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Abstract:

First and higher order digits in data sets of natural and socio-economic processes often 
follow a distribution called Benford’s law. This phenomenon has been used in many 
business and scientific applications, especially in fraud detection for financial data. In this 
paper, we analyse whether Benford’s law holds in economic research and forecasting. First, 
we examine the distribution of leading digits of regression coefficients and standard errors in 
research papers, published in Empirica and Applied Economics Letters. Second, we analyse 
forecasts of GDP growth and CPI inflation in Germany, published in Consensus Forecasts. 
There are two main findings: The relative frequencies of the first and second digits in 
economic research are broadly consistent with Benford’s law. In sharp contrast, the second 
digits of Consensus Forecasts exhibit a massive excess of zeros and fives, raising doubts 
on their information content. 

Keywords: Benford’s Law, fraud detection, regression coefficients and standard 
errors, growth and inflation forecasts 

JEL-Classification: C8, C52, C12 



Non technical summary 

Independent reviews of the outcome of empirical research are a cornerstone of science. In 

contrast to natural sciences, there is no distinct tradition of replicating empirical results in 

social sciences. Thus, indirect methods of fraud detection become indispensable. This paper 

demonstrates how Benford’s law can be used for this purpose.  

Intuitively, one tends to think that the first digits of numbers are uniformly distributed, i.e. 

numbers are equally likely to start with 1, 2, or 9. Simon Newcomb (1881) and again Frank 

Benford (1938) discovered that in a surprisingly broad range of data sets, from newspaper 

articles to the length of rivers, the lower digits appeared more often than higher digits. Both 

derived a formula, today known as Benford’s law, which assigns a probability of 30.1 percent 

to the first digit 1 and a probability of just 4.6 percent to the first digit 9.  

Already in 1972, Hal Varian proposed to use Benford’s law as a diagnostic tool to screen 

large data sets of irregularities that deserve closer inspection. More recently, Benford’s law 

has been applied quite successfully to detect fraud and manipulation in business and 

administration data like balance sheets and tax declarations. 

This paper investigates empirically whether Benford’s law can serve as a tool for detecting 

irregularities in empirical economic research and forecasting. After a brief introduction to 

Benford’s law, some aspects of fraud detection are discussed. Then, Benford’s law is 

applied to test econometric research published in Empirica and Applied Economics Letters. 

A data set with about 30,000 observations of first and second digits of regression 

coefficients and standard errors is investigated for deviations from Benford’s law.  Moreover, 

ca. 18,000 Consensus Forecasts of German GDP growth and CPI inflation are investigated. 

There are two main findings: The relative frequencies of the first and second digits in 

economic research are broadly consistent with Benford’s law. In sharp contrast, the second 

digits of Consensus Forecasts exhibit a massive excess of zeros and fives, raising doubts 

on their information content. 



Nicht technische Zusammenfassung 

Die unabhängige Prüfung der Ergebnisse empirischer Forschung ist ein Eckpfeiler 

wissenschaftlicher Arbeit. Im Unterschied zu den Naturwissenschaften gibt es in den 

Sozialwissenschaften keine ausgeprägte Tradition der Replikation von empirischen 

Ergebnissen. Deshalb sind indirekte Methoden zur Aufdeckung von Manipulation und 

Fälschung unabdingbar. Das Benford – Gesetz bietet dazu eine Grundlage 

Intuitiv neigt man dazu zu denken, dass die Erstziffern von Zahlen gleichmäßig verteilt sind, 

dass die Erstziffern 1, 2 oder 9 also mit gleicher Wahrscheinlichkeit auftreten. Simon 

Newcomb (1881) und dann wieder Frank Benford (1938) entdeckten, dass in einem 

überraschend großen Spektrum von Datensätzen, von Zeitungsartikeln bis hin zur Länge 

von Flüssen, die kleineren Ziffern deutlich öfter auftraten als die größeren Ziffern. Beide 

entwickelten eine Formel, heute als Benford – Gesetz bekannt, wonach die 

Wahrscheinlichkeit für die Erstziffer 1 30,1 Prozent beträgt und die Wahrscheinlichkeit für 

die Erstziffer 9 nur 4,6 Prozent.  

Bereits 1972 schlug Hal Varian vor, das Benford – Gesetz als ein Diagnoseinstrument zu 

verwenden, um große Datensätze auf Irregularitäten zu durchleuchten, die einer näheren 

Überprüfung bedürfen. In letzter Zeit wurde das Benford – Gesetz erfolgreich eingesetzt, um 

Fälschungen und Manipulationen in Wirtschafts- und Verwaltungsdaten wie Bilanzen und 

Steuererklärungen aufzudecken. 

Dieses Papier untersucht empirisch, ob das Benford – Gesetz auch als Instrument zur 

Aufdeckung von Irregularitäten in der ökonomischen Forschung und Prognose dienen kann. 

Nach einer kurzen Einführung in das Benford – Gesetz werden einige Aspekte der 

Fälschungskontrolle diskutiert. Anschließend wird das Benford – Gesetz angewandt, um 

ökonometrische Forschungsergebnisse, die in Empirica and Applied Economics Letters 

publiziert wurden, zu testen. Ein Datensatz mit etwa 30.000 Beobachtungen von Erst- und 

Zweitziffern von Regressionskoeffizienten und Standardfehlern wird auf Abweichungen vom 

Benford – Gesetz überprüft. Außerdem werden ca. 18.000 Beobachtungen von Prognosen 

der realen Wachstumsrate und der Inflationsrate für Deutschland aus Consensus Forecasts 

getestet. Die beiden wichtigsten Ergebnisse sind: Die relative Häufigkeit von Erst- und 

Zweitziffern in ökonomischen Forschungspapieren ist insgesamt konsistent mit dem Benford 

– Gesetz. Im Gegensatz dazu weisen die Zweitziffern der Consensus Forecasts einen 

massiven Überschuss an Nullen und Fünfen auf, was Zweifel am Informationsgehalt dieser 

Prognosen aufwirft. 
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Does Benford’s Law Hold in Economic Research and Forecasting?*

I Introduction

Independent reviews of the outcome of empirical research are a cornerstone of 

science (Hamermesh 2007). In contrast to natural sciences, there is no distinct 

tradition of replication in social sciences. In economics, most academic journals do 

not request from their authors the filing of data and programs. Even if that is the 

case, attempts to replicate the studies mostly fail. McCullough et al. (2006) analysed 

more than 150 articles from the Journal of Money, Credit, and Banking, but were 

able to reproduce the results in less than 10 percent of the cases. But „research that 

cannot be replicated is not science, and cannot be trusted either as part of the 

profession’s accumulated body of knowledge or as a basis for policy.“ (McCullough 

and Vinod, 2003, p. 888) Thus, if the outcome of empirical research in economics 

can be replicated by independent experts only in rare cases, indirect methods of 

fraud detection become indispensable.

Already in 1972, U.S. economist Hal Varian proposed Benford’s law as a diagnostic 

tool to screen large data sets of irregularities that deserve closer inspection. In many 

data sets, from newspaper articles to the length of rivers, Benford’s law has been 

found to hold surprisingly well. More recently, Benford’s law has been applied quite 

successfully to detect fraud and manipulation in business and administration data 

like balance sheets and tax declarations. Moreover, experimental research has 

shown that people are not particularly good at replicating known pattern of data. For 

instance, they tend to over-report modes and to avoid long runs (Camerer, 2003, p. 

134). Benford’s law, though widely applicable, is not yet widely known. Since it is 

unlikely that manipulated numbers would preserve it, Benford’s law is a potentially 

useful diagnostic. Diekmann (2007) investigated sociological empirical research, 

testing regression coefficients and other statistics for deviations from Benford’s law. 

* Corresponding author. The paper was written while the first author was a visiting researcher at the 
Research Centre of the Deutsche Bundesbank. The views expressed in this paper are those of the 
authors and do not necessarily reflect those of the Deutsche Bundesbank.
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To our knowledge, tests of Benford’s law have not yet been applied to published 

empirical research and forecasts in economics. 

This paper investigates empirically whether Benford’s law can serve as a tool for 

detecting irregularities that may deserve closer scrutiny. Section II provides a brief 

introduction to Benford’s law. Section III reviews some aspects of fraud detection 

with Benford’s law. Section IV applies Benford’s law to test econometric research 

published in Empirica and Applied Economics Letters. Section V examines GDP 

growth and CPI inflation forecasts for Germany published in Consensus Forecasts.

Section VI concludes. 

II What is Benford’s law?  

Intuitively, one may think that the first digits of numbers are uniformly distributed, i.e. 

numbers are equally likely to start with 1, 2 or 9.  The American astronomer Simon 

Newcomb (1881) observed that the first pages of logarithmic tables (containing 

numbers beginning with 1, 2, 3) were more worn out than the last pages (numbers 

starting with 7, 8, 9). He concluded that lower digits seem to appear more often than 

higher digits. Zero as a first digit is ignored. Newcomb derived a formula for the 

relative frequencies of the first (d1) and second (d2) significant digits (Hill, 1995):  

1 10
1

1p(d ) log 1
d 1d 1,2,...,9    (1) 

9

2 10
k 1 2

1p(d ) log 1
10k d 2d 0,1,2,...,9  (2) 

However, Newcomb’s findings were forgotten until the American General Electric 

physicist Frank Benford (1938) rediscovered the first digit phenomenon. Benford 

analysed 20 data sets including population statistics, figures published in 

newspapers, American League baseball statistics, atomic weights of chemical 

elements etc. with more than 20,000 first digits in total.
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Hill (1995) derived the joint distribution of the first and higher-order significant digits: 

1k
k j

1 1 k k 10 i
i 1

p(D d ,...,D d ) log 1 d10  (3) 

1k Z, d {1,2,...,9}  and jd {0,1,2,...,9}, j 2,...k

Applying this formula to a combination of digits, e.g. 25, yields 

. Table 1 displays the joint probabilities for 

combinations of the first two digits. The marginal probabilities of the first and the 

second digits are shown in the final column and row, respectively. 

1
1 2 10p(D 2, D 5) log 1 25 0.017

Table 1: Benford distribution
 d1 \ d2 0 1 2 3 4 5 6 7 8 9 p(d1)

1 0.041 0.038 0.035 0.032 0.030 0.028 0.026 0.025 0.023 0.022 0.301
2 0.021 0.020 0.019 0.018 0.018 0.017 0.016 0.016 0.015 0.015 0.176
3 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011 0.125
4 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.097
5 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.079
6 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.067
7 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.058
8 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.051
9 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.046
p(d2) 0.120 0.114 0.109 0.104 0.100 0.097 0.093 0.090 0.088 0.085 1.000

Pinkham (1961) and Hill (1995) proved that Benford’s law is base invariant (i.e. the 

distribution remains unchanged irrespective whether the numbers are expressed in 

base 2, 4, 8 etc.) and scale invariant (e.g. if Benford’s law holds for distances 

expressed in kilometres, it also holds if the data are transformed into miles). 

However, as will be discussed later, Benford’s law is not invariant to rounding. 

Mathematical explanations for the appearance of Benford’s law can be found in Hill 

(1995, 1998) who proved a “random samples from random distributions theorem.” It 

states, under fairly general conditions, that if distributions are selected randomly and 

random samples are taken from each distribution, then the frequency of digits will 

converge to Benford’s law.
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III Detecting fraud with Benford’s law 

1 Brief review of applications in business and economics

In the last two decades, in particular, Benford’s law was increasingly applied to real 

and scientific data as a method to identify fraud or manipulation. Recently, Diekmann 

(2007) investigated the first and second digits of published statistical results in the 

field of sociology. He analysed estimates (means, standard deviations, correlations 

and (un)standardised regression coefficients) in two samples (approximately 2,600 

observations) drawn from four volumes of the American Journal of Sociology. He 

discovered that only the digits of the unstandardised regression coefficients follow 

Benford’s law. Diekmann compares his findings with fabricated regression 

coefficients made up in an experiment by students. Surprisingly, the produced data 

exhibit a pattern similar to the Benford distribution in the first digit, but deviate 

significantly for higher-order digits. Previous results for survey data, e.g. the German 

Socio-Economic Panel, can be found in Schräpler and Wagner (2005) and Schäfer 

et al. (2005). 

Nigrini’s (1996a, 1996b, 1999) publications were quite influential for introducing 

Benford’s law in finance and accountancy. He analysed tax declarations of American 

taxpayers and figured out that people tend to understate their true taxable income. 

Due to U.S. law, where taxes are set after tax tables, even minor understatements 

can result in significant tax reductions. These findings inspired tax authorities in e.g. 

the U.S., Switzerland, the Netherlands and Germany, to check tax declarations for 

inconsistencies by applying Benford’s law. Recently, Quick and Wolz (2003) 

examined balance sheet and income statement data of German companies for the 

years 1994-1998. Their results show that the first and second digits in most of the 

cases (on a year by year analysis as well as for the whole period) closely follow the 

Benford distribution. 
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Earlier, Carslaw (1988) investigated the second digits of profits of New Zealand firms 

and found that managers tend to round up the firm’s profits due to psychological 

reasons. A profit of € 3.00 million appears to be much higher than a profit of € 2.99 

million. Thus, there is an excess of zeros but a lack of nines in the second digits 

compared to the Benford distribution. Similar results were found by Thomas (1989), 

who conducted a study for U.S. firms, distinguishing between profits and losses. 

While the results for U.S. firms’ profits are in line with Carslaw, he finds the reverse 

phenomenon for losses, i.e. managers tend to optically “shrink” losses by rounding 

appropriately (less zeros, more nines). Additional studies on this issue have been 

conducted by Niskanen and Keloharju (2000) for Finnish companies and Van 

Caneghem (2002) for U.K. companies. 

Benford’s law has also been applied to check predictions of mathematical models for 

plausibility provided that the real data follow Benford’s law. Ley (1996) has shown 

that a series of one-day returns (using data for more than half of the 20th century) on 

the Dow Jones Industrial Average Index and the Standard & Poor’s Index is in line 

with the Benford’s distribution. A similar result is obtained by Tödter (2007) for the 

first digits of closing prices of German stocks. Moreover, he shows that the 

predictions for share prices by the Black and Scholes model are consistent with the 

Benford distribution for the first digit. In addition, Benford’s law can be applied to test 

for psychological barriers in stock markets (see De Ceuster et al., 1998 among 

others) and ebay auctions (Giles, 2007). 

Again it was Mark Nigrini (1996a) who discovered that 3,141 county populations in 

the 1990 U.S. Census follow Benford’s law. This evidence may be used by 

demographers to assess the plausibility of predictions by population growth models. 

However, this check is limited since it can not be distinguished between a population 

of 35,000 and 3.5bn in a statistical test on the Benford distribution. Also in the design 

of computers and algorithms Benford’s law is used. Schatte (1988) showed that the 

expected storage space for computers with binary-base is at its minimum for base 8. 
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Provided the population of specific data is distributed according to Benford’s law it is 

widely accepted in empirical literature that manipulated data do no longer adhere to 

the specific distribution. However, in general one can not conclude a priori that a 

certain data set contains faked numbers if it deviates from Benford’s law. Hence, in a 

first step, it needs to be established that the Benford distribution applies to the 

population of a data set before an appropriate sample is checked for deviations.

2 Requirements to data sets for testing Benford’s law 

Benford (1938, p. 552) stated that “the method of study consists of selecting any 

tabulation of data that is not too restricted in numerical range, or conditioned in some 

way too sharply.” More precisely, in the literature a number of “rules” are formulated 

(see Durtschi et al., 2004 and Mochty, 2002 among others) on which data are 

expected to follow Benford’s law. 

The data set should either be complete or a random sample drawn from it to avoid 

biases. Moreover, data should be expressed in the same dimensions such as dollar 

or miles. Mochty (2002) advises not to use statistical estimates (means, variances) 

since they themselves follow certain distributions (Normal-, Chi²- etc.). However, that 

does not preclude the leading digits to obey Benford’s law. Some of these statistics 

are checked in this study with surprising results. It is unanimously agreed in the 

literature that data shall not be restricted to certain minimum or maximum values 

(e.g. the body height of persons). Problems may also arise where data are restricted 

by psychological barriers (e.g. prices in supermarkets often have nine as a last digit 

– € 1.99). In addition, numbers shall not be artificial or made up by humans (e.g. 

telephone numbers, postal codes). Last but not least, rounded numbers do on 

average no longer follow Benford’s law even if the original data do.

3 Testing Benford’s law  

Several statistical tests can be applied to inspect whether the distribution of the first 

and higher order digits conforms to Benford’s law, such as the Chi2 test, the Mean 
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test or the Kuiper test. If hd (pd) denotes the observed relative frequencies 

(probabilities) of digit d in a data set with N observations, the Chi2 – statistics for first 

and second (and higher order) digits are defined as 

1 1

11

29 d d
1

dd 1

(h p )
T N

p
, 2 2

22

29 d d
2

dd 0

(h p )
T N

p
   (4) 

Under the null hypothesis of the Benford law, the statistics are Chi2 – distributed with 

8 (9) degrees of freedom.1 As a quadratic measure, the statistic is sensitive to the 

pattern of deviations from Benford’s law. Moreover, with a fixed significance level 

and increasing sample size (N), the test will eventually reject the null, as the 

probability of a type II error ( ) approaches zero.

Under Benford’s law the mean of the first digit is 3.940 (with variance 6.057) and the 

mean of the second digit is 4.687 (with variance 8.254). To test whether the mean of 

the observed digits, calculated as 
11

9
1 1d 1d (d 0.5) dh  and 

22

9
2 2d 0d (d 0.5 d) h , respectively, deviates from these values, the 

approximately standard normal statistics

1 2

1
d d

d 3.940 d 4.687T N , T N
6.057 8.254

2    (5) 

can be used. The Mean tests are less sensitive to deviations in single digits and less 

responsive to the sample size.2

1 For specific digits, e.g. whether there is an excess of fives, the standard normal 
statistic d d d dT N(h p ) / p (1 p )d  can be used to check whether the observed frequency 
significantly deviates from its theoretical value.
2 A closely related statistic is Nigrini’s (1996a,b) distortion factor.  
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The Kuiper (1959) test is a modification of the Kolmogorov – Smirnov test (Giles, 

2007). Let Hd (Pd) denote the cumulated empirical relative frequencies (cumulated 

probabilities), then the Kuiper – statistic is

K N NT (D D ) [ N 0.155 0.24 / N]     (6) 

where  and .N dD sup[H Pd] d]N dD sup[P H 3

IV Benford’s law in published econometric research 

Intuitively, if a researcher intends to manipulate regression results to confirm or to 

refute a specific economic hypothesis, he is most likely to forge the leading digits, 

i.e. the first and second digit, of estimated coefficients and/or standard errors. 

Hence, the analysis focuses on the first and second digits only.4 To test the Benford 

hypothesis, we investigate volumes 30, 31, 32, and 33 of Empirica (years 2003 to 

2006) with more than 14,000 first and second digits of coefficients and standard 

errors. In order to check the robustness of the results, volume 13 of Applied

Economics Letters (year 2006) with more than 15,000 observations is analysed, 

too.5

We collected regression coefficients and standard deviations from a broad range of 

regression types, e.g. OLS, (inter-) quantile regressions, GMM, IV estimations, 

(censored) Tobit regressions, random and fixed effects estimations, SURE, VAR-

models. Thereby, only regression results from empirical data are considered but no 

data obtained by simulation procedures.

3 Recently, Tam Cho and Gaines (2007) proposed the Euclidean distance as a measure to 
characterize the deviation from the Benford distribution. This measure is independent of the sample 
size, however, it is lacking a statistical foundation. 
4 The results for third digits have been evaluated as well (overall showing a very good agreement with 
Benford’s law) but are not reported due to space limitations. An analysis of higher-order digits (which 
are more likely to be uniformly distributed) is impeded by insufficient digits in most published papers.
5 The data set will be provided by the authors upon request.
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Not in all cases a standard error (S.E.) was published along with the coefficient. If 

possible, the S.E. was calculated from the published t-value, taking into account that 

this might cause rounding problems. To illustrate this point, imagine that the original 

value of the coefficient is 1.394 with a t-value of 3.475. Calculating the S.E. gives 

0.40115108. Suppose, the published data in an article are 1.39 and 3.48 for the 

coefficient and the t-value, respectively. The calculated S.E. equals 0.39942529. 

Obviously, this will cause misleading results for testing the digits frequencies. 

Keeping that in mind, we will comment on the importance of this phenomenon later. 

For convenience, only regression results presented in tables of the respective 

journals and articles are included in the study, which is by far the majority of all 

available data. Moreover, in the subsequent analysis, it is not distinguished between 

positive and negative regression coefficients since there is no justification for doing 

so.

1 Results for first digits of regression coefficients in Empirica

We start by presenting the results for Empirica. The test statistics for the first digits of 

the regression coefficients are displayed in Table 2. Looking first at the test statistics 

for the total sample, none of the tests yields a significant value even on a 10% 

significance level. Thus, the Benford distribution cannot be rejected. 

Table 2: Test statistics for the first digits of regression coefficients
Empirica 2003 2004 2005 2006 2003-06
Number of observations N 931 643 1,352 1,680 4,606
N per article 78 58 135 129 100
Chi² test 32.60 *** 11.63 27.41 *** 19.08 ** 11.35

Probability 0.00 0.17 0.00 0.01 0.18
Kuiper test 1.83 ** 1.04 1.91 ** 1.65 * 0.95
Mean test (absolute value) 1.69 * 0.50 2.94 *** 3.05 *** 1.19
*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

The critical test values for the respective significance levels are as follows: 
Chi² test (8 df): 13.36, 15.51, 20.09; Kuiper test: 1.62, 1.75, 2.00; Mean test: 1.64, 1.96, 2.58.
They apply throughout the paper for any first digit analysis.
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Figure 1: Relative frequencies of the first digits of regression coefficients
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However, results are more diverse if the individual years are examined. The 

respective relative frequencies are displayed in Figure 1. Even though the year 2004 

has the smallest number of observations (N=643) it has the best statistical fit (no 

significance on a 10% level) to Benford’s law. In contrast, the observations in 

Empirica 2006 show significant test statistics on a 10% (Kuiper test), 5% (Chi² test) 

and 1%-level (Mean test). Although graphically the fit of the 2006 data appears to be 

slightly better than the 2004 one does, the number of observations is much higher 

(N=1680) which boosts the test statistics towards the rejection region. Furthermore, 

it is worth noting that on average in 2006 there are approximately twice as much 

coefficients per article (~129) as in 2004 (~59). Hence, the dependency on single 

articles is higher. Regarding the years 2003 and 2005, the test statistics for the Chi² 

test are significant on a 1% level and on a 5% level for the Kuiper test and suggest 

to reject the null of a Benford distribution. Graphically, in 2003 the digits 1, 5 and 8 

are under represented whereas 3 and 6 appear too often. The dubious test statistics 

for 2005 can be attributed to the high relative frequency of digit two. It should be 

pointed out that the tendency of the Kuiper test to reject the null less frequently than 

the Chi² test does has been verified in many of our samples. In contrast, the Mean 

test does not show such a clear tendency. For 2003 it rejects the null on a 10% level, 

for 2005 on a 1% level. 

In summary, although three out of four sub-samples seem to reject (at least partly) 

Benford’s law for the first significant digit of regression coefficients, this effect 

averages out in the total sample. 
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2 Results for second digits of regression coefficients in Empirica

The test statistics of the second digits of regression coefficients are displayed in 

Table 3, the graphical output in Figure 2. It can be seen that the number of 

observations slightly drops compared to the first digit, because some published 

coefficients only have one significant digit. On average, the test statistics are more in 

line with Benford’s law than for the first digit. Only in the total sample the null is 

marginally rejected at a 5% significance-level with the Chi² test. All other tests are 

insignificant on a 10% level, strongly suggesting that Benford’s law applies. 

Table 3: Test statistics for the second digits of regression coefficients
Empirica 2003 2004 2005 2006 2003-06
Number of observations N 831 550 1,067 1,529 3,977
N per article 69 50 107 118 86
Chi² test 12.15 11.47 14.36 6.68 17.99 **

Probability 0.20 0.24 0.11 0.67 0.04
Kuiper test 1.11 0.90 1.09 0.92 1.29
Mean test (absolute value) 1.04 0.30 0.65 0.28 0.75
*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

The critical test values for the respective significance levels are as follows: 
Chi² test (9 df): 14.68, 16.92, 21.67; Kuiper test: 1.62, 1.75, 2.00; Mean test: 1.64, 1.96, 2.58.
They apply throughout the paper for any second digit analysis.

Figure 2: Relative frequencies of the second digits of regression coefficients
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At first glance, the figures for the years 2003, 2004 and 2005 do not appear to fit 

very well to the Benford distribution. But these discrepancies in the relative 

frequencies do not result in critical test statistics. However, as these deviations are 

still partly present in the total sample and given the higher number of observations 

the Chi² statistic falls into the rejection area. 
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In contrast to Diekmann (2007), if one suspects manipulation in the regression 

coefficients, our results indicate that first digits should be looked at. Intuitively, one 

would expect faked lower-order digits such that the regression outcomes 

support/refute a specific hypothesis. Hence, our conclusions seem to be more 

plausible than Diekmann’s suggestion to look at second-order digits. The difference 

may be explained by the fact that in his experiment all regression coefficients are 

made up by the test persons. In reality, one would expect the author to adjust only a 

few important coefficients after running the regressions. 

3 Results for standard errors in Empirica  

The same analysis is conducted for the standard errors. The results for the first digit 

are displayed in Table 4 and Figure 3. The most interesting result is obtained for the 

year 2005 where all three test statistics reject the null on a 1% significance level. We 

divided the sample 2005 into two sub-samples which separates standard errors with 

t-values above 1.96 and below 1.96, respectively. It turns out that the dubious result 

is mainly caused by standard errors from the first sub-sample. In that region (t>1.96, 

standard 5% significance level) the null hypothesis of a coefficient being zero is 

rejected. Therefore, one might tentatively argue that some statistics could have been 

amended in order to get significant regression coefficients. Another explanation 

might be that using the published (and rounded) data for calculations could yield to 

misleading results (see example in the beginning of this paragraph). In 2005, only 

38% of the 632 analysed standard errors were published, the remainder had to be 

calculated. For the whole sample (incl. 2005) more than half of the S.E.s were 

available without calculation. All other test statistics – with exception of the Chi² test 

value for 2003 – indicate accordance of the first digits of standard errors with 

Benford’s law. 
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Table 4: Test statistics for the first digits of standard errors
Empirica 2003 2004 2005 2006 2003-06
Number of observations N 797 285 632 1,323 3,037
N per article 66 26 63 102 66
Chi² test 19.22 ** 9.99 29.33 *** 10.02 6.70

Probability 0.01 0.27 0.00 0.26 0.57
Kuiper test 1.45 0.76 2.46 *** 1.21 1.04
Mean test (absolute value) 0.33 0.13 2.71 *** 0.47 1.14
*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

Figure 3: Relative frequencies of the first digits of standard errors
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The results for the second digit of standard errors show a high consistency with 

Benford’s law. Only for 2003 the Mean test and for 2004 the Chi² test reject the null 

of a Benford distribution at a 5% significance level (see Table 5). It is worth noting, 

that the second digits of the year 2005 do not exhibit any irregularities. 

Consequently, our arguments for possible manipulations above may be 

substantiated.

Table 5: Test statistics for the second digits of standard errors
Empirica 2003 2004 2005 2006 2003-06
Number of observations N 663 261 552 1,297 2,773
N per article 55 24 55 100 60
Chi² test 12.42 19.02 ** 12.51 8.09 6.05

Probability 0.19 0.03 0.19 0.52 0.73
Kuiper test 1.46 1.38 1.45 0.97 0.98
Mean test (absolute value) 2.18 ** 1.38 1.15 1.32 0.07
*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level
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Figure 4: Relative frequencies of the second digits of standard errors
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4 Results for coefficients and standard errors in Applied Economics Letters

The above findings shall be checked by analysing all articles published in Applied

Economics Letters 2006. It can be seen from the test statistics displayed in Table 6 

that regression coefficients (no graphics shown) exhibit a distribution approximately 

equal to Benford’s law. In contrast, the test statistics (except the Mean test) for the 

first and second digits of standard errors are highly significant. This is also 

graphically illustrated (Figure 5). Regarding the first digit, there is an excess of ones 

whereas a lack of nines for the second digit mainly causes the dubious statistics. 

Dividing the sample into two sub-samples of S.E. classified by the implied t-values 

(below or above t=1.96), the results are ambiguous: The dubious test statistics for 

the first digit seem to be caused by the sub-sample with t<1.96, whereas the reverse 

is true for the second digit. However, the problems might again be caused by 

rounding effects since approximately 63% of the first digits had to be calculated. 

Table 6: Test statistics for regression coefficients and standard errors
Regr. coefficients Standard errors

1st digit 2nd digit 1st digit 2nd digit
Number of observations N 5,171 4,650 2,921 2,619
N per article 73 65 41 37
Chi² test 7.23 14.27 48.01 *** 25.64 ***

Probability 0.51 0.11 0.00 0.00
Kuiper test 0.81 1.17 3.25 *** 1.66 *
Mean test (absolute value) 0.31 1.77 * 1.25 0.89
*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

Applied Economics
Letters 2006
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Figure 5: Relative frequencies of the first and second digits of standard errors
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Again it can be shown that by only looking at digits that are not rounded the results 

deteriorate dramatically. Regarding the regression coefficients, the Chi² test and the 

Mean test reject the null of a Benford distribution at a minimum 5% significance level 

(the Kuiper test shows significant results only for the second digit). Interestingly, 

although the results for the standard errors get worse too, the Mean test still shows 

no significance on a 10% level.6

Overall, the results suggest that in economic research Benford’s law applies to 

regression coefficients and standard errors. Given the large sample sizes, the 

probabilities for a type II error, i.e. falsely accepting the null hypothesis of Benford’s 

law, are very small. Nonetheless, in some cases there are doubts about the reliability 

of first digits but non for higher order digits. While the results for the regression 

coefficients are robust, the analysis (and consequently the interpretation) of the 

standard errors was restrained by limited data availability.

5 Problems with testing single articles  

This study does not aim at identifying specific articles which might include 

irregularities in the regression results. Nevertheless, one can ask whether the tests 

would be able to detect manipulation if it were present, given the small sample size 

of first or second digits in a typical article. As shown in Table 2 (6), in Empirica

6 For both journals also the possible sequences of the first and second digits (e.g. 14, 73, 86) have 
been analysed. The results, which are not reported here, show no clear pattern, neither regarding the 
tendencies of tests (which rejects more often) nor the effects of sample size. 
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(Applied Economics Letters) there were on average 100 (73) first digits per article. In 

general, a manipulation on digit d1 changes the ratio of that digit from  to 

, where the contamination ratios 

1dp

1 1d dh p
1d 1d  are restricted such that the relative 

frequency of a certain digit remains between zero and one and  holds. 

Whether a certain manipulation moves the test statistics into the critical region or not 

depends on the significance level ( ), the sample size (N) and also on the pattern of 

deviations from Benford’s law. For example, manipulation may change all digits (e.g. 

decreasing the relative frequency of leading digit 1 by some amount and increasing 

the frequencies of all other digits proportionally). Or only two digits may be affected 

(e.g. increasing the frequency of leading digit 5 at the expense of digit 1).  

11

9
dd 1

0

In the Appendix, critical contamination ratios are calculated for various sample sizes 

and significance levels for both types of contamination. For the first pattern of 

manipulation mentioned above, the Mean test performs best in the sense that it 

yields the smallest critical contamination ratio (9%, compared to 16% for the other 

two tests, at N = 100 and  = 10%). For the second pattern the Chi2 test yields the 

smallest critical ratios (9%, compared 10% for the Mean test and 16% for the Kuiper 

test). Thus, detecting fraud at conventional significance levels of 5 or 10 percent in a 

typical article with 100 regression coefficients requires fairly heavy manipulation. At 

the same time a probability of a type II error (ß) of around 37 percent for the Mean 

test is implied at the critical contamination ratios. Leamer (1978, p. 98) criticized the 

mechanical rule to “set  = 0.05” regardless of the sample size in classical 

hypothesis testing. As a remedy, the significance level could be increased markedly 

in small samples, yielding a more balanced assignment of both types of error.

V Benford’s law in published economic forecasts 

Monetary policy decisions by central banks on setting interest rates and by national 

governments on fiscal policies are informed by forecasts of macroeconomic 

variables. The growth rate of the real gross domestic product (GDP) and the inflation 

rate of the consumer price index (CPI) are undoubtedly at the centre of interest. 
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Such forecasts stem from both, private and publicly funded institutions (e.g. 

investment banks and research institutes; in the following referred to as institutes or 

panellists). The Consensus Forecasts survey published by the London-based 

company Consensus Economics belongs to one of the broadest survey data sets 

available for macroeconomic research. The journal does not only report the mean 

forecasts of several macroeconomic variables for meanwhile more than 70 countries 

but also the data from each professional forecaster. The participating panellists are 

asked to provide their economic forecasts for the current and the subsequent 

calendar year on a monthly basis. Typically, forecasts are made by institutions 

located in the respective country of interest. 

The Consensus Forecasts survey data are widely used and analysed in the 

literature. Batchelor (2001) finds that the consensus forecasts provided by 

Consensus Economics are more accurate and more informative than the forecasts 

of the International Monetary Fund and the World Bank for several macroeconomic 

variables of the G7 countries. Hendry and Clements (2004) outline theoretical 

reasons why generally consensus forecasts outperform single forecasts and support 

their analysis by Monte Carlo simulations. Isiklar and Lahiri (2007) use monthly GDP 

data from Consensus Economics for 18 developed countries and find that the 

predictive power of forecasts is low when the forecast horizon exceeds 18 months. 

However, only few studies make use of the disaggregated data of individual 

forecasters published in Consensus Forecasts. Harvey et al. (2001) analyse 

forecasts from several panellists for the United Kingdom GDP growth rate, 

unemployment rate and the growth rate of retail prices to assess forecast efficiency. 

Gallo et al. (2002) analyse data for the United States, the United Kingdom and 

Japan and find that forecasters have an imitation or herding behaviour and the 

tendency to converge to the mean forecast. This yields severe consequences, e.g. 

the standard deviation of the mean forecast can not be used as a valid measure of 

uncertainty. Dovern and Weisser (2007) analyse the forecasting accuracy of single 

panellists for four macroeconomic variables for the G7 countries. However, none of 

above mentioned studies takes the approach chosen in this paper. 
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In this study, we make use of the disaggregated data and investigate forecasts for 

the German real GDP growth rate and the inflation rate (measured as the change of 

the consumer price index, CPI). The data analysed run from October 1989 to July 

2004. Specifically, we investigate if Benford’s law applies to the second digits of the 

single forecasts. In this context, the second digit is defined as the first digit after 

decimal point. Obviously, it is not plausible to check the first digit (before decimal 

point) for accordance with the Benford distribution since they are mostly in the range 

from zero to four for the GDP growth rate and inflation. 

During the sample period some changes in the forecast variables published for 

Germany have occurred: Until December 1992, panellists had to report the gross 

national product for West-Germany. From January 1993 onwards this was replaced 

by the gross domestic product: At first only West-Germany, but finally for the unified 

Germany (since May 1997). The shift in the CPI from West-Germany to the unified 

Germany took place in October 1996. In addition, the structure of panellists is not the 

same for the sample period: The number of participation institutes (around 25) varied 

across time and some institutes merged with others, were acquired or even went 

bankrupt. However, we neglect these effects in our analysis. Forecast values equal 

to 0.0 are included as well.  

A specific feature of the data is that all published forecasts are restricted to one digit 

after the decimal point. This suggests that each participating panellist is forced to 

round its (possibly more precise) predictions before submitting it to the journal. 

Hence, it is necessary to adjust Benford’s law to take account for such rounding 

effects. The new distributions for the first and second digit are listed in Table 7. 

Suppose, one rounds to only one leading digit, then for example “3” as a first digit 

appears for all (not rounded) values between 2.5 and <3.5 (rounded: 3.00) with 

probability 0.146. Accordingly, if the second digits are rounded, for example “4” 

appears for all values between 1.35 and <1.45 (rounded: 1.4) with probability 0.102. 

The final column shows that rounding also distorts the mean of the distribution of first 

digits (from 3.940 to 4.193) and of second digits (from 4.687 to 4.761). The third row 

applies for the case that the second digits are boldly rounded to half-percentage 
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points such that only zeros and fives are reported as second digits. The final row is a 

mixture of both, as will be explained below.

d 0 1 2 3 4 5 6 7 8 9 Mean
p(d1_rd) n.a. 0.198 0.222 0.146 0.109 0.087 0.073 0.062 0.054 0.048 4.193
p(d2_rd) 0.103 0.117 0.111 0.107 0.102 0.098 0.095 0.092 0.089 0.086 4.761
p(d2_bold_rd) 0.506 * * * * 0.494 * * * *
p(d2_mix) 0.222 0.082 0.078 0.075 0.072 0.216 0.067 0.065 0.063 0.061 4.231
Source: own calculation

Table 7: Rounded Benford distribution

We start by presenting the results of four time series for the whole observation 

period and all panellists: The real GDP growth rate and the inflation rate for the 

current and the subsequent year. The test statistics are displayed in Table 8, the 

graphical illustration is given in Figure 6. 

Table 8: Test statistics for the second digits of consensus forecast data
Variable GDP CPI Total
Forecast period (Year) Current Subseq. Current Subseq. Sample
Number of observations N 4,652 4,445 4,697 4,498 18,292
Chi² test 1,934 *** 2,434 *** 1,345 *** 1,632 *** 7,048 ***

Probability 0.00 0.00 0.00 0.00 0.00
Kuiper test 12.67 *** 13.21 *** 14.02 *** 10.58 *** 25.22 ***
Mean test (absolute value) 7.95 *** 10.63 *** 2.17 ** 7.72 *** 11.97 ***
*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

Figure 6: Relative frequencies of the second digits of Consensus Forecasts  data
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There are more than 4,400 observations for each time series and 55 panellists in 

total. The exact number of observations varies across the series’ since not every 
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panellist reports figures for all asked variables at each record date. As it can easily 

be seen, all test statistics (except one) are highly significant. Thus, the null of a 

(rounded) Benford distribution for the second digits has to be rejected. The graphics 

show that this is due to an excess of zeros and fives in the forecasts. This effect is 

similarly strong for all four time series and consequently for the pooled sample. In 

other words, in approximately 23% of all data, the forecasts look like .0 and in 21% 

like .5 (with any first digit).

A priori, the added value of asking many professional forecasters instead of one for 

their opinions is assumed to be higher forecast accuracy. Therefore, one would 

expect at least a difference in the forecasts of the individual institutes for the second 

digit (the first digit should in most cases be the same across institutes for one 

prediction period). Figure 7 shows the distribution for the second digits of the pooled 

sample (i.e. all four time series) for each of the nine most mentioned institutes (A,

B,…, I). The selection does not account for mergers and acquisitions of institutes. 

The sample size for each institute lies in the range of (roughly speaking) 600 and 

700 observations which can be seen as sufficiently large (the sample size for the 

individual time series is too low to be analysed by institute). At first glance, institutes 

C, D and G graphically have quite a broad distribution. Nonetheless, even for these 

institutes zero and five are the most frequent digits (as it is the case for all others) 

and the accordance with the rounded Benford distribution is low. The worst outcome 

can be attributed to institute B, where in 70% of all data the second digit equals zero 

or five, and in another 18% equals eight, in sharp contrast to the rounded Benford 

distribution. 
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Figure 7: Relative frequencies of the second digits of Consensus Forecasts  data for various institutes
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Given that this phenomenon (excess of zeros and fives) is present in all analysed 

samples above one might ask for the reasons. At first, one can think of model 

uncertainty: Suppose, an institute uses a model for prediction and the computation 

yields an inflation rate of, say 1.7361%. However, the forecaster knows that there is 

some uncertainty resulting from variables not incorporated in the model. To account 

for it, a rounding to .0 or .5 is done by a qualitative assessment of such factors. The 

mathematical consequences of such a clustering on zero and five are the following: 

Suppose, the population of forecasts obeys to Benford’s law. If the rounding is such 

that all values which lie in the range of .75 and <.25 are rounded to .0 and all other 

values are rounded to .5, than it can easily be checked by Monte Carlo simulations 
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that the mean of the rounded data is biased (compared with the true mean). 

Secondly, strategic interaction might be a reason: Institutes are risk averse and fear 

a possible loss of their reputation if (wrong) forecasts are out of line from other 

forecasts. This risk can be reduced by choosing forecasts close to the ones of other 

leading institutes. Thirdly, the institutes use only basic analytical tools for their 

forecasts and their final reported forecast is more or less an educated guess. 

Irrespective of the possible explanations, it is no longer straightforward why on the 

one hand so many (financial) resources are devoted by dozens of institutes to 

forecasts and on the other hand why the public pays so much attention to the (mean) 

forecasts. As a consequence it is desirable to extent the existing forecasting 

methods.7

The foregoing results suggest that excess of zeros and fives in the distribution of 

second digits may be viewed as a mixture of proportion  of forecasts with “bold-

rounded” second digits and the proportion 1-  of forecasts reported with two 

significant digits. Thus, the observed relative frequencies of second digits would 

have the mixed distribution

2 _ mix 2 _ bold _ rd 2 _ rdp(d ) p(d ) (1 ) p(d )      (7) 

with . Using the observed relative frequencies of second digits shown in 

Figure 6,  can be estimated by minimizing the sum of squared differences between 

 and  for i = 0…9. The estimated value is . Thus, 30 percent of 

the observed forecasts seem to result from “bold-rounding” in the second digits, with 

little information content. Figure 8 shows the mixed rounded Benford distribution 

together with the distribution of the observed second digits of the total sample of 

Consensus Forecasts. The graphical fit is surprisingly good, in particular for the 

0 1

ih(d ) ip(d ) ˆ 0.296

7 One promising approach has been proposed by Berlemann and Nelson (2005). They introduce a 
small-scale experimental stock market which yields the (mean) forecast of inflation rate as well as a 
likelihood measure for different inflation scenarios. The main idea is to use the market as the best 
instrument to uncover and aggregate private information. Although further research has to be done to 
check the robustness of results for larger markets, the approach may also be applied to other 
macroeconomic variables. 
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frequencies of zeros and fives, though there is an excess of digit eight and some 

deficit of ones.

Figure 8: Mixed rounded Benford distribution vs.
                second digits of Consensus Forecasts
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VI Conclusions 

Increasing differentiation and growing social and economic relevance of research 

raises the temptation to make up research results (Reulecke, 2006). This process is 

fuelled by increasing publication pressure in academics. The traditional control 

mechanisms in the publication process, such as anonymous refereeing, are easily 

overstrained in dealing with empirical research papers using large data sets and 

complex econometric tools, calling for additional tools to check reliability. 

This paper investigated the applicability of Benford’s law in economic research and 

forecasting. We analysed the first and second digits of regression coefficients and 

standard errors in four volumes of Empirica and one volume of Applied Economics 

Letters, with almost 30,000 observations. In addition, we applied a rounded Benford 

distribution to the second digit of the GDP growth and CPI inflation rate forecasts for 

Germany drawn from 16 volumes of Consensus Forecasts with about 18,000 

observations.
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The main findings can be summarized as follows: Overall, published regression 

coefficients broadly conform to Benford’s law. However, there are some irregularities 

with the first digit but none with higher-ordered digits. The results for standard errors 

do in general support Benford’s law as well but are not that robust due to limitations 

of the available data. Thus, our results suggest that Benford’s law can serve as a 

tool to assess the reliability of econometric research outcomes. Moreover, we found 

that checks for data manipulation should focus on the first digit. However, detecting 

deviations from Benford’s law in single articles requires relatively high contamination 

ratios at conventional significance levels. The risk of overlooking doubtful papers can 

be reduced by increasing the significance level of the tests. In addition, it seems 

desirable that journal editors request from authors to report at least three significant 

digits of regression results and to provide both, standard errors and t-values.

In sharp contrast to regression coefficients, the second digits of economic growth 

and inflation forecasts widely diverge from the rounded Benford distribution. The 

data exhibit a large excess of zeros and fives as the first digit after decimal point. 

Although the results vary slightly between different forecasters, they are very robust. 

An estimated share of 30 percent of the forecasts appears to be rounded to half 

percentage points, resulting in severe information losses and, as a consequence, a 

distortion of the mean forecasts of the real growth rates and inflation rates. Statistical 

tests for deviations from the rounded Benford distribution can be used to identify 

forecasters that make heavy use of “bold rounding”.

Benford’s law is a simple, objective and effective tool for detecting anomalies in large 

data sets that deserve closer inspection. Here, we looked at the output of economic 

research and forecasting. Temptations for deception-prone activities may also be 

present in research input such as survey data (Judge and Schechter, 2006).  

Banking supervision is also a potentially rewarding field of application.
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Appendix: Critical manipulation ratios

In this appendix we analyse how sensitive the test statistics used in section IV 
respond to deviations from Benford’s law in two specific cases. The first case (A1) 
assumes that in a data set obeying Benford’ law the first digit is changed such that 
its relative frequency decreases by the amount , while the other digits increase 
proportionally. In the second case (A2) the first digit is decreased, while the fifth digit 
is increased by the same amount. 

1 1

z z

h  = p - , 0 p
h  = p + /8, z = 2,..., 9

1       (A1) 

.    
1 1

5 5

h  = p - , 0 p
h  = p +

1       (A2) 

The Chi2 test (T1), the Mean test 
1d(T ), and the Kuiper test (TK), respond as follows 

to both types of manipulation: 

1

2

1 2

d

K

5.044 N for case A1T
15.951N for case A2

1.828 N for case A1
T

1.625 N for case A2

T [ N 0.155 0.25 / N] ;

     (A3) 

The second type of contamination is much easier to detect with the Chi2 statistic, but 
somewhat more difficult to discover with the Mean test. The Kuiper test is invariant to 
both types of contamination.

From (A3) we calculate critical contamination ratios which would be required for 
detecting the manipulations, i.e. which would push the value of the test statistic into 
the critical region of a test with critical value Tcrit( ). Table A1 provides critical 
contamination ratios for various sample sizes (N) and significance levels ( ).
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Table A1: Critical contamination ratios for first digits 
  Chi2 Test Mean Test Kuiper Test 
  5% 10% 5% 10% 5% 10% 

A1 24.8 23.0 15.2 12.7 24.1 22.3 N= 50 
A2 13.9 12.9 17.1 14.3 24.1 22.3 
A1 17.5 16.3 10.7 9.0 17.2 15.9 N=100 
A2 9.9 9.2 12.1 10.1 17.2 15.9 
A1 12.4 11.5 7.6 6.3 12.2 11.3 N=200 
A2 7.0 6.4 8.5 7.1 12.2 11.3 

Bold figures indicate tests with lowest critical contamination ratio

The Table shows that the Mean test performs best for manipulation pattern A1, in 
the sense of requiring the lowest critical contamination ratio to be detected. Pattern 
A2 is most easily detected by the Chi2 test. Thus, without information on the pattern 
of deviations from Benford’s law, it is difficult to choose the most appropriate test. 
Moreover, at conventional significance levels, relatively high contamination ratios are 
required in a typical article with around N=100 coefficients until a significant 
deviation from Benford’s law is signalled by the tests.

For the Mean test, Figure A1 shows the probabilities of a type II error (ß) as a 
function of the contamination ratio ( ) for  = 5%, N = 100 and both manipulation 
patterns. At the critical contamination ratios of 10.7 (12.1)% for pattern A1 (A2) the 
probability of a type II error (ß) is 38 (37)%. Thus, a sizeable share of manipulations 
would remain undetected at conventional significance levels.  

Figure A1: Probabilities of type II error of Mean test
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