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Summary

The volatility of interest ratesis relevant for many financia applications. Under realistic
assumptions the term structure of interest rate differentials provides an important pre-
diction of the term structure of interest rates. This paper derives the term structure of
differentials in a situation in which two open economies plan to enter a monetary union
in the future. Two systems of floating exchange rates prior to the union are considered,
namely a free-float and a managed-float regime. The volatility processes of arbitrary-
term differentials under the respective pre-switch arrangements are compared. The pa-
per elaborates the singularity of extremely short-term (i.e. instantaneous) interest rates
under extensive leaning-against-the-wind intervention policies and discusses empirical
issues.

Zusammenfassung

Die Volatilitét von Zinssétzen ist fur viele Anwendungen aus den Bereichen der Finanz-
und Geldtheorie von Bedeutung. Unter realistischen Bedingungen liefert die zeitliche
Struktur von Zinsdifferentialen eine wichtige Vorhersage fur die Zinsstruktur. Diese Ar-
beit leitet die Zinsdifferentialstruktur in einer Situation her, in der zwei offene Volks-
wirtschaften in der Zukunft eine Wahrungsunion bilden wollen. Es werden zwei alter-
native Wechselkursregime vor der Wahrungsunion betrachtet und zwar ein , Reiner*
sowie ein ,, Gemanagter Float”. Das Papier vergleicht die Volatilitdtsprozesse von Zins-
differentialen beliebiger Fristigkeit unter den verschiedenen Wechselkurssystemen. Fer-
ner stellt die Arbeit die singulére Stellung extrem kurzfristiger (sogenannter instantaner)
Zinssétze unter intensiven ,, leaning-against-the-wind* Interventionspolitiken heraus und
diskutiert empirische Aspekte.

JEL classifications: E43, F31, F33, C52
Key words:. Interest rate volatility, term structure, exchange rate arrangements, inter-

vention policy, stochastic processes



1 Introduction

Interest rates of different maturities are among the most fundamental prices deter-
mined in financial markets. Up to now, many models have been put forward to explain
their dynamic behaviour and there still are massive ongoing research activities in the
field. This enormous scientific attention may be explained by the significance of in-
terest rates in many economic disciplines. For example, in macroeconomics interest
rates play a crucial role in the transmission of monetary policy to inflation and real
growth. Moreover, in many models longer-term interest rates affect capital movements
or saving, investment and consumption decisions. In finance, interest rates and their
term structure are of primary importance for most subareas. For instance, the volatil-
ity of arbitrary-term interest rates—which is the main concern of this paper—is a key
variable in the valuation of contingent claims such as interest-rate-options as well as in
the selection of optimal hedging strategies for risk-averse investors.

An explanation of the term structure of interest rates has long been a topic of major
concern for economists. The most famous strands of theory are the expectations, the
liquidity preference, the market segmentation, and the preferred habitat hypotheses.
Another widely celebrated approach by Cox, Ingersoll and Ross (1985) is to gain access
to the term structure by using an intertemporal general equilibrium asset pricing model.
Although there exists an extensive body of literature on both, theoretical and empirical
findings on the term structure, the topic is still far from being settled.!

In recent years there have been several attempts to analyze the term structure of
interest rates under particular exchange rate arrangements. The fundamental works
are Svensson (1991a, b) who explores the term structure of interest rate differentials
(i.e. the differential between pairs of domestic and foreign interest rates with the same
time to maturity) in a monetary flex-price exchange rate target zone model of the
Krugman-(1991)-type. Svensson (1991b, p. 90) offers the following justification for
considering the term structure of interest rate differentials as a shortcut to analyzing

the term structure of interest rates:

For a small open economy which faces an exogenous term structure of world
interest rates, the domestic term structure of interest rates follows the term
structure of interest rate differentials. The term structure of interest rate
differentials is related via interest parity conditions to the term structure of

expected currency depreciation, if domestic and world capital markets are

LFor an overview see e.g. Cuthbertson (1996, pp. 207) and the literature cited there.
2See also Kempa et al. (1999, p. 818) for further comments on this justification.



sufficiently integrated. The term structure of expected currency deprecia-

tion can be explicitly characterized in an exchange rate target zone.

It is the aim of this paper to analyze the term structure of interest rate differentials
in a situation in which a small open economy faces a future entrance into a monetary
union with its partner countries. In practice, the introduction of a common currency
is typically initiated by a switch in exchange rate regime from a more or less floating
system to an arrangement of completely fixed rates. For example, the introduction
of the euro was cogently linked to the irreversible and complete fixing of the EMU-
countries’ bilateral exchange rates at their central parities from the European Exchange
Rate Mechanism from 1 January 1999 onwards. Consequently, the stylized models
developed in the subsequent sections may be used in future investigations to study the
evolution of interest rates prior to EMU.

The general setup of this paper is in many respects similar to that in the afore-
mentioned work of Svensson (1991b). But, as will be shown below, in contrast to the
problem addressed in his article, there exist analytically closed-form solutions of the
term structure of interest rate differentials under an anticipated entrance into a mon-
etary union.®> And more than that, such closed-form solutions exist under alternative
exchange rate regimes prior to monetary union, namely under a free-float as well as
under a managed-float pre-switch regime. This advantage can be exploited to pursue
two objectives: First, it is possible to derive and explore the volatility of interest rate
rate differentials of arbitrary maturities thus providing a shortcut to analyzing the
volatility processes of arbitrary-term interest rates. And second, the results under the
alternative pre-switch regimes can be compared. These insights may then provide a
useful tool for a broad range of financial applications (e.g. for interest-rate-sensitive
security valuation).

The paper is organized as follows: Section 2 briefly reviews some previous results
essential for further considerations, puts forward the general model setup and derives
closed-form solutions of the term structure of interest rate differentials under free-float
and managed-float pre-switch regimes. Sections 3 provides the regime comparison elab-
orating the main differences in the interest rate volatility processes under the respective
regimes. It also discusses empirical issues and implications for financial applications.

Section 4 offers some concluding comments.

3Under a credible target zone of the Krugman-type, the term structure of interest rate differentials
can be expressed as a solution to a partial differential equation with appropriate smooth-pasting
conditions. Svensson (1991b, pp. 97) uses two numerical methods to analyze this solution.



2 Preliminaries, previous results, model setup

2.1 Exchange rate dynamics

We consider a world with two open economies under perfect capital mobility in which
the domestic economy is assumed to be small. Now, let the political authorities of the
two economies decide to create a monetary union in the future. On the analogy of
Stage III of EMU, the authorities therefore announce at date ¢4 to irreversibly fix the
exchange rate from the future date ts onwards (i.e. t4 < tg) at the specific parity s.
To assess the exchange rate dynamics under such a time-contingent switch in ex-
change rate regime, it is convenient to consider the well-known monetary exchange
rate model with flexible prices in continuous time. In this equilibrium model with
rational expectations, the logarithmic spot rate at time ¢, x(¢), equals the sum of two
components: (a) an exogenously given fundamental k(¢), which may be viewed as a
collection of all economic and/or political factors that financial markets deem to be
important for current exchange rate valuation, and (b), a speculative component rep-
resenting the agents’ expectations about future changes in the currency value. These

two elements of currency pricing may be formalized as

L Elda(t)|s(0)

. 1
i , a>0 (1)

In Eq. (1), E[-|-] denotes the expectation operator conditional on the information set
#(t) which contains all information available to market participants at time ¢.*

In the monetary flex-price model the fundamental k is an aggregate of given macroe-
conomic variables such as domestic and foreign money supplies and outputs. The
dynamic structure imposed on & prior to the fixed-rate system represents the explicit
regime of floating exchange rates prior to monetary union. In this paper, we consider
two alternative pre-switch regimes of floating rates, namely a free-float and a managed-
float system, respectively. A pure free-float pre-switch system (subsequently denoted
by the subscript F'F'), in which the monetary authorities refrain from any interventions

in foreign exchange markets, is typically modelled by letting the fundamental evolve

‘In Eq. (1), E[dz(t)|¢(t)]/dt is an abbreviation of lim, o { E[z(t + 5)|¢(t)] — =(t)} /5. Since z de-
notes the natural logarithm of the nominal exchange rate, it follows immediately that E[dz(t)|¢(t)]/dt
represents the expected (instantaneous) rate of change in the nominal exchange rate. In the monetary
flex-price exchange rate model, the parameter « is the semielasticity of money demand with respect
to a short-term interest rate. In Eq. (1), o may simply be viewed as a parameter weighting the
fundamental component against the speculative motives for currency valuation.



over time as a Brownian motion, i.e.
dk(t) = dkpp(t) = o - dz(t), 1 <ts, (2)

with o > 0 denoting the infinitesimal standard deviation and dz(t) the increment of a
standard Wiener process.®

In contrast to this, it may be desirable to model a managed-float exchange rate
system (denoted by M F') prior to monetary union, i.e. to explicity allow for central
bank interventions which aim at stabilizing the exchange rate near some specified target
parity. For simplicity, assume that the target parity prior to the regime switch is s
(i.e. the later fixing parity). According to Eq. (1), it seems consistent for the central
banks to prevent the fundamental from wandering too far away from the exchange

rate target parity. This leaning-against-the-wind policy is adequately modelled by a

mean-reverting Ornstein-Uhlenbeck process with stochastic differential
dk(t) = dkMF(t) =n: [S — kMF(t)] cdt + o - dZ(t), t<tg. (3)

In Eq. (3), the parameter n > 0 represents the speed with which the fundamental kpsp
tends to revert towards s after a temporary deviation. Therefore, n may be interpreted
as a measure for the willingness and/or the capability of the central banks to stabilize
the exchange rate = near the target parity by appropriate interventions in foreign
exchange markets.

In conjunction with the pre-switch regime-dependent specifications of the fundamen-
tal in Eqgs. (2) and (3), the general law of exchange rate evolution from (1) represents a
stochastic differential equation. This can be solved by stochastic integration techniques
and the imposition of adequate economic constraints which correctly reflect financial
markets’ anticipations of future exchange rate regime switching. Following Wilfling
and Maennig (2001) the equilibrium exchange rate path under a free-float pre-switch

system consists of the two branches

J}FF(t) = kFF(t), for t < ta, (4)

and
J}FF(t) = [1 — e(t_ts)/a] . kFF(t) + e(t_ts)/a - S, for ¢ € [tA,ts). (5)

> A Brownian motion may be considered a continuous-time analog of a random walk. Mathemati-

cally, a Brownian motion belongs to the class of diffusion processes whose dynamics is represented by
stochastic differentials which—on the basis of all information available at present date t—determine
the probabilistic nature of changes in the stochastic process in the infinitesimally close future (cf. Kar-

lin and Taylor, 1981, Chap. 15).
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Along similar lines, Wilfling (2001, pp. 104) derives the saddlepath under a managed-

float as
1 an
epr(t) = T an -kMF(t)—I—l_I_Om cs, fort < iy, (6)
and
rarr(t) = s 4 1 — elren (=] % for ¢ € [ta, Ls). (1)

For the time after 5 the exchange rate will be fixed by assumption so that for both

pre-switch regimes one finds
J}FF(t) = J}MF(t) =S8 (8)

for all ¢ > t5.

2.2 The interest rate differential

Following the setups in Svensson (1991a, b) let ¢*(¢,7) denote the foreign nominal in-
terest rate on a pure foreign-currency discount bond purchased at time ¢ which matures
at time ¢ + 7. The small domestic economy cannot affect the foreign rate ¢*(¢,7) by
economic policy, but has to accept the foreign interest rate as exogenously given. The
corresponding nominal domestic interest rate on a pure domestic-currency discount
bond will accordingly be denoted by i(k(t),, 7). Note that the realization of the fun-
damental k—representing either the free-float pre-switch regime according to Eq. (2)
or the managed-float pre-switch system according to Eq. (3)—is among the arguments
of the domestic interest rate .

Further suppose that international investors consider the home and foreign bonds
as perfect substitutes and assume perfect international capital mobility. Under this
setting the following form of the uncovered interest parity condition should hold at all

points in time:

Ble(t + 7)lo(0)] = «(t)

T

ID(k(t),t,7)=i(k(t), t,7)—"(t,7) = 9)

%To make the right-hand side of Eq. (9) plausible, let X(¢) denote the exchange rate in levels,
ie. 2(t) = In[X(¢)]. Furthermore, assume X(-) to be a deterministic function differentiable with
respect to time. Then, for infinitesimal future dates, the uncovered interest parity condition claims
that the interest rate differential equals the (expected) change in the exchange rate, i.e.

AX()/dt _ dIn[X(0)] _ . 2(t+71)—a(t)

X(t) dt 7—0 T

i(t) — it (1) =

Generalizing from infinitesimal to finite future dates and taking conditional expectations motivates

11



One special case included in Eq. (9) concerns the interest rate differential for so-
called instantaneous bonds, i.e. for bonds with infinitesimally short time to maturity.
These are defined by letting 7 — 0 and signify extremely short-term interest rates
(e.g. overnight rates). Bearing in mind Footnote 4, the corresponding interest rate
differential is obtained from Eq. (9) as

Eldx(t)|6(1)]

ID(k(1),1,0) = lim ID(k(1),1,7) = =

: (10)

The equilibrium exchange rate paths (4) to (8) and the uncovered interest parity
conditions (9) and (10) now allow us to compute closed-form solutions of interest
rate differentials for arbitrary terms 7 under both pre-switch regimes.” In particular,
consider first the free-float case. For the time prior to the announcement date, i.e. for
t € ]0,t4), agents believe the free-float system to be permanent forever. In this case

the differential for arbitrary term 7 equals zero on the whole time domain, i.e.
]DFF(kFF(t),t,T):O for all t € [O,tA),T > 0. (11)

During the interim period [t4,ts) the analytical form of interest rate differentials is no
longer independent of the term 7. To be more explicit, the instantaneous interest rate

differential for t € [t4,1s) is found to be

— krp(t
I Dpp(kpp(t),1,0) = olt=ts)/o | 57“”()7 (12)

(a4

while the differentials for strictly positive terms 7 > 0 evolve along two analytically
distinct equilibrium paths which are separated from each other by the date tg — 7:
1 — eT/oz

IDppy(kpp(t),t,r) == kpp(t) — 5] fort € [ta,ts—7), (13)
T

and

S — kFF(t)
T

IDppo(kpp(t), t, 1) = [1 _ e(t—fs>/a] . [ ] fort € [tg —7,t5). (14)

By analogous arguments, the managed-float counterparts of the interest rate differ-

entials (11) to (14) may be derived. Making use of the exchange rate equilibrium path

the right-hand side of Eq. (9).

"The computations involve basic principles of stochastic calculus. The main difficulty consists
of calculating the expected exchange rate E[z(t + 7)|¢(t)]. But closed-form solutions of these ex-
pected values follow from well-known formulae for conditional expectations of Brownian motions and
Ornstein-Uhlenbeck processes (see e.g. Karlin and Taylor, 1981, Chap. 15).

12



(6), the differential for ¢ € [0,%4) obtains as

s — kMF(t) 1—e7

]DMF(kMF(t),t,T) = 1 —I—Oﬂ] -

(15)

In contrast to its free-float counterpart (11), the permanent managed-float differential
(15) depends on the current fundamental kyp (1) and on the term 7. For zero-term the

instantaneous differential follows by means of standard calculus:

_nels = kur(t)]

IDyp(kypre(t),t,0) 5 an

(16)

For the interim period [t4,1s) it is straightforward to derive the instantaneous differ-

ential as

— kpp(t 1
]DMF(kMF(t)atao) — [STJ\ZZ()] . [77 + E .e(l-l-om).(t—ts)/a] : (17)

while the two branches of the equilibrium differential paths for 7 > 0 are given by

karr(t) — T 1 [1—eT/
]DMF,I(kMF(t)ataT) = [ ]\41F—|(_ )Oén 5] . {e - n [ Te ] .e(1+0z77)~(t—ts)/oz} (18)

for t € [ta,ts — 7) and

1 —k t
IDyira(kar(t),t,7) = — - [STAQF;)] |1 = eltren-mtfo] (19)

for t € [ts — 7,ts), respectively.

Finally, it remains to specify the interest rate differential dynamics for the time after
ts under each pre-switch regime. According to Eq. (8) the exchange rate will be fixed
forever at the preannounced parity s from ts onwards. Hence, for both pre-switch

regimes, Eqs. (9) and (10) clearly provide

]DFF(kFF(t),t,T) == ]DMF(kMF(t),t,T) =0 for all ¢ Z ts,T Z 0. (20)

3 Regime-comparison and implications

3.1 Measuring the volatility of interest rate differentials

In order to measure volatility it is convenient to draw on the concept of the so-called
infinitesimal variance of interest rate differentials. As will become evident below, this

dispersion measure—subsequently denoted by Z/{QID(W)JJ)}—eXplicitly depends on the

13



present date t. Loosely speaking, it approximates the variance of interest rate differen-
tial realizations from the infinitesimally close future conditional upon all information
included in the current information set ¢(¢).®

One attractive feature of the time-varying infinitesimal variance V{sz(k(t),t,T)} is that
it can be computed conveniently by the well-known Ito-lemma under very mild as-
sumptions. To be more explicit, consider the diffusion process {y(t),¢ > 0} which is

assumed to be a function of the fundamental & and the time index , i.e.
(1) = Pk, 1), 1)

Recall that throughout this paper the dynamics of the fundamental k& determines the
pre-switch exchange rate regime. For this, k is modelled either by a Brownian motion
with stochastic differential (2), or by an Ornstein-Uhlenbeck process with differential
(3) so that either k& = kpp or k = kyp. A common feature of both processes is
that their infinitesimal variances are equal and constant over time, namely l/{szF(t)} =
V{szF(t)} = o? (see for example Wilfling 2001, p. 203). Now Ito’s lemma states the
following: if the defining function F'(-,-) in Eq. (21) is twice differentiable with respect
to k and once differentiable in ¢, then the infinitesimal variance of the transformed

process {y(t)} is given by

Vi = laa_]lj(k(t)’t)r Vi = laa_]lj(k(t)’t)r o’ (22)

Via the rule (22) it is possible to derive analytically closed-form expressions of the
infinitesimal variances of all interest rate differentials from the previous section. In
particular, focussing on the interim period [t4,%s) and assuming a free-float pre-switch
exchange rate regime, the infinitesimal variances of the instantaneous differential (12)
and both differential branches (13) and (14) for strictly positive terms 7 > 0 follow
directly by the Ito-rule (22) as

, , [eli—ts)/a]?
ViDrrthrr o)) = 0| T | (23)
B N 1 — eT/oz 2
V{ZIDFFJ(kFF(t)W)} = ot fel e T ] ’ (24)
(1 _ eli—ts)/a]?
2 _ 2
Z/{IDFF,2(kFF(t)7t77)} = o - ] : (25)

8See for example Karlin and Taylor (1981, pp. 159).

14



In the same manner the infinitesimal variances of the interest rate differential paths

(17), (18) and (19) under a managed-float for ¢ € [t4,1s) may be derived as

72

2 o g 1 1+an)-(t—tg)/a ?
iousturieon = |Toar| [77 s o(om)-(t—t5)/ ] 7 (26)
- 42
5 o
ViIDyp (karr(t) )} = 1+ ay
-7 _ 1 — T/ 2
y [e T —I-( Te )_e(1+an).(t_ts)/a] 7 (27)
o 2 2
2 _ 14+an)-(t—1t o
VEID o (b (),t,m)) [1 n Oﬂ]] == [1 _ o(tan)(t=ts)/ ] . (28)

As mentioned above, all infinitesimal variances in the Eqs. (23) to (28) explicitly
depend on the time index ¢. Consequently, it seems justified to speak of variance or
volatility paths. Besides the above volatility paths for ¢ € [t4,1s) it is straightforward
to derive the infinitesimal variances of interest rate differentials for the time before 74
and after tg. Since the volatility of interest rates under permanent free-float and/or
managed-float systems (i.e. for t < t4) are only of secondary concern for the rest
of this paper, we refrain from giving explicit formulae here.” For ¢ > t5 it evident
from Eq. (20) that the variances of arbitrary-term interest rate differentials vanish
completely under both pre-switch regimes. This result is most intuitive since the
interest parity conditions (9) and (10) imply constant zero-differentials under a system

of fixed exchange rates.

3.2 Pre-switch-regime comparison

3.2.1 The free-float regime

Figure 1 displays the evolution of infinitesimal variances for alternative terms 7 during
the interim period [t4,s) under a free-float pre-switch regime. The following relations

are easy to verify and reveal some striking features of the variance paths (23), (24) and

(25):

For reasons of argument at a later stage, it should be noted that according to Eq. (11) the volatility
path of any arbitrary-term differential is constantly equal to zero under a permanent free-float. In
contrast to that, the formulae under a permanent managed-float are slightly more complex as can be
seen from the Eqs. (15) and (16).

15



infinitesimal variance

timet

Structural parameters; 8 =1,S =2,ta=0.5,ts=2.5

Figure 1: Infinitesimal variance paths under a free-float pre-switch regime

2 2
VD e (1),4:0)) WD p, (hrr(0).07) WD o (b (0).07))

> 0 > 0 <0 29
ot ’ ot ’ ot  (29)
: 2 : 2

tTlgﬁlT ViDppy(kpp(t)t,r)} = tlltlsH—lT VD pps(kpp(t)t,r)}s (30)

2

.9 o
B V(D esker a0y = 27 (31)

: 2

WO VD s er .6y = O (32)

The derivatives in (29) imply that differential variances are (a) increasing over time

for zero-term differentials during the whole interim period [ta,ts), (b) increasing for

strictly positive terms on the interval [t4,1s — 7), and (c) decreasing for 7 > 0 on

[ts — T,ts). This monotonic volatility behaviour raises some economic questions two of

which will be tackled here. (1) Why does the announcement of future time-contingent

exchange rate fixing entail a general increase in differential volatility for arbitrary

terms as opposed to the zero-volatility paths under a permanent free-float system

16



(cf. Footnote 9)7 (2) Why does the differential volatility for strictly positive terms
vanish completely at ts while the variance of instantaneous interest rate differentials
does not?

The first question is easy to answer. Under a permanent free-float system the ex-
change rate xpp coincides exactly with the fundamental kpp according to Eq. (4). But
the fundamental krp evolves along the (driftless) Brownian motion (2) so that the ex-
pected rate of change of kpp is zero over any time interval of finite length. Hence, the
expected rate of change in the exchange rate equals zero, too. Consequently, under the
interest parity conditions (9) and (10), the interest rate differentials constantly equal
zero and have zero-variance before t4. Now, triggered by the announcement at ¢4 of
future exchange rate fixing at tg, the exchange rate zpp jumps from the equilibrium
path (4) on the saddlepath (5). In this phase, the exchange rate is a time-dependent
average of the stochastic fundamental kpp and the fixing parity s. The evolution of
the exchange rate thus depends—with changing weights over time—on both, the con-
ditional distribution of the fundamental as well as on the deterministic parity s. The
same is clearly true for the expected rate of change in the exchange rate and thus for
the interest rate differential. Hence its positive volatility. In the end, the volatility in-
creases in interest rate differentials result from the fact that the exchange rate xpp has
to leave its stationary saddlepath (4) in order to ensure an arbitrage-free transition into
the fixed-rate system at date g and that the interest rates have to react accordingly.

The second question can also be justified on grounds of an arbitrage argument. For
this, consider first the differentials (12) and (14) for which one finds

1
LimlID k $).1.0) = — —limk 1
lim rr(krr(t),t,0) S|~ lm Fr(l)
and

hm]DFFQ(kFF(t), t, T) =0.

tTts
Note that the first limit for instantaneous interest rate differentials is different from
zero with probability 1.1° Obviously, strictly positive-term domestic and foreign in-
terest rates adjust completely during the interim period while instantaneous interest
rates in general do not. An explanation for this difference is as follows: if interest rates
for strictly positive term 7 > 0 did not adjust completely among the two economies
at date tg, there would be room for riskless profits by buying the domestic and selling

the foreign bond (or vice versa) infinitesimally shortly before ts. These riskless-profit

10T be mathematically precise: all limits of the stochastic processes {kpp} and {kpp} draw on
the concept of convergence with probability 1.
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transactions can only be ruled out by a complete adjustment of domestic and foreign
interest rates. But the necessity of complete interest rate equalization implies a volatil-
ity reduction towards zero. On the other hand, no such arbitrage opportunities exist
for instantaneous bonds because at any date ¢ € [t4,ts5) the time to maturity, ¢ + dt,
always lies within the interim period. Hence, for instantaneous interest rates there is
no need for a complete equalization at the date of transition into the fixed-rate system.
Thus the stochastic fundamental kpp still has a significant impact on the interest rate
differential. Consequently, according to Eq. (31), there remains the strictly positive
infinitesimal variance o?/a? for ¢ — t3.

Apart from the evolution of interest rate volatility over time, it is important for many
financial applications to analyze the impact of the term 7 on the volatility at any point
in time. As will be shown below, there is a clear-cut relationship between the degree of
volatility and the term 7 under a free-float pre-switch regime. Before elaborating this,

it proves convenient to consider the following auxiliary function of the term 7:

1 —e'le
f(r) = —
Note the following properties of f:

1. f(r) <0 for all 7 > 0,
2. f'(r) = df(r)/dr <0 for all 7 > 0.

Via these properties the partial derivatives of the volatility paths (24) and (25) with

respect to T obtain as

ov?
{IDFF,la(kFF(t)vth)} — 2 . 0_2 . [e(t—ts)/a]z . f(T) . f/(T) > 07 (33)
T
Ov? 9
{ID ,2(k (t)vth)} _ 2
FFaTFF o _; ' Z/{IDFF72(kFF(t)7th)} < 0 (34)

These relations establish the following clear-cut result: Along the I Dppq-path, interest
rate differentials for shorter terms exhibit lower volatility than differentials for longer
terms. The reverse is true along the I Dppo-path where differentials for longer terms
exhibit less volatility than those for shorter terms.

There is, however, one aspect which needs some attention when comparing differen-

tials with alternative terms. To illustrate, consider the terms 7, and 7, with 7 < 7.1t

UFor simplicity assume further that both terms are less than the length of the interim period
(i.e. 1 < T <tg—ta). This guarantees that both interest rate differentials in fact have IDpp - and
IDpp o-branches.
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Eq. (33) clearly provides

2 2
V{IDppy(kprt) )} < YV{IDppi (kpp(t)t,m)}

for t € [ta,ts — 7o) while for t € [ts — 71,t5) the derivative (34) establishes

2 2
V{IDpps(kpr()tm)} < V{IDppo(kpp(t),t,m)}-

On the interval (ts— 7, ts— 71 ) the 7y-differential is still on its [ Dpp-branch while the
ry-differential has already reached its [ Dppy-branch. From the relations in (29) and
(30) it follows directly that the mp-volatility path necessarily crosses the m-volatility

path once from above on this interval (see the terms 7y = 0.5 and 7 = 1.5 in Fig. 1).

3.2.2 The managed-float regime

Figure 2 depicts the variance paths (26) to (28) during the interim period under a
managed-float pre-switch regime for the alternative terms 7 = 1,7 = 0.5 and 7 — 0.
At first glance the volatility paths exhibit striking similarities to their counterparts
under a free-float. The volatility paths (26) and (27) for instantaneous and I Dysp1-
differentials seem increasing on their admissible domains while the IDjysp3-variance
path (28) is decreasing over time and obviously tends to zero for t — ts. Indeed, it is
straightforward to verify the relations (29) to (32)—which are valid under a free-float
pre-switch regime—also for the managed-float volatility paths (26) to (28).

Among these relations only the validity of (31) is somewhat surprising. Evidently,
at the moment of transition into the fixed-rate system, the volatility of instantaneous
differentials, which equals 0%/a?, is independent of the parameter 5. In other words,
shortly before tg instantaneous rates are always subject to exactly the same degree of
volatility regardless of the intensity of central bank interventions.

Further evidence of the singularity of instantaneous interest rates as opposed to
strictly positive-term rates is provided by the following result: Consider a situation in
which the central banks are willing (and able) to defend the parity s by any necessary
amount of intervention at any date during the interim period [t4,ts). Put differently,
the authorities de facto implement a fixed-rate system at the announcement date ¢4.
This extreme willingness to intervene is reflected by letting 7 — oo in the volatility
paths (26) to (28). It is easy to check that for 7 > 0 the I Dyp- and [ Dpspo-variance
paths (27) and (28) constantly shrink to zero, i.e.

B v ey = 0 and - m vlin, e 0y = 0 (35)

n—00 n—00
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Figure 2: Variance paths under a managed-float pre-switch regime ("low’ n-value)

for all admissible t € [t4,1s). On the other hand, the instantaneous volatility path (26)

yields

0.2

. 2 _ v
B D ek (0000 = 2

for all ¢t € [ta,ts). This establishes another interesting result: Instantaneous differ-
entials remain volatile during the interim period even under an infinitely high degree
of intervention while differentials for strictly positive terms become certain (i.e. have
zero-variances) under the same intervention policy.

Finally, we address the relation between the term 7 and differential volatility. First,
recall that under a free-float pre-switch regime there exists a unique volatility ranking
for strictly positive terms: Along the I Dppq-path longer terms imply higher volatility
than shorter terms while the reverse is true along the I Dppy-path. Under a managed-
float an analogous result may only be derived analytically for the I Dpsp o-variance path
(28):

OV 1Dssraliarrary _ 2

2
o7 - _; ) Z/{IDMFQ(kMF(t)vth)} <0

for all t € [ts — 7,1s) and arbitrary values of the intervention parameter 5. Hence, in
accordance with (34), under a managed-float longer-term differentials are less volatile

than shorter-term differentials along the 1Dy po-path.
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timet

Structural parameters: N =2,8=1,5 =2,t4 = 0.5,ts= 2.5

Figure 3: Variance paths under a managed-float pre-switch regime ("high’ n-value)

But in contrast to the free-float case no clear-cut relation between differential volatil-
ity and the term 7 > 0 exists any more along the I Dyspq-path. This becomes evident
from the Figures 2 and 3. The 'low’ n-value of 0.1 in Figure 2 leads to the same
I Dyypq-volatility structure as under a free-float with higher variances for longer terms.
In contrast to this, the "high’ n-value of 2.0 in Figure 3 ceteris paribus entails exactly
the reverse volatility ranking with respect to 7.

Obviously the intervention parameter n plays a crucial role for the relation between
differential volatility and the term. The figures give rise to the conjecture that there
may exist the following unique relation between 7 and differential volatility along the
I Dpyrpa-path: Depending on the (constant) level of intervention, the I Dypy-variance
paths for longer terms lie always either completely above or completely below those
for shorter terms. Figure 4 shows that this last conjecture is definitely false in general.
The line shown depicts the difference between two I Dpsp;-variance paths which—all
else equal—only differ in the term 7. Evidently, the difference-line crosses the zero-line
indicating a crossing of the respective variance paths.

A further conjecture may stem from the relation in (35). For any 7 > 0 there is a
pointwise volatility convergence towards zero at every interim date ¢ € [t4,ts) if the

central banks’ willingness to intervene becomes maximal (i.e. for n — o0). From this
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Figure 4: Crossing variance-paths with alternative terms

one might be inclined to think that an increase in 5, ceteris paribus, possibly entails
a decrease in the variance paths on their admissible domains. Figure 5 shows three
complete variance paths which only differ in their intervention parameters. Obviously,
the two paths generated with n; = 1.0 and ny = 1.5 cross so that the above conjecture

does not hold in general.

3.3 Implications and empirical issues

Financial models which capture the volatility of interest rates serve at least two pur-
poses (cf. Chan et al. 1992, p. 1210). First, the volatility of (primarily short-term) rates
is a key variable for the valuation of contingent claims such as interest rate options.
Second, the level of term structure volatility plays a crucial role in the selection of
optimal hedging strategies for risk-averse investors. Therefore, it seems warranted to
assess the above results on interest rate variability empirically and to make use of this
knowledge in financial applications.

The econometric treatment of the volatility processes of interest rate differentials
turns out a difficult matter from a technical point of view. A suitable estimation
procedure should cover all unknown parameters from the differential paths (12) to (14)

and (17) to (19). In the most general setting, these unknown parameters are a, o and
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Figure 5: Crossing variance-paths for alternative n-values

the intervention parameter 7.

Several methods of estimating continuous-time processes from discrete data have
been proposed in the literature. One technique is the method of Simulated-Moments
(SM-estimation) which is described in McFadden (1989), Pakes and Pollard (1989) or
Lee and Ingram (1991). The use of this method has been proposed by Smith and
Spencer (1992) and applied by Lindberg and Soderlind (1992, 1994) to estimate struc-
tural parameters in continuous-time models of exchange rate target zones. However,
Wilfling (2001, pp. 190) argues that—in contrast to target zones—the application of the
SM-technique for estimating the above interest rate differentials seems highly question-
able. The econometric reason is that all interest rate differential paths directly depend
on the time index ¢. Thus, suitably discretized counterparts of the continuous paths,
which are necessary to perform SM-estimation, are non-stationary and hence non-
ergodic. But both properties—stationarity and ergodicity—are essential to guarantee
statistical consistency of the SM-estimators and to derive their asymptotic distribu-
tions. For alternative methods of estimating continuous-time processes from discrete
data see Hansen et al. (1998), Darolles and Gouriéroux (2001), Elerian et al. (2001)
and the literature cited there. However, the statistical properties of these alternative

approaches are far from being settled by now. Applications as well as statistical com-
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parisons of the estimation procedures mark a challenging task for future econometric
research.

Apart from these statistical difficulties the complete term structures of interest rate
differentials developed and analyzed here provide several useful qualitative insights into
interest rate dynamics prior to a monetary union. For example, further properties of the
interest rate equalization process at the end of the interim period may be investigated
from the [ Dy-paths (14) and (19) under each pre-switch regime.

An additional result on interest rate volatility under a managed-float that has not
been explicitly mentioned so far is depicted in Figure 5. The solid and the shortly
dashed variance paths provide an example of the impact of central bank intervention
activities—primarily aimed at stabilizing the exchange rate during the interim period—
on interest rate volatility. Evidently, a modest intensification of intervention activities
from n; = 1.0 to ny = 1.5 would, ceteris paribus, entail an increase in interest rate
volatility in the short run while in the middle and in the long run volatility is reduced.
On the other hand, the increase of intervention activities on a larger scale (e.g. from

n1 = 1.0 to n3 = 3.0) leads to a volatility decrease for the rest of the interim period.

4 Concluding remarks

Based on a monetary flex-price exchange rate model this paper derives closed-form
solutions of the term structure of interest rate differentials when the economies under
consideration plan to form a monetary union. Two alternative systems of floating
exchange rates prior to entrance into the union are considered, namely a free-float
and a managed-float pre-switch regime. The respective term structures of interest
rate differentials are compared with respect to volatility properties. The economic
significance in exploring differential volatility stems from the fact that for domestic
investors of a small open domestic economy, which—under perfect capital mobility—
faces an exogenous term structure of world interest rates, the volatility of interest rate
differentials may serve as an important prediction of the volatility of domestic interest
rates.

Under a free-float pre-switch regime there exists a clear-cut relationship between the
volatility of interest rate differentials and the term. At the beginning of the interim
period lower-term differentials exhibit less volatility than longer-term differentials while
the reverse is true on an exactly specified time interval at the end of the interim period.
Under a managed-float this volatility ranking no longer holds in general. This lack is

due to the intervention parameter .
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Evidently, the possibility of central-bank intervention—aimed at stabilizing the ex-
change rate prior to the fixing—introduces strong parameter non-linearities into the
dynamics of interest rates prior to the switch. These non-linearities give rise to a
wide spectrum of possible volatility processes prior to the introduction of the common
currency and therefore may have significant impacts on financial applications. The
problem may aggravate if the central banks decide—for whatever reasons—to change
the intensity of their intervention policy. Clearly, frequent changes in the parameter n
introduce further complexities into the evolution of interest rate volatilities.

Another insight concerns the singular role of instantaneous interest rates whose im-
portance for the theory of bond and option pricing are well documented in the litera-
ture (see e.g. Cochrane 2000, Part III). In contrast to all strictly positive-term interest
rate differentials, instantaneous differentials can remain excessively volatile under an
exchange rate arrangement which is characterized by extremely high leaning-against-
the-wind interventions.

Finally, the paper discusses econometric issues. Two challenging tasks for future
research consist of developing new as well as gathering experience with existing econo-
metric techniques for estimating and drawing statistical inference from interest rate

volatility processes during this transitional period between the exchange rate systems.
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