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1 Introduction

The focus of econometric analysis has predominantly been on retrospectively
estimating and interpreting economic relationships. However, in many uses of
econometric models by businesses, governments, central banks and traders in
financial markets the focus is on making decisions in real time and hence there is
an urgent need to develop robust interactive systems that use econometric mod-
els to guide decisions in real time. This use of econometric methods is of course
not without precursors and is closely related to the development of sequential
analysis pioneered by Wald (1947), and recursive estimation methods proposed
by Brown, Durbin and Evans (1975) for use in real time quality control.1

Automated systems are bound to become an important tool for the devel-
opment of real-time econometrics and the dialog between Granger and Hendry
(Granger and Hendry (2004)) is a pertinent reminder of many of the challenges
facing designers and users of such systems. By setting out in advance a set of
rules for observation windows and variable selection, estimation and modifica-
tion of the econometric model, automation provides a way to reduce the effects
of data-snooping and facilitates learning from the performance of a given model
when applied to a historical data set.

In this paper we set out what we see as the three key stages in real-time au-
tomated econometric modeling, namely model construction, monitoring, modi-
fication and the model innovation process. The first stage, model construction,
sets out the objective function, chooses the estimation method, selects variables
and functional forms and seeks to cross-validate the “best” or the “average”
model. The second stage sets out procedures for monitoring and evaluating the
performance of the econometric model in real time and, if deemed necessary,
undertakes the necessary modifications. This involves deciding on statistical
decision-based evaluation criteria used to determine whether the performance of
the econometric model is satisfactory. Finally, the third stage involves deciding
which alternative new modelling strategies to consider in case of unsatisfactory
performance and even a criterion for dispensing with the econometric modelling
approach altogether if there is systematic evidence of a breakdown.

The plan of the paper is as follows. As a way of furnishing a concrete
illustration of the issues involved in real time econometric modeling, Section 2
considers a relatively simple, one-period portfolio decision problem from finance.
Section 3 sets out the forecasting and decision problem that underlie automated
systems. Sections 4 and 5 consider model construction, monitoring, modification
and innovation. Section 6 outlines some future areas of research.

1Sequential or recursive techniques have also been used extensively in biomedical research
and engineering. Dawid (1984) has been advocating the use of probability forecasting in
sequential statistical analysis, known as the “prequential approach”.
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2 An Illustration from Finance

Consider a portfolio of long and short (dollar) positions at time T , represented
by the s× 1 vector dT , and denote the s× 1 vector of returns associated with
the underlying assets over the subsequent period by rT+1. Abstracting from
transaction costs, the value of this portfolio at the end of T + 1 is given by

VT+1 = d
′
T rT+1. (1)

Suppose the loss (the negative of utility) function of some trader is of the con-
stant absolute risk aversion type:

ℓ(dT , rT+1, φ) = exp(−φ d
′
T rT+1), φ > 0, (2)

with the expected loss computed conditional on the information set, FT , that
contains rT , dT and their lagged values as well as observations on a number of
other state variables (besides rT ) which we denote by zT . Further, for the time
being suppose that the risk aversion coefficient, φ, is sufficiently large so that
one can safely assume that changes in a trader’s short and long positions will not
influence the probability distribution of asset returns, rT+1, conditional on FT ,
namely there are no market impacts from the trades: f(rT+1|rT ,dT ,FT−1) =
f(rT+1|rT ,FT−1).

In the presence of model and parameter uncertainty a trader faces a number
of important choices:

• Which probability distributions to consider for returns? For example
whether to assume the returns have a multi-variate Gaussian distribu-
tion, a mixture of multi-variate normal densities, or opt for multi-variate
Student t. The form of the probability distribution of asset returns (par-
ticularly in the tails) has important implications for risk management,
although it is true that many estimation and model selection procedures
are robust (in large samples) to the choice of the distribution of asset
returns.

• How to model mean returns? There are many factors that could be consid-
ered, say as linear or non-linear functions of xT = {rT , zT} and possibly
their lagged values; and it seems unlikely that the same set of candidate
factors would have been relevant historically. The sheer size of the possible
factors that could be considered, the relatively short time series that are
typically available,2 and the time constraint that often exists between the
collection and compilation of data at close of one market and the issuance
of trade orders for execution at the start of another market, places impor-
tant restrictions on the search process across the possible factors and how
it is implemented. This might introduce a certain degree of randomization

2At daily frequencies large data sets are available for some assets, such as Yen and Euro
dollar rates, but even in the case of these assets one might not wish to use all the data available
in forecasting due to the possibility of structural change in asset markets; a topic which we
shall return to under the choice of “Data Window”.
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in model selection (model averaging) procedures, and search algorithms
such as the recursive modelling method, to be reviewed below.

• Which specifications to consider for modelling of asset return volatilities?
In addition to the search problems discussed above, one is also faced with
the problem of dealing with large correlations typically encountered across
asset returns and the possibility that such correlations may vary across
time, rising at times of crisis and falling in calmer periods.

Risk management considerations also dictate that the loss function (2) is
augmented with the following Value at Risk (VaR) constraint:

Pr (d′T rT+1 < −Vα |FT ) ≤ α, (3)

where Vα is the maximum loss tolerated over any one trading day with probabil-
ity α (often taken to be 1%). It is clear that the minimization of the expected
loss function in (2) subject to the VaR constraint in (3) requires a complete
specification of the probability distribution of asset returns. To simplify the
exposition we suppose that in the search the trader focuses on the class of
multi-variate Gaussian specifications drawn from the set MT :

rT+1|FT ,Mi ∼ N(µiT ,ΣiT ), Mi ∈MT ,

as well as the Bayesian model average and other combinations. µiT and ΣiT
denote the time-T conditional mean and conditional variance-covariances of
asset returns, respectively, assuming model Mi holds. Note that µiT and ΣiT
would typically depend on one or more elements of xT and their lagged values
with a number of unknown parameters that need to be estimated or integrated
out of the decision process. Abstracting from parameter uncertainty we first
note that, under Mi,

E[ℓ(dT , rT+1, φ)|FT ,Mi] = exp(−φd
′
TµiT +

1

2
φ2d′TΣiTdT ), (4)

and

Pr (d′T rT+1 < −Vα |FT ,Mi ) = Φ

(
−Vα − d

′
TµiT√

d′TΣiTdT

)
≤ α,

where Φ(.) stands for the cumulative distribution function of a standard normal
variate. Denoting the α% left tail of the standard normal distribution by −cα,
the VaR constraint can also be written as

Vα + d
′
TµiT − cα

√
d′TΣiTdT ≥ 0. (5)

The Lagrangian for minimizing −φd′TµiT +
1

2
φ2d′TΣiTdT subject to (5) is

Li (dT ) = −φd
′
TµiT +

1

2
φ2d′TΣiTdT −λ

(
Vα + d

′
TµiT − cα

√
d′TΣiTdT

)
.

(6)

4



Since there are s positions to be determined with one VaR constraint we proceed
initially by ignoring the VaR constraint (setting λ, the Lagrange multiplier, to
zero). In this case the optimal positions under model Mi are given by

d
∗
iT = (1/φ)Σ

−1

iT µiT . (7)

We now check to see under which conditions these positions also satisfy the VaR
constraint (3). Substituting (7) in (5) we have

s2iT − cαsiT + φVα ≥ 0, (8)

where siT =
(
µ′iTΣ

−1

iT µiT
)1/2

is the multi-variate Sharpe ratio (in absolute
value) under model Mi. Therefore, the positions given in (7) satisfy the VaR
constraint if the risk aversion coefficient is sufficiently large such that

φ ≥
c2α
4Vα

,

otherwise the optimal solution that satisfies the VaR would be

d
∗
iT =

(
4Vα
c2α

)
Σ
−1

iT µiT .

Combining the two solutions, we have

d
∗
iT = γΣ−1iT µiT , (9)

where

γ =Min

(
4Vα
c2α

,
1

φ

)
.

The realized value of the loss function under model Mi is now given by

ℓ(d̂iT , rT+1, φ, Vα, cα) = exp(−φγ µ̂
′
iT Σ̂

−1

iT rT+1), (10)

where we have replaced (µiT ,ΣiT ) by their estimates based on a given data or
observation window. A decision-based evaluation exercise can now be carried
out whereby the performance of the alternative models are compared in terms
of their associated realized losses over a given evaluation period, (R+ 1, T ):

ℓ̄iR,T = (T −R)−1
T∑

t=R+1

exp(−φγ µ̂′i,t−1Σ̂
−1
i,t−1rt), (11)

where µ̂i,t−1 and Σ̂i,t−1 are the recursive estimates of µi,t−1 and Σi,t−1 based
on observations up to and including time t− 1.3

3Decision-based evaluation techniques are discussed in Granger and Pesaran (2000a,b) and
reviewed and developed further in Pesaran and Skouras (2002).
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2.1 Feedback Effects

Although feedback effects are likely to be less important in trading than in
macroeconomic decision making, i.e., when considering the effect of monetary
policy, they can and do exist in trading by large financial corporations, and the
above application can be readily adapted to show the additional issues that could
arise when the possibility of feedbacks from dt to xt is recognized by the decision
maker. For simplicity of exposition let s = 1, and suppose that such feedback
only takes place through the effects of changes in trade positions on returns.
Assume also that the change in the trade position decided at the end of period
T is filled some time during the interval (T ;T+1],∆dT+1 = dT+1−dT = d∗T−dT ,
or more generally dt+1 = d∗t for all t. Under this set up a simple model of returns
that allows for feedback is given by

Mi,T : rT+1 = ψi (dT+1 − dT ) + β
′

ixiT + εT+1,i, εT+1,i ∼ N(0, σ2iT ) (12)

where Mi,T denotes the return regression model assumed by the trader to hold
at the end of period T . The coefficient ψi ≥ 0, measures the trader’s perception
of his market impact under Mi,T .

4 For simplicity we shall assume that ψi is
fixed, although allowing for time variations in ψi is likely to strengthen our
arguments.

Abstracting from VaR considerations, in this case we have

dT+1 =

(
−ψi

φσ2iT − 2ψi

)
dT +

β
′

ixiT

φσ2iT − 2ψi
, (13)

Under zero market impact, ψi = 0, this solution reduces to the standard mean-

variance result, β
′

ixiT/φσ
2
iT . To implement dT+1, the trader would need to

estimate the parameters {ψi,βi}, and the return volatility, σ2iT . Since these
parameters are specific to the model used by the trader they can, at best, be
estimated for the particular model that had been used by the trader during the
estimation period prior to date T . In reality, the trader might have used many
different models in the past, and in that case historical observations on dt, rt and
xt, t = T, T − 1, ...., would not be relevant to the estimation of the parameters
of model Mi,T . The problem arises more clearly if the trader in fact wishes to
consider a counter-factual exercise with respect to any model, say Mj,T , which
has been used by him/her in the past. It is not clear how historical data could
be used by the trader to estimate the market impact coefficient, ψj, underMj,T .
One way to get around this problem is by generating a sample that is consistent
with the counterfactual policy. Such experiments can be costly, though, and are
typically not available for econometric estimation purposes.

This application shows many choices that a decision maker will be faced
with, even if the nature of the decision problem and the space of assets to be
traded are taken as given. In what follows we consider some of these issues more
generally and the type of solutions suggested in the literature for dealing with
them.

4 It is assumed that the trader does not observe the trade positions of others in the market.
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3 The Decision Problem

We shall focus on a single-period forecasting and decision problem but many of
our comments also apply to multi-period decisions. The decision problem, as
it is usually set up, pre-assumes the existence of a unique time invariant loss
function, ℓ(dT ,xT+1,φ), where dT is the s× 1 vector of decision variables set
at the end of period T , xT+1 the k × 1 vector of state variables realized over
the period from T to T + 1 and φ is a vector of fixed coefficients. Decisions
are implemented during the period (T, T + 1).5 It is assumed that decisions
are made with respect to information available at time T , FT , which at least
contains {dT ,xT} and their past values. The decision variables are then derived
by solving the following optimization problem

d
∗
T = Arg min

dT∈DT

{∫

RT+1

ℓ(dT ,xT+1,φ)f̂t (xT+1 |FT ) dxT+1

}
, (14)

where DT ⊆ Rs is the set of feasible actions at time T, f̂T (xT+1 |FT ) is the
decision maker’s time-T estimate of the probability forecast density function of
xT+1 conditional on FT , and RT+1 ⊆ R

k is the domain of variations of xT+1
assumed to be known at time T . In cases where the loss function is quadratic
in dT only a conditional point forecast of xT+1, namely Ef̂T (xT+1 |FT ) , will
be needed, but in general the whole probability density is required.

At each decision point, T , the decision maker faces considerable uncertainty
regarding the choice of f̂T (xT+1 |FT ) and might also be uncertain about the
choice of the loss function and/or its parameter values, as well as the measure-
ment of some of the state variables. But in what follows we suppose that the
loss function is known to the decision maker and abstract from data uncertainty.
Neither complication is germane to the issues that we wish to raise here.

The decision process is further complicated when the implementation of
the decision (or ‘action’ by the decision maker) influences the “true” condi-
tional probability distribution of the state variables, xT+1, which we denote by
Pr (xT+1 |FT ). The possibility that changes to dT might affect Pr (xT+1 |FT )
has further implications for econometric model construction and evaluation,
which we highlight in Section 4.

3.1 Formulation and Selection of Models

For a given loss function and a time series of past measurements, ZT (1) =
(z1, z2, ..., zT ) ⊆ FT on the decision and state variables zt = (dt,xt), the single
most important task facing the decision maker at time T is the choice of the
forecasting model, f̂T (xT+1 |FT ). The real time nature of the decision making
process recognizes that the forecasting model and its parameters might need
updating at the start of each decision period (say prior to opening of markets).
This could involve simple updating of parameters of a given model (keeping

5To simplify the exposition we assume that the decision can be exactly implemented.
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the specification of the model fixed), updating the model by searching over a
pre-specified set of models, or might even involve searching over new models
including new variables/factors, functional forms or dynamic specifications not
considered as feasible or of potential usefulness prior to date T . These three
levels of model updates can be viewed as “recursive estimation”, “recursive
modelling” and “innovative modelling”, respectively. Clearly, recursive model-
ing involves recursive estimation, but not vice versa, and innovative modelling
could encompass both recursive modelling and recursive estimation.

Selection of a model for use in decision making involves providing an answer
to a counter factual exercise, namely a comparative analysis of the losses that
would have been realized in the past under alternative specifications of the
forecasting model (and hence the decision rules). Assume that Pr (xT+1 |FT ),
the data generating process (DGP), is unknown and suppose that at time T the
decision maker is faced with a set of forecasting models,Mi ∈MT . Each model,
Mi, is defined by the conditional probability density function of xt defined over
the estimation period t = T0, T0 + 1..., T, (T0 ≥ 1), and the forecasting period,
t = T + 1, in terms of a ki × 1 vector of unknown parameters, θi, assumed to
lie in the compact parameter space, Θi:

Mi : {fi (xt+1;θi |Ft ) , θi∈Θi} . (15)

Conditional on each model, Mi, being true it will be assumed that the true
value of θi, which we denote by θi0, is fixed and remains constant across the
estimation and prediction periods and lies in the interior of Θi.

6 Under Mi the
solution to the decision problem (14) can then be written as

d
∗
iT (θi,φ) = argmin

dT∈DT

{∫

RT+1

ℓ(dT ,xT+1,φ)fi (xT+1;θi |FT ) dxT+1

}
, (16)

which depends on the unknown parameters of the selected forecasting model,
fi (xt+1;θi |Ft ). To derive an operationally feasible decision rule, one would
need to replace θi with a suitable estimate, or eliminate such parameters by
integrating them out with respect to their posterior distributions using Bayesian
techniques. Under both approaches we have

d
∗
iT = ψi (FT ,φ) , (17)

where ψi (.) represents the vector of decision rules which depends on the loss
function and its parameters, φ, the choice of the forecasting model, Mi, and the
particular procedure used to deal with the unknown coefficients, θi.

Under Mi, the estimation of θi, or derivation of its posterior distribution,
can be based on the joint likelihood function of zt defined over the “observation

6Phillips (1996) discusses the possibility that none of the models in MT represents the
true DGP in which case the best (local) approximation is being sought.
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window”: t = T0, T0 + 1..., T :

Lzi (zT0 , zT0+1, ..., zT ;φ,θi |FT−1 ) =
T∏

t=T0

hi (dt;φ |Ft−1 ) fi (xt;θi |dt,Ft−1 ) ,

(18)
where hi (dt;φ |Ft−1 ) is the conditional density of the decision variables as-
suming model Mi holds. In general, there are complicated restrictions linking
the solutions to the decision and estimation problems. However, in the case of
atomistic agents where the feedback effects of dt on xt can be ignored so that

fi (xt;θi |dt,Ft−1 ) = fi (xt;θi |Ft−1 ) , (19)

the estimation and decision problems are de-coupled and estimation can be
based on the likelihood of the state variables alone:

Lxi (xT0 ,xT0+1, ...,xT ;θi |FT−1 ) =
T∏

t=T0

fi (xt;θi |Ft−1 ) . (20)

This in turn may require that the decision variables are constrained to lie in
a restricted set so that their simulated values computed conditional on model
Mi do not influence the state variables. In evaluation of trading strategies this
requirement is usually met by restricting the trading positions to be sufficiently
small or by inclusion of appropriate penalty terms in the loss function so that
dt ∈ D̄t ⊆ Dt, where D̄t is a restricted subset of Dt.

4 Specification Search, Data Snooping, and Use

of Automated Techniques

The above over-view of the decision and estimation problems clearly shows a
number of important choices that face the decision maker such as the choice
of the forecasting model; the choice of the observation (estimation) window,
the treatment of possible feedbacks from decisions onto the state variables in
cases where the decisions are expected to influence the probability distribution
of the state variables and comparison of the performance of alternative models,
estimation procedures and observation windows. In this section we discuss the
role of automated model selection for each of these points.

4.1 Choice of Forecasting Model

Econometric modelling is often guided by existing economic theory although this
will typically only be broadly suggestive of which state variables or functional
form to use in the econometric model. To learn about these, the econometrician
will therefore in practice undertake substantial specification searches across the
set of potential models, Mt. The search for the ‘best’ or an ‘average’ model
involves using the same set of realizations (historical data) many times over.
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The outcome could also depend crucially on the choice of the criterion function
(likelihood or utility), the extent to which model complexity is penalized, and
the particular model space over which the search is carried out. As a result the
in-sample penalized performance of the model selected is not an unbiased esti-
mator of the model’s subsequent (out-of-sample) performance, and can severely
underestimate the true loss.7 This is due to the pre-test bias arising from having
to rely on one set of realizations from which to choose the model specification.

One way to deal with this problem is to assess the statistical significance
of the best model in the context of the specification search that preceded it.
This is the approach taken, e.g., by Sullivan, Timmermann and White (2001)
who bootstrap performance statistics to evaluate the significance of the best
model drawn from a larger universe. This method provides a correction to the
standard p-value that conditions on one model (as if it were pre-specified) and
therefore ignores the search that preceded it.

Automation can assist in reducing, but not eliminating, the effects of data-
snooping and pre-test bias. Subjective opinions about specific variables and
functional forms are likely to benefit significantly from hindsight as such opinions
will be formed after gaining experience with different modelling strategies on
an existing data set. Automated data-driven model selection procedures do, to
some extent, take the choice of model out of the hand of the modeler, although
it is more difficult to reduce hindsight in the choice of the model set, Mt, or
in the innovative modelling stage, i.e. when choosing how to revise and modify
Mt over time.8

4.2 Variable Selection

Let X denote the time-invariant universe of all possible prediction variables
that could be considered in the econometric model, while Nxt is the number
of regressors available at time t so Xt = (x1t, ..., xNxt

) ⊆ X . Nxt is likely to
grow at a faster rate than the sample size, T . At some point there will therefore
be more regressors than time-series observations. However, most new variables
will represent different measurements of a finite number of underlying economic
factors such as output/activity, inflation and interest rates.

Rather than searching over all possible combinations of predictor variables
at random, a sensible approach is to first categorize variables and then choose
one or a few variables from each category. Alternatively, regressors can be clus-
tered in advance according to a simple algorithm that measures their correlation
or by grouping them according to what they measure (e.g. interest rates, infla-
tion measures). One possibility, considered, for example, by Stock and Watson
(2002) is to extract common factors and use the most important of these in

7Leamer (1978) was one of the first in the econometrics literature to highlight this problem.
8Clearly, the extent to which biases in subjective choices can be reduced depends on the

dimensionality of Mt. If Mt only contains a few explanatory variables and functional forms
that the modeler (with the benefit of hindsight) knows work well, then data snooping biases
will not be reduced by much. Only if the data and model set is sufficiently large will the
hindsight in the choice of a particular model be reduced.
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forecasting.

4.3 Recursive Modelling

In Pesaran and Timmermann (1995, 2000) we proposed a recursive modelling
approach that exemplifies many of the points mentioned thus far including how
to estimate µit in Section 2. Consider an Nxt×1 column vector vi with a string
of Nxt ones or zeros, where a one in the j’th row means that the j’th regressor is
included in the model whereas a zero in the j’th row means that this regressor is
excluded from the model. Then each possible model at time t can be identified
by the Nxt-digit string of zeros and ones corresponding to the binary code of
its number. Without loss of generality, consider forecasting the first element
of Xt+1, Yt+1 = e

′
1tXt+1 (where e′1t is an Nxt−vector with unity in the first

position and zeros elsewhere) at time t+ 1 by means of linear regressions

Mi(τ) : Yτ+1 = β
′

iXτ,i + ǫτ+1,i, τ = 1, 2, ...., T, (21)

where Xτ,i is a vector of regressors obtained as a subset of the regressors in con-
tention, Xτ , andMi(τ) denotes the i’th regression model at time τ . Notice that
this gives a total of 2NxT possible models. When NxT is large, a comprehensive
(global) search is therefore not feasible and the approach could be modified by
using Monte Carlo chain, simulated annealing, genetic algorithms or a method
such as PcGets.

Conditional onMi(τ), and given the observations Yτ+1,Xτ,i, τ = 1, 2, ..., T−
1, the parameters of modelMi can be estimated by least squares. Denoting these
estimates by β̂T,i, we have

β̂T,i =

(
T−1∑

τ=0

Xτ,iX
′

τ,i

)−1 T−1∑

τ=0

Xτ,iYτ+1. (22)

These OLS estimates are fairly simple to compute and β̂
′

T,ixT,i could be used
as an estimate of µiT in our finance example in Section 2. The choice of XT,i

to be used in forecasting of YT+1 can be based on a number of likelihood based
model selection criteria suggested in the literature, such as Akaike’s Information
Criterion (AIC), Schwarz’s Bayesian Information Criterion (BIC) or Phillips and
Ploberger (1994)’s Posterior Information Criterion (PIC) which applies to both
stationary and non-stationary data.

This approach can of course readily be generalized to allow for non-linear
effects through indicator type variables as in threshold autoregressive models,
Markov switching or more complicated non-linear indicators. As argued by
Phillips (1996) it can also be used to choose design parameters such as whether
or not to impose a unit root, choice of cointegration rank and deterministic
trend degree etc in broad classes of models such as reduced rank regressions,
VARs or Bayesian VARs. Whether only linear models or more general models
are considered depends on the relative cost of searching across and estimating
nonlinear models and the evidence of misspecification among linear models.
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4.4 Model Averaging

So far we have focused on approaches that aim to select a single ‘best’ model.
More generally, the model determination process can be considered as selecting a
set of weights on each of the models under consideration,MT . If a single model
is used only one of these weights will be nonzero, but it is possible to assign
non-zero weights to several models simultaneously, to constrain the weights to
add up to one (which makes sense if the individual forecasts are unbiased) and
to impose non-negativity of the weights. For example, the forecasting model
under “Bayesian model averaging” (BMA) is given by9

fb (xT+1 |FT ,MT ) =
∑

Mi∈MT

Pr (Mi |FT ) fi (xT+1,θi |FT ) , (23)

where Pr (Mi |FT ) is the posterior probability of model Mi which is obtained
from the prior distributions, the model priors Pr (Mi), and the priors for the un-
known parameters, Pr (θi |Mi ), and the likelihood functions of the models under
consideration. BMA treats the underlying models as random variables. Markov
Chain Monte Carlo Model Composition (MC3) algorithms have been used to
compute posterior probabilities for these models. Alternatively, Bayesian model
selection methods based on, e.g., the model with the highest posterior proba-
bility can be used. For a discussion of related points and references to recent
studies, see section 11.3 in Koop (2003).

Note that the BMA density forecast depends on the particular set of models
under consideration at time T . Model innovation concerns the evolution of the
model space, Mt, over time, t. Conditional on Mt, model specification uncer-
tainty can be taken into account by integrating the predictive density across the
full set of models, i.e. by computing a weighted average of the predictive densi-
ties of each model. The weights can either reflect the (relative) likelihood values,
the posterior probabilities as in (23) or the relative penalized likelihood values
using a penalty term such as in the Akaike or Schwarz information criteria.
Even with such approaches, it is still an open question which penalty function
will yield the best results when judged according to the metric established by
the economic loss function, ℓ.

Model averaging is particularly attractive in situations such as that reported
by Phillips (1995) where the forecasts from the individual models are found to
be very different, and hence subject to a high degree of uncertainty. In the
context of the asset allocation problem reviewed in Section 2, averaging could
also proceed over probability density forecasts with different specifications of
the conditional volatility, Σit.

A second possibility is to apply (Bayesian) shrinkage methods to the para-
meters of an individual forecasting model (e.g. a VAR) or to the combination
weights, c.f.. Litterman (1986). This is particularly attractive in the case of
models with many parameters.

9See, for example, Leamer (1978), Draper (1995) and Hoeting et al. (1999).
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A third possibility is to apply the ‘thick modelling’ method developed by
Granger and Yeon (2004) which takes averages over the full set of models, suit-
ably truncated to avoid using models with measurably poor performance.10 This
is similar to the Occam’s window approach of Kass and Raftery (1995) which
first disposes of models of high dimensionality and with weak data support as
well as models with low posterior probability prior to averaging across the re-
maining set of models. Numerically efficient Bayesian MCMC methods have
also been developed to deal with situations where the number of models to be
combined is very large, c.f. Koop (2003).

4.5 Data Window

Model instability is a real possibility due to technological or institutional changes
and policy shifts. How much data to use in the modelling stage depends on the
nature of possible model instability and the timing of possible breaks. To test
for model instability, the full information set, FT , should always be used to the
extent possible. Once more is known about the nature of any model instability,
an informed decision can be taken on how much data to discard.

Many classes of estimators take the form of weighted least squares. Let Xτ,i

be the τth observation of the ith subset ofX−variables. Further, let ωτT ∈ [0; 1]
be the weight on observation τ at time T . Then

β̂T,i =

(
T−1∑

τ=0

ωτTXτ,iX
′

τ,i

)−1 T−1∑

τ=0

ωτTX
′
τ,iyτ+1. (24)

This class of estimators encompasses as special cases

expanding window : ωτT =
1

T

rolling window : ωτT =

{
1/win if τ ≥ T −win+ 1
0 otherwise

discounted least squares : ωτT = (1− λ)λT−1−τ/(1− λT )

post-break window : ωτT =

{
1/(T − T̂b) if τ ≥ T̂b + 1

0 otherwise
,

where win is some fixed, predetermined window length and T̂b is the most
recent breakpoint estimate obtained using data up to period T . Pesaran and
Timmermann (2002) propose a reversed ordered Cusum (ROC) method that
reverses the sequence of the data and tries to identify the most recent break in
the data. This method is designed to answer how much historical data to use to
estimate the parameters of a forecasting model. For example, when computing
the conditional mean of stock returns, µit, one may choose only to use data
after the oil price shocks of 1974 or after the stock market crash of 1987.

10Recent applications of model averaging techniques in econometrics include Fernandez, Ley
and Steel (2001a,b), Aiolfi and Favero (2002), Garratt, Lee, Pesaran and Shin (2003).
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The expanding window method is efficient if the DGP is stationary and the
model represents the true DGP. Discounted least squares is optimal in some
settings with time-varying second moments, while the post-break data window
is optimal provided that a sufficiently large, discrete break has occurred. This
latter method is related to the approach of Phillips (1996) for discarding data
prior to a certain time period based on the relative likelihood ratio of pairs of
competing forecasting models.

4.6 Data Revisions and Measurement Errors

Macroeconomic variables in particular are often subject to important measure-
ment errors and data revisions, c.f. Croushore and Stark (2001) and Eggin-
ton, Pick and Vahey (2002). Where feasible, any real-time econometric model
should make use of such data in all stages so as not to overstate the degree of
predictability.

Financial variables such as interest rates and stock prices are typically not
similarly affected by data revisions but may be subject to measurement errors
- particularly when such data is fed into a computer in real time. To detect
outliers that could lead to unreliable results, a filter could be designed that
alerts users to aberrations more than a certain distance away from the standard
range observed for a particular variable.

Other operational issues are likely to further constrain the econometric
model. For a start, the time required to update a model forecast is constrained
by real-time considerations. For example, if minute-by-minute trading is de-
sired and the computation of a one-period forecast takes more than one minute,
the forecast will be useless by the time it becomes available. The speed of the
algorithm could therefore be an important consideration.

4.7 Cross-validation

In view of the very large set of potential regressors in X , spurious relationships
could well result from an extensive model specification search and it is important
to reduce the effects of data-snooping. One strategy is to apply cross-validation
techniques. This can be implemented by splitting the data set into a training
sample [1;R] used to select an econometric model Mi(θi,R,FR) and estimate

its parameters to get a predictive density, f̂iR , and an evaluation sample [R +
1;T ] used to evaluate the model. Since over-parameterized models are likely to
perform poorly in the cross-validation sample, this method can be viewed as an
alternative way of penalizing for model complexity.

Cross-validation need not be based on the same metric as that used in the loss
function. A range of alternative performance indicators - such as the percentage
of correctly predicted signs or the Sharpe ratio in case of a trading system -
could also be used. This is important since the sampling distribution of the
economic loss measure, ℓ(.), may be poorly behaved. Suppose for example that
the decision maker cares about the wealth generated by an automated trading
system. Cumulated wealth, being the product of a sequence of returns over
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the trading period, is likely to have a sampling distribution with very large
standard errors, so even a relatively long cross-validation sample could well lead
to inconclusive results.

Cross-validation techniques have other limitations. The modeler is bound to
have some knowledge of the basic characteristics of the historical data from R+1
to T . This means that the cross-validation sample is not virgin data and could
potentially bias the performance. As a case in point, an econometrician may
have a data set on stock returns from 1985 to 2000 and use the first part of the
data for model construction, while the latter half is used for cross-validation.
Knowing that the last half included a sustained bull market could well bias
the modeler to include ‘momentum’ variables that would work very well in the
cross-validation period although they would have little if any predictive power
in the subsequent sample.

Furthermore, since the rules for the construction of the econometric system
has to be ‘written in stone’ and be in place at the outset of the cross-validation
period, inevitably decision rules will be based on old data. This introduces
a ‘locality problem’ since it is likely that the econometric model would have
worked better if more recent data could have been used to change the rules of
the econometric system.

A final problem associated with cross-validation is that the statistical tests
underlying the evaluation period are likely to have weak power and thus may
not be very informative. One way to evaluate this loss in power is by quantifying
the impact of the specification search leading to the ‘best’ model using methods
such as those adopted by Sullivan, Timmermann and White (2001). Another
strategy is to use stress-testing methods that either simulate or bootstrap from
a model that captures salient features of the underlying data set and examines
the performance of the model under a range of plausible scenarios.

4.8 Applications

Automated model selection is still a relatively recent tool and not that much
experience has yet been gained with it. Pesaran and Timmermann (1995, 2000)
and Phillips (1995), Schiff and Phillips (2000) report the outcome of applica-
tions of automated model selection experiments for stock returns (portfolio allo-
cation) and forecasts of Asia-Pacific (New Zealand) economic activity variables,
respectively. Aiolfi and Favero (2002) use thick modeling to obtain recursive
forecasts of asset returns. Coe, Pesaran and Vahey (2003) provide an applica-
tion of recursive modeling to the term structure of U.K. interest rates to see
if econometric techniques could have been used to reduce the interest costs of
managing public debt. These studies suggest that the automated procedures
generally select parsimonious models whose simulated forecasting performance
tend to be better than that provided by reasonable benchmarks such as forecasts
based on random walk models or official forecasts (Schiff and Phillips (2000)).

These studies also point out that the best approximating model is time-
varying. Phillips (1996) introduces the idea of the ‘lifetime’ of an econometric
model. Pesaran and Timmermann (2000) plot out a sequence of indicator vari-
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ables tracking the inclusion or exclusion of a particular regressor in the forecast-
ing model and find that some variables drop out after an initial inclusion period
or get included in blocks in time.

Monte Carlo evidence reported by Hendry and Krolzig (2002) is also sugges-
tive of the ability of automated modeling approaches to select key regressors at
least in the context of linear models in a stationary environment.

Phillips (2003) proposes a powerful future application that would make
econometric model determination software available to non-expert users via the
web. Users choose a set of potentially relevant forecasting variables and may
also provide their own data. The software then produces outputs such as graphs
of forecasts surrounded by standard error bands. An extension of this idea is to
link the forecasts with an objective function representing the user’s attitude to-
wards risk and an optimizer and solve for variables such as savings and portfolio
choices.

5 Monitoring, Modification and Innovation

5.1 Performance Monitoring

Once a model has been selected and cross-validated using data up to time T ,
it is reasonable to monitor its real-time performance at regular intervals, e.g.
every h periods at time T + h, T + 2h, T + 3h, ...T + nh, where n is a positive
integer. The monitoring frequency, h, should be a function of the degree of
model instability observed in prior periods as well as the cost of the monitoring.

The initial model is naturally maintained provided that the economic or
statistical loss does not exceed some pre-determined value, ℓ̄max :

(nh)−1
T+nh∑

t=T+1

ℓ(d∗t (f̂i),xt+1,φ) ≤ ℓ̄max, (25)

where we recall that f̂i is the predictive density conditional on model Mi and

d∗t (f̂i) = argmin
dt∈Dt

{∫

Rt+1

ℓ(dt,xt+1,φ)f̂i (xt+1 |Ft ) dxt+1

}
,

Mi = argmin
Mj∈MT

{
(nh)−1

T+nh∑

t=T

ℓ(d∗t (f̂i),xt+1,φ)

}
. (26)

If (25) is satisfied, then forecasts and decisions at time T+nh can be conditioned
on Mi(T + nh). Alternatively, model rejection could be based on diagnostic
tests that reflect the behavior of the forecast errors, et, an approach taken by
PcGets. For example, one could monitor whether the forecast error exceeds
a certain number (κ) of standard deviations of the forecasting model, |et| ≥
κσ̂(et), although account also needs to be taken of possible fat tails in the
distribution of the forecast errors.
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5.2 Model Modification

If the criterion (25) fails to be satisfied, the model space could be expanded
from MT+nh to M̃T+nh, say, where MT+nh ⊂ M̃T+nh so the new model and
decision rule solve

Mi = argmin
Mj∈M̃T+nh

(nh)−1
T+nh∑

t=T

ℓ(d∗t (f̂i),xt+1,φ)

d∗t (f̂i) = argmin
dt∈Dt

{∫

Rt+1

ℓ(dt,xt+1,φ)f̂i (xt+1 |Ft ) dxt+1

}
. (27)

Model modification may lead to the inclusion of an omitted factor deemed pre-
viously to be unimportant. One example of a dormant factor that came to life is
oil prices during the seventies. Since oil prices varied far less prior to the 1970s,
few econometric models included them, but this clearly changed subsequently.

Such modification could also be triggered automatically by some real-time
monitoring system if there is evidence of a model breakdown. It is closely related
to the framework for model determination proposed by Phillips (1996) which
includes the possibility that the true probability measure underlying the DGP
itself evolves over time due to technological or institutional shifts.

Quite independently of whether or not model performance is being consid-
ered, the parameter estimates, θ̂t,i, can be updated either every period (h = 1)
or at regular intervals, again depending on the relative cost-benefit of such up-
dates.

This process is very similar to the model evaluation stage used to cross-
validate the econometric model over the in-sample period. It involves specifying
a range of statistical performance measures that can be the basis for decisions on
whether and how to modify the econometric model. As part of the monitoring,
tests for structural breaks could also be undertaken. Unfortunately, existing
breakpoint tests lack power against plausible (local) alternatives and in many
cases do not provide precise information about the time of the break. Some
breaks may, however, be large enough that they can be detected. Even when
such tests indicate some form of instability they typically do not reveal the form
of the instability, i.e. a break-down in model parameters or the inclusion of new
predictor variables.

5.3 Model Innovation

To avoid some of the same pitfalls involved in the initial model construction
phase, the process of monitoring and modifying the econometric model in real
time should be set out in advance prior to the beginning of the experiment. This
amounts to specifying in advance how the model space is extended, i.e. setting
out rules for constructing the sequence {MT+nh}

∞
n=1. For example, one could

specify rules for considering new families of models for the conditional mean,
g∗(Xτ,i;βi), new predictive density models f∗(Xτ,i;θi) or new classes of esti-

mators, θ̂i. Thus, if the purpose is to study the efficient market hypothesis, one
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could introduce new forecasting models (e.g., cointegrating regressions, neural
networks or wavelets) only at the point when they were introduced. Finding
that a particular econometric forecasting method could have been used to gen-
erate abnormal profits 10 years prior to its invention would not be of much
interest. If there are changes to the set of feasible decision rules, one also needs
to set out the sequence {DT+nh}

∞
n=1.

Inevitably innovative modelling relies on the modelers judgement and so
it is typically more difficult to automate this stage than e.g. the selection of
regressors from a pre-specified universe. The role of automation in this stage is
therefore still an open question.

6 Future Research

Much work remains to be done before the scope for success as well as the limita-
tions of automated econometric models can be assessed. Little is known about
the performance of different econometric approaches when models are viewed
as local approximations to an evolving data generating process as proposed by
Phillips (1996). In general, however, parsimonious models tend to produce bet-
ter out-of-sample forecasting performance than models with a large number of
variables and parameters. In economics, non-stationarities take many different
forms: at times the underlying DGP may be subject to sudden discrete shocks,
at other times changes may evolve more gradually. The challenge is to design
robust systems that can handle both types of change. One idea is to attempt to
design a real-time break monitoring procedure that detects the speed of change
and then conditionally chooses either fast adapting or slowly adapting forecast-
ing models.

Another possibility is to group forecasting models by types (e.g., error correc-
tion models, stationary VARs, Bayesian VARs, time-varying parameter models),
select the best model within each class and then average across different classes
of models using Bayesian type model averaging techniques. A conjecture is that
averaging across very different types of models (as opposed to models that only
differ by, say, their lag order) may provide robustness against larger types of
change. At the same time, averaging across too many types of models may
slow down the adaptation of the combined forecast following a large shift in the
DGP. Much research is still needed to answer which of these effects dominates
in practice.

Automated systems reduce, but do not eliminate the need for discretion in
real time decision making. There are many ways that automated systems can be
designed and implemented. The space of models over which to search is huge and
is likely to expand over time. Different approximation techniques such as genetic
algorithms, simulated annealing and MCMC algorithms can be used. There are
also many theoretically valid model selection or model averaging procedures.
The challenge facing real time econometrics is to provide insight into many of
these choices that researchers face in the development of automated systems.
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