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Abstract

This paper discusses a large-scale factor model for the German economy. Following the
recent literature, a data set of 121 time series is used via principal component analysis to
determine the factors, which enter a dynamic model for German GDP. The model is
compared with alternative univariate and multivariate models. These models are based
on regression techniques and considerably smaller data sets. Out-of-sample forecasts
show that the prediction errors of the factor model are smaller than the errors of the rival
models. However, these advantages are not statistically significant, as a test for equal
forecast accuracy shows. Therefore, the effciency gains of using a large data set with
this kind of factor models seem to be limited.

Zusammenfassung

Diese Arbeit diskutiert ein großes Faktorenmodell für die deutsche Wirtschaft. Der jün-
geren Literatur folgend werden aus einem umfangreichen Datensatz von 121 Zeitrehen
mit einer Hauptkomponentenanalyse gemeinsame Faktoren extrahiert, welche in ein dy-
namisches Modell zur Erklärung des deutschen Bruttoinlandsprodukts eingehen. Das
Modell wird mit alternativen univariaten und multivariaten Modellen verglichen, die auf
Regressionsansätzen und deutlich kleineren Datensätzen beruhen. Vergleiche von Pro-
nosen außerhalb des Schätzzeitraums zeigen, dass die Prognosefehler des großen Fak-
tenmodells kleiner als bei den alternativen Modellen sind. Jedoch sind diese emprischen
Vorteile nicht statistisch signifikant, wie Tests auf paarweise Gleichheit der Prognose-
güte zeigen. Demzufolge scheinen die Effizienzvorteile des auf einem großen Datensatz
beruhenden Faktorenmodells lediglich gering zu sein.

Key Words: Factor models, Principal components, forecasting accuracy
JEL Classification: E32, C51, C43



1 Introduction

The idea that fluctuations in a large number of economic variables can be modelled by a
small number of factors is appealing and is used in many economic analyses. For example,
the seminal work of Burns/Mitchell (1946) assumes that the business cycle phenomenon is
characterised by simultaneous comovement in many economic activities. Following this idea,
empirical approaches as in Stock/Watson (1991) often model the business cycle as a factor
extracted from a number of economic variables. Behind this literature, there is the implicit
assumption that the essential characteristics of the business cycle are captured by few relevant
aggregate variables and that the information contained in all the potentially available aggregate
time series are individually less useful to understand macroeconomic behaviour.
In the past, the empirical literature about factor models was restricted to use relatively small

panels of time series to determine the common factors.1 For example, Stock/Watson (1991)
estimate a state-space model with an unobserved factor using four variables. Computational
difficulties make it necessary to abandon information on many series even though they are
available. Hence, the inclusion of a broader data set is hardly possible in those approaches.
The main feature of recent factor models is the use of a larger cross-section of time series. The
idea is to use many time series simultaneously and hence use the available information more
efficiently. Stock/Watson (2002) and Forni et al. (2001) use principal component analysis to
estimate large-scale factor models. The estimation method based on principal components is
non-parametric and does not face the problem that a growing cross-section dimension leads
to an increased number of parameters and higher uncertainty of coefficient estimates as in
state-space models and regression approaches. The extensions of these techniques to large
cross-sections can therefore be viewed as an efficient way of extracting information from a large
number of data series. From an economic perspective, the large-scale factor models follow the
famous definition of Burns and Mitchell (1946) closely, because many variables should better
reflect the comovement of many economic activities than only a few.
This paper applies the large-scale factor model recently proposed by Stock/Watson (2002)

and Artis et al. (2001) to German data. An application could be interesting, because large-scale
factor-models have recently been successfully applied to forecast US macroeconomic variables.2

To our knowledge, this is the first application of large-scale factor models to the German
economy. The application is an extension of other recent studies that investigate mainly single
indicators or small scale factor models for German economic activity. Bandholz/Funke (2001)
estimate a multivariate state-space model with and without regime-switching to determine a
business cycle factor. Breitung/Jagodzinski (2002) give an overview about other composite
indicators. Both papers discuss factor models based on a small cross-section of time series.
Fritsche/Stephan (2002) investigate the indicator properties of single economic time series using
spectral analysis. Hüfner/Schröder (2002) compare the forecasting accuracy of the ifo climate
index and the ZEW business expectations, both obtained from survey data. Compared with
these papers, the present work questions whether the use of a larger data set in a factor model
framework leads to better empirical results than smaller scaled models. Especially, we follow
the recent literature and investigate the gains of predictive accuracy when using a large-scale

1See Geweke (1977), Sargent/Sims (1977), Stock/Watson (1991), Camba-Mendez et al. (2001).
2See Stock/Watson (1999, 2002).
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factor model.
Therefore, a large number of macroeconomic time series is collected to provide an exhaus-

tive description of the German economy. The broad data set is used to estimate the factor
model, and to forecast German GDP. To highlight the differences arising from the size of the
information used, the forecasts of the large-scale factor model are compared with alternative
forecasts from a simple univariate time series model, a vector autoregressive model, and a single
time series indicator obtained from surverys.
The paper proceeds as follows: The following section contains a description of the factor

model and how it can be estimated via principal components analysis. Section 3 briefly describes
the German data set. In section 4, the forecasting methodology is introduced, and the factor
model and its competitors are applied to German data. The calculations include recursive
quasi-real time estimations and forecasts. Section 5 concludes.

2 The factor model

In factor models, each variable is represented as the sum of two mutually orthogonal unob-
servable components: the common component and the idiosyncratic component. The common
component is driven by a small number of factors common to all of the variables in the model.
The idiosyncratic component on the other hand is driven by variable-specific shocks. Let Xt
be the (N × 1) dimensional vector of stationary time series with observations for t = 1, . . . , T .
The dynamic factor model representation is for a variable Xit as an element of the vector Xt
given by

Xit = λi(L)ft + εit, (1)

where ft is the (q × 1) vector of factors which has to be determined from the data. The idea
of the factor model is that the dimension of the factors is lower than the dimension of the
data, so q ¿ N . However, the small number of factors should be able to replicate most of
the variance of the variables Xit for i = 1, . . . ,N . λi(L) is a lag polynomial with non-negative
power of the lag operator L, with Lxt = xt−1. Hence, it is allowed that lags of the factors affect
the current movement of the variables. The (1 × q) vector λi(L) shows how the factors and
their lags determine the variable Xit. εit is the idiosyncratic component of the variable. It is
that residual part which is not explained by the factors. The key problem of the estimation of
the factor model is the determination of the factors from the model’s variables. For estimation
purposes, it is convenient to reformulate the model. If the lag polynomial has a finite lag order
p, λi(L) = λi0 + λi1L+ . . .+ λipL

p, and the model can be rewritten as

Xt = ΛFt + εt, (2)

where Xt is the vector of time series at time t and Ft =
¡
f 0t , . . . , f

0
t−p
¢0
is a r = q(p + 1) di-

mensional vector of stacked factors. The (N × r) dimensionial parameter matrix Λ holds the
reorganized coefficients of λi(L) for i = 1, . . . , N .3 The main advantage of this static repre-
sentation is that its factors can be estimated using principal component analysis.4 Principal

3See the technical appendix A for details of the derivation of (2).
4See Artis et al. (2001), Stock/Watson (2002).
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component analysis allows for the estimation of factor weights based on a very large cross-
section of the data set and is computationally convenient. In the present case, the principal
component analysis leads to an eigenvalue problem of the variance covariance matrix of the
time series vector Xt and the corresponding eigenvectors form the parameter matrix Λ and
the weights of the factors Ft.5 Bai/Ng (2002) derive the principal component estimators under
fairly mild conditions of the idiosyncratic component when both the cross-section and time
dimension become large. It should be noted that the r common factors are not uniquely iden-
tified because for a non-singular matrix Q of dimension (r × r), ΛFt = ΛQQ−1Ft = Λ∗F ∗t
holds. However, we are primarily interested in the part of the time series fluctuations that are
explained by all the common factors and not in each common factor separately, so this problem
can be neglected. While this lack of identification is not problematic for forecasting, it should
be taken into consideration when interpreting the factors in a structural way.
Crucial to the analysis of the factor model is the determination of the number of factors.

Bai/Ng (2002) derive information criteria to determine the number of static factors r in (2).
The information criteria represent the usual trade-off between goodness-of-fit and overfitting.
The information criteria can be seen as extensions to the familiar Bayes or Akaike criteria. The
main difference of the factor model information criteria is the consideration of the cross-section
unit N which is absent in the pure time series environment.6 The formal criteria to determine
the number of factors only apply to the number of static vectors. Via principal component
analysis, we can determine the components of the model (2) where the relationship between
the variables is static. Up to now, there is no econometric theory for the decomposition of
the static factors into lagged dynamic factors as in (1).7 But the empirical literature shows
that the inclusion of lags of the factors may improve the forecasting ability of the models.8

Therefore, in order to obtain such a dynamic factor model, the literature suggests to use
empirical criteria such as forecasting accuracy to determine the number of dynamic factors q
and the corresponding lags p. The maximum combination of dynamic factors and their lags is,
however, given by the number of static factors r = q(p + 1). Hence, the information criteria
of Bai/Ng (2002) give an upper bound of the number of factors in the dynamic model.9 The
strategy of our empirical investigation will be based on both approaches: First, we use the
factor model specified according to the criteria of Bai/Ng (2002). Second, we estimate a large
variety of models with differing parameter values and select the best ones according to their
empirical forecast performance.

3 German data

Since the main task of this paper is to evaluate the gains of using a large data set compared with
a small data set to predict key variables of economic activity, we should collect a sufficiently
large data set. The collected data set for Germany, which is explained in the data appendix F,
contains 121 quarterly series over the sample period 1978:2-2002:1. We choose quarterly time

5Further details about the estimation can be found in the appendix B.
6See Bai/Ng (2002), pp. 199-201.
7See Forni et al. (2001, 2002).
8See Artis et al. (2001), Stock/Watson (2002) and for state-space models, Camba-Mendez et al. (2001).
9See Bai/Ng (2002), p. 212.

3



series because we want to discuss the empirical properties of the factor model with respect to
GDP which is available at the quarterly frequency. In addition, with this data set we are able
to describe the economy on a broad basis because sectoral data can be taken into consideration.
In order to have a balanced and as exhaustive as possible representation of the German econ-

omy, we include a variety of variables, which are described in the data appendix. For example,
we use GDP and its expenditure components such as consumption and fixed capital formation,
and gross value added by sectors. Industrial production, received orders and turnover, disag-
gregated by sectors are included. Labour market variables are employment, unemployment and
wages. Several disaggregated price time series, interest rates and spreads as well as exchange
rates are considered. Additionally, we use ifo survey time series such as business situation and
expectations, assessment of stocks and capacity utilization, and other series.
As is typical for the empirical indicator literature, the vector of time series will be prepro-

cessed. First, the time series are corrected for outliers and then seasonally adjusted as explained
in the appendix. Moreover, since the principal component analysis requires stationary time se-
ries for estimation, non-stationary time-series were appropriately differenced.10 Finally, the
series were normalized to have sample mean zero and unit variance.

4 Predicting German GDP

To evaluate the empirical performance of the described factor model, we discuss out-of-sample
forecasts of German GDP. As reference models, we choose three alternatives:

• Univariate autoregressive (AR) model: Such a simple model serves as a benchmark model
in our forecasting exercise. Although sometimes labelled as ”naive” model, it is often
difficult for other econometric models to produce better forecasts.

• Forecasts based on the ifo business climate indicator: The ifo business climate index
is a business cycle indicator obtained from surveys. It receives much attention in the
public, and has some information content for real activity in Germany.11 The ifo climate
index is also included in the large data set of the factor model described above. Hence,
the comparison between the large-scale approach and the ifo climate index highlights the
importance of the other variables and the difference between the two alternative modelling
strategies.

• Forecasts using a vector autoregressive (VAR) model: VAR models are a widely used
tool in empirical research. Here, we use a six variable model according to a leading
indicator model used by Grasmann/Keereman (2001). The data vector consists of GDP,
retail business situation, construction business expectations, terms of trade, interest rate
spread and car registrations. While the factor model described before will rely on over
a hundred time series, the VAR model has a considerably smaller data set which is the
outcome of an explicit preselection. A comparison of forecasts of the factor model and
the VAR model will shed some light on the relative efficiency of such preselections.

10See, for example, Altissimo et al. (2002), Forni et al. (2001).
11See Hüfner/Schröder (2002), p. 317.
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The alternative models vary concerning the extent of external information which is used to
predict German GDP.12 While the autoregressive model uses only past GDP information, the
ifo business climate index is one additional time series used for forecasting. Together with the
VAR model with a data set of six time series, a competitive group of alternatives for the factor
model is given. A forecast comparison gives insight into the empirical gains of the factor model
in comparison with other leading indicators of economic activity in Germany. The forecasting
model follows Stock/Watson (1999, 2002), Forni et al. (2002) and Artis et al. (2001) who
use a dynamic or multi-step estimation approach.13 All forecasting models are specified and
estimated as a linear projection of an h-step ahead transformed variable, yt+h onto t-dated
predictors. More precisely, the forecasting models have the form

yt+h = α(L)yt + β(L)Dt + εt, (3)

where Dt is the external information or the predictor variables used for forecasting in addition
to yt itself. α(L) and β(L) are lag polynomials of finite order. Of the large-scale factor models,
we investigate two specifications as has been discussed in the methodological section: First, the
static factor model (2) is specified. We use the static form of the factor model and determine
the number of factors with the Bai/Ng (2002) information criteria.14 Then Dt is a (r × 1)
dimensional vector of static factors, and the coefficients are collected in a time independent
vector β with dimensions (1× r) which is estimated via OLS. Second, we estimate a dynamic
factor model according to (1). Following Stock/Watson (2002) and Artis et al. (2001), the q
dynamic factors are estimated via principal components, and Dt is a (q×1) dimensional vector
of dynamic factors. In this case, the factors’ parameters are collected in the (1×q) dimensional
vector polynomial β(L) =

Pp
i=0 βiL

i with p lags and the effect of the contemporaneous factors.
The estimation method of the lag polynomials is OLS. To determine the lag order p and
the number of dynamic factors q, we will estimate a large variety of models and choose the
specification with the lowest mean square forecast error for each forecast horizon.15 In addition
to the external information, the forecasting equation includes lagged values of the variable of
interest yt and their effect is measured via α(L), a scalar finite order lag polynomial. The left
hand side of the forecasting equation, yt+h, is the forecast of the growth in the GDP series
between period t and period t + h. The original series of GDP, Yt, is in natural logarithms,
so the growth rate becomes yt+h = log(Yt+h/Yt) =

Ph
i=1∆ log(Yt+i). The autoregressive term

on the right hand side is defined as yt = log(Yt/Yt−1). The dynamic estimation approach
above differs from the standard one-step ahead approach. To forecast h periods ahead within
the standard approach, one estimates the model with one lag, and then iterating that model
forward to obtain h-step ahead predictions.16 The dynamic estimation approach is different,
because the left hand side variables are specified h periods ahead of the explanatory variables

12In preliminary steps of this investigation, we also included the OECD leading indicator, and different VAR
models. We used the famous trivariate monetary VAR model of Cochrane (1998), in which GDP, prices and an
interest rate form the data vector. The OECD leading indicator was included as an indicator in an equal way
as the ifo indicator. Empirical results using these alternatives can be obtained from the authors upon request.
However, these models performed worse than the alternatives presented here.
13See chapter 11 of Clements/Hendry (1998) for a detailed treatment of multi-step estimation.
14See appendix C for the exact formulas.
15Such a specification strategy is proposed by Forni et al. (2002).
16For a discussion, see Clements/Hendry (1998), pp. 243-246.
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as can be seen from equation (3).
This dynamic approach has two main advantages. First, additional equations for simulta-

neously forecasting the indicators Dt are not needed. This can be useful because the stochastic
process governing Dt is not known in general. Second, the potential impact of specification
error in the one-step ahead model can be reduced by using the same horizon for estimation as
for forecasting. The forecasts of the alternative models are also computed using the multi-step
estimation. In the univariate autoregressive model, there is no external information and Dt
and its coefficients are zero. The ifo climate index is a single indicator, so Dt is a scalar. The
VAR model is estimated accordingly. The equation for GDP for example is equal to equation
(3), with Dt including five other variables than GDP as described above. Again, to specify the
lag orders of the different models, we use a variety of parameter combinations to identify that
specification that minimizes the mean square error. This strategy follows Forni et al. (2002)
who estimate their models over a broad range of parameters and choose coefficient combina-
tions which minimize a forecast error criterion. The models with these parameter values yield
a minimal value of the mean square forecast error. This mean square error is thus the best
forecasting performance obtainable, at the horizon h, via the dynamic forecast procedure based
on each of the models.
To evaluate the quantitative forecasts from the factor model and its competitors, we per-

form a simulated forecasting experiment. The forecasts are out-of-sample and only in-sample
information is used to estimate the parameters of the models. For statistical forecast tests, the
models are estimated recursively. The first sample period covers one third of the total time
series sample. Forecasts are computed with a forecast horizon of one to eight quarters and
forecast errors are stored. Then the sample size is increased by one, the model is reestimated,
forecasts are computed and so on. At the end of the sample, we have a total of 57 quarters of
forecasts for each horizon which can be evaluated. The recursive forecasts are computed to shed
light on the real-time properties of the empirical model. In applications, policy makers have
primarily a forward-looking perspective so the out-of-sample estimates of the indicators are of
main interest. Recursive estimations and forecasts show how the model would have predicted
in the past if only real-time data had been available.
To get a first impression about the forecasting accuracy of the competing models, we first

report relative mean square errors which are relative to the naive autoregressive model. A rel-
ative mean square error less than one indicates a superior forecasting performance of a model.
Table 1 shows the relative mean square errors and the resulting ranking. The relative mean
square error of the dynamic factor model is smaller than one at all forecast horizons. Hence, the
dynamic factor model outperforms the simple autoregressive model in our setup. The forecast-
ing gains of using estimated factors as predictors compared with the autoregressive model are
higher at shorter horizons than at longer horizons, and the relative forecast improvement lies
between 8% and 26% according to the mean square error. The static model determined with
the criteria of Bai/Ng (2002) performs worse than the dynamic version of the factor model. As
compared with the ifo indicator and the VAR model, the relative mean square error of the dy-
namic multifactor model is again smaller. The static factor model has often larger mean square
errors than the ifo indicator and the VAR model. In the light of this poor results, we don’t
report further results of the static factor model. In the following tables the factor model always
refers to the dynamic version of the factor model. At horizons from four to eight quarters, the

6



Table 1: Relative MSE

Relative MSE at forecast horizon
1 2 3 4 5 6 7 8

static factor model 1.003 0.956 0.961 1.115 1.084 1.045 1.088 1.134
dynamic factor model 0.772 0.741 0.734 0.886 0.861 0.866 0.891 0.921

ifo climate 0.864 0.784 0.779 0.957 1.000 1.004 1.012 1.002
VAR model 0.953 0.949 0.941 1.194 1.349 1.316 1.317 1.383

Ranking
1 2 3 4 5 6 7 8

static factor model 4 4 4 3 3 3 4 4
dynamic factor model 1 1 1 1 1 1 1 1

ifo climate 2 2 2 2 2 2 2 2
VAR model 3 3 3 4 4 4 3 3

Notes: The table shows the mean-square errors (MSE) of the various models relative
to the MSE of the autoregressive model.

ifo climate indicator have larger forecast errors than the autoregressive model. Although the
dynamic factor model performs best overall, the magnitude of the forecasting improvements
of the dynamic factor model are quite small at various forecast horizons. For example, the
forecasting power relative to the ifo indicator is often below 10%.
In order to test whether the forecast gains of the large-scale factor model are systematic,

we apply the Diebold/Mariano (1996) test of equal forecasting accuracy. This test is based
on the difference of squared forecast errors of two competing forecast models.17 Under the
null hypothesis, the forecasting accuracy is not statistically different. In table 2, we report
significance levels for this test. A small significance level below 0.10 or 0.05 indicates a rejection
of the null of equal forecast accuracy. The results of the tests show that the forecasts of the
large-scale factor model are only in a few cases significantly better than the forecasts of the other
models. Especially the forecasts of the simple autoregressive model without any exogeneous
indicators are not significantly worse at horizons four and eight. Moreover, the advantages over
the ifo indicator are significant only at significance levels larger than 10%. This implies that
although the factor model performs best in the chosen small sample according to the relative
mean square error in table 1, the advantages are not systematic.
The finding that the forecasts of a preferred model are better than those of a rival model

should not be the final conclusion of a model comparison. As noted by Harvey et al. (1998), it
could rather be the case that the competing models have some additional information content
for the variable to be predicted absent in the preferred forecast model. Hence, a combination of
two rival forecasts could improve the preferred forecast although the preferred forecast model
has smaller forecast errors. This question of forecast combination of two rival models can be

17For further details, see appendix D.
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Table 2: Test for equal forecasting accuracy

Diebold/Mariano (1995) test
forecast horizon factor model ifo climate VAR model AR model

factor model - 0.14 0.10 0.06
1 ifo climate - 0.22 0.15

VAR model - 0.24
AR model -
factor model - 0.11 0.17 0.21

4 ifo climate - 0.25 0.40
OECD - 0.21
AR model -
factor model - 0.15 0.15 0.37

8 ifo climate - 0.19 0.50
VAR model - 0.10
AR model -

Notes: The table shows significance levels. The null hypothesis is pairwise equal
forecast accuracy. The test is symmetric. Further information about the computa-
tion of the test is given in the appendix D.

tested with the simple regression

yt = (1− λ) yA,t|t−h + λyB,t|t−h + εt, (4)

where yA,t|t−h and yB,t|t−h are the rival forecasts of the variable yt computed using information
available at t− h.18 The parameter λ can be estimated using OLS and with some corrections
for possible heteroscedasticity and autocorrelation. A forecast combination parameter λ which
is significantly larger than zero implies an additional information content of the competing
forecast model B that is absent in the forecast of model A. If the coefficient is equal to zero,
then the preferred model’s forecasts cannot be improved and the preferred model A encompasses
its rival. In table 3, we report the results of a forecast encompassing test of Harvey et al. (1998)
for the whole variety of model combinations. Under the null hypothesis, the model standing in
row of the table (model A) encompasses the model standing in the column of the table (rival
forecast B). The table shows that the rival models have almost no information content for the
multifactor model forecasts. For example, at a forecast horizon of four quarters, the significance
level that the factor model encompasses the ifo indicator is 15%. The only exception is the
VAR model which is not encompassed by the factor model at horizon one (significance level
9%). On the other hand, the test results indicate that the factor forecasts can improve all rival
forecasts at the 10% significance level.

18See Clements/Hendry (1998), p. 228 or Harvey et al. (1998), p. 254.
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Table 3: Test for forecast encompassing errors

Harvey et al. (1998) test
forecast horizon factor model ifo climate VAR model AR model

factor model - 0.12 0.09 0.11
1 ifo climate 0.00 - 0.06 0.07

VAR model 0.00 0.00 - 0.27
AR model 0.00 0.00 0.03 -
factor model - 0.15 0.44 0.47

4 ifo climate 0.00 - 0.40 0.16
VAR model 0.08 0.09 - 0.06
AR model 0.07 0.06 0.47 -
factor model - 0.27 0.38 0.27

8 ifo climate 0.01 - 0.46 0.22
VAR model 0.08 0.09 - 0.03
AR model 0.09 0.20 0.26 -

Notes: The table shows significance levels. The null hypothesis is that the model
standing in the row encompasses the model standing in the column. The test is not
symmetric. The test leads to the estimation of forecast combination weights λ from
the equation yt = (1− λ) yA,t|t−h+λyB,t|t−h+ εt, where yB,t|t−h is the forecast of the
model from the table’s column and yA,t|t−h is the forecast of a model standing in
the row of the table. If the null is true, then a small significance level indicates that
model B adds no additional forecasting power and model A encompasses model B.
Further information about the computation of the test is given in the appendix D.

5 Discussion of the results and conclusions

The results of the paper give insights into the usefulness of the empirical applicability of a large-
scale factor model proposed by Stock/Watson (2002) and Artis et al. (2001). The large-scale
factor model is applied to German data. To evaluate the empirical performance of the factor
model, recursive out-of-sample GDP forecasts of the model are compared with rival forecasts
from a simple univariate model, the ifo business climate index, and a VAR model.
The empirical results of the paper show that although the dynamic large-scale factor model

outperforms the smaller sized rival models, the forecasting gains are limited and not systematic.
On the other hand, the forecasting performance of the factor model cannot be improved by the
alternative models. Moreover, the large-scale factor model always has some information content
for the ifo business climate index, the VAR model and the univariate autoregressive model
investigated here. Hence, using the rival models for forecasting purposes would be ineffective,
since the factor model forecasts can always improve their forecasts. However, because the
forecasting errors of the factor model are not significantly smaller than the errors of the rival
models, the efficiency of using such a large panel of data can be questioned. One has to keep
in mind that the better forecasting properties of the large-scale model come at the costs of
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the need to keep a larger data set up to date which can be quite resource consuming. This is
another drawback of such a large-scale model compared with the smaller sized models.
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A Deriving the static representation of the factor model

In the dynamic form of the factor model (1), Xit = λi(L)ft + εit, the parameters are time
dependent. Our goal is to make the model static in the parameters, so that it is possible
to estimate the model via principal components.19 First, transform the vector of factors ft
into a dynamic one. As in the main text, the factors are lagged and reordered to obtain
Ft =

¡
f 0t , . . . , f

0
t−p
¢0
with dimensions (q(p+ 1)× 1). This implies the transformed model

Xit = ΛiFt + εit, (5)

where Λi is a (1× q(p+ 1)) dimensional vector of reorganized parameters of λi(L). Let the
number of static factors be defined as r = q(p+ 1). The aim is to determine the parameters of
Λi to fulfill

ΛiFt = λi(L)ft. (6)

The lag polynomial λi(L)ft can be rewritten as

λi(L)ft = (λi1(L), . . . ,λiq(L)) ft, (7)

where the polynomial λij(L) = λij0+λij1L+ . . .+λijpL
p shows how the j-th factor and its lags

are related to the i-th variable. Define the coefficients of this polynomial as

λij = (λij0,λij1, . . . ,λijp) . (8)

Inserting this into the total effect of all factors on the variable i gives

λi(L)ft = λi1(L)f1t + . . .+ λiq(L)fqt

= λi1

 f1t
...

f1,t−p

+ . . .+ λiq

 fqt
...

fq,t−p


= (λi10, . . . ,λi1p)

 f1t
...

f1,t−p

+ . . .+ (λiq0, . . . ,λiqp)
 fqt

...
fq,t−p

 . (9)

Since this is a sum of matrices, the terms can be combined as the product of a vector of
coefficients and a vector of lagged factors.

λi(L)ft = (λi10, . . . ,λi1p, . . . ,λiq0, . . . ,λiqp)



f1t
...

f1,t−p
...
fqt
...

fq,t−p


. (10)

19See Stock/Watson (2002).
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Within this matrix product, it is possible to reorder the elements freely. Reordering to obtain
the components of Ft in the column vector gives

λi(L)ft = (λi10,λi20, . . . ,λiq0, . . . ,λi1p, . . . ,λiqp)



f1t
f2t
...
fqt
...

f1,t−p
...

fq,t−p


= ΛiFt. (11)

It can now be verified, that Λi = (λi10,λi20, . . . ,λiq0, . . . ,λi1p, . . . ,λiqp), can simply be obtained
from a vertical concatenation of the coefficients λij, which is λi1

...
λiq

 =

 λi10 . . . λi1p
...

. . .
...

λiq0 . . . λiqp

 . (12)

The stacked columns or vectorization of this matrix is simply the transpose of Λi:

Λ0i = vec

 λi1
...
λiq

 . (13)

Since the parameters of the static form of the model are now determined, we can also derive it
for all variables i = 1, . . . ,N . The model can be rewritten as

Xt = ΛFt + εt, (14)

where Xt is the (N × 1) vector of time series at time t and Ft =
¡
f 0t , . . . , f

0
t−p
¢0
as before. The

(N × r) dimensionial matrix of coefficients is defined as Λ = (Λ01, . . . ,Λ0N)0, so equation (2) in
the main text is derived.

B Principal component analysis of the factor model

The goal of principal component analysis is to reduce the dimensionality of a data set comprised
of a large number of interrelated variables, while retaining as much as possible of the variation
present in the data. In our case, the aim is to choose the parameters and factors of the model
Xt = ΛFt + εt in order to maximize the explained variance of the original variables for a given
number of factors r ≤ N . The resulting factors are called the principal components. The (r×1)
dimensional vector of factors Ft is assumed to be a linear combination of the observed data,
Ft = ΨXt where Ψ = (ψ

0
1, . . . ,ψ

0
r)
0 is a (r ×N) matrix of coefficients and ψi = (ψi1, . . . ,ψiN)

for i = 1, . . . , r. The intuitive reasoning behind the specification for the factors is that a linear
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combination of variables exhibiting maximum variation will capture most of the variability in
the original dataset. The variance of the factors is given by

Var(Ft) = E(ΨXtX 0
tΨ

0) = Ψ E(XtX 0
t)Ψ

0 = ΨΩΨ0, (15)

where Ω is the variance covariance matrix of the vector of time series. The maximization of
the variance of the principal components or

max
Ψ
Var(Ft) = ΨΩΨ0 (16)

is subject to the normalization ΨΨ0 = I in order to avoid a solution where Ψ is arbitrarily
large. For the first factor f1t = ψ1Xt, the Lagrangian is ψ1Ωψ

0
1 − γ (ψ1ψ

0
1 − 1) and optimizing

with respect to ψ1 gives the necessary first order conditions Ωψ
0
1 = γψ01 and ψ1ψ

0
1 = 1. The

first condition can be transformed into (Ω− γI)ψ01 = 0 and is equal to an eigenvalue problem.
The two conditions are satisfied only if the ψ1 is the eigenvector of the eigenvalue problem for
the matrix Ω and the eigenvalue γ. Repeating the optimization for all the r largest eigenvalues
and stacking the optimality conditions gives

ΩΨ0 = Ψ0Γ, (17)

where Γ = diag(γ1, . . . , γr) is a diagonal matrix that contains the largest r eigenvalues. It
can then be seen that the solution to the problem given in (16) subject to the normalization
constraint is given by the eigen decomposition of Ω. The desired coefficient matrix Ψ in Ft =
ΨXt consists of the stacked eigenvectors of this eigen decomposition. After premultiplying
by Ψ and applying the normalization ΨΨ0 = I one gets the result ΨΩΨ0 = Γ = Var(Ft),
which is variance of the principal components. Hence, the variance of each factor is equal to its
corresponding eigenvalue. This implies that, for a given number of factors r, the maximization
of the variance of the factors amounts to use the r largest eigenvalues and their corresponding
eigenvectors.
In order to fully estimate the factor model in the main text, we have to determine the

(N × r) coefficients Λ in the model Xt = ΛFt + εt where the factors have been derived in
the steps before. To estimate the coefficient matrix, rewrite the model as X = FΛ0 + ε with
X = (X1, . . . ,XN ) and Xi = (Xi1, . . . ,XiT )

0 for i = 1, . . . , N , and F = (f1, . . . , fr) with
fi = (fi1, . . . , fiT )

0 for i = 1, . . . , r. For given factors, the minimization of the idiosyncratic
component leads to the optimality condition Λ0 = (F 0F )−1 F 0X where F = XΨ0 holds. This
implies

Λ0 = (F 0F )−1 F 0X = (ΨX 0XΨ0)−1ΨX 0X

= (ΨX 0XΨ0)−1ΨX 0X
h
Ψ0Ψ (Ψ0Ψ)−1

i
= Ψ (Ψ0Ψ)−1 , (18)

and premultiplying by Ψ0 and then by Ψ on both sides gives

Ψ0Λ0 = I

ΨΨ0Λ0 = Ψ

Λ0 = Ψ. (19)

From the second to the third line, the normalization ΨΨ0 = I was used. Hence, the coefficient
matrix of the factors is the transpose of the eigenvectors obtained from the maximization
problem. For further details, see Bai/Ng (2002), Forni et al. (2002), and Brillinger (1981),
theorem 9.2.1.
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C Bai/Ng (2002) information criteria

To determine the number of factors in the model described in the main text, Bai/Ng (2002)
suggest the use of information criteria. We report only two criteria out of six which performed
best in the simulations of Bai/Ng (2002):

IC1(r) = ln(V (r, F )) + r

µ
N + T

NT

¶
ln

µ
NT

N + T

¶
, (20)

IC2(r) = ln(V (r, F )) + r

µ
N + T

NT

¶
ln(min {N,T})2. (21)

The information criteria reflect the trade-off between goodness-of-fit on the one hand and
overfitting on the other. The first term on the right hand side shows the goodness-of-fit which
is given by the residual sum of squares

V (r, F ) =
1

NT

NX
i=1

TX
t=1

(Xit − ΛiFt)
2 , (22)

which depends on the estimates of the factors and the number of factors. The residuals are
given by εit = Xit−ΛiFt, where Λi is a (1× q(p+ 1)) dimensional row vector of the parameter
matrix Λ of the static model. If the number of factors r is increased, the variance of the factors
Ft increases, too, and the sum of squared residuals decreases. Hence, the information criteria
have to be minimized in order to determine the number of factors. The penalty of overfitting
in both criteria, g(N, T ), which is the second term on the right hand side, is an increasing
function of the cross-section size N and time series length T . Although both information
criteria share the same asymptotic properties for large N and T , their small sample behaviour
can be different. In comparison with criteria based on alternative penalties, IC1(r) and IC2(r)
perform relatively better and more stable. In empirical applications, one has to fix a maximum
number of factors, say rmax, and estimate the model for all number of factors r = 1, . . . , rmax.
The optimal number of factors minimizes IC1(r) and IC2(r).

D Tests for equal forecast accuracy and forecast encom-
passing

D.1 Diebold/Mariano (1996) test for equal forecast accuracy

Consider two models A and B which produce forecasts of variable y at period t. The forecasts
h periods ahead are conditional on information available in period t− h, so the forecast is the
application of the conditional expectation operator yA,t|t−h and yB,t|t−h for model A and B,
respectively. Calculate a sequence of Tf forecast errors for both models ei,t(h) = yt− yi,t|t−h for
i = A,B and t = 1, . . . , Tf . The Diebold/Mariano (1996) test for equal forecast accuracy is
based on the time series of differences of the squared forecast errors, dt(h) = e2A,t(h)− e2B,t(h).
Under the null hypothesis, the sample mean of dt(h), d(h) = 1

Tf

P
t dt(h), is not significantly
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different from zero. The statistic is defined as

DM(h) =

p
Tf d(h)q

(1/Tf)
P(Tf−1)

τ=−(Tf−1) (h/ (|τ |− h))
PTf

t=|τ |+1
¡
dt(h)− d(h)

¢ ¡
dt−|τ |(h)− d(h)

¢ , (23)
where the denominator includes a heteroscedasticity and autocorrelation consistent estimate of
the variance of dt assuming that the h-step ahead forecast errors are at most (h−1)-dependent.20
The weighting scheme of the autocovariances follows Newey/West (1987). The statistic DM(h)
is standard normal distributed. Harvey et al. (1997) show simulation results that suggest to
use a small sample correction for the statistic DM(h). The modified statistic is defined as
MDM(h) = κDM(h) with κ = T−0.5f

£
Tf + 1− 2h+ T−1f h (h− 1)¤0.5 and its critical values

should be taken from the t(Tf − 1) distribution rather than the normal distribution. The tests
in the main text use this small sample correction.

D.2 Harvey et al. (1998) tests for forecast encompassing

Harvey et al. (1998) modify the tests of equal forecast accuracy to forecast encompassing. The
issue of forecast encompassing can be tested with the simple combination of two rival forecasts

yt = (1− λ) yA,t|t−h + λyB,t|t−h + εt, (24)

where yA,t|t−h and yB,t|t−h are the rival forecasts of the variable yt observed at period t and
εt is the error of the combined forecast.21 The aim is to determine the forecast combination
parameter λ, so the coefficients in the above equation should sum to one. If λ is equal to zero,
then the alternative model has no additional information content and model A encompasses
model B. Hence, the null hypothesis is that model A encompasses model B and λ = 0. The
alternative hypothesis is λ > 0. In order to implement the restriction on both parameters,
define ei,t(h) = yt − yi,t|t−h for i = A,B and t = 1, . . . , Tf . We can rewrite the combination
equation as

e1,t(h) = λ (e1,t(h)− e2,t(h)) + εt, (25)

simply after inserting the definition for the error. In this equation, the parameter λ can be
estimated using OLS which is the basis of the Harvey et al. statistic. Harvey et al. (1998)
define dt(h) =

¡
e2A,t(h)− e2B,t(h)

¢
e2A,t(h), and construct the mean d(h) =

1
Tf

P
t dt(h) and its

variance as in the Diebold/Mariano (1996) test before. Hence, the test statistic HLN(h) for
forecast encompassing is equal to the statistic DM(h) except that dt(h) is different. Again, we
use a small sample correction proposed by Harvey et al. (1998).

E Specifications of empirical models

To specify the lag orders of the different models, we use a variety of parameter combinations to
identify that specification that minimizes the mean square error. This strategy follows Forni et

20See Diebold/Mariano (1996), p. 254.
21See Clements/Hendry (1998), p. 228 or Harvey et al. (1998), p. 254.
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al. (2002) who estimate their models over a broad range of parameters and choose coefficient
combinations which minimize a forecast error criterion. The models with these parameter values
yield a minimal value of the mean square forecast error. This mean square error is thus the
best forecasting performance obtainable, at the horizon h, via the dynamic forecast procedure
based on each of the models. The following table gives the order of the key parameters.22

Table 4: Specifications

Number of parameters
Model Parameter description at horizon...

1 2 3 4 5 6 7 8
dynamic factor model number of dynamic factors 2 1 1 1 1 1 1 1

number of AR lags 2 1 0 1 1 0 3 3
number of lags of each factor 1 2 1 0 0 0 0 0

ifo climate number of AR lags 1 1 1 0 0 0 0 0
number of lags of indicator 1 1 3 2 0 0 0 0

VAR model number of VAR lags 0 0 0 0 0 0 0 1
AR model number of AR lags 0 0 2 3 2 0 0 0

Notes: The table shows the parameter combinations of each model for various
forecast horizons. The underlying dynamic equation behind each model is yt+h =
αp(L)yt+βq(L)Dt+εt. Hence, lag order of zero implies that only the contamporary
values of yt or Dt enter the equation. A lag order p > 0 or q > 0 means that p or q
lags and the contemporary value enter the equation.

The table shows the number of lags of the factors, external indicators and autoregressive
lags of the models. Although the models vary somewhat for the different forecast horizons,
the effects of choosing one model specification for all horizons changes the empirical results
only slightly. The forecasting performance differs only gradually for alternative combination of
lags. In addition to the specification selection described above, we compared models with the
same specification for each forecast horizon. The empirical results were essentially the same.
Again, the factor model outperformed its competitors according to its relative mean square
error compared with the autoregressive model.

F German data set

This appendix describes the panel of time series for the German economy. To have a balanced
and as exhaustive as possible representation of the German economy, we include a huge variety
of variables. Because GDP is the reference series, all time series are quarterly or transformed
via averaging into quarterly series. Moreover, natural logarithms were taken for all time series
except interest rates, unemployment ratios, and capacity utilization. Stationarity was obtained

22The static factor model of Bai/Ng (2002) is estimated with five static factors which were determined
according to both information criteria described in appendix C.
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via first differencing if necessary. Outlier correction was done using TRAMO, seasonal fluctua-
tions were eliminated using Census-X12 if necessary. To eliminate scale effects, the series were
centered around zero mean and standardized to have unit variance.
Time series for unified Germany are available only for the time period after 1991. We have

therefore combined time series of West Germany and unified Germany after having rescaled
the West German data to the unified German time series. Moreover, the Western Germany
series are not measured according to the ESA 95 (European System of National Accounts),
and it was necessary to rebase these series before joining them to the unified Germany data.
Preliminary stability tests, where the factor model described in the main text was estimated in
recursive manner, showed that there were no structural breaks left in the underlying data set.
The combination scheme is equal to the method used by the ECB to provide long time series
of monetary aggregates.23

The whole data set for Germany contains 121 quarterly series, over the sample period
1978:2-2002:1. The sources of the time series are the HWWA time series database for the
majority of time series of unified Germany, the National Accounts database of the Federal
German Statistical Office, the Bundesbank database for labour market and interest rates, the
DIW database for the gross value added time series, and Datastream.

Use of GDP and gross value added
1. Gross domestic product

2. Private consumption expenditure

3. Government consumption expenditure

4. Gross fixed capital formation: machinery & equipment

5. Construction

6. Exports

7. Imports

8. Gross value added: Mining and fishery

9. Gross value added: Producing sector excluding construction

10. Gross value added: Construction

11. Gross value added: Wholesale and retail trade, restaurants, hotels and transport

12. Gross value added: Financing and rents

13. Gross value added: Services

Prices
1. Consumer price index

2. Export prices

3. Import prices

4. Terms of trade

23See also Scharnagl (1998) or Bandholz/Funke (2002).
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5. Deflator of GDP

6. Deflator of private consumption expenditure

7. Deflator of government consumption expenditure

8. Deflator of machinery & equipment

9. Deflator of construction

Manufacturing turnover, production and received orders
1. Domestic turnover industry

2. Domestic turnover intermediate goods industry

3. Domestic turnover capital goods industry

4. Domestic turnover durable and non-durable consumer goods industry

5. Domestic turnover mechanical engineering

6. Domestic turnover electrical engineering

7. Domestic turnover vehicle engineering

8. Export turnover industry

9. Export turnover intermediate goods industry

10. Export turnover capital goods industry

11. Export turnover durable and non-durable consumer goods industry

12. Export turnover mechanical engineering

13. Export turnover electrical engineering

14. Export turnover vehicle engineering

15. Production industry

16. Production intermediate goods industry

17. Production capital goods industry

18. Production durable and non-durable consumer goods industry

19. Production mechanical engineering

20. Production electrical engineering

21. Production vehicle engineering

22. Orders received by the industry from the domestic market

23. Orders received by the intermediate goods industry from the domestic market

24. Orders received by the capital goods industry from the domestic market

25. Orders received by the durable and non-durable consumer goods industry from the domestic market

26. Orders received by the mechanical engineering from the domestic market

27. Orders received by the electrical engineering from the domestic market

28. Orders received by the vehicle engineering from the domestic market

29. Orders received by the industry from abroad

30. Orders received by the intermediate goods industry from abroad
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31. Orders received by the capital goods industry from abroad

32. Orders received by the durable and non-durable consumer goods industry from abroad

33. Orders received by the mechanical engineering from abroad

34. Orders received by the electrical engineering from abroad

35. Orders received by the vehicle engineering from abroad

Construction
1. Production of construction sector

2. Orders received by the construction sector

3. Orders received by the construction sector: Building construction

4. Orders received by the construction sector: Residential building

5. Orders received by the construction sector: Non-residential building construction

6. Orders received by the construction sector: Civil engineering

7. Orders received by the construction sector: Road construction

8. Orders received by the construction sector: Rest, industrial, and governmental civil engineering excluding
roads

9. Man-hours worked: Building construction

10. Man-hours worked: Civil engineering

11. Man-hours worked: Residential building

12. Man-hours worked: Industrial building

13. Man-hours worked: Public building

14. Turnover: Building construction

15. Turnover: Civil engineering

16. Turnover: Residential building

17. Turnover: Industrial building

18. Turnover: Public building

Surveys
1. Business situation manufacturing

2. Assessment of stocks manufacturing

3. Business expectations next six months manufacturing

4. Capacity utilization manufacturing

5. Business situation capital goods producers

6. Assessment of stocks capital goods producers

7. Business expectations next six months capital goods producers

8. Capacity utilization capital goods producers

9. Business situation basic & producer goods

10. Assessment of stocks basic & producer goods
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11. Business expectations next six months basic & producer goods

12. Business situation producers non-durable consumption goods

13. Assessment of stocks producers non-durable consumption goods

14. Business expectations next six months producers non-durable consumption goods

15. Capacity utilization producers non-durable consumption goods

16. Business situation foodstuff & tobacco producers

17. Assessment of stocks foodstuff & tobacco producers

18. Business expectations next six months foodstuff & tobacco producers

19. Capacity utilization foodstuff & tobacco producers

20. Business situation retail trade

21. Assessment of stocks retail trade

22. Business expectations next six months retail trade

23. Business situation construction

24. Business expectations next six months construction

25. Capacity utilization construction

Labour market
1. Short-term employed

2. Vacancies

3. Unemployment, level

4. Unemployment rate, as percent of labour force

5. Productivity per employee

6. Productivity per hour

7. Wages and salaries per employee

8. Wages and salaries per hour

9. Employees (residence concept)

10. Unemployment, level, male

11. Unemployment rate, male

12. Unemployment, level, female

13. Unemployment rate, female

Interest rates
1. Money market rate, overnight deposits

2. Money market rate, 3 months deposits

3. Bond yields on public and non-public long term bonds with average rest maturity from 1 to 2 years

4. Bond yields on public and non-public long term bonds with average rest maturity from 9 to 10 years

5. Yield spread: Average 9 to 10 year bond yields minus 3 month deposit rate
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Miscellaneous indicators
1. New car registrations

2. Current account: External trade

3. Current account: Services
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