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Abstract 
This paper has two main goals. First, it reconsiders regional growth and convergence 
processes in the context of the enlargement of the European Union to new member states. We 
show that spatial autocorrelation and heterogeneity still matter in a sample of 237 regions 
over the period 1993-2002. Spatial convergence clubs are defined using exploratory spatial 
data analysis and a spatial autoregressive model is estimated. We find strong evidence that the 
growth rate of per capita GDP for a given region is positively affected by the growth rate of 
neighbouring regions. The second objective is to test the robustness of the results with respect 
to non-normality, outliers and heteroskedasticity using two other methods: The quasi 
maximum Likelihood and the Bayesian estimation methods.  
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1. Introduction 
 

For more than a decade, the study of the convergence process on the regional and 
international levels has been the centre of interest of regional science and macroeconomic 
literature. Areas extensively studied are US regions (Rey and Montoury, 1999; Miller and 
Genk, 2005) and European regions (EU-15) (Lόpez-Bazo et al, 1999; Carrington, 2003; 
Ramajo et al, 2005).  The study of European region shows two important characteristics. 
First, it is widely accepted that the rate of convergence among these regions is quite low. The 
literature generally agrees on a 2% rate per year (Barro and Sala-I-Martin, 1991, 1995; 
Amstrong, 1995; Sala-I-Martin, 1996; Capron, 2000; Ertur et al (2006). Moreover, disparities 
among regions do not decline quickly in spite of the European regional policy. Some authors 
have thus suggested the existence of groups converging to different long term equilibriums 
(Durlauf and Johnson, 1995; Quah, 1993, 1996, 1997). This view could be reinforced with the 
adhesion of 10 new countries whose per capita GDP are much lower than Western members.   

The second characteristic refers to the geographical distribution of economic activities. 
Several authors (Lόpez-Bazo et al, 1999; Carrington, 2003; Magrini, 2004; Le Gallo and 
Ertur, 2003) have shown that European regions were polarized in two groups: rich regions 
situated in the North and poor in the South. This observation can be linked to several results 
of the New Economic Geography (Krugman, 1991) which state that there exists 
agglomeration and cumulative processes which spatially determine locations of economic 
activities. For instance, we can easily think that a region surrounded by rich region has higher 
probability to record a high economic growth than another region surrounded by poor regions.   

This second point, referring to spatial interactions is especially relevant at the regional 
level. One only needs to think about opening of borders, which made easier the mobility of 
commodities and technology, or to interregional trade to be convinced that the growth of a 
given region is partly determined by its neighboring performances. This statement, even 
though easily understandable, was largely ignored by scientists working on this topic. Two 
main reasons lie behind this fact. First omission of space must be linked with the partitioning 
of disciplines, space being mostly studied in regional and geographical sciences. The second 
point refers to the fact that capturing the spatial effect in a regression generates a lot of 
problems. However, this difficulty has been solved with the apparition of spatial 
econometrics, a methodology gathering all techniques and tools required to capture the spatial 
dimension in an econometric regression. Spatial econometrics allows taking problems 
presented hereafter into account.  

Problems implied by taking space into account in the econometric regression are of 
two dimensions. More precisely, space interferes in two different ways on estimators. We thus 
speak of spatial effects. When one works on European regions, one can quite easily think of 
correlation among observation units. In other words, the observation of a variable in a 
location partly depends of the observation of the same variable in neighboring locations. This 
effect is called spatial autocorrelation and refers to the absence of independence between 
regions. Moreover, we can also imagine that economic behaviors and relationship differ 
across space. As an example, we can consider urban versus rural behavior. This point 
characterizes the second spatial effect, namely spatial heterogeneity.  

Many studies on the European Union before the enlargement process were performed. 
However, the literature regarding the UE-25 regions needs still to be expanded. To our 
knowledge, only two studies were executed on the enlarged sample. The first one was made 
by Ertur and Koch (2006) which looked at the spatial distribution of the regions and the 
second one, performed by Fischer and Stirböck (2005), tests convergence processes among 
the enlarged EU-25 regions. This lack of literature can be explained by the recent nature of 
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this event (May 2004) and by complex problems arising within this sample that requires 
careful analysis. For instance, one must deal with pronounced spatial heterogeneity.  

This paper has thus two main objectives. Firstly, we analyze the convergence process 
among regions of the enlarged European Union using cross-sectional data and taking spatial 
interactions into account. More specifically, we will test the presence of absolute convergence 
and clubs convergence processes using the tools of spatial econometrics allowing us to 
capture spatial effects in the estimation. Results obtained here will be compared with two 
others works. The study of Ertur et al. (2006) focusing on convergence clubs among regions 
before the enlargement of Europe and the study carried out by Fischer and Stirböck (2005). 
The second objective, more technical, consists in testing the robustness of the estimates by 
using two alternatives methods: the quasi-maximum likelihood and the Bayesian estimation 
methods. The quasi-maximum likelihood method corrects for the mistake made when 
imposing normality on the error term. The Bayesian estimation allows capturing 
heteroskedasticity and outliers in the estimation.  

The remainder of the article is organized as followed: section 2 introduces both 
concepts of convergence used in the paper and precisely defines spatial effects. Section 3 
presents empirical estimation results as well as a robustness analysis. Section 4 concludes.  

2. Methodology 
2.1. Concepts of convergence.  
 

Literature generally distinguishes nominal from real convergence. The former treats 
the adjustment of nominal variables to their long term equilibrium. Variables considered are 
the inflation, interest and exchange rates, but the government debt or deficit, in terms of GDP 
percentage also are included. Moreover, fiscal variables are often introduced. The concept of 
real convergence, used in this paper and in most of the macroeconomic literature, analyzes 
convergence of economic and development structures between regions. Variables mainly used 
are wealth creation, unemployment and productivity growth.  

In this article, two different convergence notions are considered: absolute β-
convergence, directly derived from the neoclassical theory, and convergence clubs, which 
allow capturing some spatial heterogeneity.  

The concept of β-convergence directly comes from the neoclassical theory. In its 
simplest model, this theory stipulates that in the long term, per capita GDP growth only 
depends on exogenous technical progress. When one generalizes to several economies, 
different situations must be distinguished. If economies share the same structural 
characteristics (in terms of human capital, saving rate, production function …), a convergence 
in GDP per capita levels and in growth rate is present. However, if structural characteristics 
differ between economies, only a convergence in growth rate is observed. In the first case, we 
speak of absolute (unconditional) β-convergence because the long-run equilibrium is the same 
for all economies. In the second case, each economy tends to its own long-run equilibrium, 
which is unique and determined by the characteristics of the economy. The concept used is 
thus conditional β- convergence.  

Barro and Sala-I-Martin (1992) have shown that for cross-sectional data, the equation 
which is used to test absolute convergence processes is as follows:  
 
 0Tg S yα β ε= + +  with ),0(..~ 2 Idii εσε        (1) 
 
where gT is the vector (N,1) of annual average growth rate (defined by the following 
expression : [ ]0log / log /TY Y T ), N is the number of observations, S is the unity vector and 0y  



 4

is the GDP per capita in logarithms on initial period. Convergence is observed if β is negative 
and significant. Indeed, the growth rate is then negatively correlated with the level of GDP per 
capita.  

To test the conditional β-convergence hypothesis, conditioning variables are included 
in equation (1): 
 
 0Tg S y Xα β γ ε= + + +  where )²,0(~ Iiid εσε          (2) 
 
with same notations as before and X, a matrix of variables holding constant the steady state 
equilibrium of each economy. This matrix is constituted of state-variables, as the physical and 
human capital stock, environment variables, as the ratio of public spending on GDP, the 
fertility rate, the economic instability degree, etc. Conditional convergence is present if β is 
negative and significant once X is held constant.  

These two first concepts assume that it is variation in basic growth parameter which 
explains the difference in long-run equilibrium reached. However, we could suggest that 
economies tend to different long run growth rate because they do not share the same initial 
conditions. Under such suggestion, we could find similar economies converging to the same 
long run equilibrium (convergence clubs) but little or no convergence between such clubs 
(Martin 2001). Formally, one can define a club as a group of economies with identical 
structural characteristics and initial conditions similar enough to tend to the same steady-state 
equilibrium. Economies will converge among them if they belong to the attraction field of the 
same equilibrium. The concept of convergence clubs appeared in order to capture specificities 
of economies. It thus allows taking some kind of spatial heterogeneity among economies into 
account, namely spatial instability of the parameters. 

The concept of convergence clubs is quite different from the two first presented here. 
In absolute and conditional β-convergence, it is the idea of uniqueness of the steady state 
which is important. In absolute convergence, this uniqueness is straightforward to understand 
since all economies tend to the same long-un equilibrium. In conditional convergence, even 
though each economy tends to its own equilibrium (given its structural characteristics) this 
steady state is unique. In studies devoted to convergence clubs, the dominant idea is the 
multiplicity of equilibriums. Several steady states coexist and it is the initials attributes of the 
economy which will determine the equilibrium that will be reached. A group of countries, 
regions, can thus tend to the same equilibrium if they share initials conditions which lead to it. 
This difference between concepts has been empirically checked. In their study, Durlauf and 
Johnson (1995) could not confirm the existence of a global convergence process but found out 
several clubs. 

Empirically, several approaches were proposed to determine convergence clubs. It is 
nevertheless possible to gather all the studies into two categories. On the one hand, those 
which select the clubs exogenously and, on the other hand, those in which clubs are 
determined endogenously.  

In the first class, composition is made a priori (by one or several criteria) and the β–
convergence hypothesis is afterwards tested for each group. Criteria used to create clubs are, 
for instance, the belonging to a geographical zone or an institutional system (Baumol, 1986). 
In their study, Durlauf and Johnson (1995) chose threshold levels of per capita GDP to define 
their clubs.  

In the other approach, several methods are used to endogenize the determination of 
clubs. Baumol and Wolff (1988) employed a quadratic form of the equation (2) to experience 
the existence of clubs. Another technique, initiated by Durlauf and Johnson (1995) consists in 
using regression trees. Finally, Chatterij (1992) and Chatterij and Dewhurst (1996) have 
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discriminated clubs in function of the gap of per capita GDP with respect to a leader 
economy.  

As written above, we use cross-section spatial data for this study. One of their 
advantages is that we can apply spatial econometrics tools since each observation unit is 
geographically located. However, in their surveys, Durlauf and Quah (1999) and Temple 
(1999) have highlighted several problems linked to cross sectional analysis. In this paper, we 
will only present the most important.  

The first limitation of cross sectional convergence is that even it is derived from the 
neo-classical theory, it does not allow to test the validity of this theory against other 
sometimes conflicting (Magrini, 2004). For instance, cross sectional regression does not allow 
discriminating the neoclassical theory from the endogenous growth. 

A second limitation has to do with the information content. To analyse β–convergence, 
we only dispose of two reference marks, the initial and final periods. The annual average 
growth rate is then computed from those two values. The problem with such a definition is 
that it does not allow taking the real evolution of economies between this time interval into 
account.  

A last drawback, raised by Quah (1996b) concerns the neglected spatial dimension of 
the β-convergence model. Indeed, until recently, countries and regions were treated as 
independent economies, without any interaction. However, on the regional level, spatial 
spillovers are of interest given that each region is likely to interact with neighboring regions. 
The aim of the next point is thus to explain how to capture spatial effects in an econometric 
regression. 

2.2. Spatial Effects  
 

In this section, we will define the two spatial effects, namely spatial autocorrelation 
and heterogeneity more accurately and introduce some specifications to take them into 
account.  

Anselin and Bera (1998, p. 241) define spatial autocorrelation as follows: "Spatial 
autocorrelation can be loosely defined as the coincidence of value similarity with locational 
similarity." 

In other words, the observation of a random variable in a given localization is partly 
determined by the observation of this variable in neighboring localizations (the neighborhood 
being defined by the spatial weight matrix). One distinguishes positive and negative spatial 
autocorrelation. The former is characterized by similar values of a random variable in similar 
localizations whereas the latter refers to value dissimilarity in similar locations. Absence of 
spatial autocorrelation is defined by random spatial distribution of the variable of interest. 

The presence of spatial autocorrelation gives additional information with respect to 
traditional statistics like mean or standard errors because it provides an idea about the 
geographical distribution of the values of the studied variable. Moreover, modeling spatial 
autocorrelation allows taking the existence, influence and size of geographic spillovers effects 
into account. 

Spatial autocorrelation has two different sources. Firstly, it can be detected in a sample 
if data obey to an underlying spatial process. This process links spatial units by an exact 
function which captures interaction effects among studied localizations. Secondly, spatial 
autocorrelation can result from a misspecification of the model. The omission of some 
spatially correlated variables, measurement error or an incorrect functional form (Le Gallo, 
2002) constitute some examples.  
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Before presenting specifications used in spatial econometrics, it is important to specify 
the modeling of interactions among regions. As we only dispose of N observations, it is 
necessary to impose a structure to spatial interactions,1 which is given by the spatial weight 
matrix, W. The objective of this matrix is to set a neighborhood to each region. Criteria used 
to define such neighborhood are of different natures (contiguity, k-nearest neighbors and 
decreasing functions of distance) but the matrix must be exogenous to avoid problems with 
inference and computation of estimators (Anselin and Bera, 1998). In this paper, we use an 
accessibility weight matrix based on transport times between regions. So the concept of 
distance used is not kilometric-distance but time-distance. We therefore create a spatial 
weight matrix where the connection between two regions is defined as the time needed, using 
roads, to join the two regional capitals (which serve as reference points for regions). For 
regions without capital, mainly located in Eastern Europe, we chose the most populated city 
as reference. We then use the Viamichelin® website to compute distances between all pair of 
regions.2 We assume that the time-distance separating two regions is identical, no matter the 
selected direction chosen. For instance, the time needed to join Paris from Berlin is the same 
as the one to join Berlin from Paris. Concretely, this means that distances are only computed 
for the inferior triangle of the matrix and then transposed in the upper triangle. 

Formally, the following spatial weight matrix was used:  

⎪⎩

⎪
⎨
⎧

=

≠∀= −

0

;)(
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,

,
*
,

ii

jiji
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*
, jiw  is called the spatial weight and measures the interaction between regions i and j, 

di,j is a measure of the distance separating both regions (in this case it is a concept of time-
distance), β is a parameter fixed a priori (in our study, we have set β equal to 1). By 
convention, *

,iiw  is set to 0. The last operation we performed on the weight matrix consists in 
row-standardizing it. The aim of this transformation is to facilitate comparison between 
spatial parameters and the interpretation of spatially lagged variables3 (Anselin and Bera, 
1998). Formally, we can express this row-standardization in the following way:  

i
w

w
w

j ji

ji
ji ∀=
∑

,
,

*
,

,  

with all weights belonging to the interval [0,1]. Because of this standardization, spatial 
weights are no more interpreted in absolute terms but express relative measurements. 

The concept of spatial weight matrix being introduced, we can now present 
specifications capturing spatial dependence. Spatial autocorrelation can have two different 
natures, sometimes jointly present in the same regression. These two types are the endogenous 
spatial lag and spatially autocorrelated errors. However, in this paper, due to space constraint, 
we will only focus on the model of interest, namely the endogenous spatial lag one (SAR).4 

The initial model from which spatial specifications will be derived is the classical 
linear one:  
 y X β ε= +   ~ (0, )Niid Iε σ 2        (3) 

                                                 
1The structure is compulsory because one cannot estimate N(N-1)/2 parameters with only N observations. 
2 Specifically, we took as the benchmark route the recommended route of the ViaMichelin® website, which is a 
mix between the shortest and the quickest routes. All this work has been done between November, 2nd and 22nd 
2004. As Viamichelin® takes deviations, road works, speed limits among others into account, it is important to 
note that the constructed matrix is subject to some variation. 
3 We get a spatially lagged variable by the multiplication of a variable with the weight matrix. Assuming that y is 
a random variable, Wy is the spatially lagged variable.  
4 SAR stands for Spatial Autoregressive model. 
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with y, the vector [N,1] of observations of the dependent variable, X, the matrix [N,K] of  
observations of the K explanatory variables, β, the vector [K,1] of the unknown parameters to 
be estimated and ε, the vector [N,1] of the errors. The errors are assumed to well-behave. 

The SAR model consists in inserting the endogenous spatial lag, Wy, in the set of 
explanatory variables. Formally, the initial model (1) is transformed as follows:  
 
 y Wy Xρ β ε= + +             (4) 
 
with Wy, the endogenous spatial lag, and ρ, the autoregressive spatial parameter expressing 
the interaction intensity between observations of the dependent variable. Let's remind that 
when W is row-standardized, (Wy)i is a weighted average of observations of regions in the 
neighborhood of region i. 

The introduction of the endogenous spatial lag in the regression allows assessing the 
spatial dependence degree given the effect of others variables is controlled for. In order to see 
the two effects induced by this specification, it is worthwhile to write (4) in its reduced form: 
 
 1 1( ) ( )y I W X I Wρ β ρ ε− −= − + −         (5) 
 

Note that to write the reduced form, the matrix 1)Wρ −(Ι −  must be non-singular.5 It 
follows from the reduced form (5) that the spatially lagged variable Wy is correlated with the 
error term. Therefore OLS estimators will be biased and inconsistent. The simultaneity 
embedded in the Wy term must be explicitly accounted for in a maximum likelihood 
estimation framework as first outlined by Ord (1975).6 More recently, Lee (2004) presents a 
comprehensive investigation of the asymptotic properties of the maximum likelihood 
estimators of SAR models. 
 If we write the inverse spatial transformation under the geometric expansion form, we 
get: 
 

( ² ² ³ ³ ...) ( ² ² ³ ³ ...)y I W W W X I W W Wρ ρ ρ β ρ ρ ρ ε= + + + + + + + + +       (6) 
 

The first term on the right hand side of (6) describes the spatial multiplier effect. This 
multiplier effect means that the expected value of y in the region i does not only depend on 
the value of explanatory variables in this region but also on the value of independent variables 
of all regions of the sample. This multiplier effect is decreasing with the distance.  

The second effect, namely the spatial diffusion one, and expressed by the second term 
on the right hand side, indicates that a random shock hitting a given region will gradually 
affect all regions belonging to the sample. This effect is decreasing with the distance too.  

The SAR specification captures spatial dependence when it is present as an 
endogenous spatial lag. However, spatial autocorrelation may be present under the form of 
spatially autocorrelated errors. As written down above, we will not detail this model but only 
provide some useful information about it.  

A Spatially autocorrelated Error (SEM) model is generally preferred when 
autocorrelation is viewed more as a nuisance than a substantial parameter (Florax and 
Nijkamp, 2003). Several specifications assuming autocorrelated errors exist but the most used 

                                                 
5 This property is satisfied if 0≠ρ and when ρ/1 is not an eigenvalue of W. 
6 In addition to the maximum likelihood method, see for more details Anselin (1988), Anselin and Bera (1998) 
or Anselin (2001), the method of instrumental variables (Anselin 1988, Kelejian and Prucha 1998, Lee 2003) 
may also be applied to estimate SAR models. 



 8

is a spatial autoregressive process which stipulates that the error term, ε, is a function of Wε, 
the spatial lag associated with the errors.  

Formally, this model is written as follows: 
 

 
y X

W u
β ε

ε λ ε
= +
= +

          (7) 

 
with λ , the spatial autoregressive coefficient and u, the vector of errors with usual 
characteristics [(i.i.d. (0, ²σ I)]. The λ  parameter reflects the intensity of the interdependence 
between residuals. Due to non-spherical errors, OLS estimators are inefficient and the 
maximum likelihood method or the generalized method of moments should be used instead 
(see, for instance, Anselin and Bera, 1998 or Anselin, 2001). 
 Merging the two components of (7), we find the reduced form of the SEM model:  
 
 1)y X W uβ λ −= + (Ι −           (8) 
 
As for the SAR model, the matrix 1)( −− WI λ  must be non singular. Equation (8) shows that 
the SEM specification only includes a spatial diffusion effect. Indeed, the term βX  is not 
premultiplied by the inverse spatial transformation 1)( −− WI λ . Let us also note that 
premultiplying equation (8) by ( )I Wλ−  we get: 
 
 y X Wy WX uβ λ γ= + + +          (9) 
 
with the non linear restrictions :  0γ λβ+ = . The model (9) is the so-called spatial Durbin 
model and can be estimated by ML. The restriction γ + λβ = 0 can be tested by the common 
factor test (Burridge 1981). If it cannot be rejected then model (9) reduces to model (8). 
 

We will now turn to the second spatial effect, namely spatial heterogeneity. For the 
sake of space, we will not present all the details of this effect but only give useful material for 
this article. Spatial heterogeneity has two components that can be present jointly. The first 
one, spatial instability of the parameters, refers to the fact that comportments, or economic 
relationships, can vary over space. This spatial instability comes from the variation of the 
functional form and parameters according to the localization. From the econometric point of 
view, this is reflected by a differentiation of the parameters with respect to localization. 
Assuming two clubs, equation (1) can be rewritten in the following way (assuming 
homoscedasticity of the error term):  
 
 1 1 2 2 1 1 0 2 2 0ln lnTg D D D Y D Yα α β β ε= + + + +      (10) 

2~ (0, )N Iεε σ  
 
with D1 and D2, dummy variables representing regions belonging to spatial regimes 1 and 2 
respectively. More specifically, D1i takes the value 1 if the region i belongs to regime 1 and 0 
otherwise while D2,i equals 1 if region i belongs to the second spatial regime and 0 otherwise. 
Spatial instability of parameters is reflected by different values of β's according to the regime. 

Heteroskedasticity is the second facet of spatial heterogeneity. However, given that it 
can be treated by traditional methods, it will not be discussed here. 

The two spatial effects can be present jointly in a regression but he link between the 
two is not straightforward. Actually, three different categories of links can be distinguished 
between spatial autocorrelation and heterogeneity. Firstly, in cross-sectional data, the two 
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effects may be observationally equivalent (Anselin et Bera, 1998, p. 240). For instance, the 
observation of a cluster of high values of a variable in urban areas may come from spatial 
heterogeneity (under the form of groupwize heteroskedasticity) or from spatial autocorrelation 
(concentration of high values for cities and low values for rural sphere. Secondly, spatial 
heterogeneity tests are not reliable in the presence of spatial autocorrelation and must be 
adjusted. Reciprocally, properties of spatial autocorrelation tests are altered in the presence of 
heteroskedasticity of unknown form. Finally, spatial dependence may be due to parameter 
instability not modeled. 

3. Empirical Results 

3.1 Absolute β-convergence 
In this section, we will apply the tools of spatial econometrics (developed by Cliff and 

Ord (1973); Anselin (1988); Anselin and Florax (1995) among others) to absolute β-
convergence and convergence clubs models. The exercise bears on regions of the enlarged 
European Union between 1993 and 2002. Databases used are the Cambridge Econometrics 
completed with the Eurostat REGIO database. The reason that leads us to work on 
unconditional β-convergence is the lack information on potential control variables at the 
regional scale for the sample we use. Indeed, the sole available for the extensive 237 NUTS 2 
regions studied is the per capita Gross Value Added (GVA).  

This empirical section has different objectives. Firstly, we want to show that spatial 
autocorrelation still matters in this new sample. Several studies have shown that it was the 
case for the EU-15 regions Fingleton (2002); Ertur et al. (2003b); Ertur et al. (2006); Lopez-
Bazo et al.  (2004) but only one on regions of the EU-25 (Fischer and Stirböck (2005). It is 
thus interesting to compare results. Secondly, we will introduce some heterogeneity by 
assuming spatial instability of parameters. Thirdly, we will test the robustness of our results 
by re-estimating our models with the quasi-maximum likelihood and the Bayesian estimation 
methods.  

Our goal being to show the presence of spatial effect, the first step consists in 
estimating an a-spatial model, namely the classical linear one. The equation estimated is the 
following:  

( )2
1993 0,Tg S Y          N Iεα β ε ε σ= + + ∼                   (10)  

with  gt, the vector (237,1) of the average annual per capita GVA growth rate for each region i 
between 1993 and 2002, T = 9, Y1993 is the vector containing the observations of the per capita 
GVA in logarithms in 1993,  α and β  are unknown parameters  to be estimated and ε is the 
error term vector with usual properties. Table 1 summarizes estimation results. 
Table 1 shows that the estimated β parameter is negative (-0.004761) and significant, which 
means that a weak convergence process is present in this sample. From this result, we can 
easily compute the convergence speed and the half-life, which are respectively 0.48% and 145 
years. It is interesting to compare these results with the ones found in the study of Ertur et al. 
(2006) which was based on the EU-15 regions. In their paper, the authors found a β 
coefficient of -0.00797, which is twice as high as the estimate found here and it is strongly 
significant too. 

Before comparing results with the ones of Fischer and Stirböck (2005), we will briefly 
present their work. The sample they use is quite similar to ours: 256 NUTS 2 European 
regions between 1995 and 2000 whereas we study the growth of 237 European regions 
between 1993 and 2002. However, spatial weight matrices used differ between studies. They 
define spatial weight by a threshold distance, wij equals 1 if region j is situated within a 
distance d of region i, whereas we use an inverse distance matrix based on time needed to join 
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each pair of regional capitals. The difference between estimators found is quite important 
since they found a convergence speed of 1.9%. This result can partly be explained by the 
different period considered. Time studied by Fischer and Stirböck (2005) stops before the 
decrease of economic growth of 2001. So, their sample only looked at the convergence 
process for what may be considered as a high economic growth period. 
 

Table 1: OLS results of the absolute convergence process 
 

Dependent variable : gT 
 

Tests 
 

R² adjusted 0.0708 Moran's I 3.604 
(0.000) 

LIK 705.996 LMERR 2.898 
(0.088) 

σ² 0.0002 LMLAG 5.433 
(0.019) 

α̂  0.065468 
(0.000) RLMERR 5.095 

(0.023) 

β̂  -0.004761 
(0.005) RLMLAG 7.629 

(0.005) 
Convergence speed7 

Half-life8 
0.48% 

145 years LMERR
* 43.4235947 

(0.000) 
Note: numbers in brackets are the p-values, Moran's I is the Moran test for global spatial autocorrelation, LMERR, 
LMLAG are the Lagrange multiplier statistics which test for the presence of spatial autocorrelation in the errors 
and a endogenous spatial lag respectively, RLMERR and RLMLAG are their robust counterpart and finally, 
LMERR* is the conditional Lagrange Multiplier statistic for the presence of autocorrelated errors given a spatially 
lagged dependent variable.  BP is the Breusch Pagan test for heteroskedasticity. 
 

Given the economic intuition that regions are correlated by factors like international 
trade or knowledge spillovers, we have checked the presence of spatial autocorrelation. The 
most commonly applied statistic to test the presence of global spatial dependence is the 
Moran's I. If significant, the sample is not randomly distributed and spatial autocorrelation is 
present among observations. However, this test does not specify the nature of dependence. In 
the case where it is significant, one first has to try to include more exogenous variables, one 
source of spatial autocorrelation being the omission of independent variables. If not possible, 
as in this study, one must perform specification tests which will help us to determine the 
nature of spatial dependence.  

Table 1 shows that the Moran's I statistic is positive and significant, confirming the 
presence of positive spatial autocorrelation. Five Lagrange Multipliers tests have been 
performed in order to discriminate between two forms of spatial dependence (spatial 
autocorrelation of the error term or an endogenous spatial lag). Results of both LMLAG and 
RLMLAG are more significant than their counterpart for the autocorrelated errors model. 
According to the decision rule elaborated by Anselin and Rey (1991) and modified by Anselin 
and Florax (1995), it thus seems that the presence of spatial dependence is better modeled by 
the endogenous spatial lag9 than by spatial error autocorrelation (see also Florax et al., 2003). 

                                                 
7 The convergence speed, θ, is computed as follows: ln(1 /T Tθ β= − + ) . 
8 Half-life τ, comes from the following expression:. ln(2) / ln(1τ β= − + ) . 
9 The conditional test LMERR* shows that a more general specification should be used but as we estimate it, none 
spatial parameters are significant. A possible cause is that the conditional test is biased, because of the omission 
of independent variables. 
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This result is unusual for European regions but is really interesting. Until now, 
empirical literature always found spatial autocorrelation was better modeled by a SEM 
(Spatial Error Model) model which means that autocorrelation is more a nuisance parameter. 
This study shows that spatial autocorrelation can be viewed as a substantive phenomenon 
derived from a theoretical model, which is more appropriate from the economic point of view.  

The model (10) is thus modified in the following way:  
εβρ ++= XWgg TT                  (11)  

where W is the weight matrix defined in the previous section, TWg , the endogenous spatial 
lag, and ρ, the autoregressive spatial parameter. Under the hypothesis of normality of the error 
term, the model is estimated by maximum likelihood. Table 2 reports the estimation results 
and those of two other alternative methods used to test the robustness of the estimates. These 
methods are the quasi-maximum likelihood (QML) and Bayesian estimation (BE). The 
objective of estimating the model by QML is to provide standard errors robust to non-
normality of the error term and thus to execute reliable statistical inference (Lee, 2004). 
Bayesian estimation has different purposes. This method was used to capture the effect of 
outliers and is robust with regard to heteroskedasticity (Le Sage, 1997). 
 
 

Table 2: Results of the estimation of the SAR Model 
 

Estimation Method ML QML BE 
Dependent variable : gT    

σ² 0.0001 0.0001 0.0002 
LIK 790.19956 790.19956  
AIC -1574.4 -1574.4  
BIC -1560.7 -1560.7  

α̂  0.043376 
(0.000) 

0.043376 
(0.000) 

0.033595 
(0.000) 

β̂  -0.003971 
(0.000) 

-0.003971 
(0.000) 

-0.003130 
(0.000) 

ρ̂  0.720999 
(0.000) 

0.720999 
(0.000) 

0.769932 
(0.000) 

Convergence speed 0.4% 0.4% 0.32% 
Half-life 174 years 174 years 221 years 

Notes: ML stands for maximum likelihood, QML for quasi maximum likelihood and BE for Bayesian 
estimation. Numbers between brackets are the p-values, LIK is the value of the log-likelihood function, AIC is 
the Akaïke criterion and BIC the Schwartz criterion.  
 
 

We will first analyze results from the ML estimation. Table 2 shows that the absolute 
convergence process is still present but weaker than in the OLS estimation. The reason is that 
we have removed the spatial interaction effect from the initial per capita GVA variable. Our 
results are thus lower than those found in the literature (a convergence speed of 2%).  We also 
note that the spatial parameter is highly positive and significant, meaning that the intensity of 
spatial interactions is quite high. For a region i, an increase of 1% of the weighted average of 
the average annual growth rate of its neighboring regions (the neighborhood being defined by 
the weight matrix) will lead to an increase of the growth rate of region i of 0.72%, once the 
effect of other variables is controlled for. As Table 2 shows, ML results are robust to non-
Normality. Indeed, p-values of the maximum and quasi-maximum likelihood estimation are 
similar. 
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Finally, in order to deal with potential outliers, which could exert a substantial impact 
on inference regarding convergence in the context of our sample together with 
heteroscedasticity, we estimate a Bayesian heteroscedasticity robust model using the method 
described in LeSage (1997, 2002). This model allows the disturbances to take the form 

2(0, )N Vε σ∼ , where 1 2( , ,..., )nV diag v v v=  and is estimated using MCMC methods (Gelfand 
and Smith, 1990). A prior distribution is assigned to the iv  terms taking the form of a set of n  
independent, identically distributed, 2 ( ) /r rχ distributions, where r  represents the single 
parameter of the 2χ  distribution. This allows us to estimate the additional n  variance scaling 
parameters iv  by adding only a single parameter r  to the model (see Geweke, 1993). 

The 2χ  prior assigned to the iv  terms can be motivated by considering that the prior 
mean equals unity and the prior variance is 2 / r . This implies that as our prior assignment of 
a value for r  becomes very large, the terms iv  will all approach unity, resulting in nV I= , the 
traditional assumption of constant variance across space. On the other hand, assigning small 
prior values to r  leads to a skewed distribution permitting large values of iv  that deviate 
greatly from the prior mean of unity. The role of these large iv  values is to accommodate 
outliers or observations containing large variances by down-weighting these observations. In 
the context of spatial modeling, outliers arise due to “enclave effects”, where a particular 
observation exhibits divergent behavior from nearby observations. Geweke (1993) shows that 
this approach to modeling the disturbances is equivalent to a model that assumes a Student-t 
distribution for the errors. This type of distribution has frequently been used to deal with 
sample data containing outliers, (e.g., Lange et al. 1989). In practice, one can either assign an 
informative prior for the parameter r  based on the exponential distribution centered on a 
small value, or treat this as a hyper-parameter in the model, set to a small value, say 4 to 7. 
Our estimates presented in the last columns of Table 2 are based on 4r = .10 

Potential outliers are presented in Figure 1 as regions for which the posterior mean iv  
estimate is higher than 4: the regions concerned are mainly Eastern European regions, which 
joined EU recently, belonging to Slovenia, Estonia, Poland and Hungary. Irish regions appear 
also to be outliers as well as Berlin and a Finnish region. It is also the case of Groningen in 
the Netherlands. This region appears as an outlier because of anomalies related to North Sea 
Oil revenues, which substantially increase its per capita GDP. 

The Bayesian estimation shows also that when potential outliers are taken into account 
in the regression, the β estimator goes up (from -0.00397 to – 0.00313) decreasing the speed 
of convergence from 0.40% to 0.32%. We thus conclude that outliers biase the ML estimation 
upward. We also note that the spatial parameter is higher in this estimation expressing larger 
spatial interactions. A comparison between ML and Bayesian heteroscedastic β  estimates is 
presented in Figure 2 where the simulated normal distribution for β  from the ML estimation 
and the posterior distribution for β  from the Bayesian estimation are plotted. The posterior 
distribution for β  appears to be skewed to the right compared to the simulated normal 
distribution, most likely because of the outliers or non-constant variances, as an illustration of 
our point. 

                                                 
10 All computations are carried on by means of the Matlab Spatial Econometrics Toolbox developed by James 
LeSage (http://www.spatial.econometrics.com). 
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Figure 1: posterior iv  estimates 
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Figure 2: ML simulated normal distribution versus Bayesian heteroscedastic posterior 

distribution for β in the SAR model  
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3.2 Convergence clubs 
Spatial regimes are used to model spatial instability of the parameters. So, before 

stating the econometric regression that will be estimated, it is worthwhile to give some details 
about the determination of the clubs. 

We defined clubs by using tools of the Exploratory Spatial Data Analysis (ESDA). 
This analysis allows deciphering spatial distribution of the sample. In addition to capture 
spatial autocorrelation, these techniques detect spatial regimes and other forms of spatial 
heterogeneity (Haining, 1990; Bailey and Gatrell, 1995; Anselin, 1998a, 1998b). Moreover, 
atypical localizations, outliers and spatial association models can be identified. 

ESDA techniques allow differentiating global from local spatial autocorrelation. The 
first one is tested by the Moran's I and bears on the whole sample. On the opposite, local 
spatial dependence does not assume the homogeneity of the sample because it captures 
atypical localizations as the "wealthy islet" (a rich region surrounded by poor ones) or "the 
black sheep" (a poor region surrounded by rich ones) and assess their significance. Several 
statistics exist to give an account of local spatial autocorrelation. The most used are the Moran 
scatter plot (Anselin, 1996), the Getis' statistics (Getis and Ord, 1992; Ord and Getis, 1995) 
and Local Indicator of Spatial Association (LISA) developed by Anselin (1995). 

We specified our spatial regimes with the statistic developed by Getis and Ord, the 
Gi(d). We will briefly present it to allow the reader to understand how it works. 

The Gi(d) was created by Getis and Ord (1992) in order to locate local clusters of 
spatial association which are not necessarily detected by global spatial dependence tests. For 
each region i and period t, this statistic is written as follows (Getis et Ord, 1992): 
 

,

,
,

( )
( )

ij j t
j i
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j t

j i

w d x
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≠
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where wij(d) are the elements of a symmetric binary spatial weight matrix. wij(d) equals one 
for all links within a distance d of a given region i and equals zero for all other links. The 
variable x has a natural origin and is positive.  

The numerator of the statistic is the sum of all xj situated within a distance d of the 
region i (xi being not included in the calculation) while the denominator is the sum of all xj 
(excepted xi) 11. Once the Matrix is row-standardized, a positive value of Gi,t(d) denotes a 
spatial cluster of high values whereas a negative one indicates clustering of low values around 
region i. This statistic has been extended by Ord and Getis (1995) to variables that do not 
have a natural origin and to non binary standardized weight matrices and is written in the 
following way:  
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11 The statistic that takes the region i into account also was suggested by Getis and Ord (1992) and Ord and Getis 
(1995) and was labelled * ( )iG d . 
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where 2
1i ijj

S w=∑  and ( )i ij
j i

W w d
≠

=∑ . The sample mean and standard deviation for the 

sample of size N-1 (exclusion of the region i) are ( )x i and iσ ( )  respectively. The sign of this 
statistic must be interpreted in the same way than the preceding one.  

We will now apply it to our sample. It is worthwhile noting that we only have 
considered the value of the statistic and not its significance. Concretely, we assigned regions 
whom statistic was positive to the regime labeled "West" and the other to the regime labeled 
"East". We applied Getis statistic on the per capita GVA expressed in logarithms in initial 
period. The spatial weight matrix held for the computation in an inverse distance one because 
it minimizes the number of atypical12 regions that have to be excluded from the sample.13 
Those regions are the 5 Portuguese ones and our sample shrank from 237 to 232 regions. 

The composition of the two clubs is the following: in the club labeled "West", we find 
regions mainly belonging to the Western Europe, namely Belgium; France; Germany; Spain; 
Ireland; Italy; Luxembourg; Netherlands; United Kingdom; Sweden; Slovenia; some regions 
in Austria (Karnten, Steiermark, Oberosterreich, Salzburg, Tirol, Vorarlberg), Finland 
(Aland), Poland (Zachodniopomorskie) and Czech Republic (Jihozapad). This club thus 
includes rich regions.  

The other regime, labeled "East", is composed of Greece; Estonia; Slovakia; regions of 
Burgenland, Niederosterreich and Wien in Austria; all but one regions of Poland, of Czech 
Republic and of Finland.  

Clubs founded out in this study show that polarization among European region is not 
more North-South (as in studies devoted to EU-15 regions) but West-East. It is relevant to 
note that heterogeneity is very pronounced within our regimes, and especially in the West 
one. The reason behind this lies in the composition of this club. We showed that it included 
nearly all regions of the previous EU-15. However, in studies devoted to convergence among 
EU-15 regions (Ertur et al, 2003b; Durlauf and Johnson, 1995; Armstrong, 1995), authors 
found out two spatial regimes within their sample, namely one for Northern regions (the rich 
ones) and one composed of Southern regions (the poor ones). In our study, we have merged 
those two clubs, and thus created heterogeneity into our regime. This is partly for this reason 
that we will perform a robustness study of our results.  

Now that clubs are identified, we can proceed with estimation. The econometric 
regression is based on the absolute β-convergence model (1) and explicitly specifies the 
presence of clubs: 

 1 1 2 2 1 1 93 2 2 93

2~ (0, )
Tg D D D y D y

N Iε

α α β β ε

ε σ

= + + + +
     (12) 

 
where D1 and D2 are dummy variables qualifying the two spatial regimes previously defined. 
Specifically, D1,i equals 1 if region i belongs to the "West" regime and 0 otherwise while D2,i 
equals 1 if region i belongs to the "East" regime and 0 otherwise.   

As in the first case, we start with an OLS estimation of equation (12).  Results are 
summarized in table 3.  
 
 
 
 
 
                                                 
12 An atypical region is either a rich region surrounded by poor ones, either a poor region surrounded by rich 
ones.  
13 Atypical regions have to be excluded because their number is too small to compose a club of their own.  
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Table 3 : Results of the convergence clubs model estimation using OLS 
 

Dependent variable : gT 

Adjusted R² 
σ² 

0.1284 
0.0001 

Ind. stability test α̂  
 

14.21034 
(0.000) 

 

Global stability 
test 

7.98238 
(0.000) Ind. stability test β̂  15.057107 

(0.000) 

   
 West (1) East (2) 

α̂  0.121664 
 (0.000) 

0.014944 
(0.388) 

β̂  -0.010640 
 (0.000) 

0.001477 
(0.477) 

Convergence speed 1.12% - 
Half-life 65 years - 

Moran's I 1.873  
(0.068) RLMERR 3.587 

(0.058) 

LMERR 0.149 
(0.699) RLMLAG 4.667 

(0.031) 

LMLAG 1.229 
(0.266 LMERR

* 0.824 
(0.364) 

 Notes: p-values are in brackets, stability tests are performed using Likelihood ratio.  
 

Table 3 shows quite different results of those obtained in absolute convergence. In this 
framework, we observe a convergence process among regions belonging to the spatial regime 
labeled "West" but the β estimator is neither of the expected sign or significant in the "East" 
regime.  

This estimation allows us to see the impact on Eastern regions in the convergence 
speed computed under the absolute β-convergence model. The convergence speed is twice 
higher when only rich regions (belonging to regime "West") are taken into account whereas 
the convergence process disappears in the "East" regime (poor regions). We thus can think 
that rich regions draw the economic convergence.  

Table 3 also shows that coefficients are significantly different between spatial regimes 
(the global stability test reveals that coefficients of clubs are significantly different). 
Consequently, the adjusted coefficient of determination goes from 7 to nearly 13%. 
Nevertheless, these results must be interpreted with caution because they do not take into 
account spatial effects which, let us point it out, produce unreliable estimators.  

Fischer and Stirböck's results are here too, quite different from ours. They found a 
convergence coefficient significant and of the expected sign for both convergence clubs. 
Moreover, convergence speeds are much higher in their work, 4.8% for their "West" club and 
2% for their "East" one. Again we can partly attribute this difference on the time period 
studied.  

The second part of table 3 tests the presence of spatial autocorrelation. The Moran's I 
test is positive and significant (to the 10% threshold), meaning that the sample is 
characterized by spatial dependence.  

When we look to the simple hypothesis Lagrange Multiplier tests, namely those which 
only test the presence of spatially autocorrelated errors or the spatially lagged endogenous 
variable, we see that neither is significant. Their robust version indicate that a SAR model 
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seems to be more appropriate than a SEM one when we follows the decision rule of Anselin 
and Rey (1991) and Anselin and Florax (1995). Moreover, the LMERR

* test, which tests for the 
presence of a residual autocorrelation in the errors when a SAR model is already present, is 
not significant. The most appropriate model thus seems to be the endogenous spatial lag one.   

The estimable equation for the convergence club model is thus transformed in the 
following way:   
 1 1 2 2 1 1 0 2 2 0ln lnT Tg D D Wg D Y D Yα α ρ β β ε= + + + + +     (13) 
with the same notations as before, TWg , the endogenous spatial lag and ρ, the autoregressive 
spatial parameter expressing the intensity of interactions between observation of the 
dependent variable. Table 4 summarizes results of estimating equation (13) by the maximum 
likelihood method and by the two other methods designed to test the robustness of the results.  

We will first analyze coefficients estimated by the maximum likelihood method. We 
see that the convergence process is significant only in the West regime and the convergence 
speed is quite low (1.03%). The spatial autoregressive parameter, ρ, is still positive but lower 
than in the absolute case and more importantly, only significant at 10.3%, which is quite low. 
In the Fischer and Stirböck's case, results are again different. Firstly, the preferred 
specification to model spatial dependence is a SEM model, whereas we chose an endogenous 
spatial lag. Secondly, convergence estimators are significant and of the expected sign for both 
clubs, and the convergence speed is rather high: 1.5% for their "West" regime and 2.4% for 
the "East" one.  

The story is different in the study of Ertur et al (2006). These authors found a 
convergence process in the club composed of poor regions (they labeled this regime South) 
but no significant estimator for the regime made of rich regions and labeled North. Moreover, 
the convergence speed computed is quite high since it nearly equals 3 % (2.94%).  As Fischer 
and Stirböck, they preferred the spatially autocorrelated errors specification to model spatial 
autocorrelation. Nevertheless, even though we use different specifications, both studies found 
highly positive and significant spatial parameter (0.72 for this study against 0.79 for their 
study).  

We will now turn to columns 3 and 4 of table 4, which represent the robustness study. 
The quasi-maximum likelihood estimation shows that the maximum likelihood p-values are 
robust to non-normality of the residuals (p-values of both estimation methods are similar). 
More interesting are the results of the Bayesian estimation. Several points deserve some 
attention. First of all, we can see that when we perform Bayesian estimation, whose aim is to 
capture the effect of outliers and heteroskedasticity, all estimated coefficients except the 
constant term for the second spatial regime, are significant at the 5% level. Our result 
therefore confirms that the classical convergence clubs model is misspecified since the spatial 
parameter is indeed significant. Note that its estimated value (0.639) is higher than the one 
obtained in ML estimation (0.496). The second observation is that both β coefficients are 
significant, which was not the case under the ML estimation. A convergence process is still 
present in the West regime but weaker whereas in the east regime, we observe a significant 
divergence process (in the ML estimation, the β coefficient was already of the wrong sign but 
insignificant).  This second observation shed light on the potential biais that could plague ML 
estimators when outliers present. 

Figure 3 presents numerous outliers detected as regions exhibiting a posterior mean iv  
estimate higher than 4: regions belonging to Poland and to the Czech Republic, a Finnish 
regions, Irish regions as well as Berlin and Luxembourg appear therefore as outliers. It is also 
the case of Groningen for the reason already given above (see Figure 1).  Figures 2 and 3 
display a comparison for the SAR model with two regimes between the simulated normal 
distribution for β  from the ML estimation and the posterior distribution for β  from the 
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Bayesian estimation are plotted. The posterior distribution for β  appears to be skewed to the 
right compared to the simulated normal distribution, most likely because of the outliers or 
non-constant variances. These Figures show clear evidence on favor of the severe biases in 
ML β  estimates for both regimes. Therefore this study shows that eastern regions, between 
1993 and 2002, tend to diverge from each other, whereas regions belonging to the West 
regime, namely regions of EU15, tend to converge. 

 
 

  
Table 4: Results of the estimation of the SAR Model 

 
 

Estimation Method 
 

ML 
 

QML 
 

BE 
²σ  0.0001 0.0001 0.0002 

LIK 778.80293 778.80293  
AIC -1547.61 -1547.61  
BIC -1530.4 -1530.4  

 Westα  0.10437 
(0.000) 

0.10437 
(0.000) 

0.07655 
(0.000) 

 Eastα  0.00472 
(0.794) 

0.00472 
(0.794) 

-0.01996 
(0.109) 

 Westβ  -0.00987 
(0.000) 

-0.00987 
(0.000) 

-0.00736 
(0.000) 

 Eastβ  0.00139 
(0.498) 

0.00139 
(0.498) 

0.00368 
(0.018) 

ρ  0.49599 
(0.103) 

0.49599 
(0.103) 

0.63933 
(0.011) 

Convergence speed    
West 1.03% 1.03% 0.76% 
East - - - 

Half-Life    
West 70 years 70 years 94 years 
East - - - 

 
Tests 

Individual stability 
test for  α  

12.0116 
(0.000) 

12.0116 
(0.000) 

 

Individual stability 
test for β  

12.5275 
(0.000) 

12.5275 
(0.000) 

 

Global stability test 12.8896 
(0.002) 

12.8896 
(0.002) 

 

Notes: ML stands for maximum likelihood, QML for quasi maximum likelihood and BE for Bayesian 
estimation. Numbers between brackets are the p-values, LIK is the value of the log-likelihood function, AIC is 
the Akaïke criterion and BIC the Schwartz criterion. The coefficient of determination, and its robust version, is 
not reported because in presence of spatial autocorrelation, they are not appropriated to assess the quality of a 
regression (Anselin and Bera, 1998, P.263). Stability tests have been performed using the Likelihood ratio test. 
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Figure 3: posterior mean of vi estimates 
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Figure 4: ML simulated normal distribution versus Bayesian heteroscedastic posterior 

distribution for βWest in the SAR model with two spatial regimes 
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Figure 5: ML simulated normal distribution versus Bayesian heteroscedastic posterior 

distribution for βEast  in the SAR model with two spatial regimes 
 

4. Conclusion 
This paper studied the convergence process among regions of the Enlarged Europe. 

We considered two different models, namely absolute β-convergence and convergence clubs. 
In the first model, when spatial autocorrelation is omitted, we found a weak but significant 
convergence process. Taking space into account lead us to conclude to the presence of a still 
weaker process but significant. However, the spatial parameter, representing the interaction 
intensity among regions, has a positive, high value, meaning positive spatial dependence and 
is significant. The direct interpretation of the significance of this parameter is that the classical 
linear model is misspecified.  

Estimation of convergence clubs allowed us to discriminate steady state between 
groups of economies. We have seen that both OLS and maximum likelihood methods provide 
a negative and significant β estimator for the "West" regime whereas we did not find any 
convergence process in the "East" spatial regime.  

The robustness study performed here nevertheless changes in some ways the results 
obtained. If we look at the QML estimation, results are similar, meaning that the correction 
for non-normality of the residuals is negligible. However, Bayesian estimation provides 
interesting results. On the absolute β-convergence process, we found that the β estimator had 
decreased, due to the effect of outliers, but remained significant and negative. However, in 
convergence clubs, results are more contrasting. If we look at the spatial parameter, and 
compare the maximum likelihood estimation with the Bayesian one, in the latter case, when 
the effect of outliers and heterosckedasticity is controlled for, we find that it is quite positive 
and highly significant whereas it was hardly significant at the 10% level in the former case. 
More importantly, Bayesian estimation provides significant convergence parameters for both 
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clubs. These estimation results also show that Eastern regions are diverging while Western 
regions are weakly converging. 
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A-1 Index of regions belonging to the sample 
Code Region Code Region 
BE1 Bruxelles-Brussel DED3 Leipzig 

BE21 Antwerpen DEE1 Dessau 
BE22 Limburg DEE2 Halle 
BE23 Oost-Vlaanderen DEE3 Magdeburg 
BE24 Vlaams Brabant DEF Schleswig-Holstein 
BE25 West-Vlaanderen DEG Thuringen 

BE31 Brabant Wallon GR11 Anatoliki 
Makedonia 

BE32 Hainaut GR12 Kentriki 
Makedonia 

BE33 Liege GR13 Dytiki Makedonia 
BE34 Luxembourg GR14 Thessalia 
BE35 Namur GR21 Ipeiros 
DK DENMARK GR22 Ionia Nisia 

DE11 Stuttgart GR23 Dytiki Ellada 
DE12 Karlsruhe GR24 Sterea Ellada 
DE13 Freiburg GR25 Peloponnisos 
DE14 Tubingen GR3 Attiki 
DE21 Oberbayern GR41 Voreio Aigaio 
DE22 Niederbayern GR42 Notio Aigaio 
DE23 Oberpfalz GR43 Kriti 
DE24 Oberfranken ES11 Galicia 
DE25 Mittelfranken ES12 Asturias 
DE26 Unterfranken ES13 Cantabria 
DE27 Schwaben ES21 Pais Vasco 
DE3 Berlin ES22 Navarra 
DE4 Brandenburg ES23 Rioja 
DE5 Bremen ES24 Aragon 
DE6 Hamburg ES3 Madrid 

DE71 Darmstadt ES41 Castilla-Leon 
DE72 Giessen ES42 Castilla-la Mancha 
DE73 Kassel ES43 Extremadura 

DE8 Mecklenburg-
Vorpomm. ES51 Cataluna 

DE91 Braunschweig ES52 Com. Valenciana 
DE92 Hannover ES53 Baleares 
DE93 Luneburg ES61 Andalucia 
DE94 Weser-Ems ES62 Murcia 
DEA1 Dusseldorf FR1 Ile de France 
DEA2 Koln FR21 Champagne-Ard. 
DEA3 Munster FR22 Picardie 
DEA4 Detmold FR23 Haute-Normandie 
DEA5 Arnsberg FR24 Centre 
DEB1 Koblenz FR25 Basse-Normandie 
DEB2 Trier FR26 Bourgogne 
DEB3 Rheinhessen-Pfalz FR3 Nord-Pas de Calais 
DEC Saarland FR41 Lorraine 

DED1 Chemnitz FR42 Alsace 
DED2 Dresden FR43 Franche-Comte 

 
 
 
 



 25

Code Region Code Region 
FR51 Pays de la Loire AT11 Burgenland 
FR52 Bretagne AT12 Niederosterreich 
FR53 Poitou-Charentes AT13 Wien 
FR61 Aquitaine AT21 Karnten 
FR62 Midi-Pyrenees AT22 Steiermark 
FR63 Limousin AT31 Oberosterreich 
FR71 Rhone-Alpes AT32 Salzburg 
FR72 Auvergne AT33 Tirol 
FR81 Languedoc-Rouss. AT34 Vorarlberg 

FR82 Prov-Alpes-Cote 
d'Azur PT11 Norte 

FR83 Corse PT12 Centro 
IE01 Border PT13 Lisboa e V.do Tejo 
IE02 Southern and Eastern PT14 Alentejo 
IT11 Piemonte PT15 Algarve 
IT12 Valle d'Aosta FI13 Ita-Suomi 
IT13 Liguria FI14 Vali-Suomi 
IT2 Lombardia FI15 Pohjois-Suomi 
IT31 Trentino-Alto Adige FI16 Uusimaa 
IT32 Veneto FI17 Etela-Suomi 
IT33 Fr.-Venezia Giulia FI2 Aland 
IT4 Emilia-Romagna SE01 Stockholm 
IT51 Toscana SE02 Ostra Mellansverige 
IT52 Umbria SE04 Sydsverige 
IT53 Marche SE06 Norra Mellansverige 
IT6 Lazio SE07 Mellersta Norrland 
IT71 Abruzzo SE08 Ovre Norrland 
IT72 Molise SE09 Smaland med oarna 
IT8 Campania SE0A Vastsverige 

IT91 Puglia UKC1 Tees Valley and 
Durham 

IT92 Basilicata UKC2 Northumb. et al. 
IT93 Calabria UKD1 Cumbria 
ITA Sicilia UKD2 Cheshire 
ITB Sardegna UKD3 Greater Manchester 
LU LUXEMBOURG UKD4 Lancashire 

NL11 Groningen UKD5 Merseyside 
NL12 Friesland UKE1 East Riding 
NL13 Drenthe UKE2 North Yorkshire 
NL21 Overijssel UKE3 South Yorkshire 
NL22 Gelderland UKE4 West Yorkshire 
NL23 Flevoland UKF1 Derbyshire 
NL31 Utrecht UKF2 Leics. 
NL32 Noord-Holland UKF3 Lincolnshire 
NL33 Zuid-Holland UKG1 Hereford et al. 
NL34 Zeeland UKG2 Shrops. 

NL41 Noord-Brabant UKG3 West Midlands 
(county) 

NL42 Limburg UKH1 East Anglia 
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Code Region Code Region 
UKH2 Bedfordshire EE Estonia 
UKH3 Essex HU01 Kozep-Magyarorszag 
UKI1 Inner London HU02 Kozep-Dunantul 
UKI2 Outer London HU03 Nyugat-Dunantul 
UKJ1 Berkshire et al. HU04 Del-Dunantul 
UKJ2 Surrey HU05 Eszak-Magyarorszag 
UKJ3 Hants. HU06 Eszak-Alfold 
UKJ4 Kent HU07 Del-Alfold 
UKK1 Gloucester et al. PL01 Dolnoslaskie 
UKK2 Dorset PL02 Kujawsko-Pomorskie 
UKK3 Cornwall PL03 Lubelskie 
UKK4 Devon PL04 Lubuskie 
UKL1 West Wales PL05 Lodzkie 
UKL2 East Wales PL06 Malopolskie 
UKM1 North East Scot. PL07 Mazowieckie 
UKM2 Eastern Scotland PL08 Opolskie 
UKM3 South West Scot. PL09 Podkarpackie 

UKM4 Highlands and 
Islands PL0A Podlaskie 

UKN Northern Ireland PL0B Pomorskie 
CZ01 Praha PL0C Slaskie 
CZ02 Stredni Cechy PL0D Swietokrzyskie 

CZ03 Jihozapad PL0E Warminsko-
Mazurskie 

CZ04 Severozapad PL0F Wielkopolskie 
CZ05 Severovychod PL0G Zachodniopomorskie 
CZ06 Jihovychod SI Slovenia 
CZ07 Stredni Morava SK Bratislavsky 
CZ08 Moravskoslezko  

 


