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1.  Introduction 
 Assumptions about the distributions of economic variables are useful for much of 

economic modeling; however, it is important that the assumed models are consistent with the 

stylized facts.  For example, selecting a normal distribution permits modeling two data 

characteristics–the mean and variance, but is not appropriate for data which are skewed or have 

thick tails.  Similarly the use of other distributions, such as the lognormal or Weibull distributions, 

is restricted to applications with admissible data characteristics.  Efforts to model more diverse 

data characteristics have led to a rapid development of alternative methodological approaches in 

economics.  Semiparametric procedures provide one approach which reduces the structure 

imposed in the modeling process.  Because semiparametric procedures impose relatively little 

structure on the data, they have desirable large sample properties under quite general conditions. 

However, in specific applications, the use of semiparametric procedures requires the specification 

of user specified objects, such as a kernel and window width in kernel regression, and since little 

structure is assumed, the resulting models may not be parsimonious.  In addition, if the assumed 

structure in a parametric model is approximately correct, the resulting estimator will typically have 

superior properties to a semiparametric estimator.  Pagan and Ullah (1999) provide an excellent 

summary of these and related issues.   

 In this paper, we explore an intermediate ground between the specification of a simple 

parametric form for the probability density function and semi-parametric estimation.  This 

approach is based on “flexible” parametric density functions that involve few parameters but can 

accommodate a wider range of data characteristics than are available with such commonly used 

distributions as the normal, lognormal, or the student t distribution.   Section 2 defines the 

alternative probability density functions, discusses important special and limiting cases, and 

provides a characterization of their moments.  Section 3 explores the use of these models in 

providing a basis for quasi maximum likelihood estimators (QMLE) of the slope and intercept 

parameters in a simple linear regression model using Monte Carlo simulations.  We offer some 

concluding remarks in Section 4.   

 

2.  Alternative Models 

 The normal and Laplace distributions are two of the first probability density functions to 

have been considered for model building in economics and statistics.  They are both symmetric 
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and have kurtosis of 3 and 6 respectively and provide good models for many economic series, with 

the Laplace being able to model thicker-tailed distributions than the normal.  However, it is not 

uncommon to encounter data which is both skewed and heavy tailed in economics and finance 

applications.  In the following, we summarize three alternative families of distributions that may 

be used as models for possibly skewed and thick-tailed distributions. 

 

2.1 Skewed Generalized T distribution (SGT) 

     The skewed generalized t distribution (SGT) was obtained by Theodossiou (1998) and is 

defined by 
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where ( , )B ⋅ ⋅ is the beta function, m is the mode of y and parameters p and q control the height and 

tails of the density.  The parameterφ is a scale parameter and λ determines degree of skewness with 

the area to the left of the mode equal to ( )1 / 2λ− .  Setting λ = 0 in the SGT yields the generalized t 

(GT) of McDonald and Newey (1988).  Similarly, setting p=2 yields the skewed t (ST) of Hansen 

(1994) which includes the student t distribution when λ = 0.  Standardized values for skewness and 

kurtosis1 in the ranges (-∞,∞) and (1.8,∞), respectively, can be modeled with the SGT.  Thus, the 

SGT allows for significantly more flexibility in modeling skewness and kurtosis than the student t 

distribution which is symmetric and has kurtosis 3 + 6/(ν-4) where ν (ν=pq) denotes the degrees of 

freedom parameter.  The SGT defines moments of order less than the degrees of freedom.  

Another important class of flexible density functions corresponds to a limiting case of the 

SGT.  Letting q →∞ yields the skewed generalized error distribution (SGED) defined by  
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1 The standardized skewness and kurtosis correspond to 2 / 2( ) /[ ( ) ]h h
hK E Z E Zμ μ= − − for h=3 and 4, 

respectively, where μ  denotes the mean of  Z.  
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The parameter p in the SGED controls the height and tails of the density and λ controls the 

skewness.  The SGED is symmetric for λ = 0 and positively (negatively) skewed for positive 

(negative) values of λ.  The symmetric SGED is also known as the generalized power (Subbotin 

(1923)) distribution or the Box-Tiao (Box and Tiao (1962)) distribution. The SGED can easily be 

seen to include the skewed ( 0λ ≠ ) or symmetric ( 0λ =  ) Laplace or normal corresponding to p = 

1 or 2, respectively. 

 2.2 Exponential generalized beta of the second kind (EGB2) 

The four parameter EGB2 distribution is defined by the probability density function 
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where the parameters φ , p, and q are assumed to be positive, cf. McDonald and Xu (1995).  m and 

φ  are respectively location and scale parameters.  The parameters p and q are shape parameters.  

The EGB2 pdf is symmetric if and only if p and q are equal.  The normal distribution is a limiting 

case of the EGB2 where the parameters p and q are equal and grow indefinitely large.  The EGB2 

may accommodate standardized values for skewness in the range (-2.0, 2.0) and standardized 

values of kurtosis in the range (3.0, 9.0).  

 

2.3  Inverse hyperbolic sine (IHS)  

 Johnson (1949, 1994) proposed three families of distributions of random variables that are 

transformations of normal variables.  These transformations allow modeling a wide range of values 

of skewness and kurtosis.  We consider the inverse hyperbolic sine (IHS) transformation which 

allows unbounded random variables.  For this paper we use a slightly different parameterization 

than used by Johnson (1949).  Specifically, we consider ( )sinh /y a b z k a bwλ= + + = +  where 

sinh is the hyperbolic sign, z is a standard normal, and a, b, λ, and k are scaling constants related 

respectively to the mean (μ ), variance ( 2σ ), skewness, and kurtosis of the random variable y.  

The pdf of y is given by  
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 w w andμ σ denote the mean and standard deviation of ( )sinh /w z kλ= + .2  Negative values of 

λ generate negative skewness, positive values of λ generate positive skewness, and zero 

corresponds to symmetry.  Smaller values of k result in more leptokurtic distributions.  The IHS 

allows skewness and kurtosis in the range (3,∞) and (-∞,∞), respectively.  The IHS includes the 

normal as a limiting case where k →∞  with 0.λ =    

 

2.4  Partitioning the skewness-kurtosis space 

 While the SGT, EGB2, and IHS are all flexible distributions which can potentially 

accommodate a wide variety of skewed and leptokurtic data, they do not cover all cases which 

could arise in practice.  To illustrate the data characteristics consistent with each distribution, we 

plot the admissible skewness-kurtosis combinations in figure 1.  The solid and dotted U-shaped 

curves provide respectively the lower bound for the SGT and IHS permissible combinations of 

skewness and kurtosis, and the smile-like space provides the lower and upper bounds of the 

permissible skewness-kurtosis combinations for the EGB2.  As might be expected, the SGT clearly 

admits a larger range of skewness-kurtosis combinations than the other two distributions.  

However, the coverage of the IHS is remarkably close to that of the SGT; and while the EGB2 

space is limited in coverage in comparison to the other two distributions, it does cover many 

skewness-kurtosis combinations encountered in practice.   

 

3.  An Application to Regression Models:  A Simulation Example 

 We provide a simple example that illustrates the potential usefulness of the flexible 

distributions discussed above in regression modeling.  Following Hsieh and Manski(1984), 

Newey(1988), McDonald and White(1994), and Ramirez, Misra, and Nelson (2003), we simulate 

                                                 
2 The mean and variance of y are related to the corresponding moments of w by w and =bwa bμ μ σ σ= + . 
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data from the model 

 Yt = -1 +  Xt +  ut       for t = 1,…,T  

where the Xt’s are drawn from a Bernoulli distribution with Prob(X=1) = 0.5.  We consider three 

different error distributions, each with a zero mean and unit variance.  One error distribution is the 

unit normal, another is a thick tailed variance mixture or contaminated distribution, and the third 

corresponds to a skewed error distribution.3  We consider T = 50 and use 500 replications for all 

results.  For each model, we estimate the slope and intercept parameters using ordinary least 

squares (OLS) and least absolute deviations (LAD) as benchmarks and also estimate the 

parameters4 using QMLE based on the error distributions summarized in Section 2.    
 The root mean squared errors (RMSE) for the estimating the intercept and slope parameters 

using each of the previously mentioned methods are reported in Table 1.  Since each of the flexible 

pdf’s considered includes the normal as a special or limiting case, one would expect that the 

QMLE would perform similarly to OLS for normally distributed errors, but not necessarily for the 

mixture or skewed error distributions.  This intuition seems to be confirmed based on the results 

reported in Table 1 where we observe that there appears to be relatively little efficiency loss for the 

QML intercept and slope estimators relative to the OLS estimator for the data generating process 

with normally distributed error terms.   

Not surprisingly, OLS has the largest RMSE of any of the estimators considered for the 

mixture (thick tailed and symmetric) distribution considered.  In this case, LAD appears to be the 

optimal estimator, which is again unsurprising given the symmetry and value of kurtosis in the 

underlying error distribution.  However, as before, the QMLE tend to do quite well, especially for 

the slope coefficient, where LAD, EGB2, and IHS all have nearly identical RMSE’s.  

 In the case of the skewed and thick tailed error distribution, OLS again performs the worst 

for estimating the slope, and LAD performs the worst for estimating the intercept.  In addition, 

both are dominated by all of the QMLE for both the slope and intercept.  In this case, all of the 

partially adaptive estimators offer substantial gains relative to OLS or LAD, especially in 

                                                 

3 Thus, the first error distribution is merely the unit normal, Z 1 = N[0,1].  The thick-tailed variance contaminated 
distribution is generated as a mixture by Z 2 = U*N[0, 1/9] + (1-U)*N[0,9] where U is 1 with probability .9 and 0 
otherwise.  Z 2 is symmetrically distributed with kurtosis of 24.3.  The skewed distribution is generated by 

( ) ( ).5
3 / 1Z Y e e e= − −  where Y is LN[0,1].  3Z  has standardized skewness and kurtosis values  of 6.185 and 

113.94, respectively. 
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estimating the slope coefficient.  The performance of the EGB2 and IHS is particularly impressive. 

The strong performance of the EGB2 is surprising since the moments of the true underlying error 

distribution do not lie in the portion of the moment space covered by the EGB2 as illustrated in 

Figure 1. In this sense, it appears that accounting for the potential skewness and kurtosis may be 

more important than capturing it exactly when estimating parameters characterizing the mean.  Of 

course, if we were interested in estimating other features of the distribution, we would expect the 

performance of the EGB2 to deteriorate.    

4. Summary and conclusions  
This paper has reviewed three families of flexible parametric probability density functions:  

the skewed generalized t distribution, the exponential generalized beta of the second kind, and the 

inverse hyperbolic sine distribution.  These distributional families include as limiting or special 

cases many common parametric distributions.  They allow one to quite flexibly model the first 

four moments of a distribution while maintaining the parsimony of a completely specified 

parametric model.  

These models can be used as the basis for partially adaptive or QML estimation of 

many economic models.  To illustrate the potential usefulness of these models, we performed a 

simulation study where we estimated the parameters of a simple linear regression model.  In the 

simulations, we found that the efficiency loss in the standard linear model with normally 

distributed errors was modest and that the use of the partially adaptive procedures significantly 

improved estimation performance when the error distribution was skewed or leptokurtotic.  The 

use of the flexible distributions could readily be extended from the simple regression case to 

modeling univariate time series, for example by ARCH or GARCH, or to other more general 

settings.  

 
 
 
 
 
________________________ 
4
 For the possibly asymmetric QMLE the intercept term was adjusted so that the expected error was  zero.    
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Figure 1.  This figure illustrates the admissible skewness and kurtosis combinations for the SGT, IHS, and EGB2.  The 
regions for the SGT and IHS are given by the areas above corresponding curves (solid line for SGT, -. for IHS).  For 
the EGB2 the set of admissible values is given by the area within the dashed curve.  The horizontal axis corresponds to 
values for skewness, and the vertical axis corresponds to values for kurtosis.   
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Table 1.  Simulation Results 
 Intercept Slope 

 Normal Mixture Skewed Normal Mixture Skewed 
OLS .20 .21 .19 .28 .29 .29 
LAD .24 .10 .30 .33 .13 .17 
SGED .22 .13 .13 .33 .13 .07 
SGT .22 .13 .15 .32 .13 .08 
EGB2 .20 .16 .14 .29 .13 .05 
IHS .21 .15 .17 .29 .12 .05 
 
This table gives root mean squared errors for estimates of the slope and intercept parameters from the simulation 
example in Section 3.  Columns labeled normal are results for the model where the errors are drawn from a standard 
normal distribution.  Columns labeled mixture have errors drawn from a symmetric, leptokurtotic mixture of normals.  
Columns labeled skewed have errors drawn from a LN(0,1) distribution and then scaled and centered to have mean 
zero and variance one.  Each row corresponds to a different estimation method as discussed in the text. 




