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Using the Dynamic Bi-Factor Model with Markov
Switching to Predict the Cyclical Turns in the Large

European Economies

Konstantin A. Kholodilin∗

January 31, 2006

Abstract

The appropriately selected leading indicators can substantially im-
prove the forecasting of the peaks and troughs of the business cycle.
Using the novel methodology of the dynamic bi-factor model with
Markov switching and the data for three largest European economies
(France, Germany, and UK) we construct composite leading indica-
tor (CLI) and composite coincident indicator (CCI) as well as corre-
sponding recession probabilities. We estimate also a rival model of
the Markov-switching VAR in order to see, which of the two models
brings better outcomes. The recession dates derived from these mod-
els are compared to three reference chronologies: those of OECD and
ECRI (growth cycles) and those obtained with quarterly Bry-Boschan
procedure (classical cycles). Dynamic bi-factor model and MSVAR
appear to predict the cyclical turning points equally well without sys-
tematic superiority of one model over another.

Keywords: Forecasting turning points; composite coincident indica-
tor; composite leading indicator; dynamic bi-factor model; Markov
switching
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1 Introduction

The aim of this paper is to detect and forecast the turning points of the
business cycles in the largest European economies during the last fifteen
— twenty years. After the World War II the absolute declines in the output,
which are a characteristic attribute of the classical cycle, had become rather
a rare event. Instead, the business cycle researchers have concentrated on
what is used to be called the growth cycles. The recessionary phases of the
growth cycles are characterized by a deceleration of the growth rates and
not necessarily by the decreases in the level of output. Therefore today
the growth cycles are a much more common phenomenon than the clas-
sical cycles. The fact that the former are a typical feature of the contem-
porary economy and that swings of the business cycle affect the welfare
of virtually all economic agents makes them an object of a vivid interest
of the businessmen, policymakers, and even consumers. The prediction
of troughs and peaks of the growth cycles, thus, is not only a purely aca-
demic exercise but is a matter of practical importance.

Now, what are the defining features of the business cycle? Burns and
Mitchell (1946) defined business cycles as recurrent sequences of cumu-
lative expansions and contractions diffused over a multitude of economic
processes. Diebold and Rudebusch (1996) later translated these two key
features into the modern economic language using the following terms:
co-movements among many macroeconomic indicators and asymmetry
between the cyclical phases. It is true that Burns and Mitchell (1946) were
having in mind rather the classical cycle, since their work is based mainly
on the data covering the first half on the 20th century, when the classi-
cal cycles were taking place. Nevertheless, the two above mentioned at-
tributes are equally applicable to the growth cycle. We may also hope
that by constructing a statistical model of the business cycle, which shares
these features, one can achieve an improvement in its forecasting abilities.

Both features can be jointly analyzed within a single model thanks to the
contributions of Stock and Watson (1991), who re-introduced the dynamic
factor model in the econometric research, and Hamilton (1989), who pro-
posed a model with Markov-switching dynamics. The resulting dynamic
single-factor model with Markov switching was suggested by Kim (1994)
and Kim and Yoo (1995) and implemented for the first time by Chauvet
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(1998). It permits simultaneously capturing the co-movement and the
cyclical asymmetry. This model has become already quite a standard tool
of analyzing the business cycle. It has been successfully applied to the
U.S. data by Chauvet (1998) and Kim and Nelson (1999), to the data of
several European economies by Kaufmann (2000), to the Brazilian data by
Chauvet (2002), to the Japanese data by Watanabe (2003), and to the Polish
and Hungarian data by Bandholz (2005). The first such a model for Ger-
many was estimated by Bandholz and Funke (2003), although with only
two component series, which raises a question of its identifiability.

The first attempt, as far as we know, to build a dynamic bi-factor model
with Markov switching, in which the CLI and CCI are estimated simul-
taneously, was undertaken in Kholodilin (2001) and Kholodilin and Yao
(2005). Using this model the turning points can be measured and pre-
dicted simultaneously and in a more timely manner. Kholodilin (2001) and
Kholodilin and Yao (2005) applied the model to the U.S. data, whereas this
paper deals with the data of the three large European economies: France,
Germany, and United Kingdom.

The paper is organized as follows. In section 2 a dynamic bi-factor model
with Markov-switching is set up. Section 3 describes the data and the tech-
nique employed to select the appropriate component series of CLI and CCI
as well as the results of estimation of the models presented in section 2. In
section 4 the results of the in-sample prediction are evaluated. In the last
section the conclusions are drawn.

2 Model

The dynamic factor model decomposes the dynamics of a group of ob-
served time series into two unobserved sources of fluctuations: (1) the
common factor or factors, which are common to all the component series
or to the particular subgroups of them; (2) the specific, or idiosyncratic,
factors — one per each observed series. In fact, the specific factors ”ex-
plain” the remaining variation, which is left after the common factors were
extracted.

The non-linear dynamic factor models, e.g. the model with Markov switch-
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ing or with smooth transition autoregressive dynamics (see Kholodilin
(2002)), in addition, take into account the possible asymmetries arising in
the different states, or regimes. Here by the state we mean the phases of
business cycle.

Moreover, the parametric dynamic factor models explicitly specify the dy-
namics of the latent (unobserved) factors. In the model examined in this
paper both common and specific factors are modelled as autoregressive
(AR) processes.

In the dynamic bi-factor model the set of the n observed variables is split
in two disjoint subsets: nCLI leading and nCCI coincident indicators (n =
nCLI + nCCI). The common dynamics of the time series belonging to each
group are explained by a single common factor: CLI for the first group
and CCI for the second group.

Thus, the complete dynamic bi-factor model with Markov switching can
be written as a system of the three equations, where the first equation de-
composes the observed dynamics into a sum of common and idiosyncratic
factors and the last two equations specify the ”law of motion” of the latent
common and specific factors.

The decomposition of the observed dynamics:

∆yCLI
t = ΓCLI∆fCLI

t + ∆uCLI
t

∆yCCI
t = ΓCCI∆fCCI

t + ∆uCCI
t

(1)

The dynamics of common factors:

(
∆fCLI

t

∆fCCI
t

)
=

(
µCLI(sCLI

t )
µCCI(sCCI

t )

)
+

(
φ1.11 φ1.12

φ1.21 φ1.22

)(
∆fCLI

t−1

∆fCCI
t−1

)
+

. . . +

(
φl.11 φl.12

φl.21 φl.22

) (
∆fCLI

t−l

∆fCCI
t−l

)
+

(
εCLI

t

εCCI
t

)
(2)

The dynamics of idiosyncratic factors:
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(
∆uCLI

t

∆uCCI
t

)
=

(
ΨCLI

1 OnCLI×nCCI

OnCCI×nCLI
ΨCCI

1

) (
∆uCLI

t−1

∆uCCI
t−1

)
+

. . . +

(
ΨCLI

m OnCLI×nCCI

OnCCI×nCLI
ΨCCI

m

)(
∆uCLI

t−l

∆uCCI
t−l

)
+

(
ηCLI

t

ηCCI
t

)
(3)

where ∆yCLI
t and ∆yCCI

t are the nCLI × 1 and nCCI × 1 vectors of the first
differences of logarithms of the observed leading and coincident variables
in the first differences; ∆fCLI

t and ∆fCCI
t are the latent common factors in

the first differences; ∆uCLI
t and ∆uCCI

t are the nCLI×1 and nCCI×1 vectors
of the growth rates of latent specific factors; εCLI

t and εCCI
t are the distur-

bances of the common factors, whereas ηCLI
t and ηCCI

t are the nCLI × 1 and
nCCI × 1 vectors of disturbances of the specific factors. ΓCLI and ΓCCI are
the nCLI × 1 and nCCI × 1 vectors of factor loadings linking the observed
series to the common factors. µCLI(sCLI

t ) and µCCI(sCCI
t ) are the state-

dependent intercepts of CLI and CCI. φi are the autoregressive coefficients
of common factors; and ΨCLI

i and ΨCCI
i are the matrices of the autoregres-

sive coefficients of the idiosyncratic factors. On and On×m are n× 1 vector
and n×m matrix of zeros, correspondingly. Finally, sCLI

t and sCCI
t are the

unobserved state variables following a first-order Markov chain process,
which is summarized by the transition probabilities matrix, whose char-
acteristic element is pij = prob(st = j|st−1 = i), that is, the probability of
being today in regime j given that yesterday’s regime was i.

In the two-regime (expansion-recession, or high-low growth rate) case a
state variable st is binary. Depending on the regime, the common factor’s
intercept assumes different values: low in contractions and high in expan-
sions. Thus, the common factors grow faster during the upswings and
slower (or even decline) during the downswings of the economy.

The dynamic bi-factor model with Markov switching described above is
based on the following assumptions:

• The common factors’ disturbances, εt = (εCLI
t |εCCI

t )′, and the specific fac-
tors’ disturbances, ηt = (ηCLI

t |ηCCI
t )′, are mutually and serially uncorre-

lated:

(
εt

ηt

)
∼ NID

((
0
0

)
,

(
Σ(st) O2×n

On×2 Ω

))
(4)
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where Σ(st) is the diagonal 2 × 2 variance-covariance matrix of common
factors, with the common factor residual variances on the main diagonal,
σ2

CLI(st) and σ2
CCI(st), which may be state dependent; Ω is the diagonal

n× n variance-covariance matrix of the idiosyncratic disturbances.

• There is no Granger causality between the common factors: φi.12 = φi.21 =
0 ∀i ∈ [1, l]. This restriction together with the previous assumption
imply that the only way the CLI is linked to the CCI is through the
intercept, when the state variables of both common factors are inter-
dependent. There can also exist a relationship between the volatil-
ities of two common factors when their residual variances are state
dependent and their state variables are related. In principle, this as-
sumption can be relaxed without changing much the outcomes of
the model. Here it is used only for the sake of parsimony.

• This assumption specifies the state variable dynamics. In fact, we can
consider three cases:

(a) there is a single state variable, st, such that sCLI
t = sCCI

t , in other
words, the non-linear dynamics of the common factors are iden-
tical;

(b) sCLI
t and sCCI

t are completely independent;
(c) sCLI

t and sCCI
t are neither identical as in (a) nor independent as

in (b) but interdependent.

Now let us consider in more detail the specification of the Markov switch-
ing in the non-linear dynamic bi-factor model under inspection. In the
case (a) above there is only one state variable and it all boils down to the
standard two-regime Markov switching model as in Hamilton (1989). The
transition probabilities matrix then looks like:

π =

(
p11 1− p11

1− p22 p22

)
(5)

In the cases (b) and (c) there are two state variables: one per each common
factor. This means that each composite indicator has its own recessions
and expansions. Therefore to describe the whole process, a compound
state variable, comprising both sCLI

t and sCCI
t , should be constructed as it

is done in Phillips (1991). This compound variable will have four different
states:
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Composite state variable st = 1 st = 2 st = 3 st = 4

Leading state variable sCLI
t = 1 sCLI

t = 2 sCLI
t = 1 sCLI

t = 2
↑ ↓ ↑ ↓

Coincident state variable sCCI
t = 1 sCCI

t = 1 sCCI
t = 2 sCCI

t = 2
↑ ↑ ↓ ↓

where the arrows show whether the economy goes up (expansion) or down
(recession).

The dimension of the transition probabilities matrix is then 4 × 4 and its
structure depends on which of the cases is assumed: (b) or (c). In the
case (b), when both state variables are independent, the transition prob-
abilities matrix of the compound state variable is a Kronecker product
of the transition probabilities matrices of the individual state variables:
π = πCLI ⊗ πCCI . This is equivalent to:

π =

0BB@ pCLI
11 pCCI

11 pCLI
11 (1− pCCI

11 ) (1− pCLI
11 )pCCI

11 (1− pCLI
11 )(1− pCCI

11 )
pCLI
11 (1− pCCI

22 ) pCLI
11 pCCI

22 (1− pCLI
11 )(1− pCCI

22 ) (1− pCLI
11 )pCCI

22
(1− pCLI

22 )pCCI
11 (1− pCLI

22 )(1− pCCI
11 ) pCLI

22 pCCI
11 pCLI

22 (1− pCCI
11 )

(1− pCLI
22 )(1− pCCI

22 ) (1− pCLI
22 )pCCI

22 pCLI
22 (1− pCCI

22 ) pCLI
22 pCCI

22

1CCA
(6)

Under the hypothesis (c) the two individual state variables are assumed
to be interrelated in the sense that the CLI is supposed to enter the re-
cessions (expansions) several periods earlier than the CCI. This is a kind
of intermediate case between completely independent and identical state
variables corresponding to CLI and CCI.

As Phillips (1991) remarks, the model with an integer lag exceeding one
period would require a Markov process with the order higher than 1.
However, the real-valued (positive) lag can be modelled with a first-order
Markov process by constructing the following transition probabilities ma-
trix:

π =




p11 1− p11 0 0
0 1− 1

A 0 1
A

1
B 0 1− 1

B 0
0 0 1− p22 p22


 (7)

where A and B are the expected leads in the recession and expansion, cor-
respondingly. For example, the expected lead of CLI with respect to CCI
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when entering the low-growth regime (st = 2) is obtained as:

A = p(st = 4|st−1 = 2) + 2p(st = 4|st−1 = 2)p(st = 2|st−1 = 2) + 3p(st = 4|st−1 = 2)p(st = 2|st−1 = 2)2 + . . .
A = (1− p(st = 2|st−1 = 2)) + 2(1− p(st = 2|st−1 = 2))p(st = 2|st−1 = 2) + 3(1− p(st = 2|st−1 = 2))p(st = 2|st−1 = 2)2 + . . .
A = (1− p(st = 2|st−1 = 2))

P∞
k=0 kp(st = 2|st−1 = 2)k−1

A = (1− p(st = 2|st−1 = 2)) 1
1−p(st=2|st−1=2)2

A = 1
1−p(st=2|st−1=2)

(8)

We are going to examine three models corresponding to the three above
stated cases. By comparing these models one can test the underlying hy-
potheses. Model (c) is an unrestricted version of model (a). Thus, by im-
posing restrictions on the parameters A and B one can test the hypothesis
of identical versus interdependent with lead non-linear cyclical dynam-
ics, for example, using the Likelihood-ratio test. The null of identical state
variable implies that A = B = 1. The formal testing of (a) versus (b) or
(c) versus (b) is a more complicated enterprise. Under the null of identical
or interdependent state variable the second state variable is not identified.
It means that we are confronting the famous nuisance parameter problem
similar, for instance, to testing the hypothesis of two regimes versus three
regimes.

In order to estimate the above dynamic factor models with Markov switch-
ing, the linear part of the model is cast into the state-space form using
the Kalman filter, whereas the Markov-switching part of the model is ex-
pressed using the Hamilton filter. The estimations are carried out with the
maximum likelihood method.

3 Data and Estimation

The component series of both CLI and CCI for the three large European
economies were taken from the various official publicly available sources
like the data bases of central banks and statistical offices. The selection of
the component series was based entirely on the empirical criteria. No eco-
nomic theory has guided our choice. The following selection procedure
was employed.

The first step was to determine the leading and coincident time series. The
leading series are those with peaks and troughs occurring earlier than

7



the peaks and troughs of some reference series. Therefore their cross-
correlation with the reference series is highest when they are shifted back-
wards. The coincident series have peaks and troughs coinciding with
those of the reference series. Hence their cross-correlation with the ref-
erence series achieves its maximum at zero lag. As reference coincident
series the index of industrial production was used. In many studies it is
treated as a monthly proxy for the GDP, despite the fact that in the modern
economy it accounts for less than a half of the whole output.

The second step has to do with the requirement that the components of a
composite indicator should be high enough but not too much correlated
among themselves. It is important to avoid collinearity of the components.
Therefore a kind of cluster analysis is needed to identify the groups of in-
dicators with common dynamics.

The technique applied here is alike to the tree clustering, or joining1. As a
distance measure the absolute value of contemporaneous cross-correlation
is used. Shortly the algorithm runs as follows. For the whole data set
a cross-correlation matrix is computed. Then a pair of variables having
the highest absolute value of correlation is searched and united in a single
group. Graphically it means that they are drawn as two subbranches of
one branch. From these two variables a new variable is constructed as a
simple mean. All the variables are initially standardized and hence have
equal unit variances. The new variable replaces the old ones in the data
set. For this new data set the correlation matrix is again estimated. The
cycle repeats until all there remains only one variable in the data set, that
is, the average of all the time series.

An example of such a tree can be seen on Figure 1. Three major groups
of indicators are easily distinguishable there. The first group includes the
financial indicators (stock exchange index FTSE100, interest rates AJRP,
AJLX and Spread, currency exchange rates AUSS and THAP) as well as the
real economy indicators (industrial production CKYW, number of prop-
erty transactions FTAQ, and total passenger car production FFAO). The
second group includes mostly the business survey indicators (various Eu-
ropean commission economic sentiment indicators BS-CONS, BS-INDU,

1For more details on cluster analysis see Everitt et al. (2001).
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BS-UK-ESI, and so on, CBI industrial trends survey ETCU and ETDQ,
retail sales index EAPS, and average earnings index LNMQ). The third
group consist of a mix of money market indicators (money stock M4 AUYN)
and labor market indicators (employment in manufacturing YEJA, total
unemployment rate MGSX) and two other series.

Combining both the leading-coincident analysis and clustering we have
identified the components of the CLI and CCI. The former are mainly the
business survey indicators, whereas the latter are the real sector indicators
like industrial production and retail trade. The complete list of component
series for the UK see in Table 3.

The component series employed in this study are listed and shortly de-
scribed in Tables 1 through 3 of Appendix.

All the series are tested for unit roots using the augmented Dickey-Fuller
test. Each series is tested for random walk with drift and deterministic
trend, random walk with drift, and random walk only. It turns out that
all the series have unit root. All the series are also tested for cointegration.
The cointegration between the leading as well as between the coincident
series was detected. As in Stock and Watson (1991) and Kim and Nelson
(1999), the first differences of the logarithms of the original time series are
taken and then demeaned and standardized.

For each country we estimated two separate dynamic single-factor mod-
els for CLI and CCI (with linear and Markov-switching dynamics) cor-
responding to the hypotheses (b) and a dynamic bi-factor model with
Markov-switching corresponding to the hypothesis (c) presented in the
previous section. Recall that these hypotheses are defined by the follow-
ing equations:

(a) Hypothesis of identical Markov-switching dynamics of CLI and CCI
— equations (1) – (4) and (5). The model, in which CLI and CCI enter
the recessions and expansions simultaneously, without any leads.

(b) Hypothesis of independent Markov-switching dynamics of CLI and
CCI — equations (1) – (4) and (6). This model can be alternatively
estimated as two separate dynamic single-factor models with two-
regime switching based on coincident and leading indicators corre-
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spondingly. Each of the separate dynamic single-factor models is
identical to that of Chauvet (1998) and Kim and Nelson (1998).

(c) Hypothesis of interdependent Markov-switching dynamics of CLI
and CCI — equations (1) – (4) and (7). A dynamic bi-factor model
with interdependent cyclical dynamics that results in four-regime
switching: two regimes for the leading indicator and two regimes
for the coincident indicator. The composite leading factor (or CLI)
switches between its regimes earlier than the composite coincident
indicator (or CCI).

We determined the lag structure by balancing two requirements: on the
one hand, our composite indicators should have some dynamics, that is,
the lag order must be higher than zero; on the other hand, due to the
short sample the lag order cannot be too high. Therefore both the com-
mon and idiosyncratic factors are specified as AR(1). For the identification
purposes, the first loading factor in all the models is normalized to 1.

The parameter estimates and their standard errors corresponding to single-
factor models of CLI and CCI and to bi-factor models are reported in Ta-
bles 4 through 6. Both MS models of composite leading and coincident
indicators clearly distinguish between two regimes of positive and nega-
tive growth rates.

The estimates of the non-switching parameters of the linear and Markov-
switching models do not differ very much.

In the French and German case ∆CLI has a high positive autoregressive
coefficient varying for different models in the interval between 0.693 and
0.823 for France and between 0.462 and 0.752 for Germany, whereas ∆CCI
has a negative, not always significant autoregressive coefficient varying
between -0.467 and -0.358 for France and between -0.228 and -0.131 for
Germany. Correspondingly, as one can see on Figures 5 and 9, which
compare the levels2 of the French and German composite indicators es-
timated from the single- and bi-factor models, the CLI’s profile is much
smoother than that of CCI. In the case of UK autoregressive coefficients of

2The levels of CLI and CCI are constructed as cumulated sums of their estimated first
differences. For example, CLIt = CLIt−1 + ∆CLIt.
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both ∆CLI and ∆CCI are not significantly different from zero suggesting
that the common factors are not persistent. Hence, as can be seen on Fig-
ure 13, the profiles of British CLI and CCI are not so smooth.

Factor loadings are positive and in most cases significant. The values of
the factor loadings are as a rule close to one and their dispersion is not very
high which is an indirect indicator of the approximately equal weights of
the components. Therefore no single component is overinfluencing any
composite indicator.

Under the bi-factor model with Markov switching the expected lead times
of CLI over CCI in recessions and expansions, A and B, can be computed.
For France the expected lead in recessions is about 4 months and expected
lead in expansions is 1 month, for Germany both these leads are roughly
equal to 3 months, whereas for the UK the lead in recessions is approxi-
mately 1 month and lead in expansions is roughly 3 months.

For the French CLI estimated as a single-factor model with Markov switch-
ing the transition probability of being today in expansion given that yes-
terday was expansion, p11 = 0.879, is slightly lower than the transition
probability of being today in recession given that yesterday was recession,
p22 = 1 − p12 = 0.898, implying that the expected duration of expansions
is approximately equal to 8 months and is lower than the expected dura-
tion of recessions, which is about 10 months. For Germany the expected
durations of expansions and recessions of CLI are 12 and 4 months and
for the UK these are 10 and 5 months respectively. The expected duration
of the recessions of German and British CLIs are thus a bit too short. The
estimates of the dynamic single-factor model with Markov switching for
CCI (see Tables 4–6) imply that the expected duration of the expansions of
French CCI is about 31 months and that of recessions is 15 months. The
expected duration of the expansions and recessions of German CCI are 53
months and 8 months correspondingly, whereas the expected durations
of expansions and recessions of the British CCI are 59 and 20 months re-
spectively. Finally, according to the dynamic bi-factor model with Markov
switching that corresponds to the hypothesis (c), the expected durations
of expansions and recessions for France are 11 months both; the expected
duration of expansions of German cycle is 17 months and the expected
duration of recessions is about 4 months, while the expected durations of
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expansions and recessions for the UK are 13 and 10 months respectively.

We can also test which of the two hypotheses, (a) or (c), fits the data
best. For these two models the comparison the likelihood ratio test can
be accomplished. The critical value of the test statistic with two degrees
of freedom and significance level of 1% is equal to LR0.01(2) = 9.21, at
5% it is LR0.05(2) = 5.99, and at 10% it is LR0.10(2) = 4.61. For France
the test statistic is LR = 2 × (LRc − LRa) = 2 × (−1592.6 + 1594.6) = 4,
for Germany it is LR = 2 × (−1592.6 + 1594.6) = 37.4, and for UK it is
LR = 2 × (−1817.7 + 1820.2) = 5. Therefore the null hypothesis of equal
goodness of fit of models (a) and (c) is rejected for Germany and UK and
accepted for France, implying that in case of Germany and UK the model
with identical Markov-switching dynamics fits data worse than the model
with the CLI leading the CCI.

4 In-Sample Evaluation

Unlike for the USA, we do not have any generally accepted business cycle
chronology for France, Germany, and UK. Among the few available alter-
native chronologies we chose two, to which the recession probabilities of
our non-linear models will be compared, namely the reference cycle dates
determined and published by the Organization for Economic Cooperation
and Development (OECD) and by the Economic Cycle Research Institute
(ECRI). The OECD’s and ECRI’s chronologies for the three countries are
reported in Table 7.

The third chronology we use here is based on the quarterly version of the
Bry-Boschan dating technique, which was suggested in Harding and Pa-
gan (2002). This chronology is obtained for the quarterly GDP data and
is represented in the last two columns of Table 7. For the analysis of the
forecasting accuracy the quarterly dating is transformed into the monthly
one: if in the quarterly chronology a quarter is recessionary (expansionary)
then in the monthly chronology all the months belonging to this quarter
are treated as recessionary (expansionary).

All these chronologies are plotted against the levels and year-on-year rates
of the real GDP in Figures 2–4. The BBQ chronology is supposed to reflect
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the classical business cycle and hence it is compared to the level of the
GDP. The other two chronologies are more likely to describe the growth
cycle and therefore they are superimposed on the annual growth rates, or
fourth-order differences of logs of the GDP.

Over the last 15 years the OECD detects five recessions for France, four
recessions for Germany, and three recessions for the UK. At the same time
ECRI finds three recessions for France, four recessions for Germany, and
four recessions for the UK.

The profiles of the French, German, and British CLI and CCI estimated
from the dynamic single- and bi-factor models with and without Markov
switching are plotted in Figures 5–13. The upper panels show the profiles
of the composite indicators estimated with linear models, whereas the bot-
tom panels depict the profiles of the CLI and CCI obtained with dynamic
bi-factor models with Markov switching. It can be seen that the CLI has
often the peaks and troughs that precede those of the CCI. This is espe-
cially true for Germany — see Figure 9.

The filtered and smoothed conditional probabilities of recessions corre-
sponding to the Markov-switching dynamic factor models examined here
are plotted in Figures 6–8 for France, Figures 10–12 for Germany, and Fig-
ures 14–16 for the United Kingdom. The top panels show the conditional
recession probabilities for the dynamic single-factor models, whereas the
conditional recession probabilities derived from the dynamic bi-factor model
are shown on the bottom panel of each figure. The bold continuous lines
correspond to the low-state probabilities of CLI, while the dashed lines to
those of CCI. The shaded areas represent the recessionary phases of the
corresponding reference chronology. In the bi-factor models with interde-
pendent Markov-switching dynamics (two state variables), there are four
regimes: two for the CLI and two for the CCI. The recession probabili-
ties of the CLI are computed as the sum of the conditional probabilities of
regimes 2 and 4 (”low leading factor and high coincident factor” and ”low
leading factor and low coincident factor”), while CCI’s recession proba-
bilities are the sum of the probabilities of regimes 3 and 4. The recession
probabilities stemming from the two models — (b) and (c) — are very dif-
ferent.
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Under the hypothesis of the independent cycles of CLI and CCI (model
(b)), the conditional recession probabilities of CLI are quite volatile even
after smoothing — see the upper panels of Figures 6–14. For France — Fig-
ure 6 — the CLI’s recession probabilities signal six recessions (two of them
in 2001–2002 are so close to each other that can be merged into a single
recession). All of them fall into the shaded regions, the second, third, and
fourth model-derived recessions significantly lead the OECD’s recessions.
French CCI has only two recessions: one in the beginning of sample and
another, longer one, in the end of it. They seem to start and end in accor-
dance with the chronology of the OECD. For Germany — Figure 10 — five
model-derived recessions of CLI can be observed. All of them belong to
the shaded areas of the OECD’s dating. The CCI’s conditional recession
probabilities give only two signals of downswings: in 1992 and in 2001.
The second signal is rather weak being lower than 0.5. For UK — Fig-
ure 14 — the dynamic single-factor model of CLI detects two recessions
coinciding with the first two recessions of OECD and three rather short-
lived recessions in the end of the sample that fall into the shaded area. The
model of British CCI allows detecting only two recessions: one long in the
beginning and another shorter in the end of the sample. Both lag behind
the model-derived recessions of CLI.

The picture changes substantially when model (c) is considered. The cor-
responding conditional recession probabilities can be seen on the bottom
panels of Figures 6–14. In the case of France the probabilities of the low
state of CLI became smoother, whereas those of CCI have undergone sig-
nificant changes: there are six model-derived recession of CCI now that
begin and finish later than the recession probabilities of CLI. One can see
that the delay is longer at the beginning of recessions and shorter at the be-
ginning of expansions, which perfectly accords with the values of the pa-
rameters A and B reported in Table 4 and discussed above. In the case of
Germany the conditional recession probabilities of CLI underwent rather
minor change. By contrast, the recession probabilities of CCI started re-
sembling those of CLI with a clearly visible lag. Now both CLI and CCI
signal five recessions. In the case of UK both the recession probabilities
of CLI and CCI have been modified. The former now have eight peaks
exceeding 0.5 margin but only six of them remain above 0.5 for a long
enough time. The conditional recession probabilities of CCI under model
(c) resemble those of CLI with a little lag, which is bigger when the shifts
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from low- to high-state take place.

When the predicted reference chronology is known, the above comparison
of the in-sample forecasting performance can be formalized using some
criterion that measures the difference between the reference chronology
and the model-derived dating. For this purpose we use the Quadratic
Probability Score (QPS) proposed in Brier (1950), which is based on prob-
abilities derived from each model. Let Pt be the conditional probability
that the economy is in recession, estimated from the model; let Rt be a
binary reference chronology (1 if recession, 0 otherwise), and the slightly
modified version of QPS is given by:

QPS =
1

T− | τ |
T−0.5(|τ |−τ)∑

t=0.5(|τ |+τ)+1

(Pt−τ −Rt)
2 (9)

where τ is the integer denoting the time shift that accounts for the possi-
bly leading (τ > 0), coincident (τ = 0) or lagging (τ < 0) character of the
recession probabilities and Pt. QPS varies between 0 and 1, with a score
of 0 corresponding to perfect accuracy. This is the unique proper scoring
rule that is only a function of the discrepancy between realizations and
model-derived probabilities (see Diebold and Rudebusch (1989) for fur-
ther discussion).

The in-sample predicting performance of the non-linear models estimated
in this paper is compared to that of the Markov-Switching Vector Autore-
gressions (MSVAR) with two regimes estimated using the Ox package of
H.-M.Krolzig3 and is reported in Tables 8–10. The MSVARs include the
component series of the dynamic bi-factor models: the ”CLI” means that
the components of CLI are employed, ”CCI” — the components of CCI,
and ”All” — that both the components of CLI and CCI are used. Five
types of the MSVAR model are considered: Markov switching with state-
dependent intercept (MSI), Markov switching with state-dependent inter-
cept and variance (MSIH), Markov switching with state-dependent mean
(MSM), Markov switching with state-dependent intercept and autoregres-
sive parameters (MSIA), and Markov switching with state-dependent in-
tercept, variance, and autoregressive parameters (MSIAH).

3More details on the types of MSVAR models see in Krolzig (1997).
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The in-sample performance is measured by the QPS computed with re-
spect to the three alternative reference chronologies mentioned above. The
in-sample performance is evaluated at different non-negative lags τ (see
equation (9)) in order to account for the fact that the model-derived dating
may lead the reference chronologies. Thus, in Tables 8–10 the minimum
QPS for each model is reported along with the lag, at which its minimum
is attained.

In order to test whether the QPS of each two models differ significantly
or not, we propose a bootstrap test. It is motivated as follows. We need
to compare the forecasting accuracy of any two models, i and j, over the
comparable period:

QPSi −QPSj =
1

T− | τ∗ |
T−0.5(|τ∗|−τ∗)∑

t=0.5(|τ∗|+τ∗)+1

[
(Pi,t−τi −Rt)2 − (Pj,t−τj −Rt)2

]

(10)
where

τ ∗ =





max{τi, τj}, if τi > 0, τj > 0
min{τi, τj}, if τi < 0, τj < 0
| τi | + | τj |, if τi × τj < 0

(11)

Then, letting

Dt = (Pi,t−τi
−Rt)

2 − (Pj,t−τj
−Rt)

2, (12)

we can represent it as an autoregressive process:

Dt = α0 +

Q∑
q=1

αqDt−q + ut (13)

where Q is the order of autoregression, which can be determined using
some information criterion, and ut are the serially uncorrelated distur-
bances.
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Hence testing the null hypothesis of statistically equal forecasting accu-
racy of model i and model j, that is, QPSi = QPSj , is equivalent to test-
ing the null of α0 = 0. However, we do not know the distribution of Dt

and cannot be sure that the standard Student distribution is applicable.
Therefore we obtain the distribution through the bootstrap. This is done
as follows:

(1) Estimate equation (13) and save the estimated parameters, α̂′ = {α̂0, . . . , α̂Q},
and the vector of errors, û′ = {û0.5(|τ∗|+τ∗)+1, . . . , ûT−0.5(|τ∗|−τ∗)}.

(2) Generate a bootstrap sample of size T− | τ ∗ | using the vector of esti-
mated parameters α̂ and the pseudo-disturbances drawn with replace-
ment from the vector of errors û:

D̃r
t = α̂0 +

Q∑
q=1

α̂qD̃
r
t−q + ũr

t (14)

where r denotes the r-th bootstrap replication.

(3) Compute the estimates of α from the sample and save α̃r
0.

(4) Repeat steps (2)–(3) R times (R should be sufficiently large that its fur-
ther increases have no important effect on results) and find the boot-
strap p-values as: if 1

R

∑R
r=1 α̃r

0 > 0, then compute the proportion of α̃r
0

that are lower than 0; otherwise compute the proportion of α̃r
0 that are

greater than 0. If the proportion is higher than some chosen signifi-
cance level, say 0.05, then the null of no difference between two QPSs
is accepted, otherwise it is rejected.

We do not reproduce the p-values here because the corresponding tables
would occupy too much space. However, we will heavily rely on them
when discussing the results below. The number of bootstrap replications
was R = 2000.

On average, for all the countries the in-sample forecasting performance
of most of the models is not very satisfactory, since QPS is relatively high.
In addition, most datings derived from the models based either on the
subset of the leading indicators or on the whole set of data conform much
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better with the OECD’s and ECRI’s chronologies than with that of BBQ.
By contrast, the models including the coincident component series only
are better forecasting the BBQ chronology. Thus, it appears that the lead-
ing series better reflect the growth cycles, whereas the coincident variables
are less volatile and hence are proxies for the classical cycle.

For France, as Table 8 shows, the OECD is best predicted by the follow-
ing three models: bi-factor model (a), the CLI in the bi-factor model (c)
and the CLI in the bi-factor model (b). Recall that the LR-test gave pref-
erence to the model (a) over the model (c). The lowest QPS are achieved
at leads equal to 2–6 months. The MSVAR models, for which the null of
no difference in the forecasting accuracy could not be rejected, are: the
models MSI and MSM of the components of CLI, MSM-CCI and several
models including all the component series. The same picture is for the
chronology of the ECRI, although the lead time is very small, varying from
0 to 2 months. Once more the closest rivals, for which the null cannot be
rejected, are MSI-CLI, MSM-CLI, MSIAH-CLI, MSM-CCI, MSIA-All and
MSIAH-All. However, the MSVAR models attain the minimum of QPS
at the negative lags, which means that they are lagging behind the ECRI’s
growth cycle, whereas our objective is to find the models that forecast well
and are leading. The three models having the highest conformity with the
BBQ-chronology, however, are different. These are: single-factor model of
CCI, MSIH and MSM models for the components of CCI. The in-sample
performance of the first two models is not statistically different, but both
of them significantly outperform MSM-CCI and all the other models.

The models that best of all detect the turning points of the OECD’s chronol-
ogy for Germany are: MSI, MSM, and MSIAH including all the component
series. The corresponding model-derived probabilities lead the OECD’s
cycle by 1–2 months. The best performance among the dynamic factor
models has model (c). Despite the fact that the QPS of the latter are higher
than those of the best MSVAR models, there is no statistically significant
difference between their forecasting accuracy. The best conformity with
German ECRI’s dating is displayed by MSI model based on the compo-
nents of CCI as well as by the MSM and MSIA models including the com-
ponents of CLI. Only MSIA model is leading the reference chronology by
2–5 months, the other model-derived chronologies coincide with the ref-
erence one, save the filtered recession probabilities of MSM that are even
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lagging behind the ECRI’s growth cycle. Again, according to our empir-
ical p-values the difference between these models and dynamic bi-factor
model (c) is not significant. The three models that are best at in-sample
prediction of the turns of German classical cycle are: bi-factor model (c),
bi-factor model (b), and bi-factor model (a). These do not differ (at 5%
significance level) in accuracy from the MSVAR models based on the com-
ponents of CCI.

Finally, the OECD’s chronology for UK is best predicted within the sample
by the dynamic bi-factor model (c) with lead equal to 1–3 months, MSIA
model for the components of CCI (lead time is 1 month), and MSIH model
for the components of CLI (lead time is 8 months). The hypothesis of the
equal forecasting accuracy of these models cannot be rejected at 5% signif-
icance level. The three models having the highest conformity with ECRI’s
growth cycle are: dynamic bi-factor model (c) with lag up to 5 months,
MSIA-CLI model with lag of 1 month, and MSM-CLI model with lag of 1
month for the filtered probabilities and lead of 2 months for the smoothed
ones. These three models have equal in-sample performance. The clas-
sical cycle represented by the BBQ chronology is best of all detected by
the dynamic single-factor model of CCI (that is, dynamic bi-factor model
(b)) with lag of 2 months for filtered probabilities and lag of 6 months
for smoothed ones, MSM-CCI and MSI-CCI models with the same lags.
These models have statistically equal forecasting performance but are sig-
nificantly different from most other models, save those MSVAR models
that are based on the components of CCI.

Given the uncertainty about the reference chronology, the out-of-sample
forecasting exercise is hardly possible. Of course, we can make the fore-
casts with our models but their eventual performance will be affected both
by the forecasting errors and by the fact that it is not sure whether the se-
lected reference chronologies reflect well the turning points of the business
cycle in the three European countries under inspection.

5 Summary

In this paper a dynamic factor model with Markov-switching and two
common factors, one of which is leading and another coincident, is esti-
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mated for the three large European economies: France, Germany, and UK.
The separation of the data set into the group of leading and the group of
coincident indicators and estimation of one common factor per each group
allows more efficient use of the available information. The predictive con-
tent of CLI permits detecting the turns of CCI in advance. As a rule the
leading indicators composing the CLI are more readily available and sub-
ject to less important revisions than the coincident indicators.

Three alternative hypotheses concerning the temporal relationship between
the CLI and CCI were examined: (a) switches between the recessionary
and expansionary phases of CLI and CCI are identical; (b) these switches
happen independently; and (c) the switches of the CLI precede those of
CCI with some positive lead. In the latter case one of the outputs of the
model are the estimates of the expected lead time of CLI over CCI both
at peaks and troughs. The largest expected lead equal to 4 months was
found for France and the smallest expected lead of 1 month, which vir-
tually means that both composite indicators enter the same cyclical phase
simultaneously, for the UK.

The test of in-sample performance of models examined in the paper is
conducted relative to the turning points of the three reference chronolo-
gies: those of OECD and ECRI that reflect the growth cycle concept and
that of BBQ describing the classical cycle. The measure of conformity be-
tween the model-derived and reference cycles is the QPS. In addition, the
the performance of the MSVAR models is computed. It appears that the
ranking is highly dependent on the reference chronology. For France it is
our dynamic bi-factor models that capture the turns of the growth cycles
the best. For Germany the some MSVAR models perform better, whereas
for the UK the first positions in the performance ranking are shared both
by bi-factor and certain MSVAR models.
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Appendix

Table 1: Component series of the French CLI and CCI, monthly data
1992:1–2005:4

Code Description
Composite leading indicator

EC-NivCC Niveau du carnet de commandes
EC-StockPFPrevu Stocks de produits finis prevus pour les prochains mois
THE THE — Taux de rendement des emprunts d’etat LT FM
CAC40 Bourse Paris CAC 40 (adj. close)

Composite coincident indicator
IPI Index de la production industrielle
ip-agric Index de la production — Industries agricoles et alimentaires
export-ocde Exportations FAB; Valeur brute; OCDE; euro
import-ocde Importation CAF; Valeur brute; OCDE; euro

Sources:

(i) Banque de France (http://www.banque-france.fr/fr/
stat_conjoncture/series/series.htm) ;

(ii) INSEE (http://www.indices.insee.fr/bsweb/servlet/
bsweb );

(iii) Yahoo! Finance (http://fr.finance.yahoo.com/q/hp?s=
%5EFCHI).
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Table 2: Component series of the German CLI and CCI, monthly data
1991:1–2005:3

Code Description
Composite leading indicator

IFO Das Ifo Geschäftsklima für die Gewerbliche Wirtschaft,
Erwartungen (R3), 2000=100, SA)

SU0253 Geldmarktsätze am Frankfurter Bankplatz, Dreimonatsgeld,
Monatsdurchschnitt

WU3141 DAX-Index, 1987 = 1000
YU0516 HWWA-Rohstoffpreisindex ”Euroland”

Composite coincident indicator
UXNI63 Produktion Industrie
UXA001 Auftragseingang in Verarbeitendes Gewerbe, Werte,

arbeitstäglich bereinigt
UXHK87 Einzelhandelumsatz, Volumen, kalenderbereinigt
UUCC04 Offene Stellen Insgesamt
EU2001 Außenhandel, Warenhandel, Ausfuhr (fob)

Source:
Deutsche Bundesbank (http://www.bundesbank.de/statistik/
statistik_zeitreihen.php ).
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Table 3: Component series of the UK CLI and CCI, monthly data 1986:1–
2005:3

Code Description
Composite leading indicator

ETCU CBI Industrial Trends Survey: Bus Vol Of Output Expec: next 4 months
BS-RETA European Commission Business Survey indicator for UK retail trade
BS-UK-ESI European Commission Economic Sentiment Indicator for UK economy

Composite coincident indicator
CKYW Industrial production index: CVMSA NAYear=100; constant 2002 prices
FTAQ Number of property transactions in England and Wales: 1000; SA
EAPS Retail Sales Index: Volume SA; constant 2000 prices

Sources:

(i) National Statistics (http://www.statistics.gov.uk/
statbase/tsdintro.asp );

(ii) The Directorate General for Economic and Financial Af-
fairs (DG ECFIN) of the European Commission (http:
//europa.eu.int/comm/economy_finance/indicators/
business_consumer_surveys/bcsseries_en.htm ).
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Table 7: Reference chronologies of the business cycle in France, Ger-
many, and UK

OECD ECRI BBQ
P T P T P T

Fr
an

ce

1990:01 1991:03 1988:02 1993:05 1992:III 1993:II
1991:12 1993:08 1995:01 1996:09
1995:03 1997:01 1999:11
1998:05 1999:04
2000:11

G
er

m
an

y 1992:02 1993:07 1991:01 1993:01 1991:III
1994:12 1996:02 1994:12 1997:01 1992:I 1993:I
1998:03 1999:02 1998:03 1999:02 1995:III 1996:I
2000:05 2000:05 2002:03 2001:II 2002:I

2002:III 2003:II

U
K

1985:01 1985:12 1985:05 1985:12 1990:II 1991:III
1988:09 1992:05 1988:01 1991:04
1994:09 1999:02 1994:07 1995:08
2000:08 1997:07 1999:02

2000:01

Note: ”P” stands for peaks, ”T” stands for troughs.
Sources:

(i) Economic Cycle Research Institute (http://www.businesscycle.
com/) ;

(ii) Organization for Economic Cooperation and Development (http:
//www.oecd.org/document/41/0,2340,en_2825_293564_1891113_
1_1_1_1,00.html) ;

(iii) Own calculations using the code of Harding and Pagan.
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Table 8: The in-sample peformance of alternative models with respect
to the OECD’s and ECRI’s chronology (France, 1992:3–2005:4)

OECD ECRI BBQ
Model QPS Lag QPS Lag QPS Lag
p-fid 0.163 2 0.222 -1 0.342 5
p-sid 0.152 2 0.224 0 0.366 6
p-fCLI 0.173 2 0.214 0 0.338 7
p-sCLI 0.155 6 0.215 2 0.347 7
p-fCCI 0.246 -3 0.231 -6 0.116 2
p-sCCI 0.263 2 0.241 -5 0.125 5
p-bifCLI 0.165 2 0.210 0 0.357 5
p-bisCLI 0.154 5 0.227 1 0.392 7
p-bifCCI 0.184 2 0.235 -1 0.303 3
p-bisCCI 0.167 2 0.240 -1 0.312 5
pMSI-CLI-f1 0.194 2 0.234 -1 0.339 3
pMSI-CLI-s1 0.189 3 0.248 0 0.363 4
pMSIH-CLI-f1 0.313 3 0.359 0 0.230 8
pMSIH-CLI-s1 0.300 3 0.353 0 0.243 8
pMSM-CLI-f1 0.194 2 0.234 -1 0.339 3
pMSM-CLI-s1 0.190 3 0.249 0 0.364 4
pMSIA-CLI-f1 0.310 3 0.326 -5 0.408 -7
pMSIA-CLI-s1 0.308 3 0.326 -5 0.408 -7
pMSIAH-CLI-f1 0.274 3 0.303 -5 0.380 -7
pMSIAH-CLI-s1 0.281 3 0.314 -5 0.389 -5
pMSI-CCI-f1 0.398 -8 0.391 -9 0.330 -9
pMSI-CCI-s1 0.399 -8 0.393 -9 0.332 -9
pMSIH-CCI-f1 0.417 -9 0.422 9 0.163 5
pMSIH-CCI-s1 0.415 -9 0.417 9 0.162 5
pMSM-CCI-f1 0.239 2 0.227 -9 0.200 -9
pMSM-CCI-s1 0.230 2 0.223 -9 0.200 -9
pMSIA-CCI-f1 0.340 -9 0.349 -9 0.290 -9
pMSIA-CCI-s1 0.368 -9 0.377 -9 0.303 -9
pMSIAH-CCI-f1 0.366 -9 0.359 -9 0.321 -9
pMSIAH-CCI-s1 0.378 -9 0.370 -9 0.325 -9
pMSI-All-f1 0.199 2 0.253 -1 0.334 2
pMSI-All-s1 0.193 2 0.266 0 0.358 3
pMSIH-All-f1 0.231 3 0.320 1 0.305 1
pMSIH-All-s1 0.227 3 0.333 1 0.327 1
pMSM-All-f1 0.216 2 0.279 -1 0.322 3
pMSM-All-s1 0.216 2 0.298 0 0.344 4
pMSIA-All-f1 0.353 7 0.333 -5 0.525 -7
pMSIA-All-s1 0.351 7 0.331 -5 0.524 -7
pMSIAH-All-f1 0.227 3 0.236 -5 0.510 -4
pMSIAH-All-s1 0.226 3 0.244 -5 0.518 -4
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Table 9: The in-sample peformance of alternative models with respect
to the OECD’s and ECRI’s chronology (Germany, 1991:3–2005:3)

OECD ECRI BBQ
Model QPS Lag QPS Lag QPS Lag
p-fid 0.432 -3 0.338 -6 0.147 0
p-sid 0.456 -1 0.338 -9 0.149 1
p-fCLI 0.338 -2 0.325 2 0.158 6
p-sCLI 0.325 1 0.317 3 0.134 6
p-fCCI 0.424 -3 0.330 -6 0.142 0
p-sCCI 0.448 -1 0.331 -6 0.145 1
p-bifCLI 0.328 0 0.320 2 0.153 6
p-bisCLI 0.309 2 0.294 2 0.122 6
p-bifCCI 0.253 -2 0.257 -2 0.131 0
p-bisCCI 0.273 -2 0.256 -1 0.124 1
pMSI-CLI-f1 0.256 2 0.271 -3 0.374 6
pMSI-CLI-s1 0.258 3 0.268 1 0.372 6
pMSIH-CLI-f1 0.354 3 0.390 -9 0.226 7
pMSIH-CLI-s1 0.365 6 0.401 -9 0.265 7
pMSM-CLI-f1 0.292 -1 0.247 -1 0.366 -1
pMSM-CLI-s1 0.318 2 0.239 0 0.376 -1
pMSIA-CLI-f1 0.329 3 0.226 2 0.292 7
pMSIA-CLI-s1 0.338 3 0.221 5 0.289 8
pMSIAH-CLI-f1 0.370 3 0.345 -4 0.267 9
pMSIAH-CLI-s1 0.370 7 0.349 -4 0.260 9
pMSI-CCI-f1 0.281 -1 0.200 -1 0.151 0
pMSI-CCI-s1 0.283 0 0.177 0 0.171 1
pMSIH-CCI-f1 0.475 -7 0.367 -5 0.188 -3
pMSIH-CCI-s1 0.480 1 0.363 -4 0.187 -3
pMSM-CCI-f1 0.470 -6 0.352 -9 0.180 0
pMSM-CCI-s1 0.492 -5 0.365 -5 0.217 1
pMSIA-CCI-f1 0.349 9 0.449 -9 0.623 -7
pMSIA-CCI-s1 0.349 9 0.449 -9 0.623 -7
pMSIAH-CCI-f1 0.471 -7 0.369 -4 0.215 -2
pMSIAH-CCI-s1 0.473 1 0.366 -4 0.219 -2
pMSI-All-f1 0.233 0 0.315 -3 0.213 5
pMSI-All-s1 0.208 2 0.329 -3 0.216 6
pMSIH-All-f1 0.278 1 0.296 -4 0.262 7
pMSIH-All-s1 0.276 1 0.314 -3 0.269 3
pMSM-All-f1 0.233 1 0.335 -3 0.221 5
pMSM-All-s1 0.243 2 0.352 -3 0.227 6
pMSIA-All-f1 0.297 1 0.329 -3 0.349 3
pMSIA-All-s1 0.291 1 0.331 -3 0.348 3
pMSIAH-All-f1 0.233 1 0.316 1 0.311 4
pMSIAH-All-s1 0.227 1 0.319 1 0.303 6
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Table 10: The in-sample peformance of alternative models with respect
to the OECD’s and ECRI’s chronology (UK, 1986:3–2005:3)

OECD ECRI BBQ
Model QPS Lag QPS Lag QPS Lag
p-fid 0.290 -5 0.260 -1 0.320 9
p-sid 0.287 -4 0.247 -1 0.323 7
p-fCLI 0.310 -5 0.266 -5 0.150 7
p-sCLI 0.306 -4 0.244 -4 0.155 7
p-fCCI 0.338 -8 0.299 -9 0.084 -2
p-sCCI 0.377 -2 0.295 -9 0.101 6
p-bifCLI 0.269 -5 0.204 -5 0.217 9
p-bisCLI 0.274 2 0.184 -2 0.238 9
p-bifCCI 0.223 0 0.174 -5 0.287 6
p-bisCCI 0.217 1 0.168 -5 0.297 9
pMSI-CLI-f1 0.314 -4 0.254 -2 0.247 9
pMSI-CLI-s1 0.322 3 0.243 2 0.259 9
pMSIH-CLI-f1 0.256 8 0.247 3 0.460 9
pMSIH-CLI-s1 0.250 8 0.238 3 0.472 9
pMSM-CLI-f1 0.301 -4 0.247 -1 0.255 9
pMSM-CLI-s1 0.311 7 0.235 2 0.270 9
pMSIA-CLI-f1 0.288 3 0.237 -1 0.303 9
pMSIA-CLI-s1 0.283 8 0.225 -1 0.310 9
pMSIAH-CLI-f1 0.276 7 0.254 -1 0.425 9
pMSIAH-CLI-s1 0.264 8 0.247 2 0.435 9
pMSI-CCI-f1 0.315 -8 0.279 -9 0.101 -2
pMSI-CCI-s1 0.353 -2 0.285 -9 0.112 6
pMSIH-CCI-f1 0.414 -9 0.376 -9 0.332 -9
pMSIH-CCI-s1 0.393 -9 0.346 -9 0.369 -9
pMSM-CCI-f1 0.323 -8 0.289 -9 0.093 -2
pMSM-CCI-s1 0.367 -2 0.293 -9 0.106 6
pMSIA-CCI-f1 0.223 1 0.261 -1 0.504 -9
pMSIA-CCI-s1 0.219 1 0.263 6 0.514 -9
pMSIAH-CCI-f1 0.466 -9 0.405 -9 0.220 -7
pMSIAH-CCI-s1 0.474 -9 0.405 -9 0.239 5
pMSI-All-f1 0.324 2 0.252 -2 0.258 9
pMSI-All-s1 0.338 1 0.248 -1 0.267 9
pMSIH-All-f1 0.474 -9 0.413 -9 0.262 3
pMSIH-All-s1 0.519 -9 0.444 -9 0.284 4
pMSM-All-f1 0.298 2 0.238 -1 0.256 9
pMSM-All-s1 0.310 1 0.232 -1 0.269 9
pMSIA-All-f1 0.439 -6 0.403 -5 0.224 4
pMSIA-All-s1 0.439 -6 0.403 -5 0.224 4
pMSIAH-All-f1 0.485 -8 0.449 -9 0.175 4
pMSIAH-All-s1 0.485 -8 0.447 -9 0.174 4
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Figure 1: The British economic indicators classified using the cluster anal-
ysis
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