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NON-TECHNICAL SUMMARY

This paper is concerned with the way in which firms learn about the demand for
their products, and introduces a new approach to the analysis of production
decisions under demand uncertainty. In conventional analyses, firms are
assumed to set their levels of production so as to maximize their profits, given
the probability distribution of product demands which they face. In the Bayesian
literature, firms begin with a probability distribution which reflects their 'prior!
beliefs concerning the behaviour of product demand shocks. Firms base their
production decisions on this distribution, after which they observe sales and
update their prior distribution. In this framework the process of search for new
information concerning demand is a sampling problem. By contrast, firms in our
analysis do more than take random samples from the distribution of product
demands. Instead, they use their production decisions to determine what sort of
information about demands they will receive. Each production decision may be
interpreted as an 'experiment' which is designed to generate new information
concerning demand.

We assume that the firm does not produce to order and that the product demand
which the firm faces is constant through time, so that a firm's current observation
about product demand is relevant to its future production decisions. We analyse
the firm's production decisions within a framework which captures the effects of
past supply decisions on the information currently available about demand. We
consider a very simple model in which prices do not play a role: demand is a
given quantity which the firm attempts to determine. Initially the firm knows only
that the demand for its product lies within a specified interval. We assume that
the firm faces uncertainty rather than risk, in the sense that it does not know even
the probability distribution of demand for its product. We picture the firm learning
about the demand for its product by supplying output and observing how much
of this output remains unsold. We call this behaviour 'high-Iow search' since the
firm learns that its supply is 'too high' when the quantity sold falls short of the
quantity put up for sale and inventories remain, and that its supply is 'too low'
when its inventories are exhausted. When the supply is 'too high', the firm can
infer the exact level of demand: demand is equal to the quantity sold. When the
supply is 'too Iow', the firm is unable to infer the exact level of demand. In short,
the information which the firm receives is asymmetric: positive inventories yield
quantitative information about product demand whereas only qualitative
information is available when inventories are exhausted.

We examine a minimax production strategy for the firm, one which minimizes the
costs in the current and future time periods of overproduction and
underproduction under the most adverse demand conditions. The firm chooses



a 'supply strategy', a sequence of quantities supplied in each time period. The
quantities supplied follow this sequence until demand is known and thereafter
supply is set equal to demand. Firms make their production decisions not only
with a view to maximizing their current profits given their current information, but
also with a view to improving their knowledge of demand so as to increase their
profits in the future.

We derive a formula and numerical simulations which illustrate how the optimal
sequence of supply decisions depends on the rate at which the firm discounts
costs in future time periods and on the relative costs of overproduction and
underproduction t

In the traditional microeconomic theory of production, the firm's information about
demand is assumed to be independent of its supply decisions. By contrast, this
paper argues that, in the presence of uncertainty, this independence cannot in
general be upheld. When demand is uncertain, information about demand is
revealed by the activities of supplying goods and observing how many of them
are sold. If firms are aware of this, production decisions will be made with a view
to revealing such information.



PRODUCTION DECISIONS UNDER DE~AND UNceRTAINTYI

THE HIGH-LOW SEARCH APPROACH

by

Steve Alpern* and Denni. J. Snower**

1. Introduction

This paper presents a new approach to the analysis of sequential

production decisions under uncertain product derr~nd. We anaIyze the behavior

of a firm which learns about the unknown product demand it faces by observing

the sales following its sequence of supply decisions. In other words, we

picture the firm as "searching" for its product demand by supplying output and

observing how much of this output remains after its sales have taken place.

We call this behavior "high-low search", since the firm learns that its supply

is "too high" when the quantity sold falls short of the quantity put up for

sale and that its supply is "too low" when there is a stock-out. To fix

ideas, we will assume that product demand is constant, but unknown to the

firm. Thus, when supply is "too high": the firm can infer the exact level of

demand (which is equal to the quantity sold). We will consider production

strategies which not only use currently available "high-low" information about

demand but moreover actively incorporate the anticipated acquisition of this

feedback from sales.

* Department of Mathematics, London School of Economics

** Department of Economics, Birkbeck College, University of London.
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Our approach i. to view .upply level. a. "aueue." about the level D

of demand "hidden" by nature in a aiven interval. We employ techniquet

motivated by the mathematical theory of ".earch aame.", and in particular the

theory of optimal high-low aearch, to aolve a model of the firm'a production

problem under unknovn demand.

In the traditional microeconomic theory of production, the firm'.

information abo~t demand is assumed to be independent of it. aupply

decisions. This is the case in both the standard deterministic models (where

the firm know! the demand curve it face! and chooaes the profit-maximi~ing

point on thi! curve) and the standard stochastic model. (where the firm'.

demand curve contains a random disturbance term, whose di.tribution i. assumed

to be knovn and independent of the quantities supplied~. By contrast, this

paper argues that in the presence of uncertainty (as distinguished from risk,

where the densities of all relevant variables are knovn), the independence of

demand information and supply decisions can generally not be upheld. The

reason is that when demand 15 uncertain, information about this demand is

revealed by the activities of supplying goods and observing how many of them

are sold. If firms are aware of this, production decisions will be made with

a view to such information relevation.

In a previous paper (Alper~ and Snower (1986», we considered the

implications of this information revelation in the context of a Bayesian model

of inventory holding, assuming a knovn distribution of demand. Here, however,

we consider the problem of uncertainty rather than risk, as no prior demand

distribution is assumed, we derive "conservative" production strategies for

the firm.
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The paper il organited al followl. In Section 2 we briefly delcribe

how the firm'. production problem il related to the mathematical theory of

high-low learch, which we lurvey. Section 3 (ormalitel Our production

model. In Section 4 we develop a recurlive procedure, lummarited in Theorem.

1 and 2, for det~rmining the firm'. conlervative (minimax co.t) production

level.. Section S examines the dependence of the optimal .upply levell on the

discount factor and the relative cost of overproduction to underproduction.

In Section 6 we take a numerical economic example and investigate the

com~ar.tive dynamics of production levels with respect to the product'.

production cost, price, holding cost and depreciation rate. Our conclusions

are in Section 7.

2. High-low search

A search game is one in which a Searcher tries to find (geometri­

cally coincide with) a Hider in minimum time or cost, subject to given motion

and information constraints. (See Gal (1980». In the problem of "high-low"

search, the searcher (the firm, in this paper) wishes to locate a number, say

o (for demand), which is hidden in a known set of real numbers H. The set H

is an interval either of the discrete kind {1, 2, ••• , 43} Or a continuous one

of type [~, DJ (as in our model below). The searcher makes a sequence of

guesses Gl , G2 , ••• in t~e interval H and after each guess is told whether

G
t

< 0 (the guess is "too low") or G
t

> 0 (it is "too high"). In the case

of a discrete interval H = {1,2, ••• ,n}, eventually some guess GN equals 0,

and the time N needed to find 0 is taken to be the payoff. This game was

solved in Johnson (1964) for small values of n, but the general problem is

still open. An elegant general solution to this discrete problem was obtained
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by. Cal (1974) alllumini a binary information feedback of

(.tockout or .urplu. Itock, in our model).

C 5 0 or C > 0
t t

In the economic problem of thil paper, the luppliel Cl' C2 , ... are

interpreted as gue •• el about the demand 0 which il known only to be in a given

interval [~,'DJ. The aim of the firm, however, il not limply to find (or

rather converge to) 0 as rapidly 1I pO'lible. Rather, the firm wi.he. to

minimize the opportunity CO.tl ariling from overproduction and underproduction

rellltive to the "full information optimum" production level of O. The search

game model closest to this prOblem il that of Baston and Bostock (198). In

their model the searcher picks a sequence of pointl Cl' C2 , ••• to find a point

o hidden in the interval [0, lJ, subject to triadic high-low feedback (C t < 0,

Ct = 0, or Ct > 0). Yet unlike our model, the cost function which the

sea r cher t r i est 0 mi n i mi ze i s the "s um 0 fer r 0 r s" cos t C = I I G - 0 I.
t=l t

The minimax pure search strategy determined by Alpern (1985) finds any point 0

loIith total cost of C ~ .625.

In this paper, the model of Baston and Bostock is modified, with

respect to information and cost, 60 as to fit the supply problem faced by the

firm described in the introduction. first, the information feedback must be

made assymetric: If Gt is less than or equal to 0 (stockout) then the searcher

loIill be told this, as in the Baston-Bostock model (except he will no longer be

told if he hits 0 exactly, since this too is a stockout). However if Ct

exceeds 0 (excess supply)' then the searcher-will be told not only that Ct > 0

but will be told the exact value of 0 (which the firm would know in this case

by observing sales). The cost function must also be modified to

C = L ot-l[,(O-G)+ + ,(G -O)+J, where Z+ = max(Z,O), 0 is the discount
t=l t t

factor, • is the unit opportunity cost of underproduction (i.e. the unit price
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minuI the unit cOlt), and 'il the unit opportunity COlt of overproduction

(which involvel holding COltl, depreciation COltl and opportunity COltl

related to dilcounting, al Ihown in Section 5). If 0 • • • ~ • 1 thil COlt

function reducel to the ilium of errorl" .1 in Balton .nd Boltock (198.'».

3. The Production Model

In this section we describe a production model which captures the

dependence of Current demand information on past supply levels, as discussed

in the introduction. Initially, all the firm knews about demand il that it

lies within a Ipecified demand uncertainty interval [~, DJ, where D > D. At

the beginning of the first time period - which we call the "morning" of period

t = 1 - the firm produces an amount Q1 " The quantity of output which the firm

puts up for sale (the "supply", for short) is given by Cl"' Q
l

+ (l - 6) 1
0

,

where It is the inventory stock remaining at the end of period t, and is

the rate of inventory depreciation. At the end of the first time period -

which we call the "afternoon" of period t = 1 - sales occur. The amount sold

is Zl "' min (Cl' D). As a result, the inventory stock remaining at the end of

the first period is 11 = Gl - Zl. This temporal sequence of activities is

repeated in all subsequent time periods.

The firm's information set JM in the morning ("M") of period t,
t

before the production lev~l has been set, contains the initial demand

uncertainty interval as well as all its previous supplies and inventory

stocks:

~ = [ Gl '···. Gt - l ; 10 .1 1 ••••• It-I; Q. 0 l.

Its information set JA in the afternoon ("A") of period t. just
t

before sales have taken place, contains C
t

as well a8 ~



- 6 -

Now that we have de.cribed the dynamic. and information tran.fer. of

the model, let UI con.ider the firm'l objectivel. If the actual demand 0 were

known to the firm, then of course profitl would be maximiEed by letting every

supply level C
t

equal to D. In thil case, there would never be any inventory

Itocks. Since demand is not known, there are opportunity costs of under-

production and overproduction, which we assume are linear. Normali%ing costs,

we let the unit cost of underproduction be unity and the unit cost of over-

production be b (where b r! is obtained as the ratio of overproduction to
4>

underproduction costs). fin~lly, let there be a discount factor

a, 0 ~ a ~ 1, so that. the cost function which the firm seeks to minimi~e is

given by

(1) C = L
C <0

t

t-la . (O-G )
t

t-1
a 'b'(G -0).

t

model is

With the definition of the cost (1), the formal description of our

complete. Ho~ever, in order to identify a reasonable class of

strategies available to the firm, we must mention the inferences about demand

that the firm may make by observing (past) sales. If there IS a stockout at

the end of period 1 (1 1 0), then the firm infers that its supply is "too

low", i.e. that G
1

~ O. (Strictly speaking, the supply is "too low" or "just

right".> Consequently the demand uncertainty interval is reduced from

[~, D) to [Cl' D), and the next supply level C
2

should be set some~here in

the latter interval. In fact, as shown below, C2 should be set above Cl' As

long as stockouts occur, the supply levels increase and the demand uncertainty

interval shrinks. If, in some first period N, a positive inventory stock is
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left (IN >0). then the firm mAy infer the exact level of demand

o • ZN • CN - IN • In all .ublequent period •• the firm .hould meet thi. known

demand exactly, 0 • C
H

+
l

• C
N

+
2

• ••.. (Thi. i. po •• ible only if the Nth

period inventory .tock can be exhau.ted by .ati.fying the demand in period

(H+l), in other word.. (l-6).I
H

~ D. Otherwi.e, regardle •• of the production

level QH+l' the amount put up for .ale in period (N+l) would exceed demand:

C
H

+
l

• QH+l + (l-6)oI N ~ (1-6)·I N > O. To ensure that any inventory .tock

can be s~ld off in the next period. we assume that 0 ~ 2·Q. which implies

that (l-6)oI
N

~ IN E CN - 0 ~ D - D ~ Q ~ D.) Thus in all periods after N.

no costs will be incurred as demand will be met exactly.

A ".upply strategy" for the firm is a sequence 5· (51' 52 •••• )

with 0 ~ 51 ~ 52 ~ •.. ~ D. The set of all such strategies is denoted by J.
The supply strategy 5 determines the supply sequence Cl' G2 •••• according to

the following rule:

Define N = N (5. D) min {t15 > D}
t

C
t

5 for t ~ N
t

G : D for t > N.
t

In other words the supply follows the levels prescribed by 5 until

demand is known (from surplus stock) and therafter supply is set equal to

demand. Of course if D ~ s~p St then N = m and the exact level of demand is

never determined.

The strategic form of the problem can now be stated. If the firm

adopts the supply strategy 5 in <1 and the exact level of demand is O. then the

cost to the firm is given by

()
N-l 1 N

C(S.O) • L a
t

- (D-S) + a . b(SN-O),
t=1 t
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where N· H (S, D). (The lum il infinite and the overproduction term milling

in the cale N· -.) Of cOurle there are Itrategiel available to the firm

other than thOle in J, but it il clear that any Itrategy not inoS il dominated

by a It rat e gy in d.

We call a strategy 5 in.J "terminating" if S • Dfor lome finite
t

t. for such a terminating strategy we define the termination time T • T(S) to

be the last period t such that 5 < 0 (so that 5
T

< 0 • S • 5 • )
t T+l T+2 ••••

The termination time T is the ~ximum number of stockoutl permitted by the

supply strategy. (Note that N-l is the actual number of stock-outs when

demand 1S D and th~s N is a function of 5 and D; by contrast, T is the maximum

r.umber of stock-outs resulting from strategy S and thus T is a function of 5

on 1y. )

4. A Conservative Strategy

In this section we derive the firm's optimal supply decisions

(concerning the amounts it offers for sale through time) when it pursues a

strategy of minimizing its opportunity cost under the most adverse demand

conditions. Specifically, we derive a recursive formula for the conservative

supply strategy 5:: (SI' 52' •.. ) in <1 satisfying

(4) max C<S, D)
O~D~l

min max c(S,D)
5e.5 O~D~1

W,

where c(S,D) is given by (3) and the demand interval is normalized to [0,

1]. (Of course, the actual level of demand must satisfy our condition

D~ 2 . ~.) The minimax value W represents the smallest opportunity cost
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which can be luaranteed by the firm. S il the (unique) Itrateay which

auaranteel that the COlt will not exceed W. We Ihow that, for any valuel of

the parameterl Q and b (which characterite the COlt function c(S,D», S il

unique and terminating.

Since the derivation of the formula for 5 hal a revealing economic

interpretation, we will explain each Itep intuitively in term. of the firm',

production and information-acquilition activities. Par thi. purpose, it is

convenieQt to assume that 0 -I (i.e., no discounting) 10 that (3) reduces to

(The case concerning arbitrary 0, 0 ~ 0 ~ 1, will be covered later in Theorem

2. )

To derive the conservative strategy satisfying (4), we choose an

arbitrary period of time t=K+l and find the firm's optimal supply decision

G
K

+
1

~ SK+l' assuming that all its previous supply decisions

G
l

= Xl' G
2

= X
2

, ••• , GK & XK have resulted in stock-outs. (This is the

only substantive problem to be solved since, as we have seen, once there is no

Btock-out, the firm proceeds to satisfy its demand exactly.) As noted above,

the supply decision G
K

+
1

is made in the morning of period t=K+l, when the

relevant demand uncertainty interval is [X
K

, 1]. To find the optimal

quantity to be put up for sale (GK+1 ~ SK+l)' the firm needs to consider the

consequences of making any arbitrary supply decision G
K

+
1

= X, where X lies

within [X
K

, 1].

For this purpose, suppose that the firm now finds itself in the

afternoon of period t= K+l, when its lupply decision G
K

+
l

& X has already
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brrn made, but .alel havr not yrl takrn place. The let of Itrategiel

available to the firm i.

The lealt co.t which the firm can guarantee through optimal .upply deci.ion.

in the future (ViE, from the morning of period K+2 onwardl) i.

(7)

Observe that if the firm selS GK+ 1- X at its optimal level

(X • SK+l)' then the oplimal coal on the afternoon of period K+1

A(C
K

+ 1 (X1' ••• 'XK,X» must be equal to the corresponding optimal COlt on the

morning of period K+l (before GK+ 1 has been set). We define the latter cost

as follows:

(8) min max c(S,O)
S£d'K (X1,···,XK) XK~O~l

which is the least cost which the firm can guarantee by optimal supply

decisions from the morning of period K+l onwards. In other words, this cost

is

At this point it lS useful to interpret definitions (7) and (8) and

their relation (9) in terms of the following two person zero-sum game of

perfect information. The firm (the minimizer) sets a supply level Cl and then

Nature (the maximizer) either says "stockout" or reveals a demand 0 in the

interval (Cl' 1). As soon as the demand is revealed, the game stops with

payoff given by (1). Otherwise the firm sets a new supply level
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C
2

, C
2

~ Cl' and again Nature either .ay. ".tockout" Or reveal. a demand. In

the case of non-termination, demand 0 i. taken to be 1 in'the payoff formula

(1). All nonterminal "node." for the minimidng firm are of type

(Xl' •.• , XKI
H

interpreted a. the .ituation in the morning of the K+l day

after supply level. Cl· Xl' ••• , CK • XK have re.ulted in .tockout.

Nonterminal modes of Nature are of the form (X1, ••• ,XK, XjA, interpreted .s

the situation faced by Nature (or buyerl) on the afternoon of the K+l'.t day,

after 5~pply levels XI"",XK resulted n Itockoutl, and after a current

supply of X is offered for sale. The game-tree structure i. pictured in

Figure 1. In a finite t"o-person zero sum game of perfec,t information, all

nodes may be recursivel~ assigned values. In this analogy

C:+I (XI,···,XK, X) {of Equ8tion (7» is the value assigned to Nature'. node

A M
(XI,·.·,XK, XI and CK+I (Xl'···. XK) (of equation (8» is the value

assigned to the Firm's node (XI •.••• XKlH. Similarly. the fact that a

minimizer's node is al ..ays valued at the minimum value of its successor nodes,

is seen in Equation (9). The reason our solution is some..hat more complicated

than in the finite graph analogy is that paths may be nonterminating

(N ~ ~) and the cardinality of successors to a node is the cardinality of the

continuum.

Substituting (S) into (8) gives

(lOa)

min
S( JK(X 1 • • •• X

K
)

N-l
+ L (O-St) + b(SN- O)

t-=K+l
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Pa)'off

C(X1,···,Xi D)

. A
IX1·····~·X)

K-tl .fl~rnoon

Figure 1: The Game,tree Structure

)(.~l lDorning
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I(
mu (L (XI( - X ) +

XI(~OSl tal t

N-l
+ I L (O-S) + bo(SN-Oj}

t-K+l t

(where we recall that pa.t deci.ions are denoted by X
t

' tal, ••. ,1(, and the

future deci.ions are denoted by St' t aK+l, ••• , N).

This cost i. illustrated as the sum of the lengths of the line

segments in Figure 2a. The line segment for tal stands for (O-X
I
), the next

for (0-X
2

), and 10 on. The segment at teN is doubled to describe the case

where ba 2.

The right-hand side of the last equation of (lOa) consists of three

terms, each describing a different cost resulting from the firm's temporal

sequence of decisions. The first term, which we denote by
K

° = L (XI( -X t ), may be called the "past cost of past decisions". This 16

K tcl
a sunk cost, illustrated by the sum of the dotted line segments in Figure

2b. It arises because, on the morning of period t=K+l, the firm knows that it

has already made the supply decisions Xl' ••• , XK and that demand (D) must

lie in the interval [X K, IJ. Thus, t~e opportunity cost which has already

accrued as result of these past decisions is OK'
K

The second term" r (O-X) = Ko(O-X
K

), is the "future cost of past
t=l K

decisions". This arises because in the future (viz, after period t=K+l) the

firm may discover that demand lies above the lower bound of the interval

[XK' 1 J • In that event, the firm's past decisions Xl' ... , X
K

wi 11 turn

out to be more costly than OK (the fi ut term) • The second term is ill us-

trated by the sum of the dashed line segments in Figure 2b.
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N-l
Finally, the third term L (O-S) + b,(SN-O»), i. the "future

t-K+l
co.t of future deci.ion.". Thi. i. the .um of the di.crepancie. between each

of the future deci.ion. SK+l' SK+2' •••• SN and the demand O. It i. given by

the .um of the lolid line legment. in Figure 2b.

In .hort, the optimal COlt (10.) on the morning of period K+1 may be

rewritten &1 followl:

(lOb)

N-l
+ I I (O-St) + b,(sN-o)ll

t=K+l

We now rescale the demand uncertainty interval [XK, 1] linearly to the

orginal demand interval (0, 1], so' that the second and third right-hand terms

above (illustrated by the dashed and solid line segments in Figure 2b) are

magnified to extend from 0 to 1 (as pictured by the line segments in Figure

2c). The rescaling function is g(y) = (y-X
K

)/(l-X
K

), where y is any point in

the interval [XK, 1] and g(y) is the corresponding point in [0, 1]. Defining

O'=g(O) and S~ = g(St)' the optimal cost (lOb) becomes

o +
K

(I-X) ·min
K 0<5' 5'- K+1 S K+2 :$ ...

Il\8X

O:$O'sl

K
{L (0'-0)

t=l

N-1
+ I (D'-S') + b·(S' -D'>}

t=K+1 N

o +
K

~ ...
Il\8X

OSD':$1
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N-1
+ L (D'-5~) + b.(5~ - D')}

t-)(+1

• 0 I( + (1 - X ). mi n ma Jt C ( S " 0')
le 5't&)«0, .••• 0) O!O'!l

by (8)

In other word,. the optimal co,t on the morning of period )(+1. conditional on

the past decisions Xl ..... X)(. has two component.: (i) the sunk cost "I( and

(ii) the optimal future cost (of past and future decisions). These latter

costs are identical to what the optimal cost (rescaled by (l-X
K

» would have

been if the firm had failed to supply anything in the first I( periods (as

Letshown in Figure 2c).
M

WK • el(+l (0, ...• 0) be the optimal future cost,

conditional on the first K supplies having been set at zero. Then (lOc)

becomes

(lOd) o +
I(

By (4) and (lOd). we find that the optimal supply decision

*X must satisfy

We are now in a position to derive this optimal supply decision. On

the afternoon of period )(+1 (after an amount X has been supplied but before

sales have taken place), the firm anticipates that two things may happen:

(a) There may be a stock-out (1)(+1 = 0). from which the firm infers

that demand must be at least as large as the quantity put up for

sale (X ~ 0 ~ 1). In this case. the least cost which the firm can
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auarantee throuah optimal .upply deci.ion. from period K+2 onward.

i.

• ° + (1 - X)·WK+l K+l

• oK + K(X-XK) + WK+l(l-X)

since 0K+l-oK+K(X-XK)

by (8) and (lOd)

(b) A positive inventory stock may be left over (lK+l > 0), from which

the firm infers the exact level of demand D in [X
K

, Xl. In this

case N = K+l. Here, the least cost which the firm can guarantee

through optimal future decisions (meeting demand exactly) is

min sup c(S,D)
Se~K+l XK~D~X

K
where c(S,D) L (D-X ) + b·(X-D)

t=l

OK + K(D-XK) + b(X-D)

= oK + D·(K-b) - K'X
K

+ b·X.

Observe that the value of the worst-possible demand depends on

whether (K-b) is positive or negative. If K < b (so that an

increase in D raises the future cost of underproduction,
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L (D- Xt) - le· D
t-1
overproduction,
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I(

• L Xt , by lell than it reduce I the future COlt of
t-l

b.(X-D», then the demand which ma.imi~el the COlt

function il the lowelt demand 0 - XI(' ThuI, the COlt function

becomel

(12 i) if K < b.

On the other hand, if K ~ b (so that demand raises the future cost

01 overproduction by at lea!t a! much al it reduces the future cost

of underproduction, the worst-possible demand ia the lowest de~And;

D=X. In thi~ case, the cost function is

if K ~ b

'*The optimal supply decision GK+ I = X 5K+ 1 is the one which

minimizes the maximum of the two costs (11) and (12 i or ii) above:

(13 )

0) ,

Figure 3i deals with the case in which K < b, where (13) is

evaluated using (11) and (12i), as



x

(J 1) )' • CS"",.t:{X-l,) • 1J'.1 0 -X)

(Ui) y • 6" + beX-x )
~ t:

()~ii) )' • El, • K(XaXt:)

(11 )
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min
XI(:"XSl

ma x I{a • IC· (X - X ) + (1-X ) • W }
IC I( 1(+ 1 '

The ~1imum of the t~o cost. i. illultrated by the thick line

legments in the figure 3. The supply decision C
IC

•
1

• X ~hich minimi~es this

ma1i~1 cost il illustrated by the value of X • SIC+l ~hich lies at the

intersection of the t~o cost functions (11) and (12i):

( 15) X
W +(b-K)·XK+l I(

b-K+W1(+1

The height of this intersection (min C~+l (X1, ... ,XK,X), ~hich
XI(:5X:51

1S the optimal afternoon cost in period 1(+1, given that the firm has made the

optimal supply decision X = S 1) is identical with the optimal morning costK+

in period K+1 (by 9) and its value (substituting (15) into 14» is

Equating the ,formulae for

solving for WK, ~e obtain

b·W ·(l-X)
1(+1 K

of (10d) and (16) and

b - K + WK+ l
for K < b

Figure 3b deals with the case in which K ~ b.
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Now (13) becomel (u1ina 12ii in.tead of 12i)

(18 )

Th e rr.a II i mum CO!l t il minimized when

(19) X· SK+1 • 1 for K ~ b.

Thus,

(20 ) for K b.

Equating (10d) and (20), and solving for WK yields

K for K ~ b.

In sum, the firm's optimal supply decision in any time period,

assuming that all previous decisions have resulted in stock-outs, may be

derived as follows: As shown in Figure 2b, each past decision is associated

with a future cost of underproduction (given by the dashed line segments)

which depend~ positively on demand. The greater the number (K) of past

decisions which the firm has made, the more a given increase in demand will

raise the overall future cost of underproduction. When K is sufficiently

large, the effect of demand on the overall future cost of underproduction is

greater than the effect on the cost of overproduction. In that event, the
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wOrlt-pollible demand il 0-1 and thu. the ... ociated optimal lupply decilion

i I s • 1­1(+1 ThUI, S il • terminating Itrategy, with lome finite

termination time 1· 1(5). By (21), we then can find the allociated optimal

COlt WJ(' By (17), we obtain the previoul optimal COlt WK- 1 and, by (1~) we

thereby find the previous optimal .upply decilion SK' and 10 on.

These results are lummariled in the following theorem.

Theorem 1: -~en there lS no di.counting (0· 1) the unique lolution to the

problem

C(S,D)!NIX

O~O~l

is computed as follows:

• min max C(S,O)· W
5(6 O~D~ 1

First the optimal costs W • wO,w 1 ' w2"'" mAy be recursively

computed (downwards) by the formulae

for K ~ b, and(21) WI( = I(

(17) WI( = b-WK+l /(b-K + W
K

+
l

) for I( < b.

Once the costs WI( are known, the conservative s~pply levels

51' 52"" may be recursively computed (upwards) by letting XI(

using (15):

WI(+l + (b-I()SK

b - K + WK+ l
1 < I( < b,

(19) 51( = 1 for I( ~ b.

Thus, the termination time 1=T(5) is such that 1+1 ~ min{i:i~b}.
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It .hould be noted in particular that the con.ervative .trategy

S .et •• upply equal to the maximum po •• ibla level of demand if .tockout. have

occurred for more than b period ••

The analy.i. presented above for the cale of no di.counting

(0 • 1) can be generali~ed to cover any dilcount rate 0, 0 ~ 0 ~ 1. No new

ideal are needed. although the algebra become. more complicated. The lolution

in the general case is given below.

Theorem 2: For any discount rate 0 and over- to under-production cost ratio

b, with 0 ~ Q ~ 1 and 0 ~ b < m. there i. a unique .olution to

The conservative strategy 5 may bemax C(5, D) E min max C(S.D) E W.
OSDsl S[~ OSDsl

computed as follows: For K = O. 1. 2. ... , define

K~I. YK~ l+o+ ••• +aK- l = (l-aK)/(l-a). (Note that for a E 1.

Y
K

e K. for comparison with Theorem 1.) The strategy 5 will have a

termination time T such that T+l = min {i:y.~ aib} w~ich is always finite
1

(set always nonempty). The optimal costs W E WO' Wl • W2 ••.• can be

recursively computed (downwards) by

if K > T

a Kb W
K+l

if KST.

Then the optimal supply levels 51' 52' ••. may be determined recursively

upwards by
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for K5T

s~ • 1 for K > T.

Proof of Theorem 2: Put briefly, the proof with dilcounting il obtained from

the proof without dilcounting by attaching a factor ot-l to every term with

!ubecript t. for example, the sunk cost oK is now a function of

K t-1
0, 0J( • L Q (XK Xt )· Similarly, the "future COlt of past decisions" i.

tal

rather than K·(D-K).

obtained have the form

The equations from which the recursion formula(are

0)

(12 i)'

(12ii)'

These lines are drawn in figures 4i and 4ii.

s. Analysis of the Conservative Strategy

The recursive formulae of Theorem 2 enable us to compute the

conservative atrategy 5· (5
1
,5

2
, ••• ) in terms of the two parameters
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Q (diacount factor) and b (overproduction-underproduction ratio). In thia

aection we examine what the atrategy 8 look. like and analy~e the dependence

S. on Q and b.
1

The termination timea T • T(a,b) partition the Q - b plane aa ahovn

in Figure 5. The linea Li are dravn according to the equation

b • y./Qi • (1 + a
1

2+0 + Below the line

the conservative atrategy is to aupply at maximum level, i •e. , 1, from the

start. -That is, S . (1, 1 , ... ) , and hence T~O. For all pointa above L l but

on or below L2 , 1 equals 1. (In other words, if a stock-out Occurs in the

first period, then the second period supply is set at the maximwm level.)

Similarly for .11 points above L i - 1 but on or below L i , T • i-I. The

conservative strategy may be described algebraically for small values of T,

using the formulae of Theorem 2. When 1=1 we calculate that

1 d W = (aO'b'W )/(w + b'QO_y ) = b.(l+b)-l. Hence,Y1 = an ° 1 1 0

W laO'b) = (l+b)-l. Since 1 = 1, it follows that S = 1 for t > 1.o t

It is instructive to consider c(S, D) as a function of 0 in this

case. For 0 < (l+b)-l there is overproduction of (l+b)-l - 0 in the first

period, and no further costs. SO C(S, D) = b'«l+b)-l - D). For

o ~ (l+b)-l there is underproductio~ of 0 - (l+b)-l in the first period and

overproduction of 1-0 in the second period, and a total cost of

(0 - (l+b)-l) + Q b (I-D), as shown in Figure 6. 1he assumption that 1

guarantees that the line above (l+b)-l, 1) is upward sloping, since its

slope is 1 - ab, which is at least one.

For large values of T it is not feasible to derive rational

functions for St in terms of a and b, but it is an easy matter to compute

the optimal supply levels S numerically.
t

This is done in Figure 7 for
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Q • 1, Q • .9 and Q • .7. Ob.erve that for fiKed Q and t, the t'th .upply

level it i. decrea.ina in bl the hiaher the relative co.t of overproduction

to underproduction, the lower the amount produced.

The dependence of 5
t

on Q i. more .ubtle. When t • 1, the fir.t

suppl y level S i. increasing in Q. Thi. i. ea.y to eKplain. The higher
t

0, the areater the relative importance of future CO.tl, .0 the areater the

incentive to gain information about demand. Higher .upply level. give more

information about demand .ince they are more likely to yield a .urplus (thu8

revealing demand exactly) and in the event of a .tockout give a higher lower

bound on demand. Thus 51 i. increasing in o. For t ~ 2 the dependence of

S on 0 ha!! an additional "hedging" component. Consider the lecond lupply
t

level S2' assuming the initially supplied level SI resulted in a

stockout. The demand interval is [51' 1) and there has already been one

"bet" made (namely S1) that demand is "low" (S1 is the least point in the

current demand interval). Since the strategy S is conservative, i.e.,

minimax, the second guess S2 must "hedge" against the low guess S1. The

bigger the size of the first bet SI' the higher the value of S2 must be.

The "size" of the "bet" SI decreases as 0 increases, since the relative

importance of first period costs decreases with o. Thus the "hedging factor"

causes all guesses St except SI to' decrease with respect to o. The

interplay of the information-gathering motive and the hedging motive means

that St' t~2, may be increasing or decreasing in 0, as shown in Figure 7.

(The greater the number t-l of previous low guesses, the more significant the

hedging factor).
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6. Num~rical ~aample

Suppo •• the firm .~ll. a perfectly durabl. lood (6· 0) which co.t.

8 to produce and .ell. for 10. Th~ co.t of holding inventory from one period

to the next i. 2 per unit. The di.count factor Q i. 1/2. Initially, all the

firm know. about demand is that it li~. in the interval (20, 31).

In the above eaample the opportunity co.t of a unit of

underproduction is simply the unit (foregone) profit 10-8 • 2. A unit of

overproduction h85 two 8ssociated costs. There i. a holding co.t of 2 8nd a

discounting cost of (1-(1/2»8 c 4 (which represent. the .aving! that could

have been achieved by producing the extra unit in the next period which i.

discounted). This gives a total overproduction cost of 6 and hence a ratio of

over- to under-production costs of b z 3. Thus the par8meters of thi. example

are 0 e 1/2 and b = 3.

To calculate the optimal supply sequence S for this example we use

the formulae of Theorem 2 with 0 = 1/2 and b = 3. First observe that the

optimal strategy has a termination time T=2 since (0=1/2, be) lies above Ll

and below L2 in Figure 5. Thus we begin the recursion with

W
2 e Y2 1+0, W

l
= b(l+o)/(I+b) and Wo= b(I+0)/(2+0+b). For > 2 e T, we

have 5 1. The remaining two supply levels are computed from Theorem 2 as
t

(13a) SI = (1+0)/(2+0+b)

and then

(13b)
2 '

52 e (1+0) 10(2+a+b).

Since a e 1/2 and b ~ 3 this gives a first-period supply level of 51 ~ 3/11

and (in the event of a stock-out) a second-period supply level of S = 9/11
2

and a wor.t-case cost of W e Wo c 9/11. If the normalized interval (0, 1] is

linearly rescaled to the actual demand interval (20, 31) this gives a supply
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Itrategy s· (23, 29, 31, 31 •••• ) and a WOr.t-ca.e COlt of 18.

The calculation of total coltl for a firm employing thil lupply

Itrategy S at certain critical demand I levell il .hown in Table 1, where

overproduction i. indicated by Iquare bracketl and under-production by round

onel •.The resulting graph of C(S, D) for D in [20, 31) ia pictured in Figure

8. Ob.erve that C(S, D) il piecewile linear with each piece having a maximum

of 18. Any other lupply .trategy S will have a maximum COlt Itrictly higher

than 18.

The ratio (b) of over- to under-production costs may be apecified in

terms of more basic economic parameters. In particular, if the production

COlt is Z. the selling price is P, the holding cost i. h, then the ratio b may

be expressed as

(14) b: [h + (1-o·(1-6»·Zj/(P-C).

It is interesting to observe how the two nontrivial supply levels

SI and 52 vary as the parameters p, h, 6, Z and 0 are changed individually

in a neighbourhood of the numerical values in our example. These comparative

statics are graphed in Figure 9, with the parameter value of the example

underlined, and the two optimal supply levels of the example denoted by A and

B. In each case, the domain of the parameter is taKen to be the maximal

interval such that the termination tim~ T remains, as in the exam?le" at 2.

Hence. Equations (13a) and (13b) are relevant.

Figure 9i shows the firm's "supply curves" Sl (P) and S2(P) , giving

the conservative supply levels in the first two periods (assuming stockout in

period 1) in terms of an exogenously given price. These levels increase with

price because opportunity costs of underproduction increase with price. An

increase in holding cost or depreciation rate increases the coat of
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overproduction and hence decrea.e. the con.ervative .upply level., a.
indicated in 9ii and 9iii. If production CO.tl increa.e, the opportunity co.t

of underproduction decrelsel, and the opportunity COlt of overproduction

increase.. Hence lupply levell are allo decrealing with relpect to production

co.t., a • • hown in Figure 9iv.

The dependence of conservative .upply level. on the di.count factor

Q is the most complicated. This has already been di.cuIsed at the end of

section S, with reference to Figure 7. But in that context a and b were

considered al independent. Figure 9v, on the other hand, takes into consi­

deration the dependence (14) of the ratio of over- to under-production costs,

b, on a. It can be seen from Figure (9v), however, that the qualitative

description of the supply levels' dependence on a is the same as in the

earlier discussion, at least for the parameter values of this example.

7. Conclusions

Our model of sequential production decisions highlights the

interdependence of a firm's supply decisions and its information set. By

supplying output and observing-how much of it is sold, the firm may gain

information about its product demand" and this information is relevant to its

future supply decisions. We suggest that this interdependence may be expected

to arise under conditions of demand uncertainty. Our model analyzes the

optimal sequence of production decisions for a conservative firm in the face

of this interdependence.
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