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ABSTRACT

Production Decisions under Demand Uncertainty:

The High-Low Search Approach

The paper presents a model of ‘high-low search’ under uncertainty, in which a
‘conservative’ firm ‘searches’ for an unknown product demand by making a
sequence of production decisions. After each production decision and the
concomitant sales, the firm infers whether its supply is ‘too high’ or ‘too low'. We
show how the production decision reduces the firm’s demand uncertainty interval
and how this reduced uncertainty (in turn) affects its future production decisions.
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NON-TECHNICAL SUMMARY

This paper is concerned with the way in which firms learn about the demand for
their products, and introduces a new approach to the analysis of production
decisions under demand uncertainty. In conventional analyses, firms are
assumed to set their levels of production so as to maximize their profits, given
the probability distribution of product demands which they face. In the Bayesian
literature, firms begin with a probability distribution which reflects their ‘prior’
beliefs concerning the behaviour of product demand shocks. Firms base their
production decisions on this distribution, after which they observe sales and
update their prior distribution. In this framework the process of search for new
information concerning demand is a sampling problem. By contrast, firms in our
analysis do more than take random samples from the distribution of product
demands. Instead, they use their production decisions to determine what sort of
information about demands they will receive. Each production decision may be
interpreted as an ‘experiment’ which is designed to generate new information
concerning demand.

We assume that the firm does not produce to order and that the product demand
which the firm faces is constant through time, so that a firm’s current observation
about product demand is relevant to its future production decisions. We analyse
the firm’s production decisions within a framework which captures the effects of
past supply decisions on the information currently available about demand. We
consider a very simple model in which prices do not play a role: demand is a
given quantity which the firm attempts to determine. Initially the firm knows only
that the demand for its product lies within a specified interval. We assume that
the firm faces uncertainty rather than risk, in the sense that it does not know even
the probability distribution of demand for its product. We picture the firm learning
about the demand for its product by supplying output and observing how much
of this output remains unsold. We call this behaviour ‘high-low search’ since the
firm learns that its supply is ‘too high’ when the quantity sold falls short of the
quantity put up for sale and inventories remain, and that its supply is ‘too low’
when its inventories are exhausted. When the supply is ‘too high’, the firm can
infer the exact level of demand: demand is equal to the quantity sold. When the
supply is ‘too low’, the firm is unable to infer the exact level of demand. In short,
the information which the firm receives is asymmetric: positive inventories yield
quantitative information about product demand whereas only qualitative
information is available when inventories are exhausted.

We examine a minimax production strategy for the firm, one which minimizes the
costs in the current and future time periods of overproduction and
underproduction under the most adverse demand conditions. The firm chooses



a ‘supply strategy’, a sequence of quantities supplied in each time period. The
quantities supplied follow this sequence until demand is known and thereafter
supply is set equal to demand. Firms make their production decisions not only
with a view to maximizing their current profits given their current information, but
also with a view to improving their knowledge of demand so as to increase their
profits in the future.

We derive a formula and numerical simulations which illustrate how the optimal
sequence of supply decisions depends on the rate at which the firm discounts
costs in future time periods and on the relative costs of overproduction and
underproduction:

In the traditional microeconomic theory of production, the firm’s information about
demand is assumed to be independent of its supply decisions. By contrast, this
paper argues that, in the presence of uncertainty, this independence cannot in
general be upheld. When demand is uncertain, information about demand is
revealed by the activities of supplying goods and observing how many of them
are sold. If firms are aware of this, production decisions will be made with a view
to revealing such information.



PRODUCTION DECISIONS UNDER DEMAND UNCERTAINTY:

THE HIGH-LOW SEARCH APPROACH
by
" Steve Alpern* and Dennis J. Snower**

1. Introduction

This paper presents a new approach to the analysis of sequential
production decisions under uncertain product demand. We analyze the behavior
of a firm which learns about the unknown product demand it faces by observing
the sales following its sequence of supply decisions. In other words, we
picture the firm as 'searching" for its product demand by supplying output and
observing how much of this output remains after its sales have taken place.
We call this behavior "high-low search"”, since the firm learns that its supply
is "too high'" when the quantity sold falls short of the quantity put up for

' when there is & stock-out. To fix

sale and that its supply is "too low
ideas, we will assume that product demand is constant, but unknown to the
firm. Thus, when supply is "too high", the firm can infer the exact level of
demand (which is equal to the quantity sold). We will consider production
strategies which not only ;se currently available "high-low" information about

demand but moreover actively incorporate the anticipated acquisition of this

feedback from sales.
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Our approach is to view supply levels as "guesses' about the level D

of demand "hidden" b;jnature in a given interval. We employ techniques
motivated by the mathematical theory of "search games", and in particular the
theory of optimal high-low search, to solve a model of the firm's production
problem under unknown demand.

In the traditional microeconomic theory of production, the firm's
information about demand is assumed toAbe independent of its supply
decisions. This is the case in both the standard deterministic models {where
the firm knows the demand curve it faces and chooses the profit-maximizing
point on this curve) and the standard stochastic models (where the firm's
demand curve contains a random disturbance term, whose distribution is asﬁumed
to be known and independent of the quantities supplied). By contrast, this
paper argues that in the presence of uncertainty (as distinguished from risk,
where the densities of all relevant variables are known), the independence of
demand information and supply decisions can generally not be upheld. The
reason is that when demand 1s uncertain, information about this demand is
revealed by the activities of supplying goods and observing how many of them
are sold. If firms are aware of this, production decisions will be made with
a view to such information relevation.

In a previous paper (Alpern and Snower (1986)), we considered the
implications of this information revelation in the context of a Bayesian model
of inventory holding, ass;ming a known distribution of demand. Here, however,
we consider the problem of uncertainty rather than risk, as no prior demand
distribution is assumed, we derive ''conservative' production strategies for

the firm.



The paper is organired as follows. In Section 2 we briefly describe
how the firm's production problem is related to the mathematical theory of
high-low search, which we survey. Section 3 formalizes our production
model. In Section 4 we develop & recursive procedure, summarized in Theorems
1 and 2, for determining the firm's conservative (minimax cost) production
levels. Section 5 examines the dependence of the optimal supply levels on the
discount fact;r and the relative cost of overproduction to underproduction.

In Section 6 we take a numerical economic example and investigate the
comparative dynamics of production levels with respect to the product's
production cost, price, holding cost and depreciation rate. Our conclusions

are in Section 7.

2. High-low search

A search game is one in which a Searcher tries to find (geometri-
cally coincide with) a Hider in minimum time or cost, subject to given motion
and information constraints. (See Gal (1980)). 1In the problem of "high-low"
search, the searcher (the firm, in this paper) wishes to locate a number, say
D (for demand), which is hidden in a known set of real numbers H. The set H
is an interval either of the discrete kind (l,\2,..., 43} or a continuous one
of type [D, D) (as in our model below). The searcher makes a sequence of
guesses Gy, Gy,... in tge interval H and after each guess is told whether

Ct < D (the guess is '"too low") or Ct > D (it is "too high"). In the case
of a discrete interval H = {1,2,...,n), eventually some guess CN equals D,
and the time N needed to find D is taken to be the payoff. This game was
solved in Johnson (1964) for small values of n, but the general problem is

still open. An elegant general solution to this discrete problem was obtained



by Cal (1974) assuming a binary information feedback of C( s D or Ct > D
(stockout or surplus stock, in our model).

In the economic problem of this paper, the supplies Gy Cz;... are
interpreted as guesses about the demand D which is known only to be in a given
interval [9,'5]. The aim of the firm, however, is not simply to find (or
rather converge to) D as rapidly as possible. Rather, the firm wishes to
minimize the opportunity costs arising from overproduction and underproduction
relative to the "full information optimum' production level of D. The search
game model closest to this problem is that of Baston and Bostock (1985). In
their model the searcher picks a sequence of points Cy» C;}... to find a point
D hidden in the interval [0, 1}, subject to triadic high-low feedback (Ct < D,

G, =D, or G > D). Yet unlike our model, the cost function which the

searcher tries to minimize is the "sum of errors" cost € =) | ¢, -0pD |.
The minimax pure search strategy determined by Alpern (1985)t;§nds any point D
with total cost of C = .625.

In this paper, the model of Baston and Bostock is modified, with
respect to information and cost, so as to fit the supply problem faced by the
firm described in the introduction. First, the information feedback must be
made assymetric: If C[ is less than or equal to D (stockout) then the searcher
will be told this, as in the Baston-Bostock model (except he will no longer be
told i1f he hits D exactly, since this too is a s[ockoet). However if C_
exceeds D (excess supplyf then the searcher -will be told not only that G, >D
but will be told the exact value of D (which the firm would know in this case
by observing sales). The cost function must also be modified to

C = E at-llo(D-C[)‘ + '(G[—D)’], where 2° = max(Z,0), a is the discount

t=1
factor, ¢ is the unit opportunity cost of underproduction (i.e. the unit price
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minus the unit cost), and Y is the unit opportunity cost of overproduction
(which involves holding costs, depreciation costs and opportunity costs
related to discounting, as shown in Section 5). If o » ¢ = ¢ = | this cost

function reduces to the "sum of errors' as in Baston and Bostock (1985).

3. The Production Model

In this section we describe a production model which captures the
dependence of current demand information on past supply levels, as discussed
in the introduction. Initially, all the firm kncws sbout demand is that it
lies within a specified demand uncertainty interval (D, D), where D > D. At
the beginning of the first time period - which we call the "morning" of period
t =1 - the firm produces an amount Q- The quantity of output which the firm
puts up for sale (the "supply"”, for short) is given by G, = Ql + (1 - 6) Io'
where I, is the inventory stock remaining at the end of period t, and & is
the rate of inventory depreciation. At the end of the first time period -
which we call the "afternoon'” of period t = 1 - sales occur. The amount sold
is Z, = min (Cl, D). As a result, the inventory stock remaining at the end of
the first period is I, =6 -12,. This temporal sequence of activities is
repeated in all subsequent time periods.

The firm's information set JT in the morning ('"M") of period t,
before the production level has been set, contains the initial demand
uncertainty interval as well as all its previous supplies and inventory
stocks:

J’: =0 Cheeey G 13 IgpTjheeey 113 Dy D).

A

Its information set Jt in the afternoon ("A") of period t, just

before sales have taken place, contains G[ as well as Jt H



- D, DJ.

A
J = 16,eC T -1

0
Now that we have described the dynamics and information transfers of
the model, let us consider the firm's objectives. If the actual demand D were
known to the firm, then of course profits would be maximized by setting every
supply level Ct equal to D. In this case, there would never be any inventory
stocks. Since demand is not known, there are opportunity costs of under-
production and overproduction, which we assume are linear. Normalizing costs,
we let the unit cost of underproduction be unity and the unit cost of over-
production be b (where b = % is obtained as the ratio of overproduction to
underproduction costs). Finally, let there be a discount factor
a, 0 <a <1, so that.the cost function which the firm seeks to minimize is
given by
t

M c=] o' hocye]
C[<D C(>D

ly.(c -p).
t

With the definition of the cost (1), the formal description of our
model is complete. However, in order to identify a reasonable class of
strategies available to the firm, we must mention the inferences about demand
that the firm may make by observing (past) sales. If there is & stockout at
the end of period 1 (I} = 0), then the firm infers that its supply is "too
low", i.e. that C, < D. (Strictly speaking, the supply is "too low" or "just
right".) Consequently the demand uncertainty interval is reduced from

[é, D) to [Cl' D), and the next supply level 62 should be set somewhere in
the latter interval. In fact, as shown below, C2 shquld be set above Gl. As

long as stockouts occur, the supply levels increase and the demand uncertainty

interval shrinks. If, in some first period N, a positive inventory stock is
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left (I, >0), then the firm may infer the exact level of demand

N
D= ZN - CN - IN . In all subsequent periods, the firm should meet this known
N - - . . . , th
demand exactly, D = Cyel Cyv2 weo » (This is possible only if the N

period inventory stock can be exhausted by satisfying the demand in period

(N+1), in other words, (1-§)-1 < D. Otherwise, regardless of the production
N P

level Qq,;, the amount put up for sale in period (N+1) would exceed demand:

- -8)-1. 2 (1-8)-1.. > D.
C}“1 Qi * (1-8) IN 2 (1-6) Iy D. To ensure that any inventory stock

can be sold off in the next period, we assume that D < 2:D, which implies
that (1-6)-1 <1, =G - D¢ D-D<D<D.) Thus in all periods after N,
no costs will be incurred as demand will be met exactly.

A "supply strategy' for the firm is a sequence S = (Sl' Sz,...)
with § < S1 < 52 < ... < D. The set of all such strategies is denoted by J.
The supply strategy S determines the supply sequence Cl' CZ' ... according to
the following rule:

(2a) Define N =N (S, D) = min {(|St > D}

(26) G =5 fort <N

(2¢) C[ =D for t > N.

In other words the supply follows the levels prescribed by S until
demand is known (from surplus stock) and therafter supply is set equal to
demand. Of course if D 2 spp St then N = « and the exact level of demand is
never determired.

The strategic form of the problem can now be stated. If the firm
adopts the supply strategy S in g and the exact level of demand is D, then the
cost to the firm is given by

o

N
(3) c(s,D) = §=1 a (D-s) + a" - b(s,-D),



_B_

vhere N = N (S, D). (The sum is infinite and the overproduction term missing
in the case N = «.) Of course there are strategies available to the firm
other than those ind, but it is clear that any strategy not ir18 is dominated
by a strategy ind.

We call a& strategy S in<5 “terminating" if S = D for some finite

t

t. For such a terminating strategy we define the termination time T = T(S) to

i <D D =S§S s -
be the last period t such that S[ D (so that ST <D S_“1 - ST02 el
The termination time T is the maximum number of stockouts permitted by the
supply strategy. (Note that N-1 is the actual number of stock-outs when
demand is D and thus N is a function of S and D; by contrast, T is the maximum

rumber of stock-outs resulting from strategy S and thus T is a function of §

only.)

4. A Conservative Strategy

In this section we derive the firm's optimal supply decisions
(concerning the amounts it offers for sale through time) when it pursues a
strategy of minimizing its opportunity cost under the most adverse demand

conditions. Specifically, we derive a recursive formula for the conservative

supply strategy S = (§ S ...)ind satisfying

1’ 2?

(4) max c(S, D) = min max c(S,D) = W,
0<D<1 Sed 0<Ds<l
where ¢(S,D) is given by (3) and the demand interval is normalized to (O,
1}. (Of course, the actual level of demand must satisfy our condition

D <2 - D.) The minimax value W represents the smallest opportunity cost



which can be guaranteed by theblirm. § is the (unique) strategy which
guarantees that the cost will not exceed W, We show that, for any values of
the parameters a and b (which characterize the cost function c(S,D)), S is
unique and terminating.

Since the derivation of the formula for S has & revealing economic
interpretation, we will explain each step intuitively in terms of the firm's
production and information-acquisition activities. For this purpose, it is

convenient to assume that a =1 (i.e., no discounting) so that (3) reduces to
(5) c(5,D) = (D-5,) + (D-5,) + ... + (D=5 )+ b-(5,-D) .

(The case concerning arbitrary a, 0 < a < 1, will be covered later in Theorem
2.)
To derive the conservative strategy satisfying (4), we choose an

arbitrary period of time t=K+l and find the firm's optimal supply decision

CK01 = SK#I' assuming that all its previous supply decisions

G, =X, C, =X

1 2 2t te G, = XK have resulted in stock-outs. (This is the

K

only substantive problem to be solved since, as we have seen, once there is no
stock-out, the firm proceeds to satisfy its demand exactly.) As noted above,

the supply decision is made in the morning of period t=K+l, when the

cK01

relevant demand uncertainty interval is [XK , 1]. To find the optimal

quantity to be put up for sale (G ), the firm needs to consider the

kel = Skel

consequences of making any arbitrary supply decision GK*I = X, where X lies

within [XK' 1].

For this purpose, suppose that the firm now finds itself in the

afternoon of period t= K+l, when its supply decision (:K’1 = X has already
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been made, but sales have not yet taken place. The set of strategies
available to the firm is

veey X 8 = X}).

(6) J'M (x o X - (scd: )X s euy Sy By

1

The least cost which the firm can guarantee through optimal supply decisions
in the future (viz, from the morning of period K+2 onwvards) is

X) = min max c(s,D).

() Cp, (X ,eeoX
scdx’l(xl,...,x ,X) szDsl

CK‘I K’

K

‘Observe that if the firm sets Cqu- X at its optimal level

(X = §K01)' then the optimal cost on the afternoon of period K¢l
\ .

(Chay

(Xl,...,XK,X)) must be equal to the cor}esponding optimal cost on the
morning of period K+l (before Gy, hes been set). We define the latter cost
as follows:

(8) C:‘l (Xl,...,XK) = min max c(s,D)

s:dk (X yee X)) X <D<1

which is the least cost which the firm can guarantee by optimal supply
decisions from the morning of period K+l onwards. In other words, this cost
is
M

(9) ¢ (X

K+l l,...,XK) = min [of (x

At this point it is useful to interpret definitions (7) and (8) and
their relation (9) in termslof the following two person zero-sum game of
perfect information. The firm (the minimizer) sets a supply level G, and then
Nature (the maximizer) either says "stockou&" or reveals a demand D in the

interval (Cl, 1). As soon as the demand is revealed, the game stops with

payoff given by (1). Otherwise the firm sets a new supply level



c, C,2 ¢, and again Nature either says 'stockout" or reveals & demand. In
’

the case of non-termination, demand D is taken to be 1 in 'the payoff formula
(1). All nonterminal "nodes" for the minimiring firm are of type

[Xl, ceey XK]H interpreted as the situation in the morning of the K+1 day

after supply levels C = X

1 CEREED CK = XK have resulted in stockout.

Nonterminal modes of Nature are of the form |xl,...,xx, X]A, interpreted as
the situation faced by Nature (or buyers) on the afternoon of the K+l'st day,
after supply levels Xl""’XK resulted n stockouts, and after a current
supply of X is offered for sale. The game-tree structure is pictured in
Figure }. In a finite two-person zero sum game of perfect information, all
nodes may be recursively assigned values. In this analogy

CA (xl"°"XK' X) (of Equation (7)) is the value assigned to Nature's node

K+1

A M
(X )0 X

x}" and C (Xl,..., XK) (of equation (8)) is the value

K’ K+l

assigned to the Firm's node lxl""'xK]H' Similarly, the fact that a
minimizer's node is always valued at the minimum value of its successor nodes,
is seen in Equation (9). The reason our solution is somewhat more complicated
than in the finite graph analogy is that paths may be nonterminating

(N = =) and the cardinality of successors to a node is the cardinality of the
continuum.

Substituting (5) into (8) gives

M
(108)  Cp, (X 4ueneyX)

N-1
) (D-S.) + b(s,-D)

- : K
= min max (D'X[) .
=] t=K+l

SCJk(xl,.., X)X spsil
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Payoff
C(X)sereaXiD)

(xl.....xx.xl" K42 morning

Stockout

1A X+] afternoon
[x IXKIX)

/

( )M K+1 worning
. xl.....xx

Figure 1: The Game-tree Structure
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X K
= min max | Z (x -X‘) + E (D-Xx)

s:é&(xl,..., X,) X spsl tel t=1

+ | g-l (D-s ) + b-(5.-D]}
t=Ke+l
(where we recall that past decisions are denoted by XL, t=l, ..., K, and the
future decisions are denoted by S[, t=K+l, ..., N).

This cost is illustrated as the sum of the lengths of the line
segments in Figure 2a. The line segment for t=l stands for (D-Xl), the next
for (D-Xz), and so on. The segment at t=N is doubled to describe the case
where b=2.

The right-hand side of the last equation of (i0a) consists of three
terms, each describing a different cost resulting from the firm's temporal
sequence of decisions. The first term, which we denote by

oy = Exl(xK -X[), may be called the "past cost of past decisions'. This is
a sunk cost, illustrated by the sum of the dotted line segments in Figure
2b. It arises because, on the morning of period t=K+l, the firm knows that it
has already made the supply decisions Xl, «eey X, and that demand (D) must

K

lie in the interval [X 1}. Thus, the opportunity cost which has already

K?'

accrued as result of these past decisions is o-
K
The second term, I (D—XK) = K-(D-XK), is the "future cost of past
t=1
decisions'". This arises because in the future (viz, after period t=K+l) the

firm may discover that demand lies above the lower bound of the interval
[XK, 1]. In that event, the firm's past decisions Xl' ey XK will turn

out to be more costly than oy (the first term). The second term is illus-

trated by the sum of the dashed line segments in Figure 2b.
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N-1
Finally, the third term [ )  (D-5 ) + b-(S.-D)], is the "future
t=Ke+l t N
cost of future decisions”, This is the sum of the discrepancies between each

of the future decisions sK‘l' SK*Z' veey SN and the demand D. It is given by
the sum of the solid line segments in Figure 2b.

In short, the optimal cost (10a) on the morning of period K+l may be

rewritten as follows:

K
M .
(10b) C (X, ,eeeyX ) = 0 + min max [ E (D-X_)
Kel 1 K K
SaJK(xl,...,xK) X, <D<l txl
N-1
D) (0-s ) + b~(SN-D)I}
t=K+1

We now rescale the demand uncertainty interval [XK, 1] linearly to the
orginal demand interval [0, 1), so that the second and third right-hand terms
above (illustrated by the dashed and solid line segments in Figure 2b) are
magnified to extend from 0 to 1 (as pictured by the line segments in Figure
2c). The rescaling function is g(y) = (y-XK)/(l-XK), where y is any point in
the interval [XK, 1] and g(y) is the corresponding point in [0, 1]). Defining

D'=g(D) and S; = g(SL), the optimal cost (10b) becomes

M
(10c) cK¢l (Xl,...,XK)
- op * (I—XK)~min max { E (p'-0)
+ [ . =
0sSy, | SSp,, Se.. 0sD'sl UL
N-1
1_g! . N
+ ] (D'-s)) + be(sy -DV}
t=K+1
K
+ - -mi t_g!
T TRy s ma LT
1 VK T OTKel T T
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N-1
‘_g! . Yoo
+ 1 (-s)) e (s, - D"}
t=K+l
RICMIRS (l—xx)~min max c(s', D")

s'cdx(o,...,o) 0<d'<)

M

K+l (0,...,0) by (8)

ot (1~XK)-C

In other words, the optimal cost on the morning of period K+¢l, conditional on

has two components: (i) the sunk cost o, and

the past decisions X ,...,XK, "

1
(i1) the optimal future cost (of past and future decisions). These latter
costs are identical to what the optimal cost (rescaled by (1-XK)) would have

been if the firm had failed to supply anything in the first K periods (as

. . M
shown in Figure 2c). Let W =

X CK*I (0?...,0) be the optimal future cost,

conditional on the first K supplies having been set at zero. Then (10c)

becomes
M
(10d) ¢, (xl,...,xx) op * (=X )W .
By (4) and (10d), we find that the optimal supply decision
* Psf o« X, X") (1-X,)
= .. = e (1-X )W .
CK*I X must satisfy K+l 1 X cK K HK

We are now in a position to derive this optimal supply decision. On
the afternoon of period K+1 (after an amount X has been supplied but before
sales have taken place), the firm anticipates that two things may happen:

(a) There may be‘a stock-out (XKOI = 0), from which the firm infers

that demand must be at least as large as the quantity put up for

sale (X €< D < 1). In this case, the least cost which the firm can
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guarantee through optimal supply decisions from period K+2 onwvards

is
A .
(11) ¢ (X, peee, X, X531 = 0) = min max c(s,D)
kel 11 KKl Sed, . X<Dsl
Kel
M
- C,(02 (Xl, .,XK.,X)

=gy ¢ (-0, by (8) and (104)

1

=0t K(X-XK) + onl(l-X)
since OK’X‘OK’K(X-XK)
(b) A positive inventory stock may be left over (I > 0), from which

K+1

the firm infers the exact level of demand D in {XK, X). In this
case N = K+1. Here, the least cost which the firm can guarantee

through optimal future decisions (meeting demand exactly) is

(x

ko1 (XpreeniX

X1 0) = min sup c(s,D)

>
K+l
Se:{ X <D<X
K+1 K™~

K
K

where c(s,D) = ] (D-X ) + b-(X-D)
t=1

= o, * K(D-X) + b(X-D)

= ot D-(K-b) - K'XK + b-X.
Observe that the value of the worst-possible demand depends on
whether (K-b) is positive or negative. If K < b (so that an

increase in D raises the future cost of underproduction,
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K K

2 (D—Xt) = KD « E Xt. by less than it reduces the future cost of
t=1 t=1

overproduction, b.(X-D)), then the demand which maximizes the cost

function is the lowest demand D = XK' Thus, the cost function

becomes

(12i) ¢ x

Kol 1,...,XK;IK>0) = ot b~(x-xK) if K < b,

On the other hand, if K 2 b (so that demand raises the future cost
of overproduction by at least as much as it reduces the future cost
of underproduction, the worst-possible demand is the lowest demand;

D=X. In this case, the cost function is

.. A .
31> = (X-
(1211) CK‘I (Xl""'xK'IK 0) o * K- (X XK) if K2 b
- . . * 4 . .
The optimal supply decision CK¢1 =X = SK*I 1s the one which

minimizes the maximum of the two costs (11) and (12 i or ii) above:

. A
(13) min C (x,,. X ,X)
X <X<1 K+l 1’ L
= min max [c:‘d(xl,...,xx,x; IK =0),
X <X<1
A, .
Chay (Xpreeo X X3Iy > 0].

Figure 3i deals with the case in which K < b, where (13) is

evaluated using (11) and (12i), as
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(12j) v « cK + b(X'XK)
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ay

o 4()- .
X Q xk)hxol

L
°k-x(1-x) - c‘.l(x,;...,x‘)

(1241)
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A

(1) min Ao
x sxs1 K1l X
K
= min max [{c * K(X-X) ¢ (1-x)-w ),
X, <Xs1 x K Kel

{og * br(x-x}].

The maximum of the two costs is illustrated by the thick line

segments in the Figure 3. The supply decision cK'l = X which minimizes this

maximal cost is illustrated by the value of X = § which lies at the

K+l

intersection of the two cost functions (11) and (12i):

W +(b-K)-Xx
(15) x =5, . =K LS

K+l b_K'HK*l

The height of this intersection (min C:¢1 (X
X <X<1

1s the optimal afternoon cost in period K+l, given that the firm has made the

1,...,XK,X), which

optimal supply decision X = SK‘I) is identical with the optimal morning cost

in period K+1 (by 9) and its value (substituting (15) into 14)) is

M
(16) Cral (xl,

K+1

K ¥ Tokew
K+1

b-W -(1-xK)
...,XK) =0 —_—

Equating the formulae for C::‘1 (xl""’XK) of (10d) and (16) and

solving for Wi, ve obtain

b-HK‘l
(17) W, = ————w—— for K < b
K b - K ¢+ HK‘]

Figure 3b desls with the case in which K 2 b.
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Now (13) becomes (using 12ii instead of 12i)

(18) CH (xl,....xx) = min max {{o

Kl X <x<l K
(o, + XK-(X - xK)))

R(XX ) e (X'X)'”x~1}'

The maximum cost is minimized when
(19) X = S'“l =1 for K2 b.

Thus,

M -
(20) ¢ (Xl,...,XK) = 0

K+l + K-(1 - X,) for K 2 b.

K K N
Equating (10d) and (20), and solving for W, yields

(21) W, = K for K 2 b.

In sum, the firm's optimal supply decision in any time period,
assuming that all previous decisions have resulted in stock-outs, may be
derived as follows: As shown in Figure 2b, each past decision is associated
with a future cost of underproduction (given by the dashed line segments)
which depend; positively Qn demand. The greater the number (K) of past
decisions which the firm has made, the more a given increase in demand will
raise the overall future cost of underproduction. When K is sufficiently
large, the effect of demand on the overall future cost of underproduction is

greater than the effect on the cost of overproduction. In that event, the
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worst-possible demand is D=1 and thus the associated optimal supply decision

is §K01 = 1. Thus, 8 is a terminating strategy, with some finite

termination time T = T(S). By (21), ve then cen find the associated optimal

cost W.. By (17), we obtain the previous optimal cost Wy_y and, by (15) we

thereby find the previous optimal supply decision §K' and so on.

These results are summarised in the following theorem.

Theorem }l: When there is no discounting (o = 1) the unique solution to the
problem

max C(5,D) = min max C(S,D) = W

0<D<] Scd 05Ds]
is computed as follows:

First the optimal costs W = LI Wyye.., may be recursively
computed (downwards) by the formulae

(21) We = K for K > b, and

(17) W ® b.wK+l/(b—K + HK*l) for K < b.

Once the costs W,  are known, the conservative supply levels

5,» 8

using (15):

... may be recursively computed (upwards) by letting XK =5 and

2’ K

(15) Sl = Hl/(b + Hl)

W + (b-K)S
s = _Eil__VAfAA___E 1 <K< b,

Kel =T b - K+ W

(19) §K =1 for K 2 b.

Thus, the termination time T=T(5) is such that T+l = min{i:i2b}.
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It should be noted in particular that the conservative strategy
8 sets supply equal to the maximum possible level of demand if stockouts have

occurred for more than b periods.

“The analysis presented above for the case of no discounting
(a = 1) can be generalized to cover any discount rate a, O < a < 1., No new
ideas are needed, although the algebra becomes more complicated. The solution

in the general case is given below.

Theorem 2: For any discount rate a and over- to under-production cost ratio
b, with 0 < a <] and 0 £ b < », there is a unique solution to

max (S, D) = min max C(S,D) = W. The conservative strategy S may be
0<D<1 Sey 0<D<1 .

computed as follows: For K =0, 1, 2, ..., define Yg by YO'O and, for

K21, vy= 1eas...0a¥ Tl = (1-05)/(1-a). (Mot that for o =1,

y, = K, for comparison with Theorem 1.) The strategy S will have a

K
termination time T such that T+l = min (i:yiz alb) which is always finite
(set always nonempty). The optimal costs W = Wg» W), Wy,... can be

recursively computed (downwards) by

= 1 >
HK Yg 1f K T
K
abWw
w o= K1 if KeT.
K™, K- .
Tk K+l

Then the optimal supply levels s 52' ... may be determined recursively

l'
upwards by

s, = Hl/(b¢H1)
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K -
¥eop ¢ (e ) Sy for KT

s =1 for K > T.

Proof of Theorem 2: Put briefly, the proof with discounting is obtained from
the proof without discounting by attaching a factor nt_1 to every term with

subscript t. For example, the sunk cost ok is now a function of

‘l(XK - XL). Similarly, the "future cost of past decisions" is

K .
§.1°t-1 (p-x) = (1+a+...+a5 1) (D-x,) = v, (D-X)

rather than K-(D-K). The equations from which the recursion formulagare

obtained have the form

(D' Gy X XL = 0) = 0 + 1 (X-X) + W, (1-X)
R - K., oy . K
(120)" Cp X phee ) X X, T, 120) = 0+ am-be (X=X ) if YeSa'b

R A " : K
. > = + -
(12)1) CK 1(X1... ,XK,X,IK 1 0) UK ‘{K (X XK) if YK 2 a b.

These lines are drawn in figures 41 and &4ii.

5. Analysis of the Conservative Strategy

The recursive formulae of Theorem 2 enable us to compute the

conservative strategy S = (51,52,...) in terms of the two parameters
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a (discount factor) and b (overproduction-underproduction ratio). In this
section we examine what the strategy 8 looks like and analyze the dependence
of T (termination time) and each §i on a and b.

The termination times T = T(a,b) partition the a - b plane as shown
in Figure 5. The lines L. are drawn according to the equation

b~ vi/ui = (1 +a+?e ... +a"h/al.  Below the line L, = L(a) = 1o,
the conservative strategy is to supply at maximum level, i.e., 1, from the
start. -That 1s, S = (1, 1, ...), and hence T=0. For all points above L1 but
on or below L2, T equals 1. (In other words, if & stock-out occurs in the
first period, then the second period supply is set at the maximum level.)
Similarly for all points above L;_) but on or below L, T= i-1. The
conservative strategy may be described algebraically for small values of T,
using the formulae of Theorem 2. When T=1 we calculate that

0

= = = . . . 0— = . -1
W, = v, =1 and W (a”-b Hl)/(H10 b-a 70) b-(1+b) ". Hence,
1

-b) = (1+b) ". Since T =1, it follows that §t =1 fort > 1.

"
T
~
Q

517 %
It is instructive to consider c(S, D) as a function of D in this
case. For D < (I*b).1 there i1s overproduction of (l*b)_1 = D in the first

period, and no further costs. So C(S, D) = b-((l#b)—1

- D). For

D 2 (10b)_l there is underproduction of D - (l*b)-l in the first period and
overproduction of 1-D in the second period, and a total cost of

(D - (1#b)-1) +ab (l-b), as shown in Figure 6. The assumption that T = 1

guarantees that the line above [(10b)_1

, 1] is upward sloping, since its
slope is 1 - ab, which is at least one.
For large values of T it is not feasible to derive rational

functions for §L in terms of a and b, but it is an easy matter to compute

the optimal supply levels §[ numerically. This is done in Figure 7 for
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Figure 5
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a=1,0" .9 and a = .. Observe that for fixed o and t, the t'th supply
level 5[ is decressing in b: the higher the relative cost of overproduction
to underproduction, the lower the amount produced.

The dependence of §( on a is more subtle. When t = 1, the first
supply level §t is increasing in & . This is easy to explain. The higher
a, the greater the relative importance of future costs, so the greater the
incentive to gain information about demand. Higher supply levels give more
information about demsand since they are more likely to yield a surplus (thus
revealing demand exactly) and in the event of & stockout give a higher lower

bound on demand. Thus S, is increasing in o. For t 2 2 the dependence of

1

§[ on o has an additional "hedging' component. Consider the second supply

assuming the initially supplied level S resulted in a

level § 1

2'
stockout. The demand interval is [§1, 1] and there has already been one

"bet" made (namely §l) that demand is "low" (5, is the least point in the

1

current demand interval). Since the strategy S is conservative, i.e.,

minimax, the second guess §_ must "hedge" against the low guess §

2 The

1

bigger the size of the first bet S., the higher the value of §2 must be.

1'
The "size" of the "bet" §1 decreases as a increases, since the relative
importance of first period costs decreases with a. Thus the "hedging factor"
causes all guesses §t except §1 to decrease with respect to a. The
interplay of the information-gathering motive and the hedging motive means
that §t, t22, may be increasing or decreasing in a, &s shown in Figure 7.

(The greater the number t-1 of previous low guesses, the more significant the

hedging factor).
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6., Numerical Example

Suppose the firm sells a perfectly durable good (& = 0) which costs
8 to produce and sells for 10. The cost of holding inventory from one period
to the next is 2 per unit. The discount factor a is 1/2. Initially, all the
firm knows about demand is that it lies in the interval (20, 31).

In the above example the opportunity cost of a unit of
underproduction is simply the unit (foregone) profit 10-8 = 2. A unit of
overproduction has two associsted costs. There is a holding cost of 2 and a
discoun;ing cost of (1-(1/2))8 = &4 (which represents the savings that could
have been achieved by producing the extra unit in the next period which is
discounted). This gives a total overproduction cost of 6 and hence & ratio of
over- to under-production costs of b = 3. Thus the parameters of this example
are a = 1/2 and b = 3.

To calculate the optimal supply sequence S for this example we use
the formulae of Theorem 2 with a = 1/2 and b = 3. First observe that the
optimal strategy has a termination time T2 since (a=1/2, b=3) lies above Ly
and below L2 in Figure 5. Thus we begin the recursion with
= l+a, W, = b(1+a)/(1+b) and Wy= b{1+a)/(2+a+b). For t > 2 = T, we
have St = 1, The remaining two supply levels are computed from Theorem 2 as

(13a) S = (1+a)/(2+a+b)
and then

(13b) 5. = (1+a)%/a(2+a+b).

2
Since a = 1/2 and b = 3 this gives a first-period supply level of §l = 3/11
and (in the event of a stock-out) a second-period supply level of §2 = 9/11

and a worst-case cost of W = W, = 9/11. If the normalized interval [0, 1] is

linearly rescaled to the actual demand interval [20, 31) this gives a supply
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strategy S = (23, 29, 31, 31,...) end a worst-case cost of 18.

The calculation of total costs for a firm employing this supply
strategy S at certain critical demands levels is shown in Table 1, where
overproduction is indicated by square brackets and under-production by round
ones. The resulting graph of c(5, D) for D in (20, 31] is pictured in Pigure
8. Observe that C(S, D) is piecewise linear with each piece having a maximum
of 18. Any other supply strategy S will have a maximum cost strictly higher
than 18.

rThe ratio (b) of over- to under-production costs may be specified in
terms of more basic economic parameters. In particular, if the production
cost is Z, the selling price is P, the holding cost is h, then the ratio b may
be expressed as

(14) b= [h + (1-a-(1-6))-2)/(P-C).
It is interesting to observe how the two nontrivial supply levels
§l and §2 vary as the parameters p, h, 8, Z and o are changed individually
in a neighbourhood of the numerical values in our example. These comparative
statics are graphed in Figure 9, with the parameter value of the example
underlined, and the two optimal supply levels of the example denoted by A and
B. In each case, the domain of the parameter is taken to be the maximal
interval such that the termination time T remains, as in the example,, at 2.
Hence, Equations (13a) and (13b) are relevant.

Figure 9i shows the firm's "supply curves" EI(P) and §2(P) , giving
the conservative supply levels in the first two periods (assuming stockout in
period 1) in terms of an exogenously given price. These levels increase with
price because opportunity costs of undé}production increase with price. An

increase in holding cost or depreciation rate increases the cost of
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overproduction and hence decreases the conservative supply levels, as
indicated in 9ii and 9iii. If production costs increase, the opportunity cost
of underproduction decreases, and the opportunity cost of overproduction
increases. Hence supply levels are also decreasing with respect to production
costs, as shown in Figure 9iv.

The dependence of conservative supply levels on the discount factor
o is the most complicated. This has already been discussed at the end of
section 5, with reference to Figure 7. But in that context a and b were
considered as independent. Figure 9v, on the other hand, takes into consi-
deration the dependence (14) of the ratio of over- to under-production costs,
b, on a. It can be seen from Figure (9v), however, that the qualitative
descriptionﬁof the supply levels' dependence on a is the same as in the

earlier discussion, at least for the parameter values of this example.

7. Conclusions

Our model of sequential production decisions highlights the
interdependence of a firm's supply decisions and its information set. By
supplying output and observing how much of it is sold, the firm may gain
information about its product demand, and this information is relevant to its
future supply decisions. We suggest that this interdependence may be expected
to arise under conditions of demand uncertainty. Our model analyzes the
optimal sequence of production decisions for a conservative firm in the face

of this interdependence.
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