small elasticities with respect to sales), though they caught up quickly.

We also investigate whether and to what extent firms in the Czech Republic, Hungary, Poland and Slovakia hoarded labor or allocated labor efficiently from a private or social standpoint. We test whether firms in these economies operated on the labor demand curve or on a more laborintensive contract curve and whether their behavior changed systematically as they moved from central planning into the transition period. In terms of the economics of transition, we provide the first systematic evidence on the widely maintained assumption that under communism firms hoarded labor and thus entered the transition with excess employment. Many theoretical models of the transition for instance assume that communist firms enter the transition with excess labor and that enterprise restructuring should therefore initially consist of labor shedding. Interpreting labor hoarding as firms being to the right of the demand curve of labor, we find it to be the exception rather than the rule, though the post-transition period is also characterized by increased employment responsiveness to sales, which may be connected with excess employment under planning. The behavior of the Polish and Slovak firms during the big bang year is consistent with being on the labor demand curve, ² as is the behavior of firms in all four economies after the start of the transition. Labor hoarding may thus have been less prevalent at the end of communism than is widely believed.

Finally, we explore the relative performance of newly established (*de novo*) and existing state-owned firms. The establishment of new firms is widely viewed as a key ingredient of a successful transition process since, unlike the state-owned enterprises (SOEs), the *de novo* firms are

See e.g., Aghion, Blanchard and Burgess (1994), and Blanchard and Kremer (1997).

We do not have some of the data needed for providing estimates on Hungary during the first year of the transition.

Czech and Slovak data permit us to examine whether the SOEs behave differently than the *de novo* firms, with the latter category being composed of start-ups and spinoffs. In the Czech Republic, we find that in setting employment the SOEs are more responsive than the *de novo* firms to wages and sales, but not unemployment, at the very start during the big bang, and that the employment elasticities of the two sets of firms become indistinguishable later on. In Slovakia, the employment elasticities of the SOEs are indistinguishable from those of the *de novo* firms during the big bang, but the SOEs display a significantly more negative employment elasticity with respect to wages than the *de novo* firms later on. The employment behavior of the Czech SOEs during the early transition is hence indistinguishable from that of the *de novo* firms, while the Slovak SOEs exhibit greater employment adjustment with respect to wages than the new firms -- a finding that is consistent with the SOEs facing a harder budget constraint during the period of declining output demand that characterized the early transition.

Communism and its accompanying system of central planning constituted some of the most important economic phenomena of the twentieth century. By analyzing how firms behaved under the communist system and during the transition process to a market economy, we provide an understanding of this phenomenon, as well as new insights into the functioning of the market system that we otherwise observe only in a mature steady state.

By carrying out a comparative analysis, we are also able to elucidate the different patterns of adjustment in the various Central European (CE) economies during the first phase of the transition.

All the former Soviet bloc economies experienced a large fall in output and employment in the first

³ See e.g., The World Bank (1996) and EBRD Transition Report (1998 and 1999).

few years of the transition.⁴ As may be seen from Table 1, the four CE economies that we study experienced similar (17.5-20.5 percent) cumulative declines in estimated GDP in the early 1990s, but responded very differently in terms of employment and wage adjustment. In the Czech Republic, employment declined by only 9 percent but real product wages fell by 24 percent in the 1990-92 period.⁵ In contrast, in Hungary employment declined by 20.5 percent but real product wages actually increased by 17 percent. Poland took a middle way, with employment decreasing by 11 percent and wages by 0.5 percent. Finally, Slovakia, experienced the most profound (20.5 percent) decline in GDP and registered a substantial fall in both employment and wages (13.5 and 21 percent, respectively).

It is important to put these figures into the context of hardening budget constraints. Table 1 shows that government subsidies were reduced to the range of 3-6 percent of GDP in all four countries in the early 1990s. However, Czechoslovakia started transition with a much higher level of subsidies (25 percent of GDP) than Hungary or Poland. The more severe wage-employment adjustment in Czech and Slovak republics may be in part the result of their more precipitous decline in enterprise subsidies during the early 1990s. Moreover, since Slovakia was receiving cross-subsidies within Czechoslovakia, the fact that the most severe decline in employment and wages is observed in Slovakia probably reflects the more significant subsidy reduction in that republic. The unemployment data in Table 1 show the unemployment rate rising from zero to double digits in Hungary, Poland and Slovakia, but remaining at or below 4 percent in the Czech Republic in the early 1990s. The relatively greater rise in unemployment in Hungary and Poland is consistent with the finding that these countries opted for a more pronounced reduction in employment than wages.

⁴ See e.g., Rodrik (1994), Kornai (1995), or Blanchard and Kremer (1998), for some of the hypotheses and evidence.

⁵ Real product wages are defined as nominal wages deflated by the producer price index.

Slovakia also reduced wages dramatically, though somewhat less than the Czech Republic, and it experienced the strongest negative output shock among the four countries. It suffered a decline in employment and rise in unemployment, in part perhaps also because of the disproportionate reduction in subsidy (see Ham, Svejnar and Terrell, 1998).

The employment and wage behavior of firms in the transition economies is also a significant factor in the political economy of the reform. Countries with large increases in unemployment, i.e. Hungary, Poland and Slovakia, experienced a swift negative political response. The first post-communist governments were quickly rejected by voters in favor of more socially-oriented, often reformed communist, governments in the early 1990s. In contrast, the low unemployment rate in the Czech Republic coincided with that country's first post-communist leadership remaining solidly in power until 1996 and surviving in a weaker form until 1998. These different political outcomes suggest that voters in the transition economies are sensitive to losses in job security and declines in living standards, and that an understanding of the wage and employment behavior of enterprises is important for the ability of policy makers to pursue successful transition policies. Moreover, because the economies of Central Europe were the first to enter the transition process and represent diverse cases in terms of initial conditions, policies and outcomes, our comparative approach provides important information for the policy makers in these economies as well as those in all the other post-communist countries that launched their transitions later.

The format of the paper is as follows. We start the second section by presenting our conceptual framework and the estimating equations. The data are described in Section 3 and we report the econometric estimates in Section 4. We conclude in the fifth section.

2. The Conceptual Framework and Estimating Equations

In examining the wage and employment outcomes before and during the transition, we use the conceptual framework depicted in Figure 1.⁷ For any given firm, the competitive labor market outcome is given by employment L* at point A, with the marginal revenue product of labor R_L equaling the competitive (market clearing) wage W_c . Since planners kept wages low and sought to maintain full employment when the communist system was intact, an efficient centrally planned system with full employment may be conceptualized precisely as one that induces firms to operate at point A. At this point, the workers are paid the minimum acceptable wage and the planners appropriate the maximum available profit, as depicted by the iso-profit curve $\Pi = Max$.

However in countries such as Hungary and Poland, the communist system had been reformed, largely as a result of pressure from workers and managers, so it is more realistic to conceptualize the workings of the labor market in these economies as bargaining between the planners, managers and workers. Depending on the preferences and relative power of these three parties, the wage-employment outcome could lie anywhere in the area AB'F' in Figure 1. Points B' and F' lie on the zero profit (Π =0) iso-profit curve and reflect the maximization of income per worker and employment, respectively, subject to profit being zero and the wage being at least W_c . The contract curve ABB', which corresponds to the short run labor demand curve of a profit maximizing firm, reflects outcomes with varying emphasis on wages and profit (no emphasis on employment), while the horizontal contract curve AFF' corresponds to varying degrees of joint employment and profit maximization (no emphasis on wages above W_c). The outcomes C', D' and E' on the Π = 0 iso-profit curve reflect varying degrees of emphasis on wages and employment (subject

¹¹ By the late 1990s the electoral cycle brought the reformers back to power in some countries.

¹² See e.g., McDonald and Solow (1981) and Svejnar (1982,1986) for the underlying model.

to zero profit). A set of intermediate outcomes where the planners appropriate a given level of profits are depicted by the iso-profit curve $\Pi = \alpha$ Max and the corresponding points B, C, D, E, and F.

The socially efficient set of outcomes, corresponding to $R_L = W_c$ and various wage-profit combinations, lies on the vertical contract curve ADD'. These outcomes are also important from an empirical standpoint because they correspond to a situation where the firm does not adjust employment in response to changes in the wage, *ceteris paribus*. Backward bending contract curves (e.g., ABB' in Figure 1) imply that the firm reduces employment in response to a wage increase, while forward sloping contract curves (e.g., AEE') imply that wages and employment move in the same direction.

Finally, it should be noted that the framework of Figure 1 can capture the phenomenon of soft budget constraints. We can conceptualize soft budget constraints as planners cross subsidizing loss making firms from the surplus of profitable ones. In Figure 1, this implies the loss making firms operating above and the profitable firms below the $\Pi=0$ curve. Firms operating at point F" would receive a subsidy for hoarding extra labor, while paying the minimum acceptable wage W_c , while firms at E" would also use part of the subsidy to pay a wage above the reservation level. Hardening of the budget constraint, be it through elimination of subsidies, privatization or other means, is reflected in a leftward move for such firms from points such as F" and E" to the $\Pi=0$ curve or even further to points such as A, B or B' on labor's marginal revenue product curve.

Firms in different countries are likely to have started the transition from different wageemployment-profit combinations, and probably exhibited different distributions of power among the

¹³ Prasnikar et al. (1994) for instance found that firms in former Yugoslavia operated along the ACC' curve in Figure 1.

planners, managers and workers. Transition entails macro-stabilization, privatization, the hardening of budget constraints, and a redistribution of power among the government, managers and workers, and since these factors differed across countries, the resulting behavior of firms is likely to have evolved differently. Given the large number of possible changes, very strong assumptions would be required to identify the changing preferences of the government, managers and workers over time. Our goal is less ambitious: to assess whether enterprise behavior pre- and post-transition reflected outcomes consistent with being on the labor demand, or another contract curve, and whether that behavior changed systematically as a result of the transition.

In our empirical work we first derive and estimate a dynamic labor demand equation as characterized by ABB' in Figure 1. We obtain elasticity estimates in different periods under the assumption that wages are either set exogenously (by the planners or the market) or that they are set by the employer or through bargaining, with the management setting employment in a cost minimizing way. We go on to derive and estimate an employment equation that includes a proxy for the reservation (alternative) wage of workers, which permits us to interpret the estimated coefficients as indicating whether the outcome deviates from the labor demand curve and hence reflects bargaining over both wages and employment.

In estimating the labor demand equation, we use the following specification:

$$L = L(W/P,Q,X), \tag{1}$$

where L = number of employees, W = the nominal wage, P = the product price index, Q = the sales or output of the firm, and X = a vector of ownership, legal status, and industry dummy variables that may affect the firm's demand for labor. The specification in equation (1) corresponds to a labor demand function of an enterprise characterized by cost minimization subject to an exogenously given level of output. This approach has been used frequently in the

studies of western economies and it is useful to adopt it as a starting point in our analysis. In fact, the assumption of exogenously set output is arguably more realistic in our setting than in the West since firms in Central Europe were probably output constrained as a result of the dramatic output fall that resulted from the imposition of restrictive macroeconomic policies in the late 1980s and 1990s and the disbanding of the common trading area of the Soviet bloc in 1991.

Assuming that wages were set exogenously to the firm by the planners and later by the market and government wage controls, one could estimate equation (1) by ordinary least squares. However, the wage variable we use is constructed by dividing the wage bill by employment, which creates the potential for measurement error. Because of this problem of measurement error, and the possibility that employers had some latitude in setting wages (and wage is endogenously determined), we instrument wage. We also test whether the negative output shock imposed an exogenous output (sales) constraint on firms. In the employment equation we therefore instrument wages and test whether sales are to be treated as exogenous by the Hausman test for exogeneity. The instrumental variables that we use are district dummy variables, two digit industry dummy variables, preceding year value of enterprise assets interacted with industry dummy variables, firm ownership, and the current and lagged average values of sales, wages, and employment of firms in the neighboring three digit, as well as the average value of lagged assets of firms in the neighboring three digit industry. The neighboring three digit industry is the next three digit industry in the relation to the industry the firm belongs to, within the same two digit industry classification. In the case of the last three digit industry in the two-

_

⁹ For examples of western analyses using this framework see e.g., Hamermesh (1986, 1993) and Quandt and Rosen (1992).

classification that is the most similar is chosen. The district-level dummy variables are used as instruments because wages and changes in wages varied across districts in response to changes in the cost of living and other compensating differentials, while technology is likely to be invariant across districts. The industry and regional dummy variables are also used as instruments to capture factors such as the technical and managerial error components of the underlying production function (Zellner, Kmenta and Dreze, 1966). Finally, by using as instruments the average values of variables from firms in the nearest three-digit industry within the same two-digit classification, we capture the effect of common external shocks to similar sub-industries within a given two-digit industry, while avoiding the correlation between the error term and regressors that may be brought about by the firm- and three-digit industry fixed effects (Kmenta, 1997, p. 360).

In estimating equation (1), we use a dynamic specification and estimate on consecutive twoyear panels of data. Using a dynamic specification is desirable since transition is inherently a dynamic process and it would be unrealistic to assume complete adjustment of variables within a one-year period. We use consecutive two-year panel, because of the high incidence of enterprise entry, break-ups and exit. In particular, we would lose most Czech and Slovak observations if we used longer than two-year panels. Using the short panels also allows us to assess how the behavior of firms changed from the pre-transition period into the various phases of the early transition. For

¹⁰ In the medium and long run firms would presumably adjust location in response to regional wage differentials but this phenomenon is absent in the short span of two consecutive years.

The Hausman test warranted the instrumenting of the sales variable in some but not all the reported regressions. In particular, Slovakia appears to have been the most output constrained of all the countries, as we cannot reject the hypothesis of exogeneity of sales in the employment equation. In Hungary, output appears exogeneously determined (constrained) in the pre-transition and early transition period, but not in the later periods. In Poland, we reject exogeneity of sales in almost all runs and in the Czech Republic in all runs. Interestingly, when we consider only the "balanced panel" of 266 SOE's that existed before and survived the transition in the Czech Republic, the Hausman test suggests that these firms were output constrained before and at the start of the transition, but ceased to be so in the later years.

each country we therefore use consecutive two- year panels of data and test for the stability of coefficients across the two-year periods.

We specify equation (1) in a loglinear form and introduce a general dynamic framework by allowing the left hand side variable and all the principal right hand side variables to enter in both current and one-year lagged form.¹² This first-degree general distributed lag model is specified for equation (1) as

 $lnL_t = \alpha_0 + \alpha_1 ln(W/P)_t + \alpha_2 ln(W/P)_{t-1} + \alpha_3 lnQ_t + \alpha_4 lnQ_{t-1} + \alpha_5 lnX_t + \alpha_6 lnX_{t-1} + \alpha_7 lnL_{t-1}$. (1') In equation (1'), the short-term elasticity of employment with respect to the wage is given by α_1 . We construct the corresponding long-run elasticity as the ratio of the two relevant polynomials in the lag operator $(\alpha_1 + \alpha_2)/(1 - \alpha_7)^{13}$ and check for the standard error of this statistic based on the covariance matrix of the underlying coefficients. The short and long-trun employment elasticities with respect to output and the other variables are defined analogously.¹⁴

Equation (1') represents a relatively general model within which one can test if the appropriate specification is (a) a partial adjustment model $\alpha_2 = \alpha_4 = \alpha_6 = 0$, (b) a static model $\alpha_2 = \alpha_4 = \alpha_6 = 0$, or (c) a (first difference) fixed effects model $\alpha_2 = -\alpha_1$, $\alpha_4 = -\alpha_3$, $\alpha_6 = -\alpha_5$, and $\alpha_7 = 0$. In this sense, our specification is more flexible than those found in many other studies. In our empirical work, we test and in most cases reject the above restrictions.

In the second step of our empirical investigation, we allow for bargaining over both wages and employment, with the contract curve deviating from the marginal product curve of labor in

¹² See e.g., Hendry and Mizon (1978), Nickell (1986) and Estrin and Svejnar (1993).

While the flexible stochastic difference equation (1') may be viewed as an arbitrary flexible approximation to a dynamic adjustment, it may also be derived formally from an underlying cost minimization behavior of the firm (see e.g., Nickell, 1986 and Bresson et al., 1992).

Since we use two-digit industry dummy variables as intercepts and estimate on a two-year panel of annual data, a two digit producer price variable P would be collinear with the industry dummies. We therefore do not enter the price variable on the right hand side of equation (1').

relation to the weight that the bargainers place on employment relative to wages (i.e.ACC' and AEE' in Figure 1). In particular, following the conceptual frameworks of Brown and Ashenfelter (1986) and Prasnikar et al. (1994), assume that worker preferences over wages and employment are given by a Stone-Geary function

$$U = k(W/P - W^{a}/P)^{\alpha}L^{(1-\alpha)},$$

where W^a is the alternative (reservation) wage, and that the management (and possibly government) is interested in profit

$$\pi = PQ - WL - H$$
,

where H is fixed non-labor cost.¹⁵ A Pareto-efficient contract that equates the marginal rate of substitution between wages and employment in these two objective functions (e.g., in a Nash bargaining context) yields the marginal revenue product condition

$$PQ_L = W - \gamma(W - W^a),$$

where $\gamma = (1 - \alpha)/\alpha$ is the weight that the firm places on employment relative to wages. In the context of a particular production technology (e.g., CES) one can derive an employment equation of the form

$$lnL = \beta_0 + \beta_1 lnQ + \beta_2 X - \sigma(1 - \gamma) ln(W/P) - \sigma \gamma ln(W^a/P), \qquad (1")$$

where σ is the constant elasticity of substitution between labor and capital in production. As may be seen from this employment equation, when the firm places no weight on employment ($\gamma = 0$), the coefficient on the alternative wage is zero and the specification reduces to the standard labor demand equation. When the firm places equal weight on wages and employment ($\gamma = 1$), the coefficient on the own wage is zero and employment is driven by the alternative wage. This is the case

¹⁵ The government may also be interested in employment generation, in which case its objective is congruent with that of workers (Prasnikar et al., 1994).

corresponding to the (socially efficient) vertical contract curve ADD' in Figure 1. For $\gamma > 1$, one obtains forward sloping contract curves such as AEE' in Figure 1.

Econometrically, equation (1") represents a relatively straightforward extension of the basic labor demand model. We note, however, that the ability to derive this equation and use the own and alternative wages to identify whether the firm is on or off the demand curve depends on the particular assumptions one makes about worker preferences. We use an approach that is similar to that of Brown and Ashenfelter (1986), but as MaCurdy and Pencavel (1986) show, some classes of worker objective functions do not lend themselves to this derivation.

The main issue in implementing equation (1'') empirically is how to approximate the alternative wage. A number of approaches have been adopted in western studies, ranging from employing wages in particular regions or sectors and assuming that the alternative wage is proportional to them, to using a local unemployment rate that lowers the alternative wage by exerting a downward pressure on wages and decreasing the probability of obtaining employment In this paper, we follow Brown and Ashenfelter (1986) and postulate that the alternative wage is an inverse linear function of local unemployment and industry dummy variables. We select this approach for two reasons. First, we have accurate district-level data (regional data in Poland) on local unemployment. Second, unlike the mildly varying unemployment rates in mature market economies, our data cover the period when unemployment first appeared and the unemployment rate rose sharply and unevenly across districts. Indeed, during the period of our study, the district-level unemployment rates varied in all countries from near zero to well over twenty percent. We hence feel that using the local unemployment rate is

Note that the alternative wage is given by a weighted average of alternative incomes and the unemployment rate is the weight attached to the relatively low income associated with an unemployment state.

more appropriate than trying to construct other, less accurate proxy measures of the alternative wage. As with equation (1'), we estimate equation (1") in the general distributed lag form and we include the vector of control variables X.

Like most large firm-level data sets, our data come in annual rather than quarterly or monthly frequency. The obvious disadvantage is that annual data contain aggregation over time that smoothes short term changes in variables. Moreover, the need to use short panels prevents us from using more than one lag of variables in our specification. While the first-degree distributed lag specification may be limiting in some contexts, ¹⁷ this is a shortcoming that we simply cannot overcome in view of the severe loss of observations that we would face if we were to use longer panels of data.

3. The Data and Summary Statistics

We use annual data from industrial enterprises in four transition economies: Czech Republic, Slovakia, Poland, and Hungary. These were collected from records that under communism enterprises were legally required to submit to the relevant National Statistical Offices and Ministries of Finance. The Czech, Slovak and Polish data sets contain almost all industrial firms with twenty five or more workers. Given the paucity of small firms in planned economies (see World Bank (1996)), these data sets provide an almost complete record of the transition of industrial firms in three key transition economies. The Hungarian data set is a large sample of industrial enterprises derived from the National Statistical Office data base. It comprises a panel of the thousand largest Hungarian firms, of which about 400 are industrial firms. The latter are the firms we use in the present analysis. The four data sets together provide a unique snapshot of the effect of transition at an enterprise level that cannot be taken forward into the mid and late 1990s because the demise of

Nickell (1986) for instance shows that if firms optimize over inputs that are aggregated in the data (e.g., skill categories of labor), it may be appropriate to include additional lags of the dependent variable in the employment equation.

communism ended the request for enterprises to supply such detail information to the governments.

Annual summary statistics for the firm-level as well as more aggregate variables used in the analysis are given in Table 2. The data cover the period 1989-93 for the Czech Republic, 1989-92 for Slovakia, 1988-91 for Poland, and 1988-92 for Hungary. In Poland and Hungary, the transition was launched at the start of 1990, ¹⁸ while in the Czech and Slovak Republics it was on January 1, 1991. For the Czech and Slovak data our estimates hence cover the pre-transition period of 1989-90, the start of the transition (big bang) in 1990-91, and the early transition (1991-92 for Slovakia and 1991-92 as well as 1992-93 for the Czech Republic). For Hungary and Poland, the estimates cover the pre-transition period of 1988-89, the start of the transition in 1989-90 and the early transition in 1990-91.

The summary statistics in Table 2 yield useful insights that are relevant for our analysis. First, the average number of employees per firm held steady in Poland during the entire 1988-90 period and declined only one year after the big bang event. In contrast, average employment per firm started declining in the Czech and Slovak republics and Hungary as soon as the transition began and the decline continued as the transition proceeded. In the case of the Czech Republic and Slovakia, the pattern is influenced more strongly by a major wave of break-ups and spinoffs of firms that occurred at the end of 1990 and in 1991, ¹⁹ while in Hungary there was relatively more emphasis on layoffs. The steady employment level in the Polish data may be partly accounted for by the fact that Poland did not create the same giant enterprises as did Czechoslovakia and Hungary in the 1980s. Moreover we observe that the price liberalization associated with the end of the centrally planned

¹⁸ In Hungary, the reform process dates as far back as 1968 and the transition changes that occurred at the end of the 1980s and early 1990s were hence less fundamental than those in the other countries (see e.g., Kornai, 1995).

system resulted in price jumps that the workers were able to transmit rapidly into corresponding nominal wage increases in the more reformed economies (Hungary and Poland) but not in the more traditional communist economies (Czech Republic and Slovakia). Indeed, in the latter countries it took several years for workers to overcome the major declines in real wages that occurred at the start of the transition.

4. Econometric Results

We commence with our estimates of the labor demand model specified in equation (1'). The principal estimated coefficients based on equation (1') are reported in Tables 3 and 4. The estimated equations have good fits (R² between 0.96 and 0.99) and the test results indicate that the restrictions implied by the first difference specification are usually rejected by the data. Results of unreported tests also indicate that parameter restrictions related to partial and complete adjustment models are usually rejected, as is the hypothesis that parameter estimates do not differ across the consecutive two-year periods. The results of the Hausman tests differ between countries and suggest that firms in the Czech Republic and Poland were relatively unconstrained in selecting the level of output, while firms in Hungary were constrained in the early but not later periods, and firms in Slovakia were constrained most of the time.

As may be seen from Table 3, while the long term labor elasticity estimates with respect to sales are similar and close to unity in three of the four countries we study, the short term elasticity estimates show a strikingly varied pattern. The Czech and Slovak firms registered very low short term labor demand elasticities with respect to sales before and at the very start of the transition. In contrast, the Polish and Hungarian elasticity estimates (0.3 and 0.6 respectively) indicate that firms

²⁴ See Lizal, Singer and Svejnar (1995 and 2001) for an analysis of these break-ups and spinoffs.

in these more market oriented communist economies were already somewhat responsive in their employment adjustment to changes in sales in the 1988-89 pre-transition period.

Moreover, we observe a rise in the estimated short term labor demand-sales elasticities in all four Central European countries shortly after the start of the transition. In particular, the elasticity rose to 0.3 in Slovakia by 1991-92 (after a temporary decline during the big bang of 1990-91) and 0.5 to 0.6 in the Czech Republic in the 1991-93 period. In Hungary and Poland one observes a temporary decline in the estimated elasticities at the start of the transition followed by a rise. Hence, while the pre-transition responsiveness of employment to sales was greater in the more market oriented economies (Poland and Hungary) than the more traditional centrally planned economies (Czech and Slovak Republics), the difference disappeared shortly after the start of the transition.

The estimated labor demand elasticities with respect to wages are reported in Table 4. The short-term elasticities suggest that in the pre-transition period the Czech and Slovak firms were equally or more responsive in adjusting employment to wages than their Polish and Hungarian counterparts. The Czech and Slovak pre-transition elasticities range between -0.33 and -0.39, while the Polish point estimate stands at -0.4. The estimate for Hungary is -0.35 but is not statistically significant. The Czech estimate becomes insignificant and the Slovak one temporarily reverses sign during the big bang of 1990-91, but both become significantly negative thereafter. Once again, one finds that shortly after the start of the transition, the wage elasticities of labor demand were significantly negative in all four CEE economies. As we discuss below, it is interesting to note that the Slovak estimate (0.25) is lower than those found in the other three CEE economies (0.57 to 0.96).

Our findings with respect to the labor demand elasticities are interesting in the context of Table 1, which shows double digit unemployment rate in Hungary, Poland and Slovakia post-

transition, as compared to the 3-4% in the Czech Republic. The positive estimated elasticities of employment with respect to sales suggest that the full in employment in all countries was associated with the decline in output. However, the path of wages had a differential effect across the four countries. In the Czech and Slovak republics, where real wages fell, the negative employment-wage elasticity mitigated the output-driven decline in employment, and the mitigating effect would have been larger in the Czech Republic, where the estimated employment-wage elasticity is higher than in Slovakia. In Hungary, rising wages would have contributed to the employment decline. Finally, in Poland, where real wages stayed about constant over the first three years and increased only in 1991 the wage effect on employment would have been minimal. These effects are broadly consistent with the macro data presented in Table 1.

In Table 5 we report estimates of employment elasticities with respect to own wage and local unemployment rate. These estimates correspond to the contract curve model, given by the dynamic employment equation (1"), with the local unemployment rate proxying for the tightness of the local labor market and hence the alternative (reservation) wage W^a. We find the estimated own wage coefficients to be usually negative and statistically significant, but the estimated coefficients on local unemployment are almost always insignificant. In fact, the unemployment coefficient is positive and significant only in the Czech Republic during its big bang year of 1990-91. In all other cases, the unemployment coefficient is statistically insignificant, occasionally displaying a negative sign. Our findings therefore suggest that at the very start of the transition, only the Czech firms operated to the right of their labor demand curves. The Czech estimate corresponds to an outcome on the vertical contract curve (ADD' in Figure 1), which suggests that labor allocation was socially efficient. However, in Poland and Slovakia during the big bang, and in all countries (including the Czech Republic and Hungary) during the subsequent years, the data generate estimates corresponding to an

outcome on the demand curve for labor.

In sum, our estimates of equation (1") suggest that outcomes to the right of the demand curve were rare as the CEE countries moved from the pre-transition to the early transition period. Moreover, as soon as these economies started adjusting to the shock of price liberalization, reduction of subsidies and loss of markets, the evidence suggests that they started operating on their labor demand curves. In terms of econometric specification, this finding provides support for the labor demand specification of equation (1') during the transition period.

5. State Owned Enterprises Versus New Firms

While the Polish and Hungarian data sets for the most part contain the same firms during the entire time period, the Czech and Slovak data reflect the entry of new firms and the break-ups of existing firms. This high turnover of firms in the Czech and Slovak republics enables us to check whether the SOEs that existed before and survived into the transition behaved differently than the de novo firms. One might hypothesize on the basis of other comparisons in the performance of state owned and private firms that the former would be less flexible and respond less to market signals (see Estrin, 2002). In Table 6, we report estimated labor demand elasticities that correspond to employment equation (1"), with the wage, sales and local unemployment elasticities for the SOEs being measured relative to those of the non-SOEs. In the Czech Republic we find that in setting employment the SOEs are more responsive than the other firms to wages and sales, but not unemployment, during the big bang of 1990-91. However, one cannot reject the hypothesis that the employment elasticities of the two sets of firms become identical by 1991-92, reflecting a significant negative elasticity with respect to wages and a significant positive elasticity with respect to sales. In Slovakia, one cannot reject the hypothesis that during the big bang of 1990-91 the three employment elasticities are pairwise identical across the two sets of firms and not significantly different from zero. By 1991-92, the Slovak SOEs display sales and unemployment elasticities that are not statistically different from those of the non-SOEs, but they register a significantly more negative employment elasticity with respect to wages than the non-SOE firms. Our estimates hence do not support the hypothesis that SOEs respond less flexibly to market signals in the early transition period. This finding is consistent with the SOEs facing a similarly hard budget constraint during the period of declining output demand that characterized the early transition.²⁰

²⁰ Our unreported estimated effects of different types of ownership and legal (corporate) status of firms, used as control variables in the present study, indicate that ownership and legal status of firms do not have strong systematic effects on employment and wages, *ceteris paribus*.

6. Conclusions

Using large firm-level data sets from four countries at the time when they experienced the systemic shift from central planning to a market system, we find that firms rapidly adjusted their employment behavior and started displaying employment elasticities that are similar to those observed in advanced market economies. Our study hence indicates that at the level of individual economic agents, in our case firms, the transition was a relatively swift process. This in turn suggests that the severe economic problems encountered by the transition economies during the first decade stem from other sources, such as policy measures, legal and institutional features and external shocks.

The finding that firms quickly started adjusting employment to variations in wages also provides an explanation of why employment declined and unemployment rose much more in some countries than others. In the extreme, our estimates provide an important possible explanation of the high unemployment rate in East Germany following the legally mandated manifold increase in real wages after re-unification with West Germany.

Looking forward, our results suggest that the accession of the Central European countries to the European Union should not have major negative effects on employment as real wages have remained much lower in Central Europe relative to the West.

References

- Aghion P., O. Blanchard and A. Burgess (1994): The Behaviour of State Firms in Eastern Europe, preprivatisation. *European Economic Review* 38, 1327-1379.
- Blanchard, O. and M. Kremer (1997): "Disorganization", *Quarterly Journal of Economics*, 112:4, pp. 1091-126
- Bresson, G., Kramarz, F. And Sevestre, P (1992): A Heterogeneous Labour and the Dynamics of Aggregate Labour Demand, some Estimations Using Panel Date, *Empirical Economics*, Special Edition on Panel Data.
- Brown, J. and O. Ashenfelter (1986): "Testing the Efficiency of Employment Contracts," *Journal of Political Economy*, 94:3, Part 2, 540-587.
- Estrin, S. (2002) "Competition and Corporate Governance in Transition," *Journal of Economic Perspectives* Vol 16:1 pp. 101-124
- Estrin, S. and J. Svejnar (1993): "Wage Determination in Labor-Managed Firms under Market-Oriented Reforms: Estimates of Static and Dynamic Models," *Journal of Comparative Economics* 17, August 1993 pp. 687-700.
- European Bank for Reconstruction and Development, Transition Report, London, 1998 and 1999.
- Ham, John, J. Svejnar and K Terrell, (1998): "Unemployment and the Social Safety Net During Transitions to a Market Economy: Evidence from the Czech and Slovak Republics" *American Economic Review*, Vol. 88, No. 5, pp. 1117-1142.
- Hamermesh, D. (1986): "The Demand for Labor in the Long Run," in Ashenfelter, O.C. and R. Layard (eds.), *Handbook of Labor Economics*, Vol. 1, North Holland, 429-471.
- Hamermesh, D. (1993): Labor Demand. Princeton University Press, 1993.
- Hendry D.F. and G. Mizon (1978): "Serial Correlation as a Convenient Simplification, Not a Nuisance." *Economic Journal*.
- Kmenta, Jan (1997): Elements of Econometrics, University of Michigan Press.
- Kornai, Janos (1995): *Highway and Byways: Studies on Reform and Postcommunist Transition*, Cambridge, MA: MIT Press.
- Lizal, L., M. Singer and J. Svejnar (2001) "Enterprise Breakups and Performance during the Transition from Plan to Market," *Review of Economics and Statistics*, 83(1), 92-99.
- MaCurdy T. and J. Pencavel (1986) "Testing Between Competing Models of Wage and Employment Determination in Unionized Markets," *Journal of Political Economy*, Vol. 94,

- pp. S3-S9.
- McDonald I. and R. Solow (1981): "Wage Bargaining and Employment", *American Economic Review*, Vol. 71, pp. 896-908.
- Nickell, S.J. (1986): "Dynamic Models of Labour Demand," in Ashenfelter, O.C. and R. Layard (eds.), *Handbook of Labor Economics*, Vol. 1, North Holland, 473-522.
- Prasnikar, J., J. Svejnar, D. Mihaljek and V. Prasnikar. (1994): "Behavior of Participatory Firms in Yugoslavia: Lessons for Transforming Economies," *Review of Economics and Statistics*, November.
- Quandt, R. and H. Rosen, Harvey (1989): "Endogenous Output in an Aggregate Model of the Labor Market," *Review of Economics and Statistics*, LXXI (3), 394-400.
- Rodrik, D. (1994): "Foreign Trade in Eastern Europe's Transition: Early Results," Ch. 18 in Blanchard, O., Froot, K. and J. Sachs (eds.), *The Transition in Eastern Europe*, Chicago: The University of Chicago Press.
- Svejnar, J. (1982) "On the Theory of a Participatory Firm," *Journal of Economic Theory*, Vol. 27, No. 2, August, pp. 313-330.
- Svejnar, J. (1986): "Bargaining Power, Fear of Disagreement and Wage Settlements: Theory and Evidence from U.S. Industry." *Econometrica*, Vol. 54, pp. 1055-1078.
- Zellner, A., J. Kmenta and J. Dreze (1966): "Specification and Estimation of Cobb-Douglas Production Models," *Econometrica*, Vol. 34, Oct. pp.784-95.
- World Bank, "From Plan to Market," The World Development Report, Washington, D.C. 1996.

Table 1: Comparative Macroeconomic Statistics

		GDP Growth ^a						ge in Empl	oyment
	1989	1990	1991	1992	1990-92 ^b	1989	1990	1991	1992
Czech Republic	1.4	-0.4	-11.7	-7.3	-18.5	0.1-	-0.9	-5.5	-2.6
Slovakia	1.4	-0.4	-14.6	-6.5	-20.5	-0.2	-0.8	-7.9	-5.3
Hungary	0.7	-3.5	-11.9	-3.0	-17.5	-0.6	-3.1	-9.6	-9.3
Poland	0.2	-11.6	-7.6	2.6	-18.1	-0.8	-6.2	-3.9	-3.1

	Change in Real Product Wages ^c					Subsidies to Enterprises			Unemployn			
						(%GDP)						
	1989	1990	1991	1992	1990-92 ^b	1989	1990	1991	1992	1989	1990	19
Czech Republic	2.1	-0.8	-31.5	12.0	-23.9				4.9	0.0	0.8	4.
Slovakia	5.1	0.1	-31.0	14.5	-20.9	25.0	16.2	7.7	5.2	0.0	1.5	11
Hungary	2.2	4.3	0.6	11.8	17.3	12.0	9.5	7.4	5.5	0.3	1.5.	7.
Poland	25.3	-31.1	15.2	8.3	-0.5	10.6	7.7	5.1	3.3	0.0	6.3	11

Notes:

- a at constant prices
- b 1989-91 for Poland, where the transition shock occurred one year earlier
- c wages deflated by the producers' price index
- d year-end unemployment

Sources:

EBRD <u>Transition Report</u>, 1995, 1997 and 1998 for GDP growth data in all countries and for employment and wage data in Hungary and Poland.

Gao and Schaffer (1998) for data on subsidies to enterprises

Ham, Svejnar and Terrell (1995) for employment and wage data in the Czech Republic and Slovakia.

Table 2: Sample Statistics (Values in Parentheses are Standard Deviations)

		<u>1988</u>	<u>1989</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>
	Avg. monthly wage		3.16	3.27	3.78	4.38	5.37
G 1	(000Kc)		(0.39)	(0.39)	(0.62)	(0.93)	(1.22)
Czech Republic	Real product wage (000 Kc)		3.16	3.14	2.13	2.24	2.42
	Avg. number of		1887	1860	1186	755	716
	employees		(4901)	(4753)	(3106)	(2220)	(1966)
	Avg. annual wage	110	138	184	249		
	(000 Fl)	(32)	(49)	(82)	(120)		
Hungary	Real product wage (000 Fl)	110	126	137	140		
	Avg. number of	1735	1701	1507	1214		
	employees	(6551)	(6698)	(6509)	(6096)		
	Avg. annual wage	2.48	9.69	47.39	106.33		
	(000 Zloty)	(2.76)	(10.31)	(49.32)	(125)		
Poland	Real product wage	2.48	3.02	2.31	3.57		
	Avg. number of	726	694	702	576		
	employees	(1315)	(1271)	(1293)	(1104)		
	Avg. monthly wage		3.11	3.22	3.73	4.28	
G1 1:	(000 Kc)		(0.32)	(0.36)	(0.56)	(1.07)	
<u>Slovakia</u>	Real product wage (000 Kc)		3.11	3.07	2.11	2.30	
	Avg. number of		1663	1597	980	766	
	employees		(1922)	(1866)	(1819)	(1625)	

Table 3: IV Employment Elasticities with Respect to Sales (Values in Parentheses are Standard Errors)

	1988-89	1989-90	<u>1990-91</u>	<u>1991-92</u>	<u>1992-93</u>	1993-94
Czech Republic						
Short-Run		-0.022 (0.035)	0.119 ^a (0.030)	0.591 ^a (0.064)	0.495 ^a (0.057)	
Long-Run		n.a.	0.936 ^a (0.031)	0.944 ^a (0.093)	0.894 ^a (0.046)	
		R^2 =0.99 N=761	$R^2 = 0.99$ N=990	$R^2 = 0.97$ N=1453	$R^2 = 0.99$ N=1017	
Slovak Republic						
Short-Run		0.101 ^a (0.015)	0.063 ^c (0.035)	0.328 ^a (0.027)		
Long-Run		n.a.	0.974 ^a (0.053)	n.a.		
		R^2 =0.99 N=311	R^2 =0.99 N=426	R^2 =0.98 N=569		
Poland						
Short-Run	0.229 ^a (0.021)	0.153 ^a (0.013)	0.187 ^a (0.006)			
Long-Run	n.a.	0.452 ^a (0.017)	0.233 ^a (0.009)			
	R^2 =0.99 N=4914	R^2 =0.99 N=4854	R^2 =0.99 N=4181			
<u>Hungary</u>						
Short-Run	0.604 ^c (0.349)	0.236 ^c (0.129)	0.650^{a} (0.168)	0.459 ^a (0.097)		
Long-Run	n.a.	0.721 (0.475)	0.768 ^a (0.096)	0.836 (0.238)		
	R ² =0.99 N=418	R^2 =0.96 N=398	R^2 =0.97 N=396	$R^2 = 0.97$ N=363		

Notes: a, b, c, = Statistically significant at 1%, 5% and 10% test level, respectively. n.a. = Not applicable since the estimated coefficient on the lagged dependent variable is close to unity.

Table 4: IV Employment Elasticities with Respect to Wages: (Values in Parentheses are Standard Errors)

	<u>1988-89</u>	<u>1989-90</u>	<u>1990-91</u>	<u>1991-92</u>	<u>1992-93</u>	<u>1993-94</u>
Czech Republic						
Short-Run		-0.389^{c}	-0.108	-0.959^{a}	-0.611 ^a	
		(0.208)	(0.217)	(0.216)	(0.189)	
Long-Run		n.a.	-1.190 ^b	-0.464	-0.509	
		$R^2 = 0.99$	(0.553) $R^2=0.99$	(1.380) $R^2=0.97$	(0.932) $R^2=0.99$	
		N=761	N=990	N=1453	N=1017	
Slovak Republic						
Short-Run		-0.329^{a}	0.403^{c}	-0.249^{c}		
		(0.116)	(0.222)	(0.150)		
Long-Run		n.a.	-0.871	n.a.		
		$R^2 = 0.99$	(0.771) $R^2=0.99$	$R^2 = 0.98$		
		N=311	N=426	N=569		
Poland						
Short-Run	-0.401 ^a	-0.477^{a}	-0.573^{a}			
	(0.030)	(0.019)	(0.020)			
Long-Run	n.a.	-0.508^{a}	-0.703^{a}			
	$R^2 = 0.99$	(0.025) $R^2=0.99$	(0.029) $R^2=0.99$			
	N=4914	N=4854	N=4181			
<u>Hungary</u>						
Short-Run	352	169	352	829 ^a		
I and Dun	(.231)	(.196)	(.255)	(.339)		
Long-Run	n.a.	5.164	-4.762 ^a	-5.023		
	$R^2 = 0.99$		(2.038) $R^2=0.97$	(3.132) $R^2=0.97$		
	N=418	N=398	N=396	N=363		

Notes: a, b, c, = Statistically significant at 1%, 5% and 10% test level, respectively.

n.a. = Not applicable since the estimated coefficient on the lagged dependent variable is close to unity.

Table 5: IV Employment Elasticities with Respect to Wages and Unemployment:

(Values in Parentheses are Standard Errors)

	<u>1989-90</u>	<u>1990-91</u>	<u>1991-92</u>	<u>1992-93</u>
Czech Republic				
Wage		-0.074 (0.209)	-1.030 ^a (0.227)	-0.472 ^b (0.208)
Unemployment		0.519 ^b (0.249) R ² =0.99 N=990	-0.024 (0.454)	0.233 (0.269) R ² =0.99 N=1017
Slovak Republic				
Wage		0.461 ^b (.202)	-0.206 (.169)	
Unemployment		-0.106 (0.173) R ² =0.99 N=426	0.216 (0.366) R ² =0.98 N=569	
Poland				
Wage	-0.470 ^a (0.020)	-0.579 ^a (0.019)		
Unemployment	0.0006 (0.0006) R ² =0.99 N=4854	-0.0006 (0.0004) R ² =0.99 N=4181		
Hungary				
Wage		-0.499 (0.302)	-2.476 ^a (0.604)	
Unemployment		-0.03 (0.012) R ² =0.96 N=396	0.024 (0.019) R ² =0.97 N=363	

Notes: a, b, c, = Statistically significant at 1%, 5% and 10% test level, respectively.

Table 6: IV Elasticities and SOE's (Values in Parentheses are Standard Errors)

	1990-91	1991-92
Czech Republic		
Wages	0.686^{b}	-0.563 ^a
-	(0.338)	(0.201)
Sales	-0.0645	0.434^{a}
	(0.060)	(0.064)
Unemployment	2.379^{b}	-0.510
	(1.155)	(1.292)
Wage * SOE	-1.021 ^a	-0.102
	(0.408)	(0.289)
Sales* SOE	0.198^{a}	0.032
	(0.068)	(0.086)
Unemployment * SOE	-2.159	1.586
	(1.446)	(2.051)
	- 2	- 2
	$R^2 = 0.99$	$R^2 = 0.98$
	N=990	N=1453
Slovak Republic		
Wage	-0.948	-0.093
_	(0.897)	(0.216)
Sales	-0.107	0.415 ^a
	(0.191)	(0.070)
Unemployment	-0.714	-0.921
	(1.787)	(1.170)
Wage * SOE	1.372	-0.707^{a}
	(0.872)	(0.283)
Sales * SOE	0.126	-0.122
	(0.190)	(0.107)
Unemployment * SOE	0.777	1.987
	(1.861)	(2.063)
	$R^2 = 0.99$	$R^2 = 0.97$
	N=426	N=569

Notes: a, b, c, = Statistically significant at 1%, 5% and 10% test level, respectively.

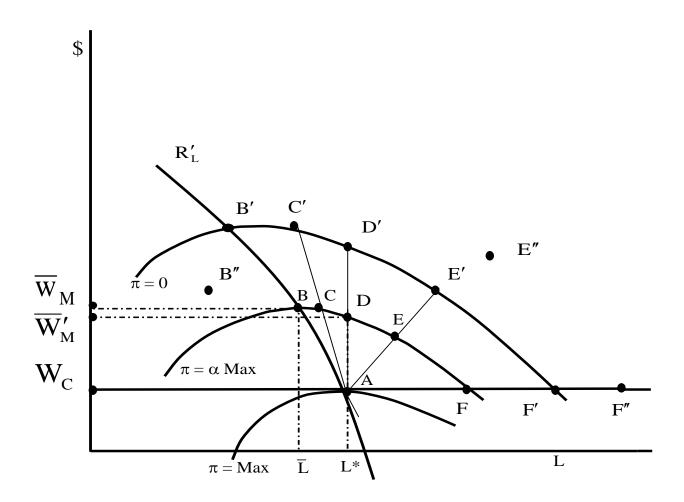


Figure 1