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ABSTRACT

Title : " The Dynamics of Profitability as a Stochastic Process— An Empirical Time Series 

Analysis of Selected German and US Firms."

The objective of this thesis is to study time series of company profit rates as a stochastic 

process. The study departs from previous studies which have predominantly used the 

polynomial convergence and partial adjustment models. It examines whether the adjustment 

process, as it is specified in the partial adjustment model to describe the long run convergence 

of firms profit rates, is really of the first order. In this context the theory of time series analysis 

is then illustrated in order to test whether current profits depend on profits in more than one 

period, and whether the profit convergence process can be of a different form, for example, 

moving average, autoregressive, or the mixed autoregressive—moving average form. The 

univariate stationary time series models are used to evaluate two samples of 299 firms for the 

FRG and 500 U.S. firms. Further, the determination of the order of mixed form is a difficult 

part of the time series analysis. Several methods for determining the order for mixed processes 

have been proposed in the literature. The method of Extended Sample Autocorrelation 

Function (ESACF) is evaluated and applied. The major advantage of this approach is that it 

eliminates the need to determine the order of differencing in order to produce stationarity in 

modeling time series.

Comparing the results of different stochastic models and of the PA model, it is found that:

a) The numerical accuracy of the estimation method of stochastic models raises the estimates 

of the persistence of long run profits particularly for the most profitable and less profitable 

subgroups across all stochastic models for both countries. This implies that profitability 

differences exist at least for the lowest and highest subgroups, but they are higher in the US 

then the FRG.;
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b) The model selection test revealed that the most significant results were for the first order 

autoregressive— moving average model for the FRG and, in addition to the ARMA for the third 

order autoregressive model for the US.;

c) The speed of adjustment is higher across all stochastic models in the FRG than in the US , 

i.e., a high (low) speed of adjustment tends to lower (high) the persistence of profits, which 

implies that the persistence is more strongly evident for US than the FRG.;

d) If only statistically significant equations are considered in the analysis, the persistence of 

profits increases substantially for both countries.;

e) Stronger evidence is found for the significance of a first order lag for both countries, but in 

addition to the first order lag for a number of firms a higher order lag is also statistically 

significant from zero for the US.; and

f) The results of the identification technique (ESACF) show that this procedure is not fully 

operational for a small sample but identifies a moving average of first order for a relatively 

large number of firms for both countries.;
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INTRODUCTION

Several empirical studies based on cross-sections have examined the relationship between 

market structure and performance. These studies do not reveal whether the observed 

relationship captures the market dynamics. Indeed, the lack of attention paid to long run 

consideration might give rise to incorrect structure-performance results. A very few 

economists have considered the dynamics of the relationship between market structure and 

performance in their empirical studies. Stigler's (1963) work was among the first. Later, Qualls 

(1974) and more recently Mueller(1986) tested the hypothesis that " If the company's profit 

rates converges to a  normal or competitive level, "excess” profits disappear in the long run, 

then it is to see, whether these "excess" profits differ across companies", i.e., a company with 

a high (low) initial profit rate tends to earn a high (low) profit rate, implying a persistence of 

intercompany profit- rate differences (For the discussion about process of competition and 

persistence, see Mueller(1990), and Geroski and Mueller (1990)).

Qualls's study is based on two U.S. data samples, one with 30 industries over sixteen years and 

another with 220 firms over eighteen years. He observed a convergence in profits within a 

barrier— to -  entry group but not across groups. Mueller's results for the U.S confirm Quail's 

findings. He applied a different test methodology and used the Federal Trade Commission 

(FTC) company survey data sample with 600 firms over 23 years, 1950 — 1972. Mueller found 

a convergence process " ... to lower (higher) profit levels for the companies with highest 

(lowest) initial profit ranks...but... the convergence is incomplete." (Mueller (1986), p.23). The 

most recent results were achieved by the persistence of profit (POP) international team, in 

which comparisons across countries are made, (see Mueller ed. (1990)). All these studies 

applied the partial adjustment model(PA-model see section 1.2) to describe the long run 

convergence process of individual firms profit rates. This PA—model was first purposed by 

Odagiri and Yamawaki(1986), who also used polynomial models (see also Mueller (1977)) to 

explain this hypothesis, but they found various disadvantages of the polynomial models
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( i.e., the profit rate is regressed on the inverse of time, also on its quadratic and cubic form) in 

the sense that the estimates are not free from the choice of unit to measure time.

The period— to— period change in 1/t ( i.e., 1/t = 1, 0.5, 0.25, 0.17,......,0.063, 0.059) is

relatively large during the first two to three periods but afterwards is small. This suggests that, 

on the one hand, the estimates of the slope coefficient will be more strongly influenced by the 

profit rates during the first several years while, on the other hand, the estimates of the intercept 

will be more strongly influenced by the profit rate in later years. In this sense a fairly rapid 

convergence, if any, of the profit rate is presupposed in the model. This disadvantage can be 

resolved if the partial adjustment model having the desired convergence properties is used. 

However, the partial adjustment model, which assumes an adjustment lag of only one period, is 

not without any problems. If the lagged values of the dependent variable in the PA—model 

appear as regressors, ordinary least square estimation produces biased and generally 

inconsistent results, when the error term follow a first or higher order autoregressive process 

(see M iner, et.el.(1965), Maddala and Vogel(1967), Zellner and Geisel(1970), Koutsoyiannis 

(1977), p.304-309, Breusch(1978), Kiviet (1986)). Dielman, et.el. (1989) recently show that 

the efficiency advantage of using Prais—Winston (PW)—estimator, which corrects for the 

autocorrelations, rather than OLS when disturbances are highly autocorrelated. The POP— 

studies do not make any explicit assumptions about the error term and also consider 

statistically insignificant equations in their analysis. In this context various tests of model 

specification are proposed in the literature (see Durbin(1970)). For this study the Lagrange— 

multiplier—test(LM) for first and higher order autocorrelation (Breusch and Godfrey(1981)) is 

applied to both the US and FRG samples.

Based on our qualifications with respect to the polynomial and PA—models we propose some 

alternative models, which consider a higher order adjustment and use more information from 

their parameters.
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We believe that these models are better suited for analyzing the dynamics of corporate profits 

over long time periods and capture better the unexplained variance of the error term as well the 

incomplete structural misspecification. We consider profit rate time series as a stochastic 

process which is characterized by stationary properties.

In this context we extend our analysis to the univariate Box— Jenkins time series analysis, 

which considers only the past history of the variable itself in explaining the relationship. First, 

we will only model the profit rate as autoregressive of first, second and third order and then as 

a mixed form autoregressive- moving average of first order. The parameters of these models 

will be transformed so that the speed of adjustment can be approximated and the long run 

profit level can be estimated.

Univariate m odel- building has been explicitly used for the purpose of short term economic 

forecasting (for the purpose of prediction see Leiner (1985)). In several studies a comparison 

(see Prothero and Wallis (1976), Jenkins (1979), Part.4 and Tu (1981)) is made between 

univariate time series forecasting and forecasting accuracy based on econometric modeling. 

Some studies show that the univariate time series modeling technique achieves more accurate 

results than econometric modeling. Nelson (1973) showed that the forecast accuracy of 

univariate models is often higher than more complex macro-economic econometric modeling. 

Makidakis and Hiblon (1979) also examined 111 time series and out of eight different 

univariate modeling techniques employed, the Box— Jenkins approach had the highest 

accuracy. Similar conclusions were also found in other studies (see Naylor et.el.(1972), 

Newbold and Granger (1974), Guerts and Ibrahim (1975), Kyle (1978), Friedrich and Termin 

(1983), and Pfister(1984). In contrast, other studies (for example, Eckstein 1983) showed that 

the time series procedure is not better than the econometric model. Heilman and Neuhaus 

(1987) compared the short-term forecasting accuracy of a multi— equation ARIMA model and 

of a medium sized econometric model. They found that the econometric model is superior to 

the time series models in most variables.
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In a survey article, Wolters (1987) argues that strong dependencies exist between both methods 

contrary to the widely held view that these approaches have little in common.

Secondly, in determining the real order and nature of the underlying process of the time series, 

we will not apply the usual identification technique based on the autocorrelations and partial 

autocorrelation described in Box-Jenkins(1976). An alternative method of extended sample 

autocorrelation function ((ESACF), see Tsay and Tiao (1984)) is developed and applied to both 

samples. Various methods for identifying the orders of the models are proposed in the 

literature (see section 4.). Finally, the results of all stochastic models will be compared also 

with PA—model in order to see whether they differ across models and whether the accuracy of 

results is improved.

The purpose of this study is not to question the POP— studies, but to extend the analysis using 

a different time series methodology in order to see whether the quality of results is thereby 

improved.

The thesis is organized in two parts : 1) Theoretical and 2) Empirical.

The theoretical part has three sections: Section one describes the deterministic models and 

presents the appropriate tests procedures. In section two the theory of univariate time series 

models is discussed and a test of lag structure is constructed. In section three the identification 

method and extended sample autocorrelation function (ESACF), is derived and the diagnostic 

check procedures are explained.

The empirical part has four sections: Section one describes the data, variables and the 

definitions of profit rates and then reports the empirical results obtained from estimating 

deterministic models and specification tests applied to them. Further, in section two we report 

the results of stochastic models and the results of different tests applied to them for both the 

FRG and the US samples. In the next section the results of using the identification technique 

and the estimation results from the identified models are reported. Finally, a comparison is 

made between the P A - model and stochastic models and the results by industry for the two 

countries are discussed.
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THEORETICAL PART :

1 Deterministic Models :

1.1 Polynomial Models

The following polynomial model has the convergence property that the limit of IIj is finite as 

t goes to infinity ( will be called in our analysis the " standard model (ST))". This model has 

already been used by Mueller (1986), and by Odagiri and Yamawaki (1986) and is as follows: 

(see Figure 1.1).

(1) n j t = « .+ p jA  + €t

where IIjt is the normalized profit rate. This is calculated as : n . t = (Pj — P{) /  Pt, where P-t 
_  n

is the observed profit rate and P, = E  P;
1 i= l 1

the permanent advantage of firm i, and Pj the speed of adjustment of firm i. The inverse of 

time is used, because the coefficient Pj will diminish as t goes to infinity. Odagiri and 

Yamawaki (1986) argued that model (1) assumes a monotonie convergence of ELt to (Xj, but in 

some cases the convergence is not monotonie which is why they also used two alternative 

models with higher— order coefficients y  ̂and 8j. The models are as follows: (see Figure 1.1)

(2) n it = a i + iVl + + et

(3) n it = otj + pj/t2 + Sj/t3 + et

According to Mueller the " best fit model (BF) " among these three models (1), (2) and (3), is
2

defined for each company as the one which yields the highest R , so the best fit model may 

also vary across companies.

j/ n, the average profit rate. Further, a- is a proxy for
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The curves correspond to the following equational forms:

(1) " i t  “ a . + x B j / t  , > 0

(2) " i t  = a. + B j / t  + Yj^/t2 , 6. < 0, y. > 0

(3) " i t  - a . + X B j / t  +  Y i / t 2  +

6 i > 0, Yj_ < 0, S i > 0

Figure 1.1
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1.2 Partial adjustment model

According to Odagiri and Yamawaki (1986) the disadvantages of polynomial models (see also 

introduction p.3) can be resolved if we use a partial adjustment model, which has been 

extensively used in studies of investment behavior and money demand and several persistence 

of profits studies (see Mueller ed. (1990)). With this model the dynamic adjustment process 

can be well explained. Howrey and Quandt (1967) have examined the theoretical properties of 

this type of adjustment process and shown them to be stable.

Now in order to derive the model for estimation, let the adjustment equation be as follows;

where IL t is the observed profit rate and I l j t is expected profit rate, which has to be 

approximated, since we know that the expectations are not observable and X is the adjustment 

parameter^ For practical difficulties of distinguishing between different lag scheme and lag 

models, See Griliches(1967), Kennan(1979)).

(4)
1

) ,

now from the above equation we have
n t = x  n *  + (i -  X) n t_  l

now let X n t = a  and p = 1 — X
%

then I I t = a  / X and X = 1 — (3, it follows that 

n *  = a  /  1 -  P and X = 1 -  P,

we can now insert these values in eq.(4) and get a  and (3 the OLS estimates.
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We can now derive the testable model from the above equation (4) as:

a
(5)

where a  /  1 — p represent the long run estimated profit rate and (1— p) denotes the 

convergence or speed o f  adjustment ( For an alternative dynamic model, see Schwalbach, et.el. 

(1987)).

The model which we actually estimate is as follows:

We estimate the parameters a  and P from eq.(6) and insert these values in eq.(5) to get the 

actual estimates. In the context of the partial adjustment model the speed of adjustment 

parameter X = (1 -  P) should fulfill the following condition 0 < X < 1: close to zero means 

that the adjustment is supposed to be slow and X close to one that there is faster or complete 

adjustment(see also Schwalbach (1982)).

The four possible adjustment time paths see Schohl (1989) are shown in the figure 1.2: 

Profitobilily Time Paths of  the Partiol Adjustment Model

(6)

-1  < A < 0

0 < X < 1

X < - 1

X > 1

Figure 1.2
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1.3 Nonlinear restrictions

The partial adjustment model we want to estimate contains nonlinear restrictions^ and is 

described again as

W  n it = + (! -  P) n it_  l + et

It should explain the adjustment process of profitability movements. In the model mentioned 

above there are two restricted parameters a  and ¡3. The actual model with unrestricted 

parameters and which we actually estimate is

(8) nit = a + pn._] + £t
In the following we now relate the parameters of the model (8) with (7) such as

a a  A
(9) a  = ---------  and P = 1 -  (3

1 -  p
A  A

We see that a  and p are nonlinear functions of the unrestricted parameters. In model (8) we 

have IIjt_  j on the right hand side, so that the unconstrained estimators are not unbiased, this 

implies that none of the constrained estimators can be claimed as unbiased. So, we have to
A

approximate the large sample variance of a  with the following formula:

a 1 2 A a  2 . 2
(10) Var (a) = [ ----- —  ] Var(a) + [ ------—  ] Var(p)

1 -  p 1 -  P
A

1 a  A A
+ 2 [ ------- * ] [ -------A 2 ] Cov (a p)

1 -  P (1 -  P)
We then calculate the standard error of the formula mentioned above and apply the usual 

significance test in order to confirm the significance of the estimated parameters of the 

equation (7).

* see Kmenta (1971), p. 442 -  445, see also Mueller(1990).
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2. Model specification

Of the various kinds of misspecification encountered in econometric modeling, the 

autocorrelation has received particular attention. Breusch (1978) describes, that if the 

disturbances of a linear model are autocorrelated, the application of ordinary least square 

(OLS) produces unbiased but inefficient estimates. However, if  the relationship is of a dynamic 

nature, where the lagged values of the dependent variable appear as regressors, OLS gives 

generally inconsistent and biased estimates. The standard tests based on residuals, of Durbin 

and Watson (1950,51), Schmidt (1972) and Wallis (1972) are then invalid. Granger and 

Newbold (1974), Hendry (1975) describe the major consequences of autocorrelated errors and 

dynamic misspecifications. Several studies have proposed specification tests of dynamic 

relationships (see Durbin 1970, Godfrey 1978 and Breusch and Pagan 1980) and other 

developments are summarized in Harvey (1981). Kiviet (1986), in his simulation study of 

various tests for serial correlation and predictive failure in models with lagged dependent 

variables, finds many tests defective in small samples (see also Thursby(1981). In the 

following we describe Lagrange Multiplier (LM) test shortly (For a brief discussion how the 

test is derived see Breusch and Godfrey(1981)).

2.1 Lagrange multiplier

For the lagrange multiplier(LM) approach to testing for autocorrelation, a simple regression 

model with first order autocorrelated errors is considered as follows:.

(11) Yt = p X t + p t, where t = 1,2..........,n and

(12) Pt = P tit_  !+ et

where e(, NID(0,cte2) with | p | < 1. This means that if p = 0 then are independent, 

otherwise they are autocorrelated.
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Breusch and Godfrey (1981) show that LM tests for autocorrelation can be viewed as least 

square tests of the joint significance of the estimated regression coefficients, requiring only the 

estimation of an additional regression equation by OLS. Suppose the model is as follows :

(13) Yt = | p i Yt - i  + ^t

where t = 1, 2, ..........,n and Y(_  j are the lagged values of Y , and we wish to- test the

assumption that the are independent against a pth order autocorrelation alternative.

Breusch (1978a) and Godfrey (1978c) show that the LM-statistics can also be calculated as
2

the product of the sample size, n, and the R statistics from the regression of the OLS
A  A  A

residuals (i on its first p lagged values pt_  ^ ..... , p t_  and the original regressor Yt_  j.

The null hypothesis of independent errors can be tested against pth order AR or MA models by
A

adding the first p lagged values of to the regressors of the economic model, which looks 

like

(14) Y = X 8- Y •+ !e  p. p  • + tl where t = 1, 2.......,n
1 i= l 1 t - 1 i= i 1 1

and then applying any asymptotically valid form of the usual test of the joint significance of 

the estimated p-— coefficients.
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2.2 The Test

The nail hypothesis o f serial independence of the regression errors will be tested against 

pth-order autoregressive or moving average models by adding the first p lagged values of 

the regression models as follows :

(15) Yt = a  + p Y{_  j + 1  pj p h _  j + T|t,

A  A
where | Pj [ < 1, and if pj = 0, then the error term is serially independent.

null hypothesis:

H0 : P l = 0

H0 : P1 = p2 = 0 

H0 : P1 = p2 = p3 = 0

against Ha and a conventional F— test can be applied.

f=
>
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3. Stochastic models

In the previous chapter we presented the polynomial and partial adjustment models, in which 

the PA — model assumed the adjustment lag of only one period. In this section we extend our 

analysis to more elaborate models from the class of univariate time series analysis^. With such 

models we want to test whether an adjustment lag can be longer than one period and whether a 

process which a time series generates can be of a different form, like autoregressive, moving 

average or of mixed form such as autoregressive — moving — average.

These sorts of modeling are conducted by the theory of stochastic process, which assumes that

the observed time series Z j,..... ,Zt is drawn from a set of jointly distributed random variables:

i.e., there exists some probability distribution function F(Zj,.... ,Z{) that assigns probabilities to

all possible combinations of Z^,.... ,Zt( see Pindyck and Rubinfeld (1981) , p.494).

Furthermore, if the underlying process can be assumed to be invariant with respect to time, 

than it is said to be stationary, i.e., the probability distribution F(Z() is the same for all time t. 

Then the mean, variance and covariance are invariant with displacement in time otherwise 

non—stationary. In the literature very common processes, which can be described as 

non—stationary models, are Interest Rate, GNP, Inventory, etc.. These models can be 

transformed into stationary models with the help of widely used method of differencing and 

their order is identified with the help of autocorrelation and partial autocorrelation functions, 

we will discuss the identification methods in section 4.

3.1 The discrete stochastic process

A discrete stochastic process can be defined as a random vector Z j, Z j , . . . ^  with the joint 

distribution function F(Zp Z j,.... Z() and density p(z^,...,z).

^For a short review see Pfister(1984), Nienstedt(1984), and studies such as
Box and Jenkins (1976), Vandaele(1983), Schlittgen and Streitberg(1984), Brockwell and
Davis(1987), see also for overview Heiler (1981), Newbold (1981).
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In practice it is unknown to derive such distribution function, i.e., where the process is 

described by its two moment functions the mean and the autocovariance functions.

The mean is given as follows:

|i. = E [ Z t ]

and the autocovariance as:

Yt;S = Cov(Zt , z s) = E [(Zt - n t) ( Z s - M

so that the y describes the variance function.

As we know that in reality it is not possible to achieve for each time period t the mean and 

the variance. That's why the hypothesis are formulated with respect to displacement in time for 

mean and the covariance. The most common assumption is the stationarity of the process.

3.2 The stationary stochastic process

Stationarity in the strict* sense is defined as a series, whose joint and conditional distribution 

are both invariant with respect to displacement in time, i.e.,

P(Zt........Zt+k) = P(Zt+m " - 'Zt+k+m)

1 It is possible for the mean variance and covariance of the series to be stationary, but not for 
the joint probability distributions. If the JPD are stationary, we term the series strict stationary.
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or P(Z ) = P(Zt+m) for any t, k, m. If the series has to be stationary their mean, variance and 

covariance should also be stationary. For our purpose weak stationarily (" second-order 

stationarity") is defined as, a series where the mean is constant and the autocovariance function 

depends only on the time difference k = t—s., i.e.,

Pt = E [ Z{ ] = p = const, and

r  = Cov (Z , Z ) = y = y , , k = t — s, it follows than t,S l S i S K

Tk = Cov( Zt’ Zt+k> = E r (Zt -  p) (Zt+k-  p)], such as 

var(Zt) = Y0 < “

3.3 The autocorrelation function of the stationary process

The autocorrelation function, which is standardized because the autocovariance depends on the 

unit of measurement, provides a measure of how much interdependence or correlation there is 

between neighboring data points in the series Z . The ACF is defined with k lags as follow :

C° ^ Z F Zt+k)
Var(Zt )

A
x0

Pk =
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We now also provide the well known properties of the autocorrelation function (ACF) as 

follows:

1) Pq = 1 and Pj, = 0 for k > 0

2 )  Pk = P _k

3) The autocorrelation matrix Pn of a stationary process Z{, t = 1, 2, is as follows:

1 Pi p2 Pn - i

P i 1 P i pN -2

P2 1 pN-3

1

pN—1 PN--2 1

The matrix is positive definite, i.e. all principal minors are greater than zero. For N = 2, we 

show 1

1 P

P

> 0 -> 1 -  P j > 0

hence —1 < p < 1 , similarly for higher N's the positiveness can be shown.

4) A stationary stochastic process Z( with multivariate normal distribution is completely 

characterized by its mean p and its variance and autocorrelation function.
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3.4 The "white noise" process

A stochastic process Z{, which can be described as a linear stochastic process, if each 

observation Zt is expressed in the form

z t = n + ut 'P0 + 'P1V 1 + 'i'2V 2 + ....

where (i. and the Tb are fixed parameters and the time series (..-,ut_ p  ut,..) is a sequence of
2

identically and independently distributed random disturbances with mean zero and variance o
U

, is referred to as white noise.

For the stationarity conditions the mean and the variance—covariance matrix of the process 

must exists and be invariant with respect to time.

Mean : E(Zt) = |4 + E(u{ + ut_j+....)

I  ^ = k
i=0 1

where T'q = 1 and k = some finite number. According to this the summation LTb has to 

converge ( For proof see Box—Jenkins 1976, p.80—82), then the mean of the process is

E(Zt) = n

With (i = 0 we can derive the variance and covariance as follows:

(see also Nelson 1973, p.31-32)
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Variance : yn = r i 2 Z  'P,2 
u u i=0 1

Covariance : Yk «  E(Zt,Zt+k) = C ^ Z  * i+k

We see neither the variance nor does the covariance depend on t, a requirement of stationarity.

3.5 The linear filter model

The linear model we further discuss is based on the idea, Yule(1927), that a time series in

which the successive observations are correlated to each other, can be described as generated

from a series of independent " Schocks" et- These schocks are random drawings from a fixed
2

distribution usually assumed as normal with mean E(et) = 0 and variance o e> where e{ is 

further called " white noise " process.

The white noise process e( a weighted sum of previous values will be transformed with a linear 

filter

LINEAR FILTER -> Z

'F (B )

as it becomes

Zt = i t  + et + V l et_ 1 + V 2 et_2 + ....

with the " backshift operator " defined as Bm Z{ = Zt_m the equation can be written as

Zt = n  + (1+  t^ B  + y 2 B2 + ...... ) e{

= V- + V (B)e{

(16)
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where the polynomial is the following :

\|/ (B) = 1 + B + \|r2 B2 + ....

and this linear operator transforms e{ into Z( and is called the " transfer function '' of the 

filter. Further , if the process has to be stationary the weights \|A must fulfill some conditions, 

i.e If the sequence is infinite and convergent, the filter is said to be stable and the process is 

stationary, (see also Box—Jenkins 1976, p.9—12)

3.6 The autoregressive process

A stochastic process (Z ) is defined as autoregressive process of order p, shortly AR(P), if the 

following relationship can be described,

<17> Zt = (h Zt - l  + .........+ ^ p Zt-p  + 5 + et

where is a white noise process. In the above equation we can see that the explanatory 

variables are just the lagged or past values of the dependent variable. In the backshift form the 

equation can be written as

(18) ( l - c j j j B - ^ B 2 - ...... -c|)p BP)Zt = S + et

and in the short form

<t> (B) Zt = 8 + et



where e£ is the white noise process with zero mean and for 8 = 0. Eq. (18) can be written as 

Z£ = ( ¡ f ^  B ) e£ = et + V 1 et_ j  + T 2 e{_ 2 ¥  (B) e(
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Stationarity condition :

The stationarity of the following equation

$ (B) = 1 -  ^  B -  <|>2 B2 (j> BP = 0, 

i.e., instead of (|)(B) = 0. we mean <{i(Z).

is achieved, if the roots of the characteristic equation lie outside the unit circle.i.e- 

| B | = 1. Further, each stationary process AR(P) can also be expressed as MA(°°) =

et + \|t j et_ j+ . if the stationarity assumption is valid.(see Box and Jenkins 1976, p.53—54)

Parameters of A R (P):

If the autoregressive process is stationary, then its mean |i must be invariant with respect to 

time ; i.e., E(Zt) = E(Zt_ j)  = E(Zt_ 2) = .... = |i. The mean is given by

It = <t>i It + <t>2 l1 + .... + <|>p H + S

or
5

Mean : E(Z ) = ---------------- = p.
i -  4>r . . -  <|.p
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Autocovariance and Autocorrelation function1.

Multiplying the eq.(17) with Z _^ (5 = 0 )  and taking expected values , we get for the 

autocovariance the following difference equation:

(19a) xk ‘h  Xk-1  + h  xk -2  + '....+ (t)p xk -p  f o r k > 0

and

(19b) x0 = ^1 X-1  + ^2 x—2 +.....
2

..+ <b x + a  
T> -i> e

So, if we divide the eq.(19a) by XQ we get a linear difference equation for the autocorrelations.

(20) Pk = 4>1 Pk-1+ *2 Pk—2+""+ % Pk-p for k > 0

For k = 1, 2 ,...,p, we get a system of p linear difference equations known as Yule—Walker 

equations.

So, if we divide eq. (19b) by Tq we get the variance of AR(p)— process:

(21) Var(Zt) = t 0 =
1 -  p1(|)1- ...-p J>PTP

 ̂Partial autocorrelation function, which is used for the specification of the pure autoregresive 
models (see Nelson 1973, p. 82—83 and Box-Jenkins 1976, p. 64-65)
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3.6.1 The autoregressive process of first order

The autoregressive model o f the first order with 8 = 0 can be described as follow:

(22) Zt = 4>i Zt_ j  + e{ or

( l - t ^ B ) ^ - « ^

1 e■ 2  = ----------------  et
1 (1 - ^ B )

For the sta tionary  of the process the root (<jT^) of the characteristic equation (1 -  (j^B) 

must lie outside the unit circle | B | = 1. i.e., —1 < (j) < 1.

Parameters :

It follows that the mean, variance and covariance of the AR(1) process are as:

(see Pindyck and Rubinfeld 1981, p.520—521)

5
Mean: E(Z) = --------

1 1 -  4>i

and now

Y0 = E [ ($1 Zt_  i + e t)2]

Using the eq. (21) the variance of the AR(1) is as follows:

i
Variance:
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The covariance of the Z{ about its mean can be calculated as

Yj -  E [ Zt_j((j)2 Zt_2 + e£)] -  Yq _

and for a k—lag displacement

i -  4>i

\ !<£ v

Autocorrelation function : From the eq.(20), the autocorrelation function satisfies the 

first-order difference equation Pj, = (j)j p ^ j  k > 0 

which, with pQ = 1 , has the solution

Pk = ^ i for k > 0.

3.6.2 The autoregressive process of second order

The second order model can be written as follows

Z£ = <|)jZ j+  <J>2 Z[_2+ or in backshift form 

(1 -(Jjj B -( |)2 B2) Z t = et

For the stationarity conditions the roots of the characteristic equation 
2

(1 — B — cjî̂  B ) = 0 should lie outside the unit circle, i.e.,| B j = 1 and where (j)j + (j^ ^ 1,

^2 ~  ^1 < 1 anc* I <t>2 I <
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Parameters:

The mean and variance of the AR(2) Process is as follows :

8
Mean : ft = ---------------------

1 — 4*1 — ^2

<4
Variance : var(Zt) = ------— -------

1 P14* 1 P2ct)2

Autocorrelation function : Again from the eq.(20), the autocorrelation function satisfies the 

second order difference equation

(23) Pk = (t)l P k - l  + P2 Pk- 2  fo r k > 0

which, with Pq = 1 and

o *1
1 (1 -  (t>2)

2
*1

P 2 = ...........
( <t)2'*+<tl2

autocorrelation for k > 2 can be recursively calculated from the eq.(23).
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3.7 The moving average process

A stochastic process ( Z i s  defined as MA—process of order q, MA(q)—process, if it can be 

described as one, in which the current value of the series Zt is a linear function of the current 

and previous errors or shocks, , can be written in the following form

z t = n + 8t- e 1 et_ r .... - 0 qV q

Each observation Zt is generated by a weighted average of random disturbances going back q 

periods and are white noise process with zero mean.The above equation can be written in 

backshift form as follow

Zt = |i + ( 1 - 0 1B 0 q Bq) e t 

Zt = \i + 0  (B) et

A MA(q)—process with q < °° is always stationary because \|t (B) = 0  (B) possesses finite 

terms and it always converges. Further, a moving average process can be written as an infinite 

AR process, if the roots are outside the unit circle. If a moving average process meets this 

condition is called invertible.

Parameters of MA(q)—order :

As we see that E(e£) = 0 for all t, the mean of the process, which is also independent of time,
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Mean : B(Z{) = H

Let us now look at the variance, denoted by Yq. of the moving average process of order q: 

Variance : var(Z{) = E [( Z{ — |.1)2]

= E (e^ + ©2 £  + .... + ©2 - 2  9 ^  e ^ - . . . )

or 

(24)

Thus, if a MA of order q has to be stationary, than the 0-s should become smaller as 
2becomes larger and sum X©j converges.(see also Pindyck and Rubinfeld 1981, p.515—516) 

The autocovariance of the MA process of order q is as follows

= ̂  + ®We+.....+ e H

= 4 < 1 + @f + ..... +0q )

= ° e  2  ©k 
k=0

Covariance : Cov(Zt,Z +^) =

(25) °e  kJ ) 0 k-0 q+k fOT k ^  ®0 = "

0 for k > q
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where ©q = 1. Than, the autocorrelations are

Autocorrelation :

(26)

Pk
\

r0

q - k

I
k=0 ®k ®q+k

fork=l,2,...,q

0 for k  > q.

(see Judge, Grifith, Lee, Luetkepohl (1988) ,Chapt.l6)
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3.7.1 The moving average process of first order MA(1)

The moving average process of first order with p  = 0 can be described as:

Zt = et “  © i V l

and in backshift form

Z( = (1 -  ©jB)et

A MA(1) process is always stationary and invertible, if | 0 j  j < 1 .

Parameters :

From the conditions of white noise in section 3.4, we see that the mean is zero and the 

variance constant such that

E(Zt) = E (et -  = E = 0

Similarly, the variance is as follows:

E[ (et -  © jE ^ p 2] = E ( e2 -  2 ©J e{ + ©2 e2^ )

= d
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Further, we see that the covariance is also constant :

Cov( Z(, Zt_ j)  = E[ ( et -  © ^ ^ j )  ( e{_ j  -  e{_ 2)]

= E c - e j ^ p

= - ® l ^

At zero and first lag, we calculated the autocovariance. Similarly, at the second lag the 

autocovariance is obtained as:

Cov ( Z{, Zt_ 2) = E [ ( et -  0 j  et_ j)  ( e(_ 2 -  © jE ^ )  ]

=  0

and it can also be shown for k > 2 that autocovariance is zero. Now, the autocorrelation is 

defined as:

Tk
Autocorrelation: = ----- ----

- 0 1

1 +
k =  1

0 k > 2
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3.7.2 The moving average process of second order MA(2)

The moving average process of the second order can be written as:

-®1 V ®2et-
and in the backshift form

Z( = (I — ©jB — ©2B2) et

2This process is invertible, if the roots of the characteristic equation (1 — 0 j  B — ©2 B = 0 ) 

lie outside the unit circle and |B | = 1 , and in addition to that the following conditions can be 

derived, i.e., ® j + ®2 < 1 > ®2 “  ® 1 < * an^ | ®2 | < 1; we see that these are analogous to 

the AR(2) process.

Parameters :

M ean: E(t) = 0

The variance of the process is given by :

Variance : Var(Z£) = (1 + ®j +

1
Covariance : C o v ^ )  »  -  @2 a2 ani* \  = ® for k > 2
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Autocorrelation : p.
—0 j  ( l-© 2)

1 1 +0^+©2

1 + © j+© 2

p^ = 0 for k > 2

3.8 The mixed autoregressive—moving average process ARMA(p,q)

If a stationary process can not be modeled as purely AR or MA process then we require an 

extention to these models. The extension would be to models which have both AR and MA 

terms and are called autoregressive—moving average of order (p,q). We define this process as 

ARMA(p,q) and represent it as:

The stationarity of ARMA—process is analogous to the AR process, i.e., the roots of the 

characteristic equation (j) (B) = 0 lie outside the unit circle | B | = 1. Further, if stationarity is 

presumed than the ARMA(p,q) process can be transformed as MA(«>) and AR(°=). For the 

invertibility of moving average part the roots must lie outside the unit circle. The distinctive 

pattern of the ARMA models is its parismony, i.e., the higher order MA and AR processes can 

be approximated with the less parameterized ARMA process (see Box-Jenkins 1976, p. 

17-18, 302, 340).

(27)

(1 -  (jijB (j>pBP) Zt = (1 -  ©jB ®qB )̂ e{ + 5

(j) (B) Z{ = 0 ( B ) e t + 5
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Parameters:

The mean of the ARMA Process is similar to that for the AR process and can be given as:
8

Mean : E(Z.) = — — —— * = u
1 1 '

In general the variance, covariance, and autocorrelations of ARMA(p,q) are solutions to 

difference equations, but we get the autocovariance function, if we multiply the eq.(27) with

<28) A  = *1 V i  +.... + %  A - v  + E tz t-k et] -

0 l E [Zt - k V l ] - - - ® q E f V k Et ^

So, with k=0 we get the Variance :

(2 9) xQ = +...+ <t>p Yp + Op - E [ Zt_k ê ]
E C V t- q ]

As we know that E[ Zt_ket_j] is zero for k > j, then the autocovariance for k > q has the form

(3°) A  = ^  A - l  + $2 \ ~ 2  +..... + %  A - p  for k > q

If we divide eq.(30) by 7q we get the autocorrelation function as :

Pk = <t)l P k - l + ^2 P k -2  + ..... + (t>pPk-p for k > q
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3.8.1 The first order ARMA process

The first order autoregressive—moving average model can be written as:

(3D z t = 5 + cK z t - l + e t - 0 l Et - l

or

The mean of the ARMA(1,1) process is given by

E(Zt) = (jjj E fZ ^ p  + 8 + E(et) -  ®t E f© ^ )  
5

1 ~ <t>!

the same as for the AR(1) process.

The variance can be calculated by squaring the right-hand side of the eq.(31) and taking 

expectations :

Var(Zt) = E(Z2) = E [ ( Z{_ j+  e{ -  ®1 et_ p 2]

$  z 5-l> + + ®1 ° l  -  2 ®1 *1 E< V l V P

We know that E(Z(_ j  et_ j)  = <3̂

from this it follows:

( 1 + 0 7 - 2  <{>,©,) ,
Variance : xn = -------------------- *--------  * o f

U 1 -  4>f e1
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The Autocovariance at lag 1 can similarly be calculated as

*1 = E<z t Zt-1> = E %  Zt - 1 +Et V i  -® 1  V i z ,-i>

= ̂ 1 - % - ® l  °e

since E(e{ Z(_ j)  = 0 and for Yq and rearranging terms, we obtain

Covariance: t j  =
(1 -  0 j )  ((¡)j ®1> a 2

e

Now, the Autocorrelation we get is as follows:

Autocorrelation : p 1= —  
x0

_ (1 -  4»! © i) %  -  ®i)

1 + -  2 cjij 0 1

Thus for displacement k  greater than 1

Pk = Pk_ ] for k > 2
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3.8.2 Invertibility of first order ARMA

In this section we will transform the ARMA(1,1) into an infinite AR (“) form in order to test 

its lag structure ( see Nerlove(1972) for discussion about lags in economic behavior). We 

already know the invertibility property of a ARMA model. Now let the ARMA(1,1) be as:

(32) Zt “  h  V l  + 8 + et -  ® i et- l

then e{ = Z{ -  (jjj Z{_ j -  5 + © jE ^

now et_ j = Z(_ j -  Zt_2-  5 + ©t et_2

We now put et_^ in the eq.(32) and the equation becomes as follows:

Zt = et + (§ + ©jS) + (cfij -  © p Zt_ j + t()10 1 Zt_2-  ©f Zt_2

and with further substitutions of et__2, e ^ and so on, we get an infinite form of AR(») as 

follows:

Zt = (4»! -  © p  z t_ j  + © J^J  -  © p  z t_2 + @1 -  ©j)
8

Zt_ 3+..
1 -  0 ,

+ e.

If the invertibility conditions are to be fulfilled then the following expression 

(33) n i = x  © j- 1 ( f y - e p
i= l

should converge and hence | | <1.
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' 3.8.3 The delta method

If an autoregressive approximation to ARMA(1,1) has to be obtained we truncate the 

autoregression where the coefficient becomes sufficiently small. In order to find where the 

coefficient actually has to be truncated, we calculate the asymptotic variance of I I  by the 

delta method (see Bishop, Feinberg and Holland (1975)), since t  is a well-behaved function of 

the parameters (3 estimated by the maximum-likelihood method, the asymptotic variance is 

given by:

a t  s y t
Var(t) = ----- £2---------

a p  a p

where £2 denotes the covariance matrix of P, and T denotes transpose.

Procedure :

Step 1 : Transform the ARMA(1,1) into the following expression (see section 3.8.2, p.37)

Derive Z. with respect to 0-,l r  1 as

^ i  =
a ©,

■ (Cpj -  0 j )  ( i - l ) . © j~2 + © j“ 1 (-1)

and then with respect to (pj

a z i
— = ®
a cpj

i - l
1
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Step 2 : calculate the variance of the eq.(33) as follows:

where

a z .  a z .___
a ©2 a 4).

r n Q  ]
u 12

n
L I'y n

9_ J i
a ©2 2̂

,T

9 Z i
a (¡^a ©j

Q  £2 1 is a Variance— Covariance matrix of © and tb.
n 11 a 1*

12 22J
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3.8.4 The n o n - stationary process

Many empirical time series encountered in practice can be described as nan-~statiomry

processes, such that the characteristics of the underlying stochastic process changes over time.

So we can then not use the models discussed so far in a straight forward manner. Often

transformations^ of the data will be necessary to induce stationarity. We construct models for

non—stationary series which can be transformed into stationary series by differencing one or

more times. We say that Z( is homogeneous nonstationary of order d if

wt = Vd z t 
2

is a stationary series. Here V denotes differencing , i.e.,

V Zt = Zt -  Zt l V2 Zt = V Zt -  V zt_j and so forth.

Now, if  we apply a difference filter to a nonstationary process as follows, consider a AR(1) 

process

Zt = h Xx-\  + et
If (J)jis less than 1, then the process is stationary. On the other hand, if (])jis greater than 1, then 

the behavior of the series will be explosive. For the cf) = 1 the equation becomes a random walk 

process. It is also homogeneous because the distribution of changes or differences in the 

process is unchanging, i.e., the time series of differences is stationary because the differences 

are just

z t -  z t_ j  = e(, known as random walk, 

and the distribution of et is fixed. *

* to remove the non—stationarity in the variance the Box-Cox transformation is purposed 
(see Schlittgen and Streitberg 1984, p. 8 If, 436) 

o
Plosser et.el.(1982) suggests that a comparison of the OLS— estimates from a presumably 

correctly specified regression equation with the estimators from the differenced form of the 
same model can provide important insights into the regression specification.
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_xt us define w( to be the sequence of differences

wf = W i
hen the general ARMA model can be written as

Wi = ♦ l V 1 + - • + % wt-p+ £t -  ® l V l  - .... -  ®q et-^

Jo, if we replace w( with (Z{ — Zt_ j) , we see that the observed series Zt is given by

Zt = z t_ x + ^  (Zt_ r  z t_ 2) + ...+ <(,p (Zt_p-

+ et — ®1 Et—1 — ®q et—q

5o, from this equation we see that Z( is just the sum of all past changes, i.e,

Zt = wt + w t - l + w t-2+.....

'low, the Z{ is referred to as an integration of the w( series, and the process as an 

integrated autoregressive — moving—average (ARIMA) process. The ARIMA(p,d,q) process 

tas the form as follows:

(1 -  cj^B <}>p BP) (1 -  B)d = (1 — &x B - . . . . -  0 qB^) e{

vhere d is the order of differencing and e as white noise process with mean equal zero.

'see also Nelson (1973), p.57 and for application Harvey(1980)).
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3.8.5 Estimation method

If a model is linear or it can be made linear through transformations, the OLS estimates can be 

obtained directly. But, if  the mode! is non-linear, as the ARIMA model in general is, OLS can 

not be applied directly. The numerical solutions must then be obtained by means of an 

iterative algorithm. We describe the estimation method without going into mathematical details 

for ARMA shortly as follows : ( For detailed explanation see Pindyck and Rubinfeld 1981, p. 

539—547, Dent and Min(I978) did a simulation study with a different estimation method. For 

the small sample properties of lag estimators, see, Morrison(1970), Maeshiro(1980)).

Let us write the model from section 3.8.1 as

et = ©—1(B) (J) (B) Z{

we see 0  is non-linear and OLS can not be directly applied.

The objective is to find the values of (J) and © that minimize the sum of squared errors, i.e.

T 2
S(cJ),©) = I  [ e | <)>, 0  , w ] 

t= l

where et are conditional on (j), ©, w, because we need intial values to start the iteration:

Step 1 :

The non-linear estimation process uses the first two terms in a taylor series expansion to 

linearize the equation around an initial guess for (j) and 0 .

Step 2 :

A linear regression is applied on this linearized equation, and OLS—parameters are obtained; if 

the process does not converge these parameters values are used for the next iteration and so 

on. This process is repeated until convergence occurs and we obtain, at the final stage, linear 

estimates.
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4. Identification o f time series 

4.1 The basic idea

If a time series is not stationary, as is quite often the case with economic time series, then the 

time series is differenced in order to achieve stationarity. The usual autocorrelation, partial 

autocorrelation functions and their corrolograms are used for determining the orders of the 

respective models. While the Box— Jenkins approach is useful in specifying purely 

autoregressive ( q = 0) or purely moving average (p = 0) models, it is difficult to determine the 

values of p and q for mixed models. Tsay and Tiao (1984) provides a method ESACF 

(Extended Sample Autocorrelation Function), which we want to discuss in this section, where 

the appropriate order of the ARMA and ARIMA process can be found without differencing the 

required time series.

In contrast to the Box — Jenkins procedure, we can derive, firstly, the consistent LS — 

Estimates of autoregressive parameter with the iterative estimation and secondly, with these 

parameters the ESACF can be found. Jeon and Park (1986) found a weakness of the ESACF, 

i.e., that ambiguity can be caused by the elements which are in the triangle but marginally 

larger than the two standard deviation values. They proposed another procedure to avoid this 

draw back, a vector sample autocorrelation function (VSACF). Gray, Kelly and Mclntire 

(1978) proposed an alternative technique R—S—Array to the Box—Jenkins approach of 

ARMA(p, q) model identification based on S—array, but this procedure is quite difficult and 

complex for practical applications and further their statistical properties are unknown. A more 

simpler criterion known as the comer method is provided by Beguin, Gourieroux and Monfort

(1980) . The interesting feature of this criterion is that it allows for statistical testing 

procedures. A further discussion about the comer method can be seen in Gooijer and Heuts

(1981) .( For another method of identification and estimation with charts, see Stralkowski and 

Wu(1974)).
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Woodward and Gray (1981) discuss in their paper the concept of the generalized partial 

autocorrelation function (GPAC), which is the extension of the partial autocorrelation function 

and show the relationship between the S-array and the Box—Jenkins method of ARMA 

identification. Gooijer, Abraham, Gould and Robinson (1985) briefly discuss in their survey 

article several of the most important order determination methods used in time series analysis.

4.2 Extended sample autocorrelation function

Let ARMA (p,q) be the model for a univariate time series Z( in the form

where B is a backshift operator B Z{ = Z{ _  j  and at Gaussion white noise process with zero

(34) if>(B)Zt = 0 ( B ) .a t

mean and variance a
and where (]) (B) Z( is the autoregressive term 

and 0  (B) a{ is the moving average term

4» (B) = 1 — <t>j B - . ...........-  <j) B p is further divided into two portions,

U (B) and tp(B) as now

<J) (B) = U (B) . <p(B) with the following polynomials in

U ( B) = 1 — U j B - ,d

(p (B) = 1 — cpj B —............. <Pp _  B P ^ with the following conditions
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1) If the roots of U(B) are on the unit circle, so is the U(B) the non-stationary part of <J)(B).

2) If the roots of 9 (B) lie outside the unit circle, so is cp (B) the stationary part of <[> (B).

3) (j> (B) and 0  (B) have no common factors.

Under the conditions (1) and (2) the following is required

if U (B) = 1, then it is the autoregressive part (J) (B) purely stationary 

if 9  (B) = 1, then is the autoregressive part (j) (B) non-stationary.

4.3 Iterative estimation 

Starting poin t :

Suppose n observation are available from the ARMA (p,q) process in the following form

P q
(35)

The purpose here is to find the consistent LS -  estimator

Iterations:

Suppose that Z is a AR (p) model then

(36)

coefficient Residuals
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where t = p + 1,..........n and superscript (0) means the ordinary autoregression, the subscript

(p) denotes the order of the AR fitting.

We consider the OLS — Estimates

---------> means convergence in the probabality.

If the process is either a pure AR(P) that is (q = 0) process or is a pure non—stationary 

ARMA(p,q) process that is <p(B) = 1.

For other models the OLS—Estimation is inconsistent and in this case we proceed to the 1

1. Iteration step

We consider the estimated residuals

A  w
(p for cp and results becomes as following

(0) (0)

1(P) Kp>

(0) p

Kp)
-> (j)j 1 = 1.........,p where

P

which are not white noise even for large n, the lagged values e ' t 'j , j > 0 , will contain some 

information about the process and define the l.Iterative AR(P) regression

(37)



47

where ep t denotes the corresponding error term and superscript (1) means the first iterated

regression.

We calculate the OLS—estimates c[) ^  , P ^  and get the following results.
1(P) KP)

(1)

,(D  P

1(P)
->  (j) 1 = 1,........,p

if q < 1, i.e., AR(P) or ARMA(P,1) or <p(B) = 1, i.e., pure non—stationary
A  ( 1 \

For other models the Estimator <p v ’ is inconsistent, and in this case we proceed to the 2nd
Kp)

Iteration.

2. Iteration 

Let

A  (1) P a ( D  A  A  (0)
e = Z . - I-  -  ~ t -  y Z j i - P  e

P,t 1 1=1 l(p) 11  l(p) p t-.l

and define the 2.AR(p) regression as

(38)
p (2) (2) A (1) (2) A (0) (2)

Z, = I  cb Z - . + j )  e + p e + e 
1 1=1 l(p) 1 1 l(p ) p ,t - l  2(p) p ,t-2  p ,t

(2)
where t = p + 3.......... n and ep t denotes error term.

We consider the OLS—estimates

a (2) (2) A
f  , (3 , P and get the following results

1(P) Kp) 2(p)

. (2)

HP)
-> (|) 1 = 1,.............p

1
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If q < 2 or <p(B) = 1, otherwise the estimator is inconsistent, the jth iterated AR(k) regression 

is defined as

(39)
k  O ')  j  ( j )  a  C M )  ( j )

Z = 1  <b Z) 1  + I P  e + e 
1 1 = 1  l ( k )  1 1 i = l  i ( k )  k , t —j  k , t

where t = k + j + 1,.........,n

j = 0,..........

k = 1,2,..... ,

and now

(40)
a  ( i )  k  A
e = Z  -  2  d) z.

i  a  ( 0  a  ( i - h )

' t - r 2  P
k , t  1 1 = 1  l ( k )  1 1 k = l  h ( k )

ck,t-h

are the estimated residuals from the ith iterated AR(k) regression and

a(0  ft(i)
(p j^ 's  and PfjQj)s the corresponding estimates.

4.4 Recursion

a  / ; y
It will be shown now that the estimates (p '  can be recursively computed from the OLS

l(k)
estimates. If we give k , j and the index 1 = l,....,k some values than the recursion can be 

started as follows.

For j = 0 the coefficient (j) ®  are obtained from the OLS estimation directly. 
l(k)
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Now the recursion step for j = 1 becomes

= • 
Kk) l(k+l)

$<°>
l-l(k)

f w -
k(l)

(0)
k+1 (k+1)

where $ ®  = —1 , so we can also derive similarly the recursion steps for j=2 and so on, Now 
0(k)

the jth recursion step is as follows

(41)

* $ ( j - D
| ( j ) = $ ( j -D  1-1 (k) k+1 (k+1)

l(k) l(k+l) |  ( j-D
k(k)

where $  ̂ 1 = -1  ,1 = 1 , ........k and k > 1 , j > 1.
° (k)

It should be clear that at the begining of recursion the coefficient <|) ^  must have been
l(k+j)

calculated previously.

ESACF (Extended Sample Autocorrelation Function)

We define now the ESCAF—function r . ^  for the numbers k,j, using the consistent 

estimates. Again we have a ARMA(p,q) model and

1. If p=0, then we have Zt as MA(q) model and its SACF cuts off asymptotically at lag q, 

i.e.,

(42) rj(0)= 0 if j >qandp = 0 ,
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where j  = lag and q is order of the process, = asymptotically equivalent in probability,

2. If p=l , then we have Z( as ARMA(l,q) model, if a consistent estimate (j)j o f  can be 

found, then = Zf — $ j  Z(_^ will asymptotically follow a pure MA(q) model, and its SACF 

will have its property as in 1.

With the AR—iterations we get the following result

AÜ)

KD
-> cj) , j > q and because of the preliminary results it follows that

(q)
the process W

l . t

A<q)
:Z  - &  Z 

t 1(1) t-1
is as a MA(q) model so that

(q)
r (W ) = 0 

l , t
for s > q we can now define the

1.ESACF of Z{ as 

(43)
(j)

j( l)  = Tj ^ l . t )

where (1) means first ESACF and we can now see

j = 0 if j > q and p = 1

r.(i) = 0 if j  = q and p = 1
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In general, for any non-negative integer k  we define the kth ESACF of Z{ as

(44)
(j)

rj(k) = rj ( Wk,t) where

W,
(j)
k,t = z .

k
- I
1=1 l(k)

;( j ) Z and j = iterations , k = time series 
t-1

If the true model is ARMA(p,q), we have that asymptotically t follows an MA(q) model 

for j S q, so that

rj(k) ~ © for j > q and k = p 

rj(k) = 0 for j = q and k = p

(45)
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4.5 The asymptotic ESACF— tables

According to the asymptotic property of ESACF r ^ ,  which is given as

(46) fj(k) = c  (k-p. j-<l) with O S j —q < k  —p

= 0 j — q > k — p > 0

where C (k — p, j — q) is some non—zero constant or a continuous random variable bounded 

between —1 and 1.

With the help of this property we can identify the ARMA(p,q) model, i.e.,we arrange the r ^  

in a two-way table , such that the first row corresponds to the autocorrelation of the time 

series Zt and the second row to the ESACF of the process W^jj and so on.

So, we search from the tables for the vertex of asymptotic ” zeros " values with the boundary

lines k = Cj > 0 and j — k = Cj ^ 0 and then identify p = C| and q = Cj as the order of the

ARMA model.

We further approximate the asymptotic variance of the r ^ , ^  by using Bartlett's formula (see

Nelson 1972,p .74 ). So for each value r ^  we have a limit S j ^  , so is [ ] > 2 X ,

than we have " X " otherwise " 0 ". So the S j ^  is given as follows :

(47) Sj(k) = '
K

j-1 2
( 1 + 2 1S rj (k)

1/2
) for j > q
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The ESACF— table
MA

AR 0 1 2 3 4 5

0 r l(0) r2(0) f3(0) r4(0) r5(0) r6(0)

1
rKD r2(l)

2

5 r . , , ,j(k )

4 . . .  .

5 . . .  .

Indicator symbol table
MA

AR 0 1 2 3 4 5

0 X X X X X X

1 X 0 0 0 0 0

2 X X 0 0 0 0

3 X ' X X 0 0 0

4 X X X X 0 0

5 X X X X X 0
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5. Model diagnostics

After the model has been identified and the parameters estimated the general diagnostic checks 

are then applied to the fitted models in order to see whether or not the model is correctly 

specified. The diagnostic checking process involves the following major steps.

5.1 Test applied to residuals

5.1.1 Portmanteau test

Instead of considering the autocorrelations individually, it is worth taking them as a whole. 

Suppose that we have K autocorrelations :

rk (a), k = 1,2,........,K

from any ARIMA(p,d,q) process, if the fitted model is appropriate a test can be made for their 

adequacy with the Box—Pierce (1970) Test—statistic:

K 2 A 
Q = n X r (a) 

k = l k

2
and which is approximately distributed as % (k — p — q) degrees of freedom.

Ljung and Box (1978) suggests to use the modified Test—statistic. On the power of 

portmanteau statistics (see Davies, et.el.(1977), Davies and Newbold (1979), Godfrey(1979), 

Postkitt and Tremayne (1980)).

* K -1  A 2
Q = n (n+2) X (n -  k) r, 

k = l k

because the mean of Q can be approximated with

m * n m + 1
E(Q) = — ---------[1 -----------------l - p - q

n + 2  2n
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from this formula it is obvious that n must be large relative to m and that the Q is 
2

approximately % (m — p -q )  distributed.

Schlittingen and Streitberg (1984) suggests that doubt can be put on the validity o f a 

ARMA(p,q), if  one of the following phenomena is observed:

-  the parameters are instable in the less parameterized model, i.e., the parameter estimation 

differs considerably if the model is extended.

-  the new added parameters are significantly different from zero.

-  the residual variance declines, if the model is extended.

5.1.2 Overfitting

To an identified model of the form ARIMA(p,d,q) , another model with additive parameters 

can be added as an extension like ARIMA(p+p', d, Q+Q') and then estimated. After the model 

with additional parameters has been estimated its parameters should be statistically 

insignificant. If we apply this procedure serious difficulties^ in the estimation can arise. If a 

model is fitted which contains a redudant factor, consequently it leads to instability of the 

parameters

(1 -  a  B) (|) (B) W( = (1 -  a  B) 0  (B) at

i.e., the model should not take the above form, the caution is not to add "MA" and "AR” 

parameters at the same time.

1
Larimore and Mehra (1985) show empirically and mathematically how overfitting in time 

series analysis leads to an increase in forecast errors.
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EMPIRICAL PART:

6. Introduction

a) Section 6.1 describes the data and the definitions of profit measures and reports the 

descriptive statistics. It then explains the effect of trend and business cycle on the mean rate of 

return. Finally, the convergence process of some selected German firms is illustrated.

b) In section 7. the polynomials models from page 7 are applied to the German data alone to 

get initial insights of the POP— hypothesis. (The US results of these models are taken from 

Mueller(1983)). The results of these models are then compared across countries. Furthermore 

in this section the results of the partial adjustment model (PA—model) are reported for both 

countries and then the lagrange multiplier approach to testing for autocorrelation is also 

applied. Finally the results of the whole section are then summarized.

c) In sections 8. and 9. the results of the stochastic models for both countries are reported. The 

test of lag structure is evaluated. The unit root test is then applied to check the stationarity 

conditions on both samples. Finally the model selection procedure is applied to discriminate 

between the models.

d) Section 10. reports first the results of large sample example to see the operationality of this 

identification procedure. This procedure is then applied to both countries and the results for 

some selected firms from both countries are reported and finally summarized.

e) The final section 11. compares the results of the PA—model, and stochastic models of 

equivalent and complete time periods between two countries. The results of the industrial 

differences from stochastic models are compared and then finally the summary and 

conclusions are drawn.
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6.1 Data description

For the purpose of comparing results with other countries we had to collect the data for the 

manufacturing industries in the Federal Republic Germany. There existed a few time series in 

the form of a " Saarbruecken File1 " from 1961 to 1975 incorporating 400 firms. For a 

significant portion of missing values for the respective years we collected those numbers from 

" Hoppenstedt Handbooks ". From the " Saarbruecken File " we selected 299 firms for the 

following reasons :

— We found complete data for our required calculations for the time period 1961 through 

1982.

— we did not select stock companies (AG's) which were not in manufacturing industries.

— We also excluded the stock companies whose legal form (Gesellschaftsform) has changed 

during this time period and those which disappeared through mergers activities.

— We did not consult companies with other legal forms.

6.1.1 Overview of sources

For the sources of data for Germany we consulted the following publications:

— Hoppenstedt: Handbook of Stock Companies (AG's)

— Financial reports of the firms

— Statistical yearbooks *

*This file contained all variables from which we could calculate the desired profit rate. The 
data was collected by Prof. Poensgen and his colleagues.
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6.1.2 Selection of the time period 1961—1982 forFRG

We started our time period with 1961 because in 1959 major revision of publication 

requirements were put into effect in the German corporate laws*. For example, until 1959 

rather than reporting gross sales companies reported the sales net of purchase of raw materials. 

According to the old corporation law of August 15, 1969 the German Corporation laws 

required annual publication of financial reports. Stock Companies and Scrip Companies were 

required to publish their annual reports regardless of their size on the other hand the Limited 

Liability Companies had to disclose their informations according to their size.

Since the begining of 1986, only companies of the type Stock Companies (AG's) , Scrip 

Companies (KGaA) and companies with limited liability (Gmbh's) are required to publish their 

financial and business activities report, if a minimum of two out of the following three size 

characteristics apply:

— Total assets exceed 15.5 Million DM.

— Total sales exceed 32 Million DM.

— Number of employees exceeds 250 workers.

According to these new requirements there would be more company reports available. For our 

sample time period, 1961—82, we can see from figure 6.1 that the number of companies 

decreased over time. On the other hand, the number of companies with limited liability 

increased from 16395 to 60893 for this time period (not reported in the figure). *

* see Woehe (1984), p.303^1, Schubert and Kueting (1981) and Schwalbach and Mahmood 
(1990), p.107—108.
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6.1.3 Descriptive statistics

In this section we report the results of descriptive statistics. The after tax definition of profit 

rates is used for both countries and are not normalized*.

Table 6.1 reports the summary statistics of both the countries. Each mean, standard deviation 

and the coefficient of variation were calculated for each year using the crosssection of sample 

firms and then averaged over the observation period.

The mean profit rates across firms and over time between two countries for 1961—82 and 

1950—80 are 4.83, 7.200. The mean profit rate is lower in Germany than the US.

These results are similar with those of the US sample of 600 firms for the 1950—72 series and 

438 firms for the 1964—80 series. For both the series a high mean value was found.

The mean standard deviation is almost equivalent in both countries, suggesting that the 

dispersion of profit rates across firms in Germany is lower than in the US. These results are 

consistent with those of reported in Odagiri and Yamawaki(1990), who also found that the 

standard deviations are equivalent for both countries.

Comparing the mean values of the coefficient of variation (CV) between two countries, we 

find a higher value for Germany than for the US. These findings are again not consistent with 

the results of Odagiri and Yamawaki(1990). From these results we conclude that the dispersion 

of profit rates across firms is lower in Germany than in the US.

* Profit rates are defined as after tax plus interest divided by total assets and are not 
normalized.
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Table : 6.1

Means and standard deviations of time series of 

unnormalized profitrates:

FRG USA

Mean 4.833 7.200

Standard

deviation 3.998 3.864

Coefficient

of variation .868 .348

N of firms 299 500



6.1.4 Normalization method and profit definitions

The empirical studies of Mueller (1983), Odagiri and YamawaM (1985) first used the

normalization method o f b y  ratio ” ( see also p.7), i.e.,

n it = (Pi r  Pt} 1 Pt ’
but the latter found for Japan that the mean profit rate and the variance across companies were 

negatively correlated over time, implying that the inter-company profit rate variance moves 

counter—cyclically to the mean rate. So this normalization method resulted in an over (under) 

estimation of the extent of inter-company profitability differences in a year with low (high)

average profitability. They further used the normalization method of " by deviation " i.e. 1L£=
_ _ n

P. — P , where P- denotes the profit rate of firm i in the year t, and P = £  P. /  n, the across it i u  t n

company average in year t and n is the number of companies. Our study ( Schwalbach and

Mahmood (1987)) used the " by deviation " method and four different profit measures:

Therefore, the subsequent analysis will only apply the " by deviation " method and before tax

and after tax measures which are defined as :

1) Nominal profit rate on total capital before tax, defined as profit available for dividend plus 

interest payments plus income tax payments divided by total assets.

2) Nominal profit rate on total capital after tax defined as (1) but after tax. *

* Recent criticism was made on the use of accounting profit measures (see Long and 
Ravenscraft(1984), Smirlock et.el. (1984) and Mueller(1990), Appendix)).
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6.1.5 Result of trend and business cycle for FRG

Figures 6.2 and 6.3 displays the movement of the mean rate of return^ and their standard

deviations for the definitions after tax (AT) and before tax (BT) over the time period 1961
2

through 1982. Both of the definitions indicate a clear downward trend but it is more severe 

for the BT. The standard deviation curves indicate for AT and BT that the profitability 

fluctuation around the mean across firms is not high for the years 1961-73 but it is higher 

between the years 1973—82, which suggests that the profitability difference is severe for the 

latter time period.

Table 6.2 summarizes the regression results of the six equations in which we regressed the 

mean rate of return (MRR) before and after tax against time and the business cycle indicator 

variable, rate of capacity utilization (RCU = measured as the share of plants utilized with full 

capacity) for both of the definitions in order to analyze the effect of trend and business cycle. 

Equation (1) exhibits the expected negative significant coefficient of the time variable which 

clearly suggests a decline of MRR over time. In the second equation we added the business 

cycle variable which is positive but statistically insignificant. This implies that the business 

cycle does not have a severe effect for the respective time period but the time coefficient still 

remains significant with a negative sign.

1 NMRR = DPR. /  N , where t = 1,22 and N=299 the number of firms. Furthermore thet 1 t
outliers (values greater than 2 X standard deviations) were removed for specific years from the 
data.
2

The results are consistent with Funke (1987), see also Albach(1985), Neumann et.el.(1983) 
and Schwalbach(1985).
3

RCU =(Source: Main economic indicators, various years,OECD).
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Table : 6.2

Regression analysis : Mean rate of return for manufacturing 
corporations 1961—1982

Explanatory variables

Equations Time RCU TRCU R2

After tax

(1) MPR -.10315
(9.692)

.8157

(2) MPR -.0948
(-6.787)

.01991
(.927)

.8144

(3) MPR .0803
(.2774)

.0468
(.9457)

-.00208
(-.6055)

.808

Before Tax

(4) MPR -.3095
(-16.061)

.924

(5) MPR -.2962
(-11.653)

.03198
(.8186)

.923

(6) MPR .9063
(2.013)

.2157
(2.815)

-.0438
(-2.674)

.942

Note : t—statistics in parenthesis and all equations were 
estimated using ordinary least square.
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Now, if we add another variable TRCU* the coefficient of time becomes positive but 

statistically insignificant, whereas the RCU coefficient remains almost the same as in equation 

2. The negative insignificant coefficient of TRCU suggests that the business cycle has a 

decreasing effect over this time period. The results of equation 4 and 5 are similar to the first 

and second equation but a substantial difference is observed for equation 6. The coefficient of

time is statistically significant and positive whereas the coefficient of TRCU is negative but
2

significant, which suggests a highly decreasing effect of the cyclical fluctuation over time .

This implies that the coefficient becomes significant because of the difference in tax systems.
2

All equations exhibit a large value of R (adjusted for degree of freedom). For the three

equations using AT definitions it can be concluded that more than 80% of the variance of the

mean rate of return can be accounted for by the explanatory variables and for the BT definition 
2

the value of R even increases to more than 90%. These results suggests that all equations 

posseses a very high explanatory power.

* TRCU = RCU * Time( Time multiplied to observe the effect of later periods).
2

Rate of return was regressed on other explanatory variables (see Albach (1984),Schwalbach 
and Mahmood(1990)).
Note: We calculated the average period according to the formula

2 n  ^
Cos — - —  = ------------- taken from ( see McLeod (1982), p. 11—81, and also Jenkins

P v  -  $2
(1979, p.98)) and did not find cyclic behavior of the time series.
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6.1.6 Projected and predicted profits o f few firms for FRG

Figures 6.4 — 6.8 provide some initial insights into the process of convergence (For US sample 

see Mueller (1986)). We will illustrate how different models capture this pattern. In order to 

plot these figures against time we defined the dependent variable in terms of profit deviations^ 

in each of the estimated profit projections. The dotted line is the raw profit rate (RAW), the 

dashed line the predicted profit rates (BF) selected as the best fit of the three polynomial in 

l/t(B) and the predicted profit rate of the lag model(LAG). For the order we selected few 

companies from the entire sample with different patterns.

Examining figures 6.4 and 6.5 it can be seen that Daimler—AG and Hoechst—AG start with a 

profit level which is above the competitive (For definition see Geroski(1990)) mean in the 

initial years and then rises slightly before starting to decline continuously from the year 1965 

while still remaining after 22 years above the competitive mean.

Stumpf—AG's profit (Fig: 6.6) is slightly above the mean and does not move away from the 

mean and converges to the competitive mean until 22 years.

A different pattern is illustrated by the company Dynamit—Nobel—AG (Fig: 6.7) whose profit 

level is below the mean and starts continuously rising and approaches the competitive mean 

after 22 years.

Finally, Paul—Hartman—AG (Fig: 6.8) exhibits a profit at the initial periods around the mean, 

which after a few years starts rising continuously and remains after 22 years above the mean. 

Out of 299 companies a substantial number exhibits a behavior like Paul—Hartman—AG, we 

also identified a significant number o f companies with patterns resembling those described in 

the other figures.

1 n = ( IT -  n.f), where n. = I I 1 . . / N  t=l,22 and N = Number of firmsit it it  ̂ j ir
2

The spikes noted in all figures for some years are outliers which we detected when the 

models were estimated.
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7. Regression results of deterministic models

7.1 Results of polynomial models

The sample used in this time senes consists of 299 German manufacturing firms for which 

data were provided from 1961 through 1982. We estimated^ for each firm in the sample the 

parameters a  (ST), a  (BF) and finally provided the estimates of partial adjustment model 

a(PA) from the sections 1.1 and 1.2.

Table 7.1 provides the results of simple correlations between different long run profit 

projections a(ST), a(BF) and a(PA), mean profit rates (IT) over a 22 year sample period, and
A A

the initial profit rates: INPR = (^61+62/2-*' The profit projections a  (ST) and a  (PA) are 

positively correlated with initial profits and mean profits but negatively correlated with a  

(B F), which implies that a company initially earning a higher—than-average profit rate tends
A A

to maintain its profit rate even in the long run for a  (ST) and a  (PA) but the opposite with the

A A A —
a  (BF) model. The highest correlation coefficients are found between a  (ST) , a  (PA) and II 

which range between .8107 and .9350. Mueller(1986), Odagiri and Yamawaki(1986) also 

found a fairly high correlation between all profit projections, but the poorest one was for " best 

fit " polynomial in 1/t. Our earlier results (Preliminary results are not reported) which were 

based on a sample of 191 companies and time period 1961-1981 also suggested similar 

behavior to our present correlation results only with a slight difference, we found that the best 

fit correlation coefficient shifted from +ve(.0634) to —ve(—.1911).

* The following regression programs were used : TSP 4.0 WZB—version, SHAZAM 4.4 
installed at C D - Cyber of Free University and RATS 4.3 , SHAZAM 6.1 IB M - PC— AT.

3Wordprocessing and Graphic were done with T and CHART on IB M - PC— AT.
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Simple correlation coefficients matrix

Table : 7.1

1

a(ST)

2

oc(BF)

3

a  (PA)

4

n
5

INPR

1 1 .3793 .8325 .9350 .4500

2 1 .4432 .2410 -.191

3 1 .8107 .3283

4 1 .6920

5 1

N = 299
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We additionally regressed the projected profits on initial profits for both ¡linear and quadratic 

specification.

Table 7.2 presents the regression results of the estimated equations. A significant relationship 

between projected profitability and initial profit rates could not be found for every equation . 

The coefficient of the initial profit rate in all equations has a positive sign and is statistically 

significant except for the BF equations. Only for the PA2 projection is the linear specification 

the best, which implies that for every one percent that a firms profits were above(below) the 

average profit rate of all firms in 1961-62, they are projected to be .2 percent above(below) 

the average into the indefinite future.

The negative coefficients of the squared initial profit rate implies that after a point, the further 

is a firms profits are from the mean, the greater is the percentage movement toward the mean. 

The equation PA2 implies that a firm earning double the average profit rate in 1961-62 will 

earn, on the average 35 percent more into the indefinite future. From the PY1 and PY2 (FT) 

equations it can be seen that a similar positive relationship exists between PY1, PY2 and intial 

profits.
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Table : 7.2

OLS—Regression results o f profitprojection on initial profit rate
N = 299

Dependent
variables

Intercept INPR61+62 INRR61+62 R2

ST -.000182 .2371) .202
(-.0917) (8.71)

ST -.00102 .222 .1559 .2009
(-.464) (6.9) (.902)

BF -.00171 -.15020 .0320
(-.512) (-3.28)

BF -.00062 -.1084 -.4355 .0361
(.1700) (-2.0) (-1.6)

PA1 .00047 .1722 .0564

(.065) (4.3)

PA2 .00341 .1701 .1052

(2.16) (5.9)

PA2 .00517 .2536 -.3696 .1728
(2.28) (7.9) (5.02)

PY1 .00002 .31330 .312
(.013) (11.6)

PY1 .00038 .32020 -.4566 .3113
(.434) ( H. 4 )

(-.82)

PY2 .00006 .36560 .4780
(.042) (16.6)

PY2 .000385 ’ .37137 -.05941 .4766
(.2154) (14.4) (-.422)

: t-statis£ics are in the parenthesis.
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The results for the goodness of fit for the models show that the R (adjusted for the degrees of 

freedom) for our sample was found more often positive then the negative. The modest criteria 

o f .1 was achieved in 236 cases or 78.9% of the 299 companies. In our earlier sample of 191

firms we had 48.6%, so with the larger sample the goodness of fit has substantially improved.
2

For the best fit model we selected the highest R which has considerably increased to 262 

cases or 87.6% , if we compare this to our earlier results of short sample which was 67.3% we 

can observe an improvement.

In considering the extent of the persistence of intercompany profit rate difference among 

convergence models we can clearly conclude that the best fit model had poorer persistence of 

profit that did the standard models. The ordering of subsamples for the best fit model 

was quite ambiguous ( The results are not reported in the table 7.3). From column 1 of the 

table 7.3 it can be seen that the ordering of subsamples for the standard model is consistent 

with that of the initial profit rate. The first column shows that the first subsample has the 

highest estimate, followed by the second, third or fourth and finally by the two subsamples at 

the bottom.

The columns second and third in table 7.3 show the number of positive a ' s  which are greater 

than zero and the percentage of the number of companies within the group.
A

In the first group a  was found to be positive of the 50 companies, which accounts for 66 

percent of the first subsample. In the whole group there were 128 companies with positive a 's  

which accounts for 42 percent.
A

The distribution of the mean of p , which is the measure of the speed of convergence to the 

normal rate is consistent with the initial profit rate. The absolute value of the mean P is small 

in this sample, which implies that the speed of convergence^ is smaller for Germany.

2

 ̂ Schohl (1989) did a analysis of variance test and found a convergence process more stronger 
than our results (see also Levy (1987)).
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Table: 7.3

A A
Mean a 's  and p ’s by subsample of standard model

Sample 299 Firms 
Time Period 1961-1982 
Before Tax

N of 
Firms

Mean
A
a

Number of
A
a  > 0

Percentage 
a  > 0

Mean INPR

50 2.923 33 66 .0839 12.162

50 0.419 24 48 .0443 4.364

50 0.359 26 52 .0043 0.358

50 -0.353 21 42 -0.0267 -2.906

50 -0.886 16 32 -0.0391 -5.104

49 -2.571 8 16 -0.0692 -8.631
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The positive (5 imply falling profit profit rates and negative the rising profit rates. In terms o f (3 

percentage for the whole sample we found 134 companies which makes 44 % and is quite
A

Similar to the a  distribution.

7.1.1 Comparison of FRO and US results

To examine whether the profit persistence based on these models differs across two countries 

we compare our standard model results with Mueller's (1983) for the US. He used a sample of 

600 companies in 1950—72 and the after tax definition, whereas we used the before tax 

definition.
A

The distribution of a  across the subsamples is not similar because in our third group Germany 

has a positive mean compared to the negative mean of the 3rd US subsample, the percentage
A

of a  is greatest for the US for the first, second and the last subsample and for Germany in the 

third, fourth and fifth group.
A A

The distribution of the mean of p clearly differs. The absolute mean p are larger in the US, 

which imply that the weaker significance of p suggest that the companies profit rate 

equalization tendency exits.
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7.2 Results of PA—model for FRG

Tables 7.4 and 7.5 summarize the estimated results^ of the partial adjustment model described
2

in section 1.2 for both the after tax and before tax definitions. The results are based on the

normalization by the deviation method. Tables 7.4 and 7.5 present the results in which we 
3

detected the outliers (see Andrews, et.el.(1978) test for examining outliers, Rousseeuw, et.el. 

(1987) and Tsay (1986)).

Following Mueller's (1983) methodology we calculated the initial profit rate (INPR) as the 

average over the begining two years (1961—62) and then grouped the companies in the order 

of the INPR into six subsamples first five of 50 companies and last of 49. The average of the
A A A

estimated long-run projected profit rate a  = a  /  1 — X , the estimated slowness of the 

convergence 1  and (1 — £ ) as the estimated speed of convergence. We did not find any —1 < 

i  > 1 (because profit rate explodes in the long run). From table 7.4 it can be seen that the 

ordering of the PPR across the six subsamples for both of the definitions is the same as for the 

initial profit rate

Our present results were corrected for small sample bias by multiplying the estimated
A A

coefficients by T / T — 2 from the model Yt = p Y t _ j + e t , where | p | < 1 and e( is a zero

mean , the small sample bias is approximately equal to —2$ /  T, where T is the number of 
observations in the sample (see Johnston(1972), p.305— 6, Geroski and Jacquemin(1987)).
2

In our previous results we estimated four different profit measure (see Schwalbach and 
Mahmood(1987)).
3

The values greater than the 2 x standard deviations were dropped from the sample. In 
addition we also estimated the models including dummy variable , we do not report the results 
because not a significant results were achieved for both definitions.
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Table : 7.4

Outlier detected model 

D e f: Before tax

A
Subsamples a 1 INPR N of Firms

i 2.515 0.376 12.039 50

2 0.746 0.536 4.292 50

3 0.809 0.665 0.278 50

4 -0.320 0.558 -2.955 50

5 -0.547 0.478 -5.144 50

6 -1.307 0.479 -8.685 49

1 5.629 0.522 9.690 21

2 1.500 0.684 1.654 21

3 0.665 0.690 -1.119 21

4 -1.153 0.666 -3.569 21

5 -1.353 0.576 -5.793 21

6 -1.476 0.545 -8.594 20

Note ;AU equations were estimated using O L S- method, Mueller (1989), 
Odagiri and Yamawaki (1989) also used Cochrun- Orcutt method to 
detect autocorrelation.
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Table : 7.5

Outlier detected model 

D ef: After tax

Subsamples
A
a t INPR N of Firms

1 0.532 0.483 4.534 50

2 0.363 0.730 1.618 50

3 0.537 0 . 6 6 6 0.163 50

4 0.238 0.564 -0.871 50

5 -0.413 0.609 -1.178 50

6 -1.125 0.594 -1.374 49

1 2.159 0.663 3.138 17

2 1.544 0.670 1.119 17

3 0.390 0.754 -0.019 17

4 0.021 0.690 -0.932 17

5 -1.348 0.797 -1.940 17

6 -2.225 0.695 -3.43 18



but different in the third subgroup which has a slightly higher value than the second subsample 

for both the definitions.

The 50 companies in the first subsample which have the highest estimates earned on average 

between 4.5 to 12.0 percentage points higher profit rate in 1961-62 than did the average of all 

the companies in this sample, and still earned .5 to 2.5 percent higher profit rate even in the 

indefinite future. Now in contrast in the last subgroup the 49 companies earned between —1.3 

to —8.6 percent lower profit rate in 1961-62 than the average of all the companies in this 

sample , are estimated to earn —1.1 to —1.3 percent lower rate below the average.

It can be concluded that the firms earning a higher—then—average profit rate are at one point in 

time on average expected to earn a higher—then—average profit rate even in the long run for 

both the definitions.

The second column presents the means of (1 — X ) for each subsample. We do not observe a 

systematic pattern from subsample to subsample . The subgroup with the highest estimates 

exhibits the lowest (1 — £) of .376 and .483 for both of the definitions. This implies that the 

companies in these subgroups where profit remained above the mean in the long run have the 

slowest speed of convergence. This may also suggest that the highly profitable firms were able 

to protect their market positions fairly well.

The results which were obtained from the tests we applied to the models are now considered in
A

terms of the significance of a  (which we calculated according to the formula described in 

section 1.3) we found 58 cases significantly positive, this accounts for 19.4 percent and 50 

(16.7) for the after tax definition and significantly negative 53 (17.7%) for before tax and 84 

(28.1%) for after tax.

The number of cases for which £ is significantly positive (ten percent level, one tailed test) is 

204 (68.2%) for before tax and 240 (80.3%) for after tax. No 1 were found to be significantly 

negative (ten percent level two—tailed test) out of our entire sample.
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The number of cases for which R (adjusted for degrees of freedom) is greater than zero was 

190, which accounts for 63.5 percent for before tax and 232 cases (77.6%) for after tax. We 

further calculated the correlation coefficients between projected profit rates, average profit 

rates and initial profits. The correlation coefficient between PPR and INPR ranged from .2437 

to .3448 and between PPR and the average profit rate from .736 to .811 for both the after tax 

and before tax definitions. The high positive correlation between these estimates suggests once 

again the existence of abnormal profits even in the long run. In comparison to the US 

correlations these estimates are relatively small.

The lower half of table 7.4 presents the results which include only the significant equations* 

(two tailed, test five percent level of significance) in terms of % and where companies are 

grouped in six subsamples according to the initial profit rates. The number of companies in 

both the definitions were substantially reduced to 125 and 103 respectively. Furthermore, a
A

stronger evidence of persistence in terms of a  is obvious, particularly in the first subsample. 

The 17 companies in this group earned 3.1 percent of their average profit during 1961—62 

above the average and after 22 years they still earned a profit rate that was 2.2 above the 

mean. A similar behavior can be seen for the first group for the before tax definition. A very
A

consistent pattern of the ordering of a  is observed for both the definitions as is shown by 

coulmns 1 and 5 in the lower half of table 7.4. The distribution of (1 — ^  ) is quite similar to 

the results in the upper half of the table, but the magnitude of the value has increased across 

all subgroups. The first subgroup for both of the definitions still has the lowest value. This 

implies that in this subgroup the speed of adjustment is relatively high.

2

1 A A further exercise was considered the significant equations in terms of a 's but the grouping
of the estimates was found to be ambiguous. Thus, we do not report the results here.
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7.3 Results of PA-model for the US

Tables 7.6 and 7.7 reports the results of 500 US companies for the time period 1950—1980*. 

We report the results with both outliers detected and dummy variable included model.
A

Columns one and five show that the ordering of a  across subsamples is consistent in the sense 

that the first subgroup has a larger persistence than the second , third and so on, including the 

initial profits. The second and sixth columns show the distribution of (1 — 1) across the 

subgroups, which has a mean around .6 for both the models. The lower part of the table, which 

reports the results of only the significant equations, in terms of £'s, shows that the extent of 

persistence changes across groups for both the models. For the first group 39 companies earned 

their profit 6.9 percent above the norm at the average of 50+51+52/3 and after 31 years they 

still earned 4.5 percent above the mean of 2.9 found for the upper half of first group. The 

values of subgroups two and three have also increased. The distribution of (1 — 1) across 

subsamples has not greatly changed.

Now, we consider the results of tests made for the significance of different estimates. The 
2

number of cases for which R > .1 increased from 117 (21.2%) of Mueller's sample results of 

551 companies for the time period 1950-1972 to 332 (66.4%) for the outlier detected model
9

and we additionally found for the dummy model 353(70.6%) cases for which R was greater 

than .1. These values show that the fit of the model has Substantially improved. The number of
A

significant positive cases of a  (calculated with the formula described in section 1.3) increased 

from 125 (22.7%) of Mueller’s to 161 (32.2%) and 163 (32.6%) for both models, or the 

negative significance the number of cases decreased from 149 (27%) to 80 (16.0%) and 85 

(17.0%).
A

The number of cases with a positive and significant a  substantially increased from 152 

(27.6%) to 384 (76.8%) and 378 (75.6), respectively. Furthermore, no Î, which exceeded the 

value greater than one was found to exist.
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Table : 7.6

Outlier detected model

Subsample
A
a 1 INPR N of firms

1 2.975 0.565 6.266 84

2 1.566 0.636 2.289 84

3 0.927 0.636 0.450 83

4 0.188 0.639 -1.082 83

5 0.243 0.605 -2.531 83

6 -0.736 0.576 -5.228 83

1 4.649 0.554 6.912 39

2 3.124 0.717 3.175 39

3 2.775 0.707 1.189 38

4 1.059 0.653 -0.457 38

5 0.446 0.678 -1.217 38

6 -0.894 0.627 -1.503 38

Note: Source of US data: Moody's manuals for US (The data were collected for the 
years 1973- 1980, and the data for 1950— 72 were used by the permisson of 
Prof. Mueller.
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T able: 7.7 

Dummy model 

Def: After tax

A
Subsamples a £ INPR N of Firms

i 2.960 0.571 6.266 84

2 1.560 0.644 2.289 84

3 0.913 0.654 0.450 83

4 0.173 0.649 -1.082 83

5 0.249 0.620 -2.531 83

6 -0.748 0.614 -5.228 83

1 4.625 0.560 6.912 39

2 3.004 0.717 3.189 39

3 2.782 0.717 1.122 39

4 0.988 0.653 -0.475 39

5 0.365 0.697 -1.218 38

6 -0.966 0.663 -1.516 38

Note :: Again a model as Z£ = a  + P Zt _ j + 8 Dummyt+ e was estimated for each
equation, where the outlier was assigned a value of 1 and otherwise 0. 
(see Younger (1979), section 15.3)
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7.4 Results of LM—test

We estimated the regression for each firm i in order to perform two different specification 

tests^ as described in section 2.

First, with the residuals from equation 14 the three equations including residuals as dependent 

variables were regressed against the lagged profit rate variable and lagged residuals upto the 

3rd order, than the R was multiplied by the sample and the values for the Chi-square were 

calculated and then compared to the critical values in the table.

Secondly, the residuals were included in addition to the lagged variables as independent 

variables, the three equations were estimated using the profit rate as the dependent variable. 

The appropriate F—statistics (see Kmenta(1971), p.371) were calculated with 18,17,16 degree 

of freedom respectively. The tabulated critical values at 5% significance level are F j ^g= 3.55, 

F j  y j  = 3.59, F2 2g= 3.63 and at 1% level of significance 6.01, 6.11, 6.22.

For the first test the p's was not significantly different from zero at 5% level of significance for 

23 firms.

For the second test the p's were not significantly different from zero at 5% and 1% level for 39 

equations. The distribution of the rejection of the order of p's was for 5% level rather different 

for respective degree of freedom. We excluded a additional 39 firms (misspecified models) 

from the sample and grouped them into six subsamples as already illustrated in the previous 

sections. *

* see also Schwalbach and Mahmood (1990).
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Table: 7.8

Subsamples
A
a i INPR N of Firms

1 .329 .492 4.577 46

2 .392 .711 1.674 46

3 .481 .649 .158 46

4 .238 .588 -.910 45

5 -.341 .602 -1.798 45

6 -1.141 .592 -3.767 45
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From table 7.8 we conclude that after dropping the misspecified models from the sample the 

value of a  is quite similar to those of in table A column five. The distribution of (1 — 1 )  still 

remains consistent across the subsamples and the magnitude of the values of (1 — 1 )  remains 

virtually the same.

7.5 Summary

In this section we estimated the polynomial and partial adjustment models for 1961—82 series 

of Germany and 1950—80 series of the US. According to both definitions of Germany a 

downward trend is observed and it is further found that the business cycle does not have any 

significant effect.

The regression results of polynomial models show for Germany that a company initially 

earning a higher than average profit rate tends to maintain its profits even in the long ran 

for standard model and partial adjustment model but the opposite is found for the best fit 

model. If we consider only the statistically significant equations, the magnitude of mean profit 

rate increases but the effect is substantial for the US. The mean value of the speed of 

adjustment remains stable across subgroups and of the subgroups of insignificant equations. 

The results of significance tests show that the fit is substantially improved but particularly for 

the US sample. Finally, the results of LM test showed that for 13 % the models were 

misspecified but they did not influence the systematic of persistence of profits.
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8. Regression results of stochasticmodels for FRG

8.1 Results of first -order autoregressive model

In the previous chapter we reported the results obtained from the polynomial and PA— models. 

In this chapter we will report the results obtained from the stochastic models. We first explain 

the results of the first order autoregressive model described in section 3.6.1.

In order to keep our results comparable with the PA— model (see section 1.2) we will 

transform our estimated parameters (J) and § such that 1  = (1 — $j), a  = § /  (1 — $ j) and refer 

to them again as the speed of adjustment and projected profit rate, respectively, throughout the 

next sections. We estimated the model mentioned above for each equation of the 299 

companies using annual data for the time period 1961—1982. In order to check the stationarity* 

condition we calculate the roots of all 299 equations. We found for two of the firms the roots 

less then unity in absolute values, which implies for these two firms the process exhibits non 

stationarity. Thus, we excluded these two firms from the sample. We repeated the process of 

building up the subsample as described in the previous sections. Table 8.1 reports the results in 

the upper half in which all significant and non-significant parameters were retained and in the 

lower half in which we retained only those equations which were statistically significant in 

terms of the cf) parameter. Columns one and four of the table show that once again the ordering
A

of a  accross subsamples is quite consistent with those of the INPR (initial profit rate).

* The bounds of stationarity for an AR(1) process are determined by the roots of the 
characteristic equation (1 + <J)jB) = 0, i.e., if the process is stationary, then the roots musrt be
greater than unity in absolute value, implies | [ < 1 , for equation (see McCleray and
Hay (1980)).
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Table : 8.1

Subsamples
A
a £ R2 INPR N of Anns

1 1.787 .423 .465 4.396 50

2 0.379 .702 .363 1.558 50

3 0.392 .620 .314 0.116 50

4 0.210 .524 .424 -0.900 49

5 -0.915 .596 .402 -1.793 49

6 -2.148 .557 .488 -3.735 49

1 2.334 .351 .513 4.937 31

2 0.235 .421 .502 2.108 31

3 0.505 .455 .432 0.131 31

4 0.495 .407 .463 -0.926 31

5 -0.760 .428 .482 -1.727 30

6 -2.245 .378 .555 -3.666 30



The value of the first subsample has changed substantially from .532 of the PA—model to 

1.800 of this autoregressive model which implies that the companies in the highest group are
A

the most persistent with this model. The values of a. of. other subgroups resembles with those 

of the PA—model. From column two of the table the distribution of the mean X's across 

subgroup is also consistent with those of the PA—model. The first group still has the smallest 

mean .423 as in the first group of the PA—model.

Now, we look at the lower half of table 8.1 in which only those equations were retained which 

are statistically different from zero at the 10% level of significance. For the remaining 184 

companies or 62% the value of the first subgroup has again changed from 1.70 to 2.33 and the 

value of the second subgroup has decreased but has increased in subgroups three and four. As 

column two indicates the mean value of ^  has decreased across subgroups and its value is 

about .4. If we consider only significant estimates the predictive power of the results improves.

Column three in the upper and lower halves of the table presents the means in term of 
2

R (adjusted for the degree of freedom) but its usefulness is restricted because of the nature of 

the estimation process. Still its value is about .45, implying that 45% of the variance in the 

time series is explained by the model for each group.

From the following equation, which presents the average means of all 297 equation, we can 

see the overall significance of the estimates of the sample :

(1 -  0.429B) Z. = -0.00059 B = 2.33 
(2.48) 1 (-0.0745)

The numbers within the parentheses are t—ratio's and the number 2.33 on the right side is the 

size of the root. The estimates of this equation suggests that stationarity has been achieved for 

99% and the significance of the parameters (j) has been achieved for a relatively large number 

of equations in the sample.
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8.1.1 Specification test of AR(1)

The portmanteau test (described in section 5.1.1) on the residuals will be applied to all 

equations to check the adequacy of the model. If the fitted models are appropriate, (i.e., if the
2

errors are white noise), this statistic is approximately as a K distributed variable. The 10% and 
2

5% points for S with 10 degrees of freedom are 16.0 and 18.3, respectively. Since the statistic 

is a measure of correlation among the residuals, its value should be as small as possible 

indicating that the models are correctly specified. On the basis of this test we found at the 10% 

level of significance 17 companies for which the calculated value exceeded the tabulated 

value. Further, at the 5% level we found that the model was rejected for eight companies. We 

eliminated the 17 and 8 equations, respectively, from the sample and reconstructed the 

subgroups as in table 8.1. The results are not reported because the values of a  and £ were 

negligibaly changed across subgroups and the ordering of the both estimates remained 

consistent as reported in table 8.1.
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8.2 Result of second— order autoregressive model

In order to evaluate the question, whether each film follow a lag period: of longer than one 

year, we extend our model from the last section to another lag variable,

Zt = 8 + (j)j Zt_ j+  (j>2 Z(_2+ £j or in the backshift form 

2(1 — <|)jB — (j^B ) Z{ = 8 + et, where ([)j and

are the parameter to be estimated. We will define £ = (1 — (cfij + $j)) and

a  = S /  1 — (<))j + (j^). The parameters c)5j and ^  were estimated separately again for each
1 2 equation. In checking the stationarity of the model, i.e. we calculated the roots of the

characteristic equation for all firms i in the sample, there were 46 equations for which the

roots were less than unity. This led us to suspect that the parameters were unstable, so we

excluded these equations from the sample. We were left with a sample of 253 or 84.6% firms

from which we constructed the subgroups in table 8.2.

Looking at column one we can see that the estimates of the means for first, second and third 

subgroups are increased in magnitude in comparison with the respective subgroups of the 

AR(1) model.

1 The bounds of stationarity for an AR(2) process are <j)j + < 1 , ^  — (Jjj < 1 and <t>2 l < !•

2 Root = /  (Real)2 + (Imag)2 for B-j , B2 > 1 .
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The third subsample of column four shows that the value has become negative and is 

— 0.126% below the competitive mean, and its relevant PPR value is positive at 0.649%. 

Comparing the relevant estimates of the AR(1) model, we observe an improvement for this 

subgroup. From column two we observe an increase in the mean values of i  across subgroups 

suggesting a higher speed of adjustment in comparison with the ^'s of AR(1) model. The R^ 

values from column three are again around .4 across subgroups suggesting a relatively good fit 

of the estimates.

To check the significance of the equations in terms of the (j)'s parameters the first lag parameter 

$ we found for a substantial number of equations 141 or 55.9% the coefficient statistically
A A

different from zero. We further estimated a correlation of — .07494 between (j)j and for 

these 141 equations which suggests that there is less dependence between these parameters, 

implying that the model does't need any simplification. We further found 30 companies or 

12% for which the first and second lag coefficient were statistically significant and their 

correlation coefficient — .3359 which suggest that for this group of companies a second order 

lag model is appropriate. Furthermore, we found for 87 or 34.5% of the equations for which 

both coefficient were statistically insignificant and their correlation coefficient .347, this 

suggests that for these equations the estimated model may need simplification. Finally, a 

correlation coefficient .0907 for all 253 stationary equations suggests that the overall fit with 

this second order model can be justified. Examining the 30 companies with both statistically 

significant parameters reveals that these companies are allocated to 12 different industries. 

This implies that for a firm with higher significant lag it is not important to be in a profitable 

or non—profitable industry and suggests that the length of adjustment period does not posses 

any systematic tendencies.
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Table : 8.2

Subsarnples
A
a £ R2 INPR N

of firms

1 1.842 .525 .442 4.143 42

2 0.539 .813 .359 1.234 42

3 0.649 .715 .338 -0.126 42

4 -0.216 .587 .404 -1.091 42

5 -1.463 .639 .457 -1.903 42

6 -2.767 .585 .483 -3.926 43



The projected profit rate (PPR) and initial profit rate (INPR) of five companies from thé 

pharmaceutical-chemical industry which is the most profitable industry is examined for the 

company Beiersdorf AG INPR is 3.7% and PPR is 9.45% ; for Riedel de l laen AG's the INPR 

Is — .738% and PPR is .666% ; for Paul Hartmans AG's .78 and 7.48 percent ; for Reichelt 

AG's 4.31 and 1.45 percent ; and finally for Wolfs—Walsdorf AG's the INPR 1.18 and -  .262. 

So the results estimates suggests that even these firms need for their profit adjustment longer 

than one period, so according to their initial profit average of ( 61 + 62 ) /  2 they still tend to 

earn below (above) the competitive mean, even in the long run.

The overall significance and Stationarity for all 253 companies is identified by

(1 -  .384 B + .028 B2 ) Z. = -  .00102 B, = 10.257 B , = 3.482
(1.63) (- .1 3 7 ) 1 (-.0934) 1 z

The numbers within the parentheses are again the t—ratios. The values of both roots B j and B j 

indicates that they lie outside the unit circle, this implies that the overall stationarity is well 

represented by this autoregressive model of second order. The t—ratio of the first lag also 

suggest for a substantial number of the equations the statistical significance, whereas from the 

t-ratio of the second lag we can feel insignificance for a broader number of the equations, 

since for a majority of the equations the second order parameter has been found insignificant. 

However, a low correlation coefficient .09 indicates that there is no need to drop the second 

parameter from the respective equations.
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8.3 Results o f third order autoregressive model

Table 8.3 reports the results of the autoregressive model of third ordeA  After having 

calculated the roots of each equation of the whole sample, there are 95 equations for which the 

roots were less than unity, i.e these parameters exhibited non-stationarity. These equations 

were therefore dropped from the sample. The results are finally, reported only for sample of
A A A A A A

205 stationary equations. We define a  = 5 /  1 — (q)j + (P2+ (|)g) and refer to a  as the projected
A A A A

profit rate (PPR) and A. = 1 — (tp̂  + (P2+ (pj) as the speed of adjustment.

In the first subgroup of columns four and one it can be seen that the value of INPR changes 

from 4.14 (42 equations) in the AR(2) model to 3.591 (34 equations) in this model and PPR

from 1.842 to 1.394. Examining columns one, two, and four we see that the value of the other

subgroups have changed only slightly in their magnitude. By contrast the number of equations 

within the subgroup has also changed.
A

The significance in terms of the (p's parameters of stationary equations are considered next. For 

the first lag's significance we found for this model a relatively small number of companies 79 

or 38.5% whose coefficients were statistically different from zero and the coefficient of the 

second and third lags for the same equations were insignificant, so if the higher order 

parameters exhibit insignificance generally they can be removed from the equations. The
A A A A A A

correlations between (qjj,^), (tj^.tpg) and (cpptpj) are .047, .1403 and — .1926, respectively. 

These low correlations suggest that there exists less dependence between the parameters and 

the model does't need any simplification. We further found for a very negligible number of 

equations for which the second and third lag was statistically significant. *

* Since we are dealing with annual data and our time period is very short we constrained our 
lag distribution up to maximum 3rd order.
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Table : 8.3

Subsamples
A
a Í R2 INPR N of firms

1 1.3943 .6232 .463 3.591 34

2 0.8317 .809 .379 1.116 34

3 0.1172 .786 .326 -0.032 34

4 -0.1666 .663 .431 -1.007 34

5 -1.435 .705 .423 -1.852 34

6 -2.731 .626 .480 -3.850 35
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Finally, we found 11 (5.4 percent) of the companies for which ail three lag coefficients were 

statistically different from zero. They also depicts a very low correlation of — .07, .131 and — 

.322, suggesting less dependence between these parameters.

Now, we analyze a few of the 11 companies in terms of their PPR and INPR'S. The company 

Ruderus AG had a INPR which was —1.808 percent below the competitive mean and its PPR 

of —1.88 still remained below the completive mean after 22 years. This company was allocated 

according to INPR in the less persistent 5th subgroup. The PPR and INPR'S of models AR(1) 

and AR(2) resemble those of AR(3), but the statistical significance of the parameters differed 

among these models. For AR(1) and AR(2) the coefficients were not statistically different from 

zero whereas for AR(3) model they were all significant. Furthermore, all parameters fulfilled 

the stationarity conditions.

Ackermann-Goeggingen AG, whose INPR is below the competitive mean, had a positive PPR 

after 22 years. The estimates of AR(1) and AR(2) show that the PPR remains above the 

competitive mean and positive but the statistical significance differs again among the three 

models. Finally, Sued—Deutsch—Bremsen AG, which had an INPR above the competitive mean 

1.894 percent, had a PPR of —.2026, which is below the mean. The estimates of the AR(1) and 

AR(2) indicate that their is virtually no difference in magnitude but we found once again 

difference in the statistical significance among these models. The speed of adjustment 

coefficient £ was quite close to zero. In conclusion it appears that some companies needs a 

adjustment period of longer than two years but this does not lead to persistence differences 

among these companies.
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The following equation reveals the results of overall stationarity and significance of all 205 

equations.

(1 -  .348 B + .0182 B2 + .03219 B3) Z. = -  .001098 + e, 
(1.445) (- .0 6 3 3 ) (- .1 5 2 9 ) 1 (-.1066) 1

B j = 2.626 B2 = 2.626 B j = 4.502

The roots B j, B2 and B j lie outside the unit circle, suggesting an accurate representation of
A A A A

the stationarity. The correlation coefficients of 205 equations between (q)j,q>2), (cp2,(j)g) and 

((])p(j)2), which are .045, .073, —.152, respectively. This suggest that the overall representation 

with this higher degree lag of third order can be justified, since the correlation is low. This 

implies the absence of dependence between the parameters. The t—ratio's of the first, second 

and third lag imply that the restriction : t()2 = ^  = 0 can be accepted for a substantial number 

of companies.
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8.3.1 Specification test of AR(2) and AR(3)

A similar test (see section 5) was applied to check the model adequacy of each of 252 

stationary equations of the AR(2) model and of the 205 equations of the AR(3) model, i.e., the 

errors of the models should be white noise and uncorrelated over time. The chi—squared 

tabulated values for AR(2) are 14.7 and 16.9, for 10 and 5 percent levels of significance with 9 

degrees of freedom. We found for 9 companies at 10 percent level the calculated value 

exceeded the tabulated value which indicates the inadequacy for these equations and further at 

5 percent level we found that for only 3 companies the null hypothesis has to be rejected.

For the AR(3) model the 6 companies for which the null hypothesis has to be rejected (10 

percent level with 8 degrees of freedom) and at 5 percent level only for 4 companies the 

calculated value exceeded those of tabulated value of 15.5.
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8.4 Results of ARMA(1,1)

Table 8.4 presents the results obtained from the mixed autoregressive—moving average model 

in which we included a moving average parameter in order to test whether the additional 

parameter improves the estimates.

The model is

Z = 8 + c|)j Z(_ j+  ut or in backshift form

(1 -  B) Z{ = (1 -  0 X B) ut + 5

Our major concern is with the parameter (j)j, so we will estimate the parameters of this model 

for each of the 299 equations. For the stability of the parameter <J>̂ of AR term the roots of all 

equations were calculated. In 91 equations the parameter was found instable , so we dropped 

these equations from the sample. Table 4 contains the estimation results for this ARMA(1,1)
A  A

model. The first column represents the estimates of 5 /  (1 — q)j), the projected profit rate 

(PPR), and column two represent (1 — tj)j) or the speed of adjustment. The first column shows 

that the value of the first subgroup changes from 1.8 for AR(1) to 2.64 for ARMA(1,1). 

However, the number of companies of first subgroup also changes from 50 to 35. The value of 

the third subgroup is slightly larger than the second subgroup. This pattern is also observed 

with the AR(1) model, but the values of subgroup one, two and three are higher than with 

those of the subgroups of AR(1)

 ̂The parameter redundancy was also checked (see Box and Jenkins (1976), p.248— 250).
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Table : 8.4

Subsamples
A
a H R2 INPR N of firms

1 2.642 .554 .509 4.580 35

2 0.613 .798 .424 1.627 35

3 0.777 .781 .371 0.226 35

4 0.105 .694 .450 -0.751 35

5 -1.230 .704 .418 -1.584 34

6 -2.496 .675 .487 -3.727 34
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From the column two we see clearly that the values o f the parameters of speed of adjustment 

for all the subgroups has changed, and are larger in comparison with those of AR(1). This 

suggests that with this model the adjustment of die companies is faster then with the AR(1) 

model. Column four shows that the ordering of INPR across subgroups is consistent with those 

of the AR(1).

The overall significance and stationarity was estimated for all 208 equations by:

(1 -  .298 B) Zf = (1 -  .256 B) ef + .00065 B , = 3.356 B , = 4.33
(1.55) c (2 .19) 1 (.0851) 1 z

The t—ratio's in the parentheses indicate a well overall representation of the significance for 

both the AR and MA parameters. The roots also suggest that the stationarity conditions has
A A

also been fulfilled quite significantly. The correlation coefficient between (¡) and 0  of —.8023 is 

quite large. We can conclude that there is a high dependence between both parameters,
A

suggesting that the 0  parameter can be removed from the model.

8.4.1 Specification test of ARMA(1,1)

The same specification test was applied as in the previous section using 208 equations. With 9 

degree of freedom the tabulated values are 14.7 and 16.9 for the 10 and 5 percent levels. For 

four companies the calculated value exceeded the 10 percent level and for 2 companies the 5 

percent level, implying that these equations are statistically inadequate.
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8.5 Test of lag structure

With the application of this test the lag structure (see section 3.8.3) or length of adjustment 

period of all comapanies will be examined.

The parameters (j) and 0  of the ARMA(1,1) model were estimated. In order to calculate the 

asymptotic variance of I lj the variance — covariance estimates from the model mentioned 

above were then used. Finally, the t—statistics were calculated for the truncation of the 

autoregression up to 22 lags. We then truncated the autoregression where the coefficient 

became statistically insignificant.

Of the 208 stationary series( or 59.5 percent), the distribution of lag structure varied between 

zero and four lags. For 62 companies (30 percent) the t—values were insignificant which may 

suggest that these companies do not posess any lag structure. For a significant number of 

companies 120 or 57 percent, there was a lag of one period*. Further, for 23 companies or 11 

percent a significant lag of two periods was found and for two companies a significant lag of 

three periods. Finally, for one company a significant lag of four periods was found.

The roots of the characteristic equation for the companies with their respective lag structure 

was calculated and revealed that for the first order all 120 equations were stationary and for 

the second order for 23 companies only three non—stationary series. Finally, third and fourth 

order degree polynomials provided stationarity. The PPR and INPR'S of the companies with all 

significant lags were similarly examined.

Geroski and Jacquemin (1987) also found a stronger evidence for first order lag.
1



Bayeriscbe Harstein Ind. AG has an INPR of 4.15 percent and a PPR of 2.11 percent above the 

competitive mean, so this profitable company was allocated into the highest initial profit rate 

subgroup. The PPR and INPR of two companies with all three significant coefficients was 

similarly examined. The two companies, Chem.Werke Brockhues AG and Ges.f.Spinnerei 

u.Weberei AG had INPR'S of 3.28 and —1.79 percent and PPR'S of 10.39 and —.853 percent 

above (below) the competitive mean. The first company was allocated to the highest initial 

profit subgroup and the second one to the lowest subgroup, so the estimates of these 

companies suggests that a less or more persistent company does not have to depict higher 

significant lags, its rather arbitrary.

The most profitable Pharma/Chemical industry for the lag distribution was also analyzed of the 

32 companies in this industry, 14 exhibited non—significant lags. From the remaining 14 

companies, or 43 percent, exhibited a first order significant lag. The three companies exhibited 

significant lags. Finally, one company which had all his three lags significant. We found for a 

significant number of companies the initial profits below the competitive mean and their 

projected profits came up after 22 years above the mean, even these companies were assigned 

in the different initial profit rate subgroups. We further examined these companies according 

to their sales figures in 1980 and found the lag distribution quite arbitrary. To summarize the 

results of this test, it can be concluded that the larger companies have to depict lower lag and 

the smaller companies a higher lag. This implies that the successful companies adjustment is 

slow.

109
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9.0 Regression results of stochastic models for US

9.1 Results of first order autoregressive model

In this section we report the results of the first order autoregressive model for the US sample

of 500 companies over the time period* 1950 — 1980. We estimated each of the 500 series
2

using 31 annual observations. For the stability of the parameters ([) the roots were calculated 

for all equations and we did not find any equation whose roots were less than unity. This 

means that all 500 equations were stationary. This means that all 500 equations were 

stationary.

From all 500 stationary equations the results are reported in table 9.1. The upper half of the 

table 9.1 contains the estimates of all 500 stationary equations, whereas the lower half only 

those equations for the <j) parameter which is statistically different from zero. Column one of 

the table shows that the value of the first subgroup of 3.639 has increased in magnitude in 

comparison to the value of the first subgroup of 2.975 for the PA-model.

The value of other subgroups in column one resemble those reported in the first column of 

table 9.1. From column two of table 9.1 we see that the values of the means of the PA—model. 

The lower half of the table shows that the number of significant equations is 345 or 69 %, 

which is much higher than the PA-model of 230 or 46 %. * 2

* This is the only study reporting the complete series from 1950 till 1980.
2

The coefficients were corrected for small sample bias.
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A
et t R2 INPR N of firms

3.639 .527 .572 6.266 84

1.693 .618 .432 2.289 84

0.863 .629 .388 0.450 83

0.071 .629 .341 -1.082 83

0.144 .580 .322 -2.531 83

-1.373 .523 .395 -5.228 83

3.941 .403 .606 6.718 58

1.902 .488 .449 2.347 58

0.945 .447 .445 0.193 58

0.208 .517 .364 -1.378 57

0.388 .453 .392 -2.905 57

-1.263 .448 .407 -5.520 57
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By contrast the means of the PA—model are larger in values with few number of significant 

equations, providing stronger evidence of persistence across subgroups in comparison with the 

subgroups of the autoregressive model. Columns one and four of the table also show that the
A

ordering of a  is consistent except for subgroup 5 with those of the initial profit rates. Column
A

two indicates that the mean values of (1 — q)j) are .46 and do not show any systemetic pattern 

across subgroups. Their values across subgroups are lower then the subgroups of PA—model. 

The overall significance of the estimates of the 500 stationary equations is identified by :

(1 - .415 B )Z  = - .0 0 3 1 6 + ef B = 2.408 
(2.80) 1 (.384) 1

The number in the parentheses are the t—ratio's, which suggest an overall strong evidence of 

significance of the estimates. The root B = 2.408 also suggests that the stationarity has been 

very well represented.

9.1.1 Specification test o f AR(1)

For the adequacy of the models we again applied the portmanteau test to all 500 equations. 

The tabulated value at 10% level with 14 degree of freedom is 21.1 and only for three 

companies did the calculated values exceed the tabulated values. This indicates that these three 

models may not yield a strong goodness of fit. At the 5% level with 14 degrees of freedom the 

tabulated value is 23.7, there is only one equation exists for which the calculated value (28.2) 

is greater, i.e., for this equation the model is inappropriate. The results in which we excluded 

the three and one equations respectively, are not reported, because no significant change 

among the subgroups was observed.



9.2 Results of second-- order autoregressive model

Table 9.2 summarizes the results obtained from the second order autoregressive model for the 

US sample. The roots of all 500 characteristic equations were calculated, in only 9 equations 

were the roots less than unity. From the sample of 491 stationary equations the six subsamples
A A A A

were constructed. We will define again the projected profit rate (PPR) as a  = 5 /  1 — (tpj+q^), 

the speed of adjustment as £  = 1 — ($^+$2) and the initial profit rate (INPR) calculated as the 

average of the first three periods (50+51+52/3).

Column one of the table clearly indicates that the mean values of subgroups one to four have 

increased in magnitude in comparison with those of the AR(1) model. The ordering of 

subgroups remains consistent with those of the initial profit rate. The initial profit rate for the 

82 companies in the third subgroup is .499 and after 31 years their projected profit rate is 

1.179 above the competitive mean. This implies a stronger evidence of persistence with this 

model. Column two of the table shows that the values of the mean ft's are smaller than the 

values of the AR(1) model, implying a slower speed of adjustment with this model.

For the significance of first lag for thr (j) parameter we found 17 equations or 35.4% which 

were statistically different from zero. The correlation coefficient between (})j and §2 f°r l^ese 

174 equations is -.312 suggesting a moderate relationship between them. This suggest that the 

model could be simplified to a single parameter. For the second lag's significance we found a 

smaller number of companies 51 or 10.4%. For a relatively large number of equations, 104 or

21.2 %, both coefficients were statistically significant their correlation coefficient is .415, 

suggesting a simplification of the model for these equations.
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Table : 9.2

Subsamples
A
a £ R2 INPR N of firms

1 4.171 .433 .593 6.193 82

2 2.537 .511 .439 2.324 82

3 1.179 .506 .406 0.499 82

4 0.247 .500 .358 -1.046 82

5 0.057 .441 .357 -2.478 82

6 -1.568 .401 .414 -5.171 81



A company taken from a persistent subgroup, for which both the coefficients are statistically 

significant has a value for INPR of 6.18 and after 31 years its PPR 5.29 still remained above 

the competitive mean. By contrast, company taken from a less persistent subgroup, has an 

INPR of —5.041, which is below the competitive mean and its PPR of —3.09 after 31 years still 

remained below the mean. This reveals that for a higher number of significant lags it is not 

important for a company to be less or more persistent.

The overall significance and stationarity for all 491 equations is identified by

(1 -  . 329 B -  .204 B2) Zt = -.00282 + ef 
(1.79) (1 .104) 1 (.321) 1

Roots : B j = 2.209 B2 = 2.209

The numbers in the parentheses are the t—ratio's. The first lag exhibits a stronger significance 

than does the second lag. However, their low correlation coefficient of .064 reveals that there 

is no relationship between the parameters and the model does not need any simplification. 

Both roots Bj and B2 lie outside the unit circle, implying a strong overall representation of 

stationarity.
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9.3 Results of third order autoregressive model

Table 9.3 reports the results of the third order autoregressive model estimated for each of the 

500 equations. For 62 equations the roots were less than unity and were therefore dropped 

from the sample, six subgroups were than constructed from the 438 stationary equations. We
A A A A A A A A A

defined a  = 5 /  1 — ((f>j + (P2+ (p̂ ) as projected profit rate (PPR), A, = 1 — (cp̂  + + 4)3) as

speed of adjustment. Column one of the table indicates a distinct pattern where the mean 

values of subgroups one and three increase in comparison to the respective subgroups of the 

AR(2) model. On the other hand the mean values of subgroups two, four and five even 

decreases suggesting a lower persistence for these subgroups. Column two shows that the mean 

values of i  have decreased in all subgroups. Comparing with the 1's of the AR(2) model, this
A

suggest that the speed of adjustment has decreased with this model. The ordering of a  across 

subgroups is not consistent with this model as well.

For 152 equations (34.7%) the first lag parameter is statistically different from zero. The
A A A a 4 4

correlation coefficient between (cpj.q^), (tpj.tpg) and (q^.tpg) are —144, —.538, .0208
A A

respectively and the correlation between q)̂  and is relative high, suggesting a simplification 

of the model. For a substantially fewer number of equations the second and third lag were 

statistically significant, but for a relatively large number of equations, 147 or 33.6%, all three 

lags were statistically insignificant. From their correlation coefficients which are .146, —.098, 

.221 respectively, we observe very weak relationships. In no equation were all three 

parameters were statistically significant.
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Table : 9.3

Subsamples
A
a R2 INPR N of firms

1 5.314 .364 .616 6.491 73

2 2.066 .454 .486 2.669 73

3 2.646 .383 .425 0.899 73

4 -0.142 .365 .407 -0.615 73

5 -0.886 .364 .374 -2.002 73

6 -0.272 .364 .422 -4.387 73
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The overall stationarity and significance for all 438 equations is identified by:

(1 -  .284 B -  .162 B2 -  .171 B3) Z. = -.00304 + e„ 
(1.47) (.828) (.910) 1 (.3104) 1

Roots : B j = 1.811 = 1.795 B j = 1.795

From roots B p  B2 and it can be seen that they all lie outside the unit circle, revealing a 

well overall representation of the stationarity. The correlation coefficients between ( î p ^ )  >
A A A A

(ypY3> an€* 210 ” 064 > “ 560 .,.1248, implying that there is a strong relationship
A A

between the parameters <j>̂ and (jXp The model could perhaps be simplified. Finally, the 

t—ratio's of the first, second and third lag suggest that the restrictions = 0 must be

accepted for a substantial number of equations.
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9.3.1 Specification test of AR(2) and AR(3)

The portmanteau test was applied to the 491 and 438 stationary equations for AR(2) and 

AR(3) models in order to check whether the errors of the models are white noise. The 

Chi—squared tabulated values for the 10 percent and 5 percent levels of significance with 13 

and 12 degree of freedoms are 19.81, 22.36, 18.55, and 21.03 respectively. For the AR(2) 

model in only six equations does the calculated value exceed the tabulated value at the 10 

percent level. At the 5 percent level the null hypothesis is accepted for all 491 equations. For 

the AR(3) equations there are no equations for which the calculated value exceeds the 

tabulated value, implying that the null hypothesis be accepted for all equations at both levels 

of significance.



120

9.4 Results o f first order autoregressive— moving average model

Table 9.4 summarizes the results of the mixed autoregressive—moving average model of the 

following form

Z = 8 + (j)j Z{ _  0 j  Ut _  ut or in the backshift form 

( 1 - ^  B )Z t = ( l - 0 j  B )U t + 8

which was estimated for each of the 500 equations. For the stability of the cf) parameter we 

calculated the roots and found for a substantial number of equations (148) that the root was 

less than unity. We eliminated these equations from the sample and made six subgroups as 

already explained in the previous sections. The upper half of the table 9.4 contains all 352 

stationary equations and the lower half only those whose parameters (|) was statistically 

significant. Column one shows that the ordering of the subgroups is not consistent with the 

INPR from column four. The mean value of subgroup two decreases from 1.693 in the AR(1) 

model to .952. By contrast, it increases substantially for the third subgroup, from .863 for the 

AR(1) model to 3.088. This implies that the initial profit rate of 1.093 for the 59 companies is 

above the competitive level, and after 31 years still earns 3.088 above the competitive mean. 

Column two indicates that the mean values of the ^'s has substantially reduced across 

subgroups and is .4, implying a lower speed of adjustment. From the lower half of the table we
A

observe similar behavior of the ordering of a  as reported above. The subgroup two exhibits a 

higher value than the second subgroup of upper half of the table.
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Table : 9.4

Subsamples
A
a R2 INPR N of firms

1 3.884 .337 .57 7.156 59

2 0.952 .425 .39 3.028 59

3 3.088 .386 .39 1.093 59

4 0.121 .342 .34 -0.362 59

5 -0.453 .401 .32 -1.763 58

6 -0.487 .518 .40 -4.166 58

1 4.579 .189 .617 6.522 41

2 0.648 .281 .462 2.932 41

3 4.001 .224 .465 0.825 41

4 0.176 .165 .384 -0.722 40

5 -0.406 .266 .379 -2.106 40

6 -0.386 .353 .424 ^4.505 40
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The mean value of subgroup four even becomes negative. Column two of the lower half shows 

that the mean values of £  across all subgroups becomes smaller in magnitude as compared to 

the mean values of the upper half, implying that these values in all subgroups are the lowest 

among all the model estimated so far further suggesting the lowest speed of adjustment.

The average estimates of all 352 stationary equations is identified by

(1 -  .598 B) Z = (1 + .202 B)U. + .00226 
(3.69) 1 ( - .  18 5 6 )1

Roots: B 1=  -1.671 B2 = 1.91

the t—ratio of <j> in parenthesis shows a strong overall significance of the equations, whereas for 

the © parameter the overall significance is poor. Further, the high correlation coefficient
A A

between t()j and ©j of —.885, suggests a simplification of the model where the © parameter 

can be removed from the model. The average root of the equation is greater than unity, 

implying a strong overall representation of stationarity.

9.4.1 Specification test v

Again the portmanteau test was applied to the residuals to check the model adequacy. The 

tabulated values with 14 degree of freedom at the 10 and 5 percent levels of significance are

21.1 and 23.7, and in no equation did the calculated value exceed it, implying that for all 

equations the null hypothesis should be accepted.
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9.5 Test of lag structure

In order to answer a similar question (see section 8.5) the parameters <J) and © were estimated 

from the model 31, P.37 for 500 US time series. The asymptotic variance of IL was further 

calculated using the variance-covariance estimates derived from the model mentioned above. 

The expression 33 (see section 3.8.2) was finally calculated for 22 lags. The coefficients were 

truncated from that lag where the coefficient became statistically insignificant, 158 of 352 

stationary series ( or 44.8 percent) had a first lag statistically different from zero at the 5 

percent level of significance. For 86 equations or 24.4 percent of the series the second lag was 

found to be statistically significant. By contrast, for the third and fourth lags there were 38 

equations (or 10.8 percent) and 20 (or 5.7 percent) statistically significant. Further, for 36 

equations (or 10.2 percent) no lag was statistically significant. This suggest that for a 

substantial number of companies the distribution of lags varied between zero and four.

We analyze next several companies whose all five and six lags were statistically significant. 

The two companies with all six significant lags are ETHYL-Corp. and FMC-Corp.. Their 

INPR are —.00339 and —.0275, which are below the competitive mean. After 31 years the 

ETHYL-Corp. became positive, whereas for the FMC-Corp. it remained negative. Further, 

both companies were allocated into the less persistent subgroups. We next examine the INPR 

and PPR of four companies whose all five lags are statistically significant. The INPR of the 

three companies SUNBEAM-Corp., MARATHIN OIL CO., and BRISTOL-MEYERS CO., 

are .1062, .058, .0665 respectively, which are above the competitive mean. After 31 years their 

PPR'S of .0388, .0542 and .0514, respectively, still remained above the competitive mean. 

The only company (QUAKER STATE OIL REFINING) with all five significant lags depicted 

the INPR —.00958, which is below the competitive mean and the PPR became positive. So, 

examining these estimates we once again conclude that only the companies with more 

persistent II require lower lags for their adjustment period whereas the companies, with less 

persistent n, needs higher lags for their adjustment.
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9.6 Results of models selection test for FRG and US

In section 5. we applied the specification test to check the model adequacy. We now want to 

apply some other tests^ to discriminate between the AR(1), AR(2), AR(3) and ARMA(1,1) 

models, in order to identify which model provides in the statistical sense the best fit. Chatfield 

and Prothero (1973) compared four models from the univariate class , firstly from a fitting 

point of view, and than from a forecasting point of view. They used the Q—statistics calculated 

from the residuals autocorrelation and the residual variance calculated as dividing the sum of 

square by the numbers of residuals. We calculated for our purpose only the estimates of 

residual variance for each of the four models for both countries time series. So, it was

appropriate to look at the smallest value of the residual variance among these models. The
2

results indicated that for the FRG the ARMA(1,1) model seems to provide the smallest value 

for a relatively large number of firms, whereas for a quite significant number of US firms the 

smallest value for AR(3) model was found.

The other test we want to apply is of Hannan and Quin (1979) and looks like as follows :

T

t= l ( Zt ~  Zt )2 Ln Ln T
HQ = Ln ----------------------------------  + 2 m ------------------

T T

where m is the estimated coefficient and T the number of observations.

Wolters (1984) used this test to discriminate the optimal lag length. He also discusses the 

disadvantages of other criteria like FPE of Akaike(1969) and BIC of Schwarz(1978).(See also 

Kirchgaessner(1984)). *

* Shibata (1985) gives a short review on various model selection techniques.2
Granger and Newbold(1976) show that most economic series are both aggregates and are 

measured with error. It therefore follows that such mixed models will be found in practice, see 
also Fahrmeir, et.el. (1981, p.216).
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We calculated the H Q - statistic for each of the tittle series for FRG and US using all four

models mentioned above. The results once again confirm the finding of our test based on

residual variance.

We see from the table 9.5, in which the numbers in the first row are the smallest values of H Q - 

statistic, that in the second row there are only stationary equations, and in the third row the 

percentage values.Out of the 146 companies or 70.1 percent the smallest value of HQ-test was 

found for ARM A(l.l) model and for 33 or 16.1 percent the AR(2) model. In contrast, we 

found for 220 or 50 percent the smallest value for the AR(3) model of the US sample. In this 

sample only for 140 or 39.7 percent did the ARMA(1,1) model provide the better statistical fit. 

In the table we see that the test was applied to only stationary series from section 8 a

Table: 9.5 

FRG:

AR(1) AR(2) AR(3) ARMA(1,1)

8 19 33 146

297 209 205 208

2.6% 9.1% 16.1% 70.1%

US:

0 1 220 140

500 491 438 352

0% 0,2% 50% 39.7%
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9.7 Results o f unit root test for FRG and US

A general problem in many time series applications is the question of whether a series should 

be differenced. This is equivalent to asking if the time series has a unit root (see Said and 

Dickey (1985)). If a time series exhibits trend, this can be eliminated through differencing, 

than to the differenced series the stationary process can be adjusted.

For most of the economic series the first order difference is sufficient to eliminate the trend. 

Wolters (1986) describes this problem of trend removal and uses the tests developed by Fuller 

(1976) for unit roots in the autoregressive part of time series ( see also 

Kirchgaessner(1987,1988)). We uses a similar test from a survey article of unit root test by 

Dickey, Bell and Miller (1986). For discussion about the use of the test and the importance of 

detecting unit roots and other statistics (see Dickey and Fuller (1981), Evans and Savin (1981), 

and Said and Dickey (1984)).

We will compute the test statistics (see Dickey et el.(1986)) as:

x = ( tp — 1) /  se , where (|) is the estimated coefficient and se 

the standard error.

We test the null hypothesis (j) = 1 of non—stationarity against the alternative hypothesis of 

stationarity. So, if the calculated value of the test statistics is greater than the tabulated critical 

value at 1% (Fuller 1976, p. 373), then we should reject the null hypothesis, implying that the 

process is stationary.
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Wc applied this test to the 299 FRG and 500 US time series, in which we calculated the 

statistics mentioned above. The results for Germany show that the hypothesis p ..= 1 can not be 

rejected at 1 % level of significance only for four firms of first order autoregressive model\ 

For the autoregressive second and third order the hypothesis can not be rejected also at 1 % 

level for 9 and 13 firms respectively.

The results for the US indicate that for the first order autoregressive model the hypothesis p = 

1 could be rejected for all 500 firms. Further, the hypothesis could not be rejected for 7 

companies using the second order autoregressive model. Finally, for the third order model the 

hypothesis was not rejected for 17 companies. From these results we conclude that for a 

substantial number of companies the stationarity condition is fulfilled.

9.8 Summary

In this chapter we estimated the four different stochastic models from section 3 for both 

countries. We found that the magnitude of the subgroups mean increased for the first and last 

subsample across all models, but it was found to be more evident for the ARMA model for 

Germany. Similar behavior of the subsample means was found for the US but the most 

significant means were for the AR(3) model for the US. A low correlation between the 

estimated parameters of higher order models for both countries indicates that the models can 

be retained and do not need any simplification. The test of lag structure showed that a lower 

order lag is significant for Germany and that a higher order lag is also quit significant for the 

US. From the roots of the characteristic equations we found a substantial overall significance 

for both countries. Further, the results of the unit roots confirmed again the stationarity for 

both countries.

1 We do not apply the unit root test for ARMA model (see Said and Dickey(1984)).
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10. Identification results of ES ACF— Procedure

In the previous chapter we estimated the univariate time series models without using the 

identification technique. In this chapter we apply the concept of extended sample 

autocorrelation function in order to identify the order and nature of the underlying process and 

than compare the results of these identified with non—identified models from previous chapter. 

We now apply the ESACF concept from chapter 4 first to a series A in Box and Jenkins(1976), 

consisting of 197 concentration reading taken every two hours from a chemical process and 

secondly, to the sample of 299 German and 500 US firms. Throughout this chapter table A 

will correspond as the ESACF table, table B as the Indicator Symbols and table C as the Error 

Limit Table. Additionally, throughout this chapter we will also search for a triangular 

cutting-off pattern with its vertex of ZEROS from table B.

The results for the 197 data points from table 10. IB show that the triangular^ cutting—off 

pattern with its vertex at the ARMA(1,1) position. For the two points in the fifth and seventh 

column(table 10. IB) we see that the numerical values of these two points are only marginally 

larger than the two standard deviation values (table 10.1C) that are approximately equal to .14. 

Therefore, from the indicator symbol table we can infer that the appropriate order of the model 

is ARMA(1,1). Using the same series A, the estimated autocorrelations and partial 

autocorrelations of various differences are displayed in fig.6.2, p.179 and fig.6.3, p.184 of the 

Box and Jenkins (1976). These suggest that this time series might be described by an 

IMA(0,1,1) process and with another alternative as a mixed ARMA of order (1,0,1). 

Considering Box and Jenkins philosophy it means that a little ambiguity still remains with this 

technique. *

* The rectangular or trapezoidal shape was also calculated and applied, but not a significant 
number of interpretable pictures were emerged, (see Tsay and Tio (1984),p.95).
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Table: 10.1

MA

AR 0 1 2 3 4 5 6 7 •

A: THE ESACF TABLE

0 0.570 0.495 +0.398 0.356 0.327 0.350 0.392 0.322
1 -0.394 0.042 -0.059 -0.010 -0.063 -0.018 0.152 -0.065
2 -0.272 -0.306 -0.043 0.025 -0.091 -0.030 0.158 -0.081
3 -0.500 0.035 0.057 0.011 -0.010 -0.059 0.154 0.014
4 -0.491 0.097 0.027 -0.050 -0.010 -0.060 0.122 0.020
5 -0.400 -0.236 -0.156 -0.020 -0.174 -0.047 0.083 -0.093
6 -0.515 0.262 -0.199 0.089 -0.104 -0.006 0.109 -0.080
7 0.101 0.020 -0.149 0.274 0.118 -0.016 -0.006 -0.020
8 -0.123 0.010 -0.004 0.256 0.046 -0.028 -0.071 -0.010

B: THE INDICATOR SYMBOLS TABLE

0 X X X X X X X X
1 X 0 0 0 0 0 X 0
2 X X 0 0 0 0 0 0
3 X 0 0 0 0 0 X 0
4 X 0 0 0 0 0 0 0
5 X X X 0 X 0 0 0
6 X X X 0 0 0 0 0
7 0 0 X X 0 0 0 0
8 0 0 0 X 0 0 0 0

C: THE ERROR LIMIT TABLE

0 0.142 0.174 0.192 0.205 0.215 0.226 0.240 0.248
1 0.143 0.143 0.144 0.144 0.144 0.144 0.147 0.148
2 0.143 0.156 0.156 0.156 0.157 0.158 0.161 0.162
3 0.144 0.144 0.144 0.144 0.144 0.145 0.148 0.148
4 0.144 0.145 0.145 0.146 0.146 0.146 0.148 0.148
5 0.144 0.152 0.155 0.156 0.160 0.160 0.161 0.162
6 0.145 0.154 0.160 0.161 0.162 0.162 0.164 0.164
7 0.145 0.145 0.148 0.159 0.160 0.160 0.160 0.161
8 0.145 0.145 0.145 0.155 0.155 0.155 0.156 0.156
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We further applied the ESACF^ procedure to the different macro time series taken from 
2

WoIters(1985) , for which the orders of the models were identified with the usual Box and 

Jenkins technique. In the following we report the equivalent identified order with ESACF 

Procedure. For the unemployment quote series with 90 observations we found with ESACF a 

ARMA(5,3) model, whereas Wolters(1985) identified with Box—Jenkins for the same 

series a ARMA(6,4) model. For the real gross national product with 99 observations we found 

a ARMA(4,3) model and with Box—Jenkins a ARMA(5,5) model. Similarly, for the two series 

amount of money and the price index of imports using 99 observations, we found with ESACF 

a ARMA(5,6) and ARMA(2,3), whereas with Box—Jenkins a ARMA(4,9) and ARMA(1,2) 

were identified.

We further applied the ESACF procedure to the sample of 299 German and 500 US firms.
3

We were faced with the problem of small samples , i.e., the 22 annual data points for 

Germany and 31 for the US. Interpretable results were not found for all series, so we will only 

report in this chapter a few cases. * 2 3

The results were presented at doctoral lecture of the FU—Berlin.
2

All these series contained seasonal components , see Wolters(1985).
3

We extrapolated the 299 series in order to achieve better results , but finally constrained the 
analyses with original time series.
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10.1 Identification results of PRO

Table 10.2A shows the ESACF and table 10.2B the corresponding indicator symbols of the 

firm ELSTER—AG MEß—u. REGELTECHNIK. If we look at the first row, which is actually 

the sample autocorrelation of the original series, we see that the ACF is only non-zero at first 

lag and becomes close to zero afterwards, and from column one we see at all lags we have a 

non—zero values. So if we look for the vertex of a triangle of asymptotic "ZEROS" values, we 

can identify from this table a moving average of first order, which certainly could have also 

been identified from the ACF of the Box-Jenkins procedure. For the four points in the column 

two, the numerical values (table 10.2A) are less than the two standard deviations from table 

10.2C.

Using 22 annual data points the following estimation results are presented.

MA(1) : Z. = .00771 + (1 -  .7432 B)et R2= .346 
1 (.0065) (.1483) 1

The number within the parentheses are the estimates of the standard errors. The t—statistic of

the moving average parameter is about 5.4 and is statistically significant. Further, a value of 
2

R of .346 also suggest a good fit for the model.

The following four equations from the previous section, which were estimated without 

applying the identification technique, are presented below. The standard errors are within 

parentheses.

AR(1): (1 -  .4529B) Zt = .00427 + et R2=.3004
(.1971) 1 (.0041) 1

A R (2): (1 -  .5577B + .2366B2) Z. = .00526 +et R2=.3388 
(.2210) (.2207) 1 (.00438) 1

A R(3): (1 -  .598B + .333B2-  .177B3) Z = ,00441+e, R2=.357 
(.231) (.260) (.236) 1 (.0045) 1

ARMA(1,1) : (1 + .305B) Zf= (1 -  .9548B) + e. R2 = .395 
(.230) 1 (.0515) 1
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Firm :Elster—AG—Meß—u.Regeltechnik 

Table :10.2

MA

AR 0 1 2 3 4

A: THE ESACF TABLE

0 0.521 0.045 -0.100 0.077 0.208
1 0.524 -0.353 -0.093 0.050 0.366
2 0.481 0.042 -0.084 0.003 0.003
3 -0.484 0.132 0.119 -0.151 0.091
4 -0.521 0.122 0.413 0.045 -0.022

B: THE INDICATOR SYMBOLS TABLE

0 X 0 0 0 0
1 X 0 0 0 0
2 X 0 0 0 0
3 X 0 0 0 0
4 X 0 0 0 0

C: THE ERROR LIMIT TABLE

0.418 0.419 0.423 0.425 0.443
0.428 0.478 0.481 0.482 0.531
0.438 0.439 0.442 0.442 0.466
0.450 0.457 0.464 0.473 0.477
0.462 0.469 0.541 0.542 0.542
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From the AR(1) equation we observe the t-statistic value is 2.29, which is statistically 

significant. The first coefficients of the AR(2) and AR(3) equations depict the t—statistics of 

2.52 and 2.59 respectively, which are both significant. Further, the second coefficient of the 

AR(2) equation and the second and third coefficients o f AR(3) which both have a relatively 

high standard error, are insignificant. From the ARMA model it can be seen that the MA 

parameter with its low standard error is highly significant, whereas the AR parameter depicts 

with its relative high standard error low significance. According to the low correlation of .2801 

for the ARMA(1,1) model, the AR parameter can be dropped because of its insignificance.

The correlation coefficient between the AR(2) parameter is —.494, which suggest retaining the 

model. Further, the correlations between (<)>j,(|)g) and are —.494, .1535 and

—.492 .indicating relatively less dependence between the parameters. Even the correlations 

between the parameters of AR(2) , AR(3) and ARMA(1,1) are not very high, We can therefore 

conclude that the first parameter of ARMA(1,1) and the higher order parameters can be 

removed from the models because of their insignificance.

From the roots of the AR(2) and AR(3) , which are B j=2.53 and Bj=1.47, B2=l-71 and B^ =

1.71, we can infer that they lie outside the unit circle and that all models are stationary.
2

In addition, the value of R , which is around .35 for all four equations suggests a good fit for 

the models. From these results we conclude that there is a stronger evidence for a single lag 

specification and secondly, that the moving average model could also represent the data as 

well as the AR(1) model. For the MA model we conclude that the profit rate of this firm 

could have been generated from random shocks rather than from the previous lags.
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With a INPR —.001149, which allocates this firm in the third subgroup, and after 22 years 

the PPR becomes positive for all models, indicating the success of this firm. In addition, the 

speed of adjustment coefficient remains around .5 for AR(1), but changes for AR(2) and 

ARMA(1,1), to .207 and .73 respectively. From these results we can conclude that the 

identified model fits the data as well as the autoregressive model of first order ,i.e., the process 

and the order this time series generates have identical effects in both the MA(1) and AR(1) 

models.

To the identified MA(1) model we now add another moving average parameter to investigate 

the model adequacy. The results are presented below , and the standard errors are within the 

parentheses.

MA(2) : Zt = .0071 + (1 -  .723B + .194B2) et 
1 (.01) (.225) (.216) 1

From the above results we see that the first coefficient remains statistically significant, with 

the t—statistics of 3.21, whereas the second coefficient, with its larger standard error becomes 

insignificant. The correlation coefficient of .942, which is very high, suggests that the 

insignificant parameter can be removed from the model, i.e., the identified model can be 

retained.



Using the 22 annual, data points of the firm VOGTLAENDISCHE BAUMWOLL SPINNEREI 

AG, We search the vertex with zeros from table 10.3B. The triangular cutting-off pattern is 

observed at MA(1) or at MA(2).The numerical values of the two points in column two for the 

fourth and fifth rows are less than the two standard deviations, and if we consider a MA(2) 

model from table 10.3B, than we should expect the " X,s" in the second and third columns. 

But for illustrative purpose we will estimate both the MA(1) and MA(2) models.

After a MA(2) model has been identified, the estimated results of the MA(2) model are :

MA(1) : Z. = -.01329 + (1 + ,5084B)ef R2= .514
1 (.0055) (.1955) 1

MA(2): Z = -.01329 + (1 + .518B + .3504B2) et R2 = .531 
1 (.0063 ) (.213) (.213) 1

The numbers within the parentheses are again the standard errors of the estimates. The 

t—statistic of the MA(1) parameter of about 2.6 is significant. A statistically significant 

value of 2.4 of the first coefficient is found for the MA(2) model and according to the 

t-statistic of the second coefficient of 1.65, it is insignificant.

Further, a correlation coefficient between the parameters of .38 indicates less dependence 

between them. The roots of the characteristic equation lie outside the unit circle, which implies 

that the invertibility condition is fulfilled.

We now present the results of the following unidentified models, which are taken from the 

previous chapter:

AR(1) : (1 -  .7249B)Z = -.00473 +et R2 = .6303
(.1735) 1 (.0038) 1

AR(2) : (1 -  .4367B -  .4739B2) Zt = -.00343 + e. R2 = .667 
(.2093) (.2077) 1 (.0033) 1
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Finn : Vogtlaendische Baumwollspinnerei AG

Table: 10.3

MA

AR 0 1 2 3 4

A:THE ESACF TABLE

0 0.669 0.614 0.437 0.293 0.263
1 0.840 0.639 -0.072 0.321 0.224
2 0.574 0.688 0.475 0.340 0.179
3 0.846 -0.117 0.400 0.015 0.036
4 0.808 0.492 0.204 0.078 -0.115

B: THE INDICATOR SYMBOLS TABLE

0 X X 0 0 0
1 X X 0 0 0
2 X X 0 0 0
3 X 0 0 0 0
4 X 0 0 0 0

C: THE ERROR LIMIT TABLE

0 0.418 0.553 0.611 0.635 0.653
1 0.428 0.577 0.578 0.610 0.625
2 0.438 0.612 0.679 0.711 0.719
3 0.450 0.456 0.522 0.522 0.522
4 0.462 0.563 0.579 0.581 0.586
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From the AR(1) equation, we see that the t-statistic of the coefficient is 4.178 and 

statistically significant. The two coefficients of the AR(2) model with their t-statistic s of 2.08 

and 2.28 are also significant. Further, the correlation between them of —.706 and is certainly 

high, suggesting the model simplification. The roots of the characteristic equation are Bj=1.06 

and £¡2= 1.98, i.e., they lie outside the unit circle indicating the stationarity of the models.

The results of the AR(3) and ARMA(1,1) are not reported, because they showed an explosive 

behavior of the estimates. If we now compare the results of the unidentified model with the 

identified model, we can conclude that the higher order autoregressive models do not represent 

the data as well as the lower order MA(1) and AR(1) models. Again, a strong evidence for the 

lower order models is found. From the INPR of —.02809 of this firm, which is allocated to the 

lowest group , we can see from the PPR of -.0719 and -.0715 for both models that this 

remains after 22 years in the same group. The speed of adjustment parameters for AR(1) and 

AR(2) are .275 and .09 respectively, whereas their PPR are -.00473 and —.00343. From these 

we conclude that if a firm depicts a lower speed of adjustment, it is not valid that its PPR has 

to be high.

In order to examine whether the identified model is adequate we estimate a more elaborate 

model using an additional MA parameter. The following equation contains the results for the 

MA(3) model:

MA(3) : Z. = -.01329 + (1 + .2745B + .4074B2 + ,7819B3)e R2 = .6544 
1 (.0071) (.1915) (.1632) ( .1 6 1 ) 1

The first coefficient with its t—statistic of 1.43 is insignificant. By contrast, the second and 

third coefficients, with t—statistics of 2.49 and 4.87 respectively, are significant.
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There is a correlation coefficient of .229 between the first and second parameter, which 

indicate less dependence between them. Further, the correlation between the first and third 

parameter is .546, which is relatively high. We also estimated a MA(1) model, which depicted 

a significant t—statistic of 2.59. Considering all these results, we can conclude that only the 

MA(1) and two autoregressive model fits the data well.
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Consider now the 22 observations for the time series of the firm " ANNELIESE 

ZEMENTWERKE AG". From table 10.4B a triangular cutting-off pattern can be seen from 

column two for the first row, which suggests a MA(1) model of the first order. Note that for 

the asterisk in the second column the numerical value is slightly less than two standard 

deviations and larger than the mean value, which is about .494.

An identified moving average model of first order was estimated and the results with standard 

errors within parentheses are:

MA(1) : Z. = .01405 + (1 + .4165B) et R2 = .2447 
(.0141) (.1892) 1

The coefficient of the the MA parameter with its t—statistics 2.2 is significant.Further, the root 

is greater than unity, indicating that the invertibility condition is fulfilled.

Examining the results of unidentified models, which we take from the previous chapter, yields:

AR(1) : (1 -  .6145B) Z, = .0217 +et R2 = .3458
(.1516) 1 (.00735) 1

AR(2) : (1 - .5 5 7 B - ,1 8 2 B 2) Z  =.04314 + e. R2 = .357 
(.213) (.2104) 1 (.00747) 1

AR(3) : (1 -  .531 IB -1 3 5 B 2 -.1622B3) Z = .0.0821 +e R2 = .3645 
(.219) (.252) (.2144) 1 (.00757) 1

ARMA(1,1) : ( 1 -  .944B) Z. = .126 +(1 -  ,462B)e, 
(.093) 1 (.093) (.244) 1

R2 = .2114
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Firm : Anneliese Zement—Werke AG 

Table: 10.4

MA

AR 0 1 2 3 4

A: THE ESACF TABLE

0 0.566 0.338 0.276 0.096 -0.130
1 0.648 0.134 0.132 0.097 -0.129
2 0.507 0.031 -0.008 -0.109 -0.174
3 0.604 0.343 -0.310 -0.368 -0.130
4 -0.803 0.514 -0.264 0.321 -0.078

B: THE INDICATOR SYMBOLS TABLE

0 X 0 0 0 0
1 X 0 0 0 0
2 X 0 0 0 0
3 X 0 0 0 0
4 X * 0 0 0

C: THE ERROR LIMIT TABLE

0 0.418 0.463 0.491 0.494 0.500
1 0.428 0.435 0.443 0.446 0.453
2 0.438 0.439 0.439 0.444 0.457
3 0.450 0.500 0.537 0.586 0.592
4 0.462 0.571 0.597 0.632 0.635
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From the AR(1) model we see that the coefficient with a t—statistic of 4.05 is statistically 

significant. The second coefficient of the AR(2) model now becomes insignificant, whereas the 

first coefficient remains statistically significant. Further, a correlation coefficient between both 

of the coefficients is —.7482, which is certainly high and suggests a model simplification. A 

similar pattern is observed for the AR(3) model, i.e., the second and third coefficients become 

insignificant, whereas the first coefficient remains with its t—statistic significant. The 

correlations between (<|)j (J^), and are -.558, —.529 and —.1779. The

correlations between these parameters do not suggest a model simplification.

From the ARMA(1,1) model we see that both the autoregressive and moving average 

parameters with their t—statistics of 10.12 and 1.899 are significant. The correlation 

coefficient of .562 between them suggests that the model can be retained.

Further, we see from the roots of the AR(2) model that B j=1.26, B2=4.3 and for the AR(3) 

model that Bj=1.25, B2=2.34 and B2=2.34, and that they all lie outside the unit circle and are 

stationary. The root of the moving average parameter also fulfills the invertibility condition. 

From these results we conclude that the lower model fits the data better than the higher order 

models. Further, the INPR of .0931, allocates this firm into the most persistent group. We can 

see from the PPR, which remains after 22 years above the competitive mean that this firm still 

remains successful. The speed of the adjustment coefficient of .05 is the lowest for the 

ARMA(1,1) model, indicating a higher persistence with its PPR of .126. So the conclusion that 

if a firm has a lower speed of adjustment its PPR has to be high, is valid for this firm, 

particularly for this model. We see for this firm that the selection of the process also plays an 

important role.
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We now apply the overfitting method to the identified model, i.e., we extend the model with 

an additional moving average parameter. The following equation reports the estimation results:

MA(2) : Zt = .01405 + (1 + .5265B + .2336B2) e. R2 = .240 
1 (.01127) (.210) (.2011) 1

We see from the results that the second coefficient becomes insignificant, whereas the first 

remains significant with the t—statistic of 2.504. Further, the correlation between the 

parameters is .365, suggesting that we retain the model.



143

The series analyzed is the profit rate of the firm BEIERSDORF AG with 21 annual data points 

(Outlier excluded). From table 10.5B we do not see a clear vertex of zeros, but if we consider 

the last two zeros of the first column and first row, their numerical values are less than two 

standard deviations. So we can perhaps suggests an ARMA(1,1) model from this table.

Again the estimation results of the unidentified model from previous chapter are reported 

below. The standard errors are within parentheses.

ARM A(l.l) : (1 + .723B) Z. = .04433 + (1 -  .5201B)e. R2 = .918 
(.185) 1 (.0084) (.2158) 1

From the above results we see that both of the coefficients, with their t—statistics of 3.79 and

2.78, are statistically significant. The correlation coefficient of .426 between them is not very
2

high and do not suggest a model simplification. Further, inspite of the restrictive use of R is 

around .918, which is very high and suggests a good fit of the model. From these results we 

conclude that this model fits the data quite adequately.

In the following we discuss the estimation results of the unidentified models from the previous 

chapter. The standard errors are within parentheses.

AR(1) : (1 -  .8703B) Z. =.0720 + e. R2 = .8907 
(.134) 1 (.0054) 1

AR(2) : (1 + 1.178B -  .3709B2) Zt =.0945 +£. R2 = .9108 
(.205) (.208) 1 (.0054) 1

AR(3) : (1 + 1.182B -.5037B2 + .1651B3) Zt =.0125 +£. R2 =.911 
(.240) (.349) (.222) 1 (.0062) 1
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Firm : Beiersdorf AG

Table: 10.5

MA

AR 0 1 2 3 4

A: THE ESACF TABLE

0 0.899 0.763 0.597 0.416 0.256
1 0.692 0.351 0.027 -0.012 0.028
2 0.609 0.106 0.213 -0.157 -0.138
3 -0.437 0.307 0.152 -0.159 -0.153
4 0.052 0.134 0.101 -0.003 -0.009

B: THE INDICATOR SYMBOLS TABLE

0 X X * 0 0
1 X 0 0 0 0
2 X 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

C: THE ERROR LIMIT TABLE

0 0.418 0.615 0.709 0.750 0.765
1 0.428 0.478 0.478 0.478 0.478
2 0.438 0.443 0.462 0.473 0.480
3 0.450 0.490 0.500 0.510 0.519
4 0.462 0.470 0.475 0.475 0.475
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From the AR(1) model we observe that the coefficient with its t—statistic 6.49 is highly 

significant. Note that the first coefficient of AR(2) and AR(3) becomes large but still 

significant, whereas the higher order coefficients become insignificant. Further, we see that the 

correlation coefficient between <j)j (j^ is —.8308, which is certainly very high. Similarly, we 

observe from the AR(3) model that the correlations between (^p t^), ((jipijij) and $3) are 

—.813, .482 and —.796, suggesting a model simplification. The roots of the characteristic 

equations are Bj=1.56, B2=1.56 for the AR(2) and Bj=1.57, B2=2.14 and B2=2.14 for the 

AR(3), i.e., they all lie outside the unit circle indicating the stationarity for these two models. 

Comparing the results of the identified model with others, we can conclude that the lower 

order models fit the data better. This firm is also assigned to the highest subgroup and after 22 

years still remains above the competitive mean. From the speed of adjustment coefficient 

across the model, we find the lowest speed of adjustment for AR(3) model indicating no 

substantial change with its PPR.

Now we add a moving average and autoregressive parameter alternatively to the identified 

model. For the ARMA(2,1) the convergence was not achieved so we do not report the results 

here. In the following the estimation result o f the ARMA(1,2) is reported. The standard errors 

are within the parentheses.

ARMA(1,2) : (1 -  .7765B) Z =.00886 + (1 + .6339B -,3016B2)e. R2=.833 
(.2677) 1 (.0118) (.3904) (.3617) 1

Expanding the model with the moving average parameter produces a insignificant coefficient 

with t—statistics as 1.62 and .833 respectively. The autoregressive parameter with a t—statistic 

of 2.9 remains statistically significant. Further, from the correlations between ((j)p©), ((J ,̂©) 

and ((|)j,©), which are .8166,.799 and —.778, a higher dependence between the parameters is 

indicated. So from these we can retain the identified model.
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10.2 Identification results of US—Firms

We applied the ESACF—Procedure to the 500 US firms consisting of 31 annual data points and 

time period of 1950 through 1980. Even for these time series not a significant number of 

interpretable pictures were emerged. We tried using several variations to select the matrix 

dimension and finally constrained this up to a dimension of (5X5). We pick up again a few 

cases in order to describe the ESACF—features.

Consider now the 31 annual data points for the firm BRITISH PETROLIUM CO. LTD for 

which the Tables 10.6A, B and C report the results of the ESACF identification technique.

A moving average model of the first order is suggested with its Vertex of zeros from the 

indicator symbols table. A similar pattern of the four zeros in the second column is observed 

as for some German firms. The numerical values of these points (table 10.6A) are less than 

two standard deviation values which are about .3 (table 10.6C).

Again, the estimation results of the identified model are reported below. The standard errors 

are within parentheses.

M A (1): Z t = .0048 + (1 + .4107B) ef R2= .137 
1 (.0069) (.1730) 1

It should be observed that the moving average coefficient with its t—statistic of 2.37 is

statistically significant. The invertibilty condition of the parameter is also fulfilled, i.e., the
2

absolute value of the parameter is less than unity. Further, a very modest value of R is found 

implying a moderate fit of the model. These estimation results reveal that the profit rate of this 

company depends only on the random schocks of the previous years.
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Finn : British petrolium co. ltd.

Table :10.6

MA

AR 0 1 2 3 4

A:THE ES ACF TABLE

0 0.404 0.261 0.282 -0.034 0.107
1 -0.381 -0.047 0.284 0.071 0.100
2 -0.489 -0.135 0.221 -0.093 0.104
3 0.553 0.134 0.057 0.159 0.112
4 0.576 -0.039 0.176 0.128 0.262

B : THE INDICATOR SYMBOLS TABLE

0 X 0 0 0 0
1 X 0 0 0 0
2 X 0 0 0 0
3 X 0 0 0 0
4 X 0 0 0 0

C: THE ERROR LIMIT TABLE

0 0.352 0.375 0.401 0.401 0.404
1 0.358 0.359 0.386 0.388 0.391
2 0.364 0.371 0.388 0.391 0.394
3 0.370 0.377 0.378 0.387 0.392
4 0.377 0.378 0.389 0.395 0.419
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We now illustrate the estimation results of the following equations, which were estimated 

without using the identification technique. The t—statistics are within the parentheses.

AR(1) : (1 -  .4283B) Z. = .00505 + zt R2= .1950 
(.5983) 1 (2.48) 1

AR(2) : (1 -  .3600B -  .2136B2) Z. = .00598 + ef R2 = .2224 
(1.94) (1 .018) 1 (1.107) 1

AR(3) : (1 -  .3224B -  .1402B2 -  .2229B3) Zt = .006712 + e. R2=.2504 
(1.69) (.637) (1 .036) 1 (1.507) 1

ARMA(1,1) : (1 + .7606B) Z. = .00715+ (1 + .386B) + e. R2 = .2260
(.284) 1 (1.13) (.367) 1

From the AR(1) model we see that the coefficient is insignificant. Only the first parameter of 

the AR(2) model is significant, whereas all other coefficients of AR(2), AR(3) and ARMA(1,1) 

are insignificant. The correlation between ((^ .t^) for AR(2) is -.354 and for AR(3) between 

((Jlj,^), ( tj^ ,^ ) and ((j^ ,^) -.272, —.314 and —.191. Finally, the correlation of the

ARMA(1,1) model is .868 suggesting a high dependence between the parameters. From the 

roots of the AR(2) and AR(3) equations, which are Bj=1.47 ,B2=3.16 and B j=1.21 

B2,Bj =4.23 respectively, we see the stationarity of the the models i.e they all lie outside the 

unit circle. Comparing the identified model with the unidentified models we conclude that the 

MA(1) model fits the data efficiently.

This firm with its INPR of .00539 is allocated in the higher persistent group, but if we look at 

the speed of adjustment parameter, we do not observe a very significant difference among 

these models.
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In order to verify that the tentatively identified model contains the appropriate number of 

parameters to represent the data, we include an additional parameter in the MA(1) to see if its 

addition results in an improvement over the identified model. The following equation contains 

the results of the MA(2) model:

MA(2) : Zf = .00484 + (1 -  .2377B -  ,2703B2)e, R2 = . 167 
1 (.645) (1 .29) (.1883) 1

Both the moving average parameters with their t-statistics of 1.29 and .1883 are insignificant. 

Because the correlation coefficient is .2106 and not particularly high, we can conclude from 

the insignificance of moving average parameter that the identified MA(1) model can be 

accepted.
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Consider now the series for the firm QUAKER STATE OIL REFINING containing 31 annual 

data points. Even for this time series the identification is not straightforward from this table. 

The numerical values of the two points in column 5 are slightly larger than the two standard 

deviations, which are equal to .422 (table 10.7C). However, the numerical values of the two 

zeros in the first row and one zero in the first column are less than 2 X STD. Normally, we 

would expect for these zeros the "X", so from these results an ARMA(1,1) model could 

perhaps be suggested.

We now report the estimation results of this identified model.The t—statistics are within the 

parentheses:

ARMA(1,1) : (1 -  .9356B) Z. = .01087 + (1 + .5549B)et R2=.6073 
(11.6) 1 (.424) (2 .72) 1

The t—statistics of the autoregressive and moving average parameters are highly significant.

However, their correlation is around .917 and very high, suggesting that the model can be
2

simplified, because of the high dependence between them. A relatively high R also suggest, a 

good fit for the model.

The estimation results of the following equations are reported for which the identification 

procedure was not applied. The t—statistics are within the parentheses:

AR(1) : (1 -  .6001B) Z. = .0193 + et R2 = .527 
(1.508) 1 (4.08) 1

AR(2) : (1 -  .3776B -  .3851B2) Z. = .0216 + e. R2 = .5908 
(2 .13) (2 .17) 1 (4.9) 1

AR(3) : (1 -  .2609B -  .2600B2 -  .339B3) Zf = .0267 + r  R2 = .629 
(1 .42) (1 .38) (1.8 2 3) 1 (7.67) 1
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Firm : Quaker slate oil refining

Table: 10.7

MA

AR 0 1 2 3 4

A: THE ESACF TABLE

0 0.588 0.567 0.578 0.405 0.466
1 -0.485 -0.041 0.345 -0.152 0.485
2 -0.497 -0.144 0.259 -0.107 0.469
3 0.283 -0.214 0.334 -0.076 0.415
4 0.425 -0.014 0.200 0.164 0.162

B: THE INDICATOR SYMBOLS

0 X X X 0 0
1 X 0 0 0 X
2 X 0 0 0 X
3 0 0 0 0 0
4 X 0 0 0 0

C: THE ERROR LIMIT TABLE

0 0.352 0.451 0.535 0.572 0.617
1 0.358 0.358 0.399 0.406 0.475
2 0.367 0.371 0.395 0.398 0.466
3 0.370 0.387 0.425 0.427 0.479
4 0.377 0.377 0.392 0.402 0.411
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It should be observed that the AR(1) parameter is insignificant, whereas both of the coefficient 

of AR(2) are significant. From the AR(3) model we see that only the highest order parameter 

is significant. The correlation coefficient between the AR(2) parameters is —.247, and certainly 

not very high, which suggests that the model should be accepted. Further, the correlation 

between (cjjj,^), and ( t ]^ ^ )  are -.2124, —.1245 ,-.2307 and not particularly high.

From the roots of the AR(2) model,which are as Bj=2.19 and B2=3.94, we can see that they 

fulfill the stationarity condition. Similarly, from the roots of the AR(3) model, which are 

B j=1.76, B2=3.05 and Bj=3.05, we see that they lie outside the unit circle. Comparison of the 

identified model with other models suggests that the AR(2) model fits the data better than 

others.

From the INPR of —.00958 for this firm, we see that the PPR becomes positive for all models, 

indicating the success of this firm. From the speed of the adjustment parameter, which is very 

low for other models but lowest for the ARMA model,the hypothesis that the larger firms have 

the highest speed of adjustment indicating lower persistence is not valid for this case.

In order to check the model adequacy of the identified model, we will evaluate the following 

two models, each including an additional moving average and autoregressive parameters. The 

following equations contain the results of ARMA(2,1) and ARMA(1,2) models. The 

t—statistics are within the parentheses.

ARMA(2,1) : (1 -  .842B + .0082B2) Z =.0087 + (1 + ,661B)e. R2 = .196 
(1.37) (.3078) c (1.01) (1 .14) 1

ARMA(1,2) : (1 -  .8303B) Z=.00863 + (1 -.6392B -  ,424B2)et R2=.47 
(1 .57) 1 (.421) (.396) (.3 0 2 ) 1
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It should be observed that from the above equations that none of the coefficient is Statistically 

significant. The correlations for the ARMA(2,1) model between (s|)j,0), ((¡^i©) and are

.944, .761 and .901, suggesting a very high dependence between the parameters. A very similar 

behavior for the ARMA(1,2) is observed . So from these results we can conclude that the 

identified model can be retained.
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Using 31 annual data points, the results of the ESACF are reported in tables 10.8A.B and C. 

Again the estimates of the ESACF table 10.8A are very similar with those already reported, 

i.e., the neighboring points covary rather declining gradually. The vertex of zeros is not clear 

as expected, so from these we can suggest the model is a moving average of first order.

The following equation reports the estimation results of the identified MA(1) model. The 

number within parentheses are the t—statistics:

M A (1): Z. = -.0069 + (1 + .3563B) et R2 = .157 
1 (1 .2) (2 .06) 1

The t—statistics of the moving average parameter indicate that the coefficient is statistically

significant. Further, the coefficient also fulfill the invertibilty condition that the absolute value
2

of the coefficient is less than unity. A very modest value of R indicates that the fit of the 

model is acceptable.

Some results of the unidentified models from previous chapter are now presented. The 

t—statistics are within the parentheses:

AR(1) : (1 -  .4582B2) Z = - .0129 + e. R2 = .232 
(2 .785) 1 (-2 .648) 1

A R (2): (1 -  .3927B -  .2026B2) Z. = -.008575 + et R2 = .254 
(2.095) (1 .014) 1 (-1.7)

AR(3) : (1 -  .382B -.186B 2 -.0701B3) Z. = -.00938 + e, R2= .255 
(1 .97) (.894) (.339) 1 (-1.76) 1



F iim : Boeing Co.

Table: 10.8

MA

AR 0 1 2 3 4

A : THE ESACF TABLE

0 0.419 0.264 0.163 -0.107 -0.171
1 -0.398 -0.001 0.172 -0.097 -0.105
2 -0.519 -0.093 0.200 -0.085 0.010
3 0.540 0.400 0.363 -0.060 -0.056
4 -0.491 0.147 0.420 -0.062 -0.149

B : THE INDICATOR SYMBOLS TABLE

0 X 0 0 0 0
1 X 0 0 0 0
2 X 0 0 0 0
3 X 0 0 0 0
4 X 0 0 0 0

C : THE ERROR LIMIT TABLE

0 0.352 0.376 0.384 0.388 0.397
1 0.358 0.358 0.368 0.372 0.375
2 0.364 0.367 0.381 0.384 0.384
3 0.370 0.426 0.466 0.467 0.468
4 0.377 0.385 0.446 0.447 0.454
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From the AR(1) model it can be seen that the parameter is statistically significant. The first 

coefficient of the AR(2) is also significant, whereas the higher order parameters of AR(2) and 

AR(3) are insignificant. The correlation coefficient of the AR(2) model, which is —.3931, 

indicates a less dependence. The correlations of the AR(3) for (cJîj.tJij) an(l are

—.341, —.171 and —.224, which indicate less dependence. From the roots of AR(2), which are 

Bj=1.45 and B2=3.34, we see that they lie outside the unit circle. Similarly the roots of AR(3) 

are Bj=1.32, B2=3.27 and Bÿ=3.T7, which also fulfills the stationary conditions.

Because of the explosive behavior of the ARMA model the results are not reported.

Comparison of the models with each other shows that the lower order autoregressive model fits 

the data as well as the identified MA(1) model. According to the INPR of —.0296, for which 

also the PPR remains negative after 22 years .there is no indication of any significant change 

for the speed of adjustment parameter.

We add another moving average parameter to the identified MA(1) model to see whether the 

additional parameters improve the results. The results of the estimated MA(2) model are 

presented below. The t—statistics are within the parentheses:

MA(2) : Z, = -.00669 + (1 + .339B + . 193B2)et R2=.158
1 (.892) (1 .79) (1 .0 2 ) 1

The first coefficient of the model remains significant, whereas the second coefficient becomes

insignificant. The correlation between them is .3055, which is not very high. As is

known, if the higher order parameter is insignificant this can then be removed from the model.
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Using again the 31 annual data points, the tables 10.9A,B and C report the results of the 

ESACF procedure. Not a very clear cutting-off pattern with its vertex of zeros emerges from 

the indicator symbol table. The numerical values of the two points of the first row are 

marginally less than the two standard deviations values for which are equal to the Mean = .428 

and .561 and .588 (from table C). This implies that a ARMA(1,1) model could perhaps be 

suggested.

The estimation results of the identified ARMA(1,1) model are presented below. The 

t—statistics are within the parentheses:

ARMA(1,1) : (1 -  .9665B) Z. = .11555 + (1 + ,456B)e, R2 = .671 
(16.46) 1 (2.69) (2 .17) 1

Both the autoregressive and moving average parameters are statistically significant. According 

to their correlation coefficient, which is .45, not a very high dependence exists 

between them. Further, a value of .671 for R suggests a good fit for the model. From these 

results we conclude that the model fits the data considerably well.

We now analyze the results of the following fitted model for the same series, which is taken 

from the previous chapter. The t-statistics are again within the parentheses:

AR(1) : (1 -  .757B) Zt = .03277 + ef R2 = .693 
(1 .79) 1 (6.66) 1

A R(2): (1 -  .537B -  .338B2) Z, = .0507 + e, R2 = .712 
(2.92) (1 ,86 ) 1 (13.7) 1

AR(3) : (1 -  .453B -  .218B2 -  .272B3) Z, = .0924 + e, R2 = .711 
(2.29) (1 .01 ) (1 .37 ) 1 (38.5) 1
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Firm : Standard Coosa— Thatcher

Table: 10.9

MA

AR 0 1 2 3 4

A: THE ESACF TABLE

0 0.682 0.577 0.544 0.375 0.321
1 -0.416 -0.081 0.355 -0.063 0.155
2 -0.487 -0.221 0.332 0.226 0.026
3 0.456 0.362 0.363 0.133 -0.108
4 -0.406 -0.124 0.394 0.063 -0.056

B: THE INDICATOR SYMBOLS

0 X X X 0 0
1 X 0 0 0 0
2 X 0 0 0 0
3 X 0 0 0 0
4 X 0 0 0 0

C : THE ERROR LIMIT TABLE

0 0.352 0.454 0.529 0.561 0.583
1 0.358 0.360 0.402 0.404 0.411
2 0.364 0.381 0.418 0.434 0.434
3 0.370 0.416 0.458 0.463 0.466
4 0.377 0.383 0.437 0.438 0.439
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The t—statistics of both the AR(1) and AR(2) parameters are statistically significant. The first 

coefficient of the AR(3) model remains significant, whereas the higher order coefficients 

become insignificant. The correlation between the AR(2) parameters is —.8458 and very high. 

Further, the correlations between ( ^ p ^ )  and ( ^ ’̂  ^  —.5200, —.3625 and —.511.

From these we can conclude that both models can be simplified. The roots of AR(2) and 

AR(3) models are as B j=  1.09, B j = 2.68 and Bj=1.03 B2 = 1.87 and B j=  1.87, indicating 

that the models are stationary. Comparison of the models with each other shows that a lower 

order autoregressive model and the identified ARMA(1,1) model fit the data well. From the 

INPR of —.0307 for this firm, we see that for all the unidentified models the PPR become 

positive, but for the ARMA model the value of PPR substantially increases. According to the 

speed of adjustment coefficient of .0033, we see that the persistence of this firm becomes high.

To verify that the identified model contains the appropriate number of parameters, we include 

alternatively a MA(2) and AR(2) parameters. The following equations contain the results of 

the estimated ARMA(2,1) and ARMA(1,2) models. The t—statistics are within parentheses:

ARMA(2,1) : (1 -  .8329B -  .1286B2) Z. = -.0010 + (1 -  .3608B) e,
(1 .92) (.332) 1 (.666) (.880) c

ARMA(1,2) : (1 -  .9519B) Z. = .00144 + (1 -  .525B + .1502B2)e.
(14.8) 1 (.0017) (2 .6 ) ( .7 6 1 )  1
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It should be observed that fitting an extra parameter to the autoregressive operator results in 

the insignificance of AR(2) and MA(1) parameters. The correlations between (<j)j,0j), (tf^,©]) 

and ((j>2,©j) are .896, —.875 and —.990, which are certainly very high , so this suggest that a 

model needs to be simplified. Further, examining the correlations of the ARMA(1,2) model 

between ((J>p©j), icj)y,©2) anc* which are .301, .297 and —.348, we see that these

correlation are not very high, so from the insignificance of the MA(2) parameter this can be 

omitted from the model.

Comparing the results of the identified model with other models we can conclude that the 

AR(1) and AR(2) models fit the data just as well as the identified ARMA(1,1) model. Only 

AR(3) model could be reduced to a lower parameter model, because of the insignificance of 

the second and third parameters.

10.3 Summary

In this chapter the identification technique of ESACF was applied to samples for both 

countries. The results showed that this method does not give satisfactory results for small 

samples, but it identifies mostly a moving average of first order for both countries. We further 

compared the estimated results of this identified model with the estimates of stochastic models 

for both countries. The results suggests ambiguity between them because all models could be 

accepted statistically.
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11. Comparison of FRG and US-results 

11,1 POP comparison of PA-model

In this chapter the results between the FRG and the US are compared* for the time series 

1961-80; 1961-82 of FRG and 1961-80, 1950-80 for the US.

In this section we will examine the question whether the persistent differences in profitability 

exist in Germany and the US from the PA—model estimates. Table 11.1 reports the replicated 

results from the previous chapter.
A

We first see that the ordering of a  across subsamples does not agree with that of INPR for 

both countries . A similar pattern is also observed for the significant equations (see numbers m 

the parenthesis). The persistence of subsamples increases significantly for the first two 

subgroups for Germany, i.e., the mean value of the first subgroup substantially increases from 

.532 to 2.154. A similar behavior is observed for the first three subgroups of US, if we 

consider only significant equations, i.e., the mean value of first subgroup becomes 4.64, which 

is very close to the mean value of the first subgroup of 1950—72 series. This implies that the 

difference in profitability across firms does not persist for these series but exists at least for 

both the most profitable and least profitable groups of firms.

^see Odagiri and Yamawaki (1986) and Schwalbach, et.el.(1987).
O

The results are not consistent with Mueller(1986).
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Table: 11.1

FRG USA

Period 1961-82 1950-80

N of Firms 299 500

A
a £ INPR N

A
a i . INPR N

1 0.532 
(2 .1 5 )

0.483 4.534
(3 .1 )

50 2.975
(4 .6 )

0.565 6.266
(6 .9)

84

2 0.363 
(1 .5 )

0.730 1.618
(1 .1)

50 1.566
(3 .1)

0.636 2.289
(3 .2)

84

3 0.537 
(.39)

0.666 -0.871
(-.01)

50 0.927
(2 .8 )

0.636 0.450
(1 .2 )

83

4 0.238 
(.02)

0.564 -1.871
(-.93)

50 0.188
(1 .1 )

0.639 -1.082
(-0 .5 )

83

5 -0.413 
(-1 .3 )

0.609 -1.178
(-1 .9 )

50 0.243
(.45)

0.605 -2.531
(-1 .2)

83

6 -1.125 
(-2 .3 )

0.594 -1.374 
(-3 .4 )

49 -0.736
(-.89)

0.576 -5.228
(-1 .5 )

84
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A
The range of the mean values of a  becomes wider in both countries, particularly for the 

significant equations. The magnitude of the speed of adjustment coefficient does not vary 

greatly across subgroups and shows a similarity between the two countries. Further, the 

number of significant 1's are slightly higher in Germany than the US, implying that the profit 

rate adjustment toward the long-run level is almost equivalent in both countries. This result 

for the US is not consistent with 1950—72 Series.

The difference in the results between Germany and US for this series is not very much
A

different, i.e., the range of mean value of a , the speed of adjustment, the proportion of
A A a _

equations which have significant a  and A, and finally, the correlation between a  and k 

are all very much similar.

Furthermore, the US results show some important differences with the results* of the 1950—72 

and 1964—80 series. The mean value of the first subsample is 4.68, which is much higher than 

that in the 1950—80 sample of 2.975 and of 1.48 for 1964—80.

Thus, we conclude from these results that the extent of the persistent difference in company 

profitability in Germany is less evident but considerably increases for the significant equations. 

A similar pattern is also observed for the US, i.e., the estimates are less significant for the 

1950—80 series than in the 1950—72 series but substantially increases for the significant 

equations. Furthermore, these results for the 1950—80 series are consistent with those of 

Odagiri and Yamawaki(1990). These results are caused mainly by the difference of the time 

periods.

* For international comparison see Odagiri and Yamawaki (1990) and for more details obout 
other persistence of profit studies such as : For Canada , Khemani and Shapiro (1990), for 
France, Jenny and Weber (1990), for UK, Cubbin and Geroski (1990) and Kessides (1990).
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11.2 POP comparison of stochastic models

11.2.1 Equivalent time period 1961—80 for FRG and US

In this section we will compare the estimated results of the stochastic AR(1) model for the 

equivalent time period 1961— 80 of both the countries. Table 11.2 for the German results for
A

this series show that the ordering of a  is not in accordance with that of INPR. These results 

are not similar to the series for 1961—82. The mean value of first subgroup, 2.163, is much 

higher than with those of the 1961—82 series, which is 1.787 and .47 of the PA-model. The 

value of subgroup four becomes negative as compared to other models. This implies that the 

results very sensitive to the period chosen and can not be generalized for the model chosen.

The results show that the extent of persistent profitability is noticeably evident, particularly for 

the first subgroup and moderately for the second and third subgroup as compared to the results 

of PA—model.

The US results (1961—80) show that the ordering of mean a  is not in perfect accordance with 

that of INPR. These results are also not consistent with the Mueller(1986) 1950—72 series and 

with the Odagiri and Yamawaki(1990) 1964—80 series. This suggests that for this US—series 

the difference in profitability across firms is less persistent. Furthermore, the mean value of a  

in the first subgroup is 4.966 which is much higher than the mean value of PA — model and 

becomes very close to a value of 4.67 of 1950 — 72. series.

The speed of adjustment coefficient is around .744, whereas for 1964 — 80 series it was much 

lower .47 and for 1950 -  72 ia around .1802. This implies that with a high speed of adjustment 

coefficient we do not achieve a low persistence.

From these results of stochastic models we conclude that the extent of the persistent difference 

in company profitability also remains evident in the later periods for US than in the 1950—72 

time period, but is not consistent with the 1964—80 periods.
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Table: 11.2

FRG

1961 -1 9 8 0

USA

1961 -1 9 8 0

Subgroups
A
a INPR

A
a t INPR

1 2.163 .467 4.388 4.966 .728 6.051

2 .5128 .725 1.574 1.772 .818 2.000

3 .6472 .659 .1508 .494 .828 .3751

4 -.3661 .530 -.862 .5228 .752 -.677

5 -.9105 .638 -1.776 -.0191 .7546 -1.917

6 -.2111 .628 -3.704 -1.344 .586 -4.425
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11.2.2 Results of complete time periods for both countries

In this section we will compare the results of stochastic models between two countries and 

then examine the existence of persistent differences in profitability across the stochastic 

models for Germany and the US. Table 11.3 summarizes the results of AR(1), AR(2), AR(3) 

and ARMA(1,1) for both the countries. These results are again the replicates from the previous 

chapter .
A

From the results of Germany and the US we see that the ordering of the a  across subsamples 

is not in perfect accordance with those of INPR for both countries, and this pattern is also 

valid for the significant equations. Further, this behavior also remains consistent across all four
A

models for both countries. The mean value of a  in the first subsample has significantly 

increased from .532 of PA-model and varies between 1.394 to 2.6 across all models for 

Germany. Similarly, the mean value of first subgroup changes from 2.975 for the PA—model 

and varies between 3.639 to 5.314 across all models for the US. The highest mean value of 

2.64 is found for the first subgroup of the ARMA model for Germany , whereas the highest 

value of the first subgroup was found for the AR(3) model for the US. Further, if considering
A

only significant equations for AR(1) model the mean value of a  also increases from 1.78 to 

2.334 for Germany and from 3.639 to 3.9 for the US. On the other hand, the number of firms 

also decreases as well for both countries. These results suggest that the extent of persistence of 

profitability increases substantially for the first subgroup across all models for both countries 

of the most successful firms and rises even for the significant equations. A similar pattern also 

existed for the lowest subgroups across all model for both countries.

The mean value of the speed of adjustment coefficient is higher in Germany and increases for 

higher order models. For the AR(1) model the mean value is low and decreases if only
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Table: 11.3

AR(1) AR(2)

ERG

Subgroups
A
a 1 INPR

A
a 1 INPR

1 1.787
(2 .3 )

.4230
(.35)

4.396
(4 .9 )

1.842 .525 4.143

2 0.379
(.23)

.7020
(.42)

1.558
(2 .1 )

.539 .813 1.234

3 0.392
(-50)

.6200)
(.45)

.1160
(.13)

.649 .715 -.126

4 0.210
(-49)

.5240
(.41)

-.9000
(-.93)

-.216 .587 -1.091

5 -.9150
(-.76)

.5960
(.43)

-1.793
(-1 .7 )

-1.46 .639 -1.903

6 -2.148 
(-2 .2 )

.5570
(-37)

-3.735
(-3 .6 )

-2.76 .585 -3.926

USA

1 3.639
(3 .9 )

.5270
(-40)

6.266
(6 .7 )

4.171 .433 6.193

2 1.693
(1-9)

.6180
(.44)

2.289
(2 .3 )

2.537 .511 2.324

3 0.863
(.94)

.6290
(.44)

0.450
(.19)

1.179 .506 0.499

4 0.071
(.21)

.6290
(.57)

-1.082
(-.37)

0.247 .500 -1.046

5 0.144
(.38)

.5800
(.45)

-2.531
(-2 .9 )

.057 .441 -2.478

6 -1.373
(-1 .2 )

.5230
(.44)

-5.228
(-5 .5 )

-1.56 .401 -5.171
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Cont.

FRG AR(3) ARMA(1,1)

A
a £ INPR

A
a £ INPR

1 1.394 .623 3.591 2.640 .5540 4.580

2 0.832 .809 1.116 0.613 .7980 1.627

3 0.117 .786 -.032 0.777 .781 0.226

4 -.166 .663 -1.007 0.105 .694 -.751

5 -1.435 .705 -1.852 -1.23 .704 -1.584

6 -2.731 .626 -3.852 -2.49 .675 -3.727

USA

1 5.314 .3640 6.491 3.884 .337 7.156

2 2.066 .454 2.669 0952 .425 3.028

3 2.646 .383 0.899 3.088 .386 1.093

4 -.142 .365 -.615 0.121 .342 -0.362

5 -.886 .364 -2.002 -.453 .401 -1.763

6 -.272 .364 -4.387 -.487 .518 —4.166
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significant equations are considered. This behavior is not observed for the US, i.e. the 

magnitude of speed of the adjustment coefficient becomes low for ARMA and higher order 

models. So, the hypothesis that if the £ approaches zero than the speed of adjustment is low 

and the persistence of profitability becomes high is valid for the US but not for Germany, at 

least for the best and worst subgroups.
A

For both the countries the a  ordering is again not in perfect accordance with INPR for all 

stochastic models and for the significant equations.

The results of stochastic models for the US shows some significant differences with the results 

of the PA—model of FRG and of the US 1950—72 and 1964—80 series. The mean value of a  

becomes even higher for the higher order models. From these we conclude that for a 

significant number of equations the adjustment period is longer and this pattern differs across 

firms.

Further, the stationarity of the models was found higher in US than in Germany across all 

models. The magnitude of unstable roots were to be found higher in Germany than in the US, 

i.e., the sample for Germany was smaller than the US.

The numbers of significant equations were found high in US than in Germany. Further, 

evidence for the first lag structure was found to be stronger in Germany than in the US, but its 

pattern was strong in US.
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11.3 Industry comparison

In explaining the persistent differences in profitability, it is argued that any kind of firm 

differences can be explained by industry differences. Some studies argue that the firm-effects 

are dominated other the industry-effects (see Geroski(1990) and Schmalensee(1986)). 

Schwalbach and Mahmood(1990) study showed that profit differences could be explained by 

firm and industry—specific effects.

In this section we try to answer similar question and show how the estimated projected profit 

rate (PPR) from stochastic models differs across industries and whether the estimates remain 

consistent across stochastic models and PA—model for the two countries. We first calculated 

the table 11.4 and 11.5 in which the firms were allocated to the relevant industry on the basis
A

of a three-digit industry classification, and than calculated the mean a  for each of the 

industries for the after tax definition. We selected only those industries that could be matched 

with the US results^ (1950—80 and 1961—80).

The estimates of mean value a  of beer and food industries^ are the highest among all 

industries for FRG. These mean values vary between 1.238 till 1.459 for beer and 1.396 till 

1.917 for the food industry across all stochastic models. If the significant equations of AR(1) 

and ARMA(1,1) for these industries are considered, the mean values changes, but only 

moderately. The estimates of the PA-model for these industries was also the highest for equity 

capital. Other positive mean values were also found for the chemicals, metal products and 

electrical equipment industries, and they remain consistent across all stochastic models. *

* The concordance among industries is not perfect for all industries (see Odagiri and 
Yamawaki (1990), and for problems of industrial classification (see Hay and Morris(1981)).
2

The estimates of industrial differences are also shown for the equity capital(see Schwalbach 
and Mahmood (1990),and for discussion about branches studies see, Oberender,ed.(1984).
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Table 11.4 : Industry Table for FRG.

1961-82 1961 «0

Industries Code AR(1) AR(2) AR(3) ARMA(1,1) AR(1)

Chemicals 200 0.5728
(1.15)**

0.222 0.836 0.6407
(.936)

0.6310
(1.74)

37,19*) * 25 22 25,12 31,18
Stone & Clay 220 -.0242

(.617)
-.0943 -.532 -. 1502 

(.141)
-.7620
(-.4 4 )

18,12 16 12 14,7 18,11
Iron & Steel 230 -.4802

(.358)
-.1381 -2 .328 -3.3920

(-6-11)
-1.580
(-1 .1)

13,8 12 8 7 ,2 13,7
Machinery 242 -.07832

(-.219)
-.3053 -.6051 -. 15840 

(-.426)
-.04790
(-.030)

41,25 36 30 31,3 41,21
E lec t r  . 
Equipment

250 .4583
(1 .5)

.2194 .0123 .8252
(2 .1 )

.6643
(2 .1)

16,7 11 10 9,3 16,5
M etal 
P roducts

256 .3546
(.63)

.2215 .0464 1.011
(1 .0 )

.2938
(.84)

10,5 8 7 6 ,2 10,4
Textiles 275 -1.1026 

(-1 .29)
-1 .163 -2 .021 -1.537

(-2 .8 )
-.8399
(-.55 )

35,21 32 25 24,10 35,19
Food 280 1.396

(1 .1 )
1.443 1.470 1.917

(2 .5 )
1.3250
(.953)

12,8 8 9 9 ,4 12,8
Beer
Brewing

293 1.459
(1-6)

1.44 1.463 1.238
(1 .4 )

1.9260
(2.23)

14,12 , 11 9 10,9 13,10

**) Number within the parentheses are significant equations selected at 10% significance level

*) Number below the parentheses are the numbers of equations for nonsignificant and significant.
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1950-80 1961-80

Table 11.5 : Industry table for USA

Industries AR(1) AR(2) AR(3) ARMA(1,1) AR(1)

Drugs and

Chemicals 5.290 1.093 9.422 10.801 6.1430
(6 .3 ) (16 .1) (9.99)
18,12 18 17 14,3 17,8

Cement,Clay

and Glass .9330 .164 1.073 .79800 .4040
(2 .2 ) (-2 .3 ) (.82)
12,4 12 12 11,1 12,7

Iron & Steel -.5610 -.173 -.650 -. 1790 -.9020
(-3 .6 ) (1.35) (-1.5)
21,10 21 19 13,5 21,5

Machinery 1.570 .627 1.547 1.1340 1.640
( non-electric) (2 .6 ) (-3 .2 ) (.61)

23,12 22 21 19,4 23,11
Electric

Machinery 2.512 .189 3.866 2.026 1.62
(3 .9 ) (2 .6 ) (3 .)
9 ,6 9 8 7 ,2 9,1

Metal Products -.9870 -.383 -1.206 -.7620 -.8450
(2.05) (- .48 ) (-2.1)
8,3 8 7 5 ,4 8,2

Textiles -.0700 -.216 -.315 -.0930 .7790
(-1-3) (-2.6) (1.3)
9,3 8 8 8,1 8,2

Food .6990 .227 .1904 .37200 1.230
(1 .5 ) (-1 .7 ) (.76)
41,26 40 34 18,5 41,13
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A significant factor is observed with the electric equipment industry, i.e., the mean value of 

this industry becomes positive for all these stochastic models and ranges between .0123 to 

.8252 across all models and significantly increases to a mean value of 2.118 for the significant 

equations of the ARMA model.

On the other hand a negative value, -0.332, was found for the PA—model. According to the 

estimates of the stochastic models this industry remains successful during this time period. 

Other characteristics from this table are the iron and steel industry which has the lowest 

esdmates, and remains negative across all models for both the series 1961—82 and 1961—80. 

Other industries with negative estimates for 1961—82 series are machinery, textiles, and stone 

and clay products. By contrast, a positive mean value was found for stone and clay industry for 

the PA—model. From the results mentioned above, we see that the industries with their positive 

profits in 61—62 are expected to remain so in the future. Similarly, the industries with 

negative estimates remained also unsuccessful in the future. The comparison of stochastic 

models with the PA—model showed a significant difference, particularly for the stone and clay 

and electrical equipment industries.

Table 11.5 summarizes the estimated results of the 1950—80 and 1961—80 series for USA. The 

highest positive projected profits are found for the drug and chemical industry. The PPR 

ranges between 1.093 to 10.8 across all stochastic models and two series. These numbers even 

rise, if the significant equations(the numbers within the parentheses) of AR(1) and ARMA 

models are considered. Further, a distinctive factor is observed for the food industry., i.e., a 

high positive mean value was found for the AR(1) model of 1961—80 series, which remains 

also positive across all models, implying that this industry became more efficient in later 

periods, whereas Odagiri and Yamawaki (1986) and Mueller(1983) for the 1950-72 series 

found for the 1964—80 series a negative value of -0.007 and -0.0061 with the PA-model. 

Other profitable industries are cement, clay and glass, machinery (non-electric) and electric 

machinery.
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The industries with the negative profitability are iron and steel, metal products and textiles. 

The textile industry also depicts a distinctive pattern, i.e., the PPR becomes positive for 

1961—80 series, whereas Odagiri and Yamawaki(1986) found a negative value of -.978. This 

implies that this industry has become more efficient in the latter periods, if we rely on the 

estimates of stochastic models.

The common characteristics between the two countries for positive profits are that the food, 

drugs and chemicals, electrical industries depicts positive profits and show consistent results 

across all models. Only for the stone and clay products and metal products the results are quite 

apposite between two countries. On the negative side, the similarity exists between the iron 

and steel, and textiles industries. One other common characteristic is that the estimates remains 

consistent between two countries.

The results also show that the PPR do not remain consistent across the PA and Stochastic 

models for both series but vary across industries. The pattern differs across the two countries 

and between two series for US. The effect of the magnitude of significant equation is much 

higher in US than in Germany.

11.3.1 Summary

In this chapter we compared the results of the PA— model and of stochastic models. We found 

for the PA— model strong evidence of persistence in the significant equations for both 

countries. The results of an equivalent time period, 1961— 80, for two countries showed that 

the extent of the persistent differences in company profitability is greater in the US than in 

Germany. The results for the complete time period using stochastic models for both countries 

show that the magnitude of the mean of the first and last subgroup increases and is consistent 

across models. The magnitude of the speed of adjustment parameter is found to be lower for 

the ARMA and higher order models for the US than in Germany.
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The results of the industrial differences of means across stochastic models show that the mean 

of projected profit rate remains consistent for the periods 1961 — 80 and 1961 — 82 for 

Germany, whereas it was not found to be consistent, in particular for Drugs and Chemicals and 

the Electric machinery industries for the US. The results indicate considerable differences of 

profits between firms and industries.
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SUMMARY AND CONCLUSION :

This empirical study applied univariate stochastic time series models to estimate the long-run 

profit rate and speed of adjustment of each of 299 German and 500 US companies. The study 

compared the results obtained with the results of PA—models and with other stochastic models 

as well. The empirical results of deterministic models for Germany show a slower speed of 

adjustment for the highest and slowest subgroups, implying a higher persistence of profit rates 

over time for the most successful firms and the less profitable firms. The US results for the PA - 

model (for 500 firms) show that the long run profit rates differ significantly across firms, 

implying a higher persistence of profits than in Germany, but also remain consistent with the 

results for the 1950— 1972 series. The results of the lagrange multiplier test did not show a 

severe effect of autocorrelation in either sample, so we conclude that the misspecification 

caused by the autocorrelated error term is not substantial.

The results of the univariate time series analysis for both countries revealed that the increased 

numerical accuracy raised the persistence of profits in the most profitable and least profitable 

subsamples for both countries. It is further raised if only the statistically significant equations 

are considered in the analysis. The speed of adjustment coefficient tends to be smaller for the 

US than the FRG. The test of the lag structure showed that the first lag was highly significant 

and more so than the higher order lag for Germany, whereas it was found for the US, that the 

lag structure is also significant for the second and third order models. The non—stationarity test 

of unit root was rejected for both countries, implying that the stationarity conditions are 

strongly accepted for both countries. The model selection test showed that the ARMA model is 

chosen for Germany and for the US, but in addition a third order model was also accepted for 

the US.

The results from the extended sample autocorrelation function revealed that this procedure is 

not fully operational for small samples and is inconclusive in selecting the correct order.
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Only for large sample sizes does this procedure seem to work well. We can therefore conclude 

that this method remains in need of generalization and research should be directed to the 

theoretical investigation of the small sample behavior of this method.

Finally, we compared the PA— model with stochastic models of the persistent difference in 

company profits between the two countries. We found that the extent of the persistent 

difference in company profitability becomes more evident for Germany with stochastic models 

for the highest and lowest subgroups than with the PA—models. We also found that the strong 

persistence of profitability observed in the US for the 1952—72 period also became significant 

for the complete time period 1950—80 and for the 1961-80 period in contrast to the 1964—80 

time period. Further, the industry differences results for Germany showed that for the electric 

equipment and stone and clay industries a significant difference in persistence is observed with 

stochastic models. For the US the distinctive factor is that the mean of the textile industry 

becomes positive in the later periods.

In conclusion we make the following comments:

The estimation results reveal that the lower order model best reflects the lag structure between 

previous and current profits for both the US and FRG. However, there was at least some 

evidence indicating that the AR(3) model may be valid under certain circumstances for the US, 

i.e., if we rely on the model selection test—statistics. This implies that the tendency of 

adjustment variation exists across some companies for the US, i.e., about 20 % of the 

companies needed longer time period to adjust to the market environment. An important 

qualification questioning the reliability of these results is the lack of any economic theory 

suggesting the appropriate number of lagged years to include in the autoregressive model but 

can be statistically tested. The estimation specification represented in the first order 

autoregressive—moving average model indicates the statistical superiority of this model, which 

incorporates the effect of unobserved but influential exogenous variables. Thus, it should be 

emphasized that first order autoregressive— moving average model results are probably 

economically more sensible and reliable than the third order autoregressive model.
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So we conclude that the ARMA model can be justified because of its parsimonious properties. 

This result is also consistent with the study of Granger and Morris(1976) who show that the 

mixed ARMA model is the one most likely to occur. As most economic series are both 

aggregates and are measured with error it follows that such mixed models will often be found 

in practice. We stress again that the misspecification caused by the structural parameters of 

PA—model as well as by the error term can be partially resolved by using the stochastic 

models. Future research needs to be devoted towards explicitly identifying those economic 

variables directly influencing company profitability in addition to each firm's past profitability. 

Future studies need to explicitly include such firm— and industry—specific variables in models 

estimating company profitability.

Although the univariate time series models allow one to choose from a wide class of models, 

their parameter interpretation for higher order models is very restrictive and difficult and so 

they remain open for further research. They are not based on an underlying economic theory, 

nor does the theory tell us how long a lag should be. On the other hand, this method has 

various desirable properties such as detecting trend through differencing, the lagged variable 

need not be fixed, the error term can be autocorrelated, and finally, it has computational 

advantages.
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APPENDIX : I

STOCKCOMPANIES LIST OF FRG 

NR. IND.CODE COMPANY NAME

11 200 
12 200
13 200
14 200
15 200
16 200
17 200
18 200
19 200
20 200 
21 200 
22 200
23 200
24 200
25 200
26 200
27 200
28 200
29 200
30 200
31 200
32 200
33 200
34 200
35 200 
38 200 

469 200 
471 200 
476 200 
483 200 
489 200 
493 200 
40 205
42 205
43 205 

690 205 
695 205
44 210
46 210 

602 213 
1035 213
47 215
48 215
49 215
52 215
53 215
54 215
55 215
56 220
57 220 
60 220 
62 220 
64 220

ENKA GLANZSTOFF AG 
BASF
BAYER AG
SPINNSTOFFABRIK ZEHLENDORF 
BEIERSDORF AG
CASSELLA FARBWERKE MAINKUR AG
DEGUSSA
DLW-AG
TH. GOLDSCHMIDT AG 
HOECHST AG 
KALI-CHEMIE AG 
RIEDEL-DEHAENAG 
RUETGERSWERKE AG 
SCHERINGAG 
SUED-CHEMIE AG
CHEM. FABRIKEN OKER UND BRAUNSCHWEIG 
CHEM. WERKE BROCKHUES AG 
CHEM. WERKE HUELS AG 
GUANO-WERKE AG 
HAGEDA AG 
PAUL HARTMANN AG 
KOEPPAG
F.REICHELT AG 
RUBERÖIDWERKE AG 
SCHEIDEMANDEL-MOTARD-WERKE AG 
STUMPFAG 
RHODIA AG 
DYNAMIT NOBEL AG 
HAGEDORN AG 
RUHRCHEMIE AG 
SKW TROSTBERG AG 
WOLFF WALSRODE AG 

DEUTSCHE SHELL AG 
ESSO AG 
VEBA-OELAG 
DEUTSCHE TEXACO AG 
MOBIL OIL AG IN DEUTSCHLAND 

PEGULAN-WERKE AG 
ISOLA WERKE AG 
DUNLOP AG
MICHELIN REIFENWERKE KGAA 

CONTINENTAL GUMMIWERKE AG 
PHOENIX AG 
ALLERTHAL-WERKE AG
NEW YORK - HAMBURGER GUMMIWAREN COMPA
C. SCHOLTZAG
VEITH-PIRELLI AG
VERITAS GUMMIWERKE AG
DYCKERHOFF ZEMENTWERKE AG
NORDCEMENT AG
BAYRISCHE HARTSTEIN INDUSRIE AG 
BONNER ZEMENTWERKE AG 
ETERNIT AG
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65 220 HANNOVERSCHE PORTLAND-CEMENTFABRIK AG
66 220 HEMMOOR ZEMENT AG
68 220 SOLENHOFER AKTIEN-VEREIN
69 220 TONWARENINDUSTRIE WIESLOH AG
70 220 TREUCHTLINGER MARMORWERKE AG
71 220 VEREINIGTE GROSSSALMER THONWERKE
73 220 BAUSTOFFWERKE MUEHLACKER AG
76 220 DIDIER-WERKE AG
78 220 ERLUS-BAUSTOFFWERKE AG
79 220 ERSTE BAYER. BASALTSTEIN AG
81 220 MARMOR-INDUSTRIE KIEFER AG
83 220 TEUTONIA ZEMENTWERK AG
84 220 ZEAG ZEMENTWERK LAUFFEN-ELEKTRIZITAET
63 222 ANNELIESE ZEMENTWERK AG

635 223 ROSENTHAL PORZELLAN AG
85 224 AGROB AG
86 224 HUTSCHENREUTHER AG
87 224 KERAMAG, KERAMISCHE WERKE AG
88 224 PORZELLANFABRIK WALDSASSEN BAYREUTHER
89 224 ACTIENGES. NORDDEUTSCHE STEINGUTFABRI
90 224 PORZELLANFABRIK ZEH, SCHERZER + CO. A
91 224 DEUTSCHE SPIEGELGLAS AG
92 227 FLACHGLAS AG
93 227 GERRES HEIMER GLAS AG
94 227 GLAS- U. SPIEGEL-MANUFAKTUR AG

1059 228 SUEDMILCH AG
95 230 KLOECKNER-WERKE AG
96 230 AG DER DILLINGER HUETTENWERKE
97 230 BUDERUS AG
98 230 DITTMANN + NEUHAUS AG
100 230 GROSSMANN EISEN- U. STAHLWERKE AG
101 230 HINDRICHS-AUFFERMANN AG
102 230 KRUPP STAHL AG
103 230 PEINER MASCHINEN U. SCHRAUBENWERKE AG
104 230 RASSELSTEIN AG
106 230 ROESELER DRAHT AG
107 230 STAHLWERKE BOCHUM AG
109 230 A. STOTZ AG
1108 230 MANNESMANN AG
110 232 METALLGESELLSCHAFT AG
111 232 VEREINIGTE DEUTSCHE NICKEL-WERKE AG
112 232 ALLGEMEINE GOLD- U. SILBERS CHEIDEANS
113 232 HUETTENWERKE KAYSER AG
114 232 ALUMINIUMWERK UNNA AG
115 232 VEREINIGTE ALUMINIUMWERKE AG
116 232 VEREINIGTE DEUTSCHE METALLWERKE AG
117 232 WESTFAELISCHE KUPFER- U. MESSINGWERKE
711 233 NORDDEUTSCHE AFFINERE AG
118 240 DUEWAG
119 240 ARN. GEORG AG
120 240 HEIN, LEHMANN + CO. AG
121 240 HILGERS AG
122 240 KOELSCH-FOELZER-WERKE AG
125 242 BROWN, BOVERIE + C E  AG
126 242 DEUTSCHE BABCOCK AG
128 242 KLEIN, SCHANZLIN + BECKER AG
129 242 KLOECKNER-HUMBOLD-DEUTZ AG
130 242 LINDE AG
131 242 MASCHINENFABRIK AUGSBURG-NUERNBERG AG
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132 242 O + K, ORENSTEIN + KOPPEL AG
134 242 SCHIESS AG
135 242 SCHUBERT UND SALZER AG
138 242 AKTIENGESELLSCHAFT A. HERING
139 242 AG KUEHNLE, KOPP + KAUSCH
140 242 ALEXANDERWERK AG
141 242 ALLWEILER AG
143 242 J. BANNING AG
144 242 BENTELER WERKE AG
146 242 BRAUNSCHWEIGISCHE MASCHINENBAUANSTALT
147 242 BABCOCK BSH AG
148 242 AQUA BUTZKE-WERKE AG
149 242 MANNESMANN DEMAG AG
150 242 GEBR. DICKERTMANN HEBEZEUGFABRIK AG
151 242 DISKUS WERKE FRANKFURT/MAIN AG
152 242 DORSTENER MASCHINENFABRIK AG
157 242 KOCHS ADLER AG
158 242 KOENIG +BAUER AG
159 242 KRAUSS-MAFFEI AG
160 242 LEHMANN-WERKE AG
161 242 LOSENHAUSEN MASCHINENBAU AG
163 242 MASCHINENFABRIK BUCKAU R. WOLF AG
164 242 MASCHINENFABRIK ESTERER AG
166 242 WIBAUAG
169 242 MASCHINENFABRIK-MUELLER-WEINGARTEN AG
170 242 MOTORENWERKE MANNHEIM AG
173 242 PITTLER MASCHINENFABRIK AG
175 242 M.A.N. - ROLAND DRUCKMASCHINEN AG
176 242 SUEDDEUTSCHE BREMSEN-AG
178 242 TRIUMPH-ADLER AG
179 242 VEREINIGTE SCHMIRGEL- U. MASCHENFABRI
181 242 WESTFALIA SEPARATOR AG
182 242 ZAHNRAEDERFABRIK RENK AG
654 242 JAGENBERG-WERKE AG
682 242 JOSEPH VOEGELE AG
183 244 BAYERISCHE MOTORENWERKE
184 244 DAIMLER-BENZ AG
185 244 VOLKSWAGENWERK AG
186 244 AUDI-NSU AUTO UNION AG
187 244 FICHTEL + SACHS AG
188 244 FORD-WERKE AG
189 244 RATHGEBER AG
190 244 ZAHNRADFABRIK FRIEDRICHSHAFEN AG
571 244 ADAM OPEL AG
192 246 AG WESER
193 246 BREMER VULKAN SCHIFFSBAU GESELLSCHAFT
194 246 ELSFLETHER WERFT AG
195 246 HARMSDORF AG
196 246 LEHNKERING AG
717 246 BLOHM & VOSS AG
720 246 ELENDER WERFT AG
198 250 ALLGEM.ELEKTRIZITAETSGESELLSCHAFT \  A
199 250 BRAUNAG
200 250 HARTMANN + BRAUN AG
201 250 KABEL- U. METALLWERKE GUTEHOFFNUNGSHU
202 250 SIEMENS AG
203 250 BAYERISCHE KABELWERKE AG
204 250 DEUTSCHE TELEPHONWERKE U. KABELINDUST
205 250 PHILIPS KOMMUNIKATIONS-INDUSTRIE AG



250
250
250
250
250
250
250
250
252
252
252
252
252
252
252
256
256
256
256
256
256
256
256
256
256
258
260
260
260
260
264
264
264
264
264
264
265
265
265
265
265
265
271
271
271
275
275
275
275
275
275
275
275
275
275
275
275
275
275
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GARBE, LAHMEYER + CO. AG 
GRUENZWEIG UND GLASFASER UND HARTMANN 
AEG-TELEFUNKEN KABELWERKE AG 
LANGBEIN-PFANNHAUSER WERKE AG 
LEONISCHE DRAHTWERKE AG 
STANDARD ELEKTRIK LORENZ AG 
BERGMANN KABELWERKE AG 
NORDDEUTSCHE SEEKABELWERKE AG 
AESCULAP-WERKE AG 
PHYWEAG
G. KROMSCHROEDER AG 
RODI + WIENENBERGER AG
ELSTER AG MESS- UND REGELTECHNIK 
KODAK AG
H. MAIHAK AG 
D. STEMPEL AG
WUERTEMBERGISCHE METALLWARENFABRIK AG
HALLER-MEURER-WERKE AG
METALL- U. LACKIERWARENFABRIK AG
CARL SCHLENK AG
R.STOCK AG
ZEISS K O N  AG
OBERKIRCH AG
SCHULTE-SCHLAGBAUM AG
WILKENS BREMER SILBERWAREN AG
NICHT VORHANDEN
BUERSTENFABRK EMIL KRAENZLEIN
KATZ WERKE AG
J. F. MUELLER + SOHN AG
WESTAG + GETALIT AG
KNOECKEL, SCHMIDT + CIE PAPIERFABRIKE
NIEDERMAYR PAPIERFABRIK AG
PAPIERFABRIK WEISSENSTEIN AG
SCHWAEBISCHE ZELLSTOFF AG
WESTFAELISCHE ZELLSTOFF AG
EUROPA CARTON AG
KUNSTANSTALTEN MAY AG
H. SCHOETTAG
UNIVERSITAETSDRUCKEREIH. STUERTZ AG 
VEREINIGTE ALTENBURGER U. STRALSUNDER 
VERLAG UND DRUCKEREI G. J. MANZ AG 
ZUCKER + CO. AG 
SALAMANDER AG 
DEUTER INDUSTRIEWERKE AG 
SCHUHFABRK MANZ AG 
ACKERMANN-GOEGGINGEN AG 
GIRMES-WERKE AG 
KOLB + SCHUF T.F. AG 
AUGSBURGER KAMMGARNSPINNEREI 
GERMANIA-EPE SPINNEREI AG 
BAUMWOLLSPINNEREI GRONAU 
BRAUNSCHWEIGISCHE AG FUER JUTE UND FL 
BREMER WOLLKAEMMEREI 
BSU-TEXTIL AG
CALWER DECKEN- U.TUCHFABRIKEN 
CONCORDIA SPINNEREI U. WEBEREI 
ERBA AG
GESELLSCHAFT FUER SPINNEREI U. WEBERE 
GRUSCHWITZ TEXTILWERKE AG
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284 275
288 275
289 275
292 275
293 275
294 275
295 275
296 275
298 275
299 275
300 275
301 275
302 275
303 275
304 275
305 275
306 275
307 275 
745 275 
751 275 
763 275
310 276
311 280
312 280
313 280
314 280
315 280
317 280
318 280
319 280 
321 280 
324 280 
326 280
328 280
329 280 
331 281
333 281
334 281
335 281
336 281
337 285
339 285
340 285 
1083 288 
1085 289 
1079 291 
1081 291
342 293
343 293
344 293 
346 293 
352 293 
354 293 
356 293 
391 293 
399 293 
409 293 
413 293 
415 293

JUTE SPINNEREI U. WEBEREI BREMEN 
KOLLNAUER SPINNEREI U. WEBEREI 
KULMBACHER SPINNNEREI 
MECH. SEIDENWEBEREI VIERSEN AG 
NEUE BAUMWOLLSPINNEREI U. WEBEREI 
NEUE SPINNEREIBAYREUTH AG 
RAVENSBERGER SPINNEREI AG 
SCHOELLER EITORF AG 
SPINNEREI NEUHOF 
SPINNEREI U. WEBEREI KEMPTEN 
SPINNEREI U. WEBEREI MOMM AG 
SPINNEREI UND WEBEREI PFERSEE AG 
VEREINIGTE FILZFABRIKEN AG 
VEREINIGTE RUMPUSWERKE AG 
VEREINIGTE SEIDENWEBEREIEN AG 
VOGTLAENDISCHE BAUMWOLLSPINNEREI 
WEBER + OTT AG
WOLLDECKENFABRIK WEIL DER STADT AG 
GOLD-ZACK WERKE AG 
NAK STOFFE KGAA 
TEXTILWERKE AHAUS AG 
TRIUMPH INTERNATIONAL AG 
HOFFMANNS STAERKEFABRIKEN AG 
STOLLWERCK AG
AACHENER THERMALWASSER (KAISERBRUNNEN 
AG BAD SALZSCHLIRF 
ALLGAEUER ALPENMILCH AG 
GEBR. BERNARD AG 
DIAMALT AG
DIE BLAUEN QUELLEN F. MEYER + CO. AG 
DOORNKAAT AG
HOCHSEEFISCHEREI NORDSTERN AG 
MINERALBRUNNEN UEBERKINGEN-TEINACH AG 
OELMUEHLE HAMBURG AG 
SMALCOAG 
AG KUNSTMUEHLE
LANDSHUTER KUNSTMUEHLE C. A. MEYER
MUEHLE RUENINGEN AG
STUTTGARTER BAECKERMUEHLEN AG
VEREINIGTE KUNSTMUEHLEN LANDSHUT-ROSE
SUEDDEUTSCHE ZUCKER AG
POMMERSCHE PROVINZIAL-ZUCKERSIEDEREI
ZUCKERFABRIK UELZEN AG
GERVAIS - DANONE AG
WALTER RAU NEUSSER OEL UND FETT AG
C. GROSSMANN AG
NORDFLEISCH AG
BERLINER-KINDL BRAUEREI AG
BINDING BRAUEREI AG
BRAU AG
DORTMUNDER AKTIENBRAUEREI 
HOLSTEN BRAUEREI 
LOEWENBRAEU MUENCHEN 
STERN-BRAUEREI CARL FUNKE AG 
HAAKE-BECK BRAUEREI AG 
KOENIGSBACHER BRAUEREI AG 
PAULANER-SALVATOR-THOMASBRAEU 
STUTTGARTER HOFBRAEU AG 
WUERZBURGER HOFBRAEU AG
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BAVARIA-ST.PAULI BRAUEREI AG
HACKER-PSCHORR BRAEU AG
GEORG GEILING + CO. AG
CH. A. KUPFERBERG + CO. KGAA
KURPFALZ SEKTKELLEREI AG
SEKTKELLEREI J. OPPMANN AG
SEKTKELLEREI SCHLOSS WACHENHEIM AG
MARTINI &ROSSI AG
APOLLINARIS BRUNNEN AG
RINN & CLOOS AG
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NR.

-999
375766
812302
781088
853564
670148
042083
875382
867068
848355
408360
832377
487836
165159
-999

849339
483044
752159
822737
456866
565845
422884
158663
790155
854531
574599
427866
780240
530000
620076
579746
493422
585745
861589
580628
852206
830643
370442
478124
406216
774347
884315
489314
629853
361606
905530
054303
313549
451542
955465
589433
028861
822635

COMPANY NAME 

N.A
GILLETTE CO 
SEARLE (G.D.)& CO 
RUBBERMAID INC 
STANDARD KOLLSMANINDS INC 
NOXELL CORP-CL B 
ARMADA CORP 
TANDY CORP 
SUNBEAM CORP 
SPERRY CORP 
HAMMOND CORP 
SMITHKLINE CORP 
KELLOGG CO 
CHES APEAKE CORP OF VA 

N.A
SPRAGUE ELECTRIC CO 
KAISER CEMENT CORP 
RANCO INC 
SHELLER-GLOBE 
INGERSOLL-RAND CO 
MARATHON OIL CO 
HEELEMAN (G.) BREWING INC 
CHAMPION SPARK PLUG 
ST JOE MINERALS CORP 
STANLEY HOME PRODUCTS INC 
MASCO CORP 
HERSHEY FOODS CORP 
ROYAL CROWN COS INC 
LEBBEY-OWENS-FORD CO 
MOTOROLA INC 
MCCORD CORP
KEYSTONE CONS INDUSTRIES INC 
MELVILLE CORP 
STONE CONTAINER CORP 
MCGRAW-EDISON CO 
SQUARED CO 
c r n  r n u p
GENERAL MOTORS CORP 
JOHNS-MANVILLE CORP 
HALLIBURTON CO 
ROCKWELL INTERNATIONAL CORP 
THOMAS & BETTS CORP 
KENNECOTT CORP 
NALCO CHEMICAL CO 
GF BUSINESS EQUIPMENT 
UNION CAMP CORP 
AVONPRODUCTS 
FEDERAL-MOGUL CORP 
IDEAL BASIC INDUSTRIES INC 
WEST POINT-PEPPERELL 
MEREDITH CORP 
AMERICAN PETROFINA-CL A 
SHELL OIL CO
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597715 MIDLAND-ROSS CORP
263534 DU PONT (E.I.) DE NEMOURS
853683 STANDARD OIL CO (CALIF)
211813 CONTINENTAL OIL CO

-999 N.A
830575 SKELLY OIL CO
707355 PENN-DDUE INDUSTRIES
032037 AMPCO-PITTSBURGH CORP
709903 PENNZOIL CO
746384 PUROLATOR INC
278058 EATON CORP
640745 NEPTUNE INTERNATIONAL CORP

-999 N.A
770553 ROBERTSON (H.H.) CO
604059 MINNESOTA MINING & MFG CO
963320 WHIRLPOOL CORP
853819 STANDARD PRESSED STEEL CO
119529 BUFFALO FORGE CO
559380 MAGNA VOX CO
313135 FEDDERS CORP
165339 CHESEBROUGH-POND’S INC
217210 COPELAND CORP
717265 PHELPS DODGE CORP
070203 BASSETT FURNITURE INDS
742718 PROCTER & GAMBLE CO
599292 MILES LABORATORIES INC
590825 MESTA MACHINE CO
890516 TOOTSIE ROLL INDUSTRIES INC
-999 N.A

110511 BRITISH AMERICAN TOBACCO LTD
413875 HARRIS CORP
689002 OTIS ELEVATOR CO
191216 COCA-COLA CO
232165 CUTLER-HAMMER INC
668367 NORTHWESTERN STEEL & WIRE CO 
905581 UNION CARBIDE CORP
460146 INTL PAPER CO
717081 PFIZER INC
690020 OUTBOARD MARINE CORP
770519 ROBERTSHAW CONTROLS
701111 PARKER PEN CO
248631 DENNISON MFG CO

-999 N.A 
892892 TRANE CO
156879 CERTAIN-TEED CORP
809877 SCOTT PAPER CO
232525 CYCLOPS CORP
235811 DANA CORP
193558 COLEMAN CO INC
925853 VICTOR COMPTOMETER CORP
365550 GARDNER-DENVERCO
155177 CENTRAL SOYA CO
582273 MCLOUTH STEEL CORP
887389 TIMKEN CO
962166 WEYERHAEUSER CO
123645 BUTLER INTERNATIONAL INC
619356 MORTON-NORWICH PRODUCTS
532457 LILLY (ELI)& CO
912027 U S GYPSUM CO
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144285 CARPENTER TECHNOLOGY
219327 CORNING GLASS WORKS
694529 PACIFIC LUMBER CO

-999 N.A
576216 MASSEY FERGUSON LTD
029717 AMERICAN ATANDARD CO
637742 NATIONAL-STANDARD CO
932355 WALLACE-MURRAY CORP
302290 EXXON CORP
866815 SUN OIL CO
881694 TEXACO INC
542290 LONE STAR INDUSTRIES
725106 PITTSBURGH FORGINGS CO
427056 HERCULES INC
369604 GENERAL ELECTRIC CO
763172 RICHARDSON-MERRELL INC
580169 MCDONNELL DOUGLAS CORP
043339 ARVIN INDUSTRIES INC
629156 NL INDUSTRIES
835495 SONOCO PRODUCTS CO

-999 N.A 
604739 MIRRO CORP
345370 FORD MOTOR CO
150033 CECO CORP
488620 KENDALL CO
167898 CHICAGO PNEUMATIC TOOL CO
-999 N.A

775422 ROHR INDUSTRIES
099725 BORG-WARNER CORP
077455 BEIDEN CORP
373712 GERBER PRODUCTS CO
244199 DEERE &  CO
141375 CARBORUNDUM CO
438506 HONEYWELL INC
859264 STERLING DRUG INC
693506 PPG INDUSTRIES INC
091797 BLACK & DECKER MFG CO
254723 DISTILLERS CORP-SEAGRAMS LTD
227111 CROMPTON &  KNOWLES CORP
761406 REVERE COPPER & BRASS INC
158525 CHAMPION INTERNATIONAL CORP
126149 CPC INTERNATIONAL INC
032087 AMPEXCORP

-999 N.A
460754 INTERSTATE BRANDS
382388 GOODRICH (BP.) CO
754586 RAYBESTOS-MANHATTANINC
371532 GENESCOINC
571443 MARQUETTE CO
575379 MASONITE CORP
501026 KROEHLER MFG CO
373298 GEORGIA-PACIFIC CORP
344892 FOOTE MINERAL CO
370622 GENERAL REFRACTORIES CO
277461 EASTMAN KODAK CO
171196 CHRYSLER CORP
513696 LAMSON & SESSIONS CO
608302 MOHAWK RUBBER CO
693715 PABST BREWING CO
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-999 N.A
488188 KELSEY HAYES CO
300587 EX-CELL-O CORE 
959265 WESTERN PUBLISHING INC

-999 N.A
228669 CROWN ZELLERBACH 
302808 FABERGE INC
579780 MCCORMICK & CO
775371 ROHM & HAAS CO
433728 HOBART CORP
589331 MERCK & CO
033047 ANCHOR HOCKING CORP 
170520 CHRIS-CRAFTINDS 
629527 NABISCO INC
561246 MALLORY (P.R.)& CO INC
819785 SHARON STEEL 
667451 NORTHWEST ENGINEERING CO 
880370 TENNECO INC

-999 N.A 
749285 RCA CORP
682505 ONEIDA LTD
834086 SOLA BASIC INDUSTRIES INC
044540 ASHLAND OIL CO
934408 WARNER & SWASEY CO
031105 AMETEK INC

-999 N.A
216669 COOPER INDUSTRIES INC
826690 SIGNODE CORP
690734 OWENS-CORNING FIBERGLAS CORP 
758260 REED TOOL CO
315711 FIB REBOARD CORP
379568 GLOBE-UNION INC
637844 NATIONAL STEEL CORP
231021 CUMMINS ENGINE
149123 CATERPILLAR TRACTOR CO 
134429 CAMPBELL SOUP CO
209759 CONSOLIDATED PAPERS INC 
457659 INSILCO CORP
854616 STANLEY WORKS

-999 N.A
776338 RONSON CORP
867323 SUNDSTRAND CORP
206813 CONE MILLS CORP

-999 N.A
547779 LOWENSTEIN (M.) CORP
362400 GABLE INDS
751277 RALSTON PURINA CO
402460 GULF OIL CORP
181396 CLARK EQUIPMENT CO
718507 PHILLIPS PETROLEUM CO

-999 N.A
961548 WESTVACO CORP
110889 BRITISH PETROLEUM CO LTD ADR 
-999 N.A

852864 STANADYNE INC
371352 GENERAL TIRE & RUBBER CO
690768 OWENS-ILLINOIS INC
459200 INTL BUSINESS MACHINES CORP
607080 MOBIL OIL CORP
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318315
737628
761688
143483
636316
606215
029465
580645
903443
459884
039483
609150
747402
118745
457470
439000
048825
095293
421596
806605
383492
478160
339711
5778%
611662
481196
115657
110097
746248
135393
423200
566319
918204
853326

-999
608744
887224
635230
481070
252669
291011
666807
074077
075815
828709
912775
115637
637215
313693
042465
793453
097383
345514
369856
156825
804795
406090
387478
269803

FIRESTONE TIRE & RUBBER CO 
POTLATCH CORP 
REXNORD INC 
CARNATION CO 
NATIONAL GYPSUM CO 
MISSOURI PORTLAND CEMENT CO 
AMERICAN SEATING CO 
MCGRAW-HILL INC 
UARCO INC
INTL MINERALS & CHEMICAL
ARCHER-DANIELS-MIDLAND CO
MONARCH MACHINE TOOL CO
QUAKEROATS CO
BUCYRUS-ERffiCO
INLAND STEEL CO
HOOVER
ATLANTIC RICHFIELD CO 
BLUE BELL INC 
HAZELTIME CORP 
SCHERING-PLOUGH 
GOULD INC 
JOHNSON & JOHNSON 
FLINTKOTECO 
MAYER (OSCAR) & CO 
MONSANTO CO 
JOYM FGCO 
BROWN GROUP INC 
BRISTOL-MYERS CO 
PUREX CORP
CANADIAN BREWERIES LTD 
HELENA RUBINSTEIN INC 
MARCORINC 
VF CORP
STANDARD COOSA-THATCHER 

N.A
MOLYCORPINC 
TIME INC
NATIONAL CASH REGISTER CO 
JOSLYN MFG & SUPPLY CO 
DIAMOND INTERNATIONAL CORP 
EMERSON ELECTRIC CO 
NORTHROP CORP 
BEATRICE FOODS CO 
BECKMAN INSTRUMENTS INC 
SIMMONS CO 
U S  TOBACCO CO
BROWN-FORMAN DISTTLLERS-CL B 
NATIONAL PRESTO INDS INC 
FEDERAL PAPER BOARD CO 
ARMSTRONG RUBBER 
ST REGIS PAPER CO 
BOISE CASCADE CORP 
FOREMOST-MCKESSON INC 
GENERAL FOODS CORP 
CERRO CORP
SAVANNAH FOODS & INDS 
HALL (W.F.) PRINTING CO 
GRANITE VILLE CO 
EAGLE-PICHERINDS



2 0 0

760779 REPUBLIC STEEL CORP 
824348 SHERWIN-WILLIAMS CO 
719151 PHOENIX STEEL CORP 
172172 CINCINNATI MILACRON INC 
239577 DAYCO CORP 
056147 BABCOCK & WILCOX CO 

-999 N.A
189486 CLUETT, PEABODY & CO
713448 PEPSICO INC
261597 DRESSER INDUSTRIES INC 
736245 PORTER (H.K.) INC-DEL 
315405 FERRO CORP
724479 PITNEY-BOWES INC 
194162 COLGATE-PALMOLIVE CO 
369298 GENERAL CABLE CORP
393046 GREEN GIANT CO
307261 FANSTEELINC
763121 RICHARDSON CO
077851 BELL & HOWELL CO
150843 CELANESE CORP
391090 GREAT NORTHERN NEKOOS A CORP

-999 N.A
217687 COPPERWELD CORP
458506 INTERCOINC
866645 SUN CHEMICAL CORP
872649 TRW INC
582834 MEAD CORP
370838 GENERAL SIGNAL CORP
853734 STANDARD OIL CO (OHIO)
450420 I-T-E IMPERIAL CORP
483008 KAISER ALUMINUM & CHEM CORP
460578 INTERPACE CORP
747419 QUAKER STATE OIL REFINING
853700 STANDARD OIL CO (INDIANA)
500755 KRAFT INC
200273 COMBUSTION ENGINEERING INC
224399 CRANE CO
400181 GRUMMAN CORP
087509 BETHLEHEM STELL CORP
831865 SMITH (A.O.) CORP

-999 N.A
860163 STEVENS (J.P.) & CO
784015 SCM CORP
960402 WESTINGHOUSE ELECTRIC CORP 
081689 BENDIX CORP

-999 N.A 
-999 N.A

494368 KIMBERLY-CLARK CORP
902878 UMC INDUSTRIES

-999 N.A
137735 CANNON MILLS CO
963150 WHEELING-PITTSBURGH STEEL
549866 LUKENS STEEL CO
359370 FRUEHAUF CORP
458702 INTERLAKE INC
033609 ANDERSON, CLAYTON & CO
860486 STEWART-WARNER CORP
370064 GENERAL HOST CORP
297659 ETHYL CORP
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377600 GLENMO
252741 DIAMOND SHAMROCK CORP
260543 DOW CHEMICAL
500602 KOPPERSCO
626320 MUNSINGWEARINC

-999 N.A
370334 GENERAL MILLS INC
492386 KERR-MCGEE CORP

-999 N.A 
-999 N.A

217525 COPPER RANGE CO
120457 BULOVA WATCH CO
853139 STANDARD BRANDS INC
060221 BANGOR PUNTA CORP
097023 BOEING CO
483098 KAISER STEEL CORP
909160 UNIROYAL INC
053501 AVCO CORP ,
693718 PACCAR INC
909296 UNITED AIRCRAFT CORP
761753 REYNOLDS (R.J.)INDS
855668 STARRETT (L.S.) CO
758556 REEVES BROTHERS INC
459578 INTL HARVESTER CO
907770 UNION OIL CO OF CALIFORNIA
709317 PENNWALTCORP
440452 HORMEL (GEO. A.) & CO
457641 INMONTCORP
121691 BURLINGTON INDUSTRIES INC
173036 CITIES SERVICE CO
382550 GOODYEAR TIRE & RUBBER CO
933169 WALTER (JIM) CORP
253651 DIEBOLD INC
610304 MONROE AUTO EQUIPMENT CO
212867 CONWOOD CORP
861504 STOKELY-VAN CAMP INC
761763 REYNOLDS METALS CO
302491 FMC CORP
668707 NORTON SIMON INC
144465 CARRIER CORP
716769 PETTIBONE CORP
408306 HAMMERMILL PAPER CO
257867 DONNELLEY (R.R.)& SONS CO
635655 NATIONAL DISTILLERS &CHEMICL 
718167 PHILIP MORRIS INC
410306 HANDY & HARMAN
718592 PHELLIPS-VAN HEUSEN

-999 N.A
423236 HELENE CURTIS INDUSTRIES
245217 DEL MONTE CORP

-999 N.A
228219 CROWN CENTRAL PETROLEUM CP-A
077491 DEEDING HEMINWAYN
032393 ANACONDA CO
903298 USM CORP

-999 N.A 
-999 N.A

054393 AVONDALE MILLS
893341 TRANS UNION CORP
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766481 RIEGEL TEXTILE CORP
691497 OXFORD INDUSTRIES INC

-999 N.A
532202 LIGGETT GROUP
370856 GENERAL STEEL INDS
195018 COLLINS RADIO CO
-999 N.A

197288 COLUMBIA BRDCSTING SYSTEM
912656 U S  STEEL CORP
211183 CONTINENTAL CAN CO INC
375046 GIDDINGS & LEWIS INC
493782 KIDDE INC
480034 JONES & LAUGHLIN STEEL CORP
032172 AMSTAR CORP
810640 SCO VILLINO
125185 CF&I
093545 BLISS & LAUGHLIN STEEL CORP 
235773 DAN RIVER INC
829302 SINGER CO
299209 EVANS PRODUCTS CO
404245 HMW INDUSTRIES INC

-999 N.A
194828 COLLINS & AIRMAN CORP
303711 FAIRCHILD INDUSTRIES INC
290371 ELTRA CORP
884102 THIOKOL CORP
835852 SORG PAPER CO
701094 PARKER-HANNIFIN CORP
852563 STALEY (A.E.) MFG CO
608030 MOHASCO CORP
753329 RAPID-AMERICAN CORP-DE
539821 LOCKHEED CORP
157177 CESSNA AIRCRAFT CO
428182 HEUBLEIN INC
745791 PULLMAN INC
097880 BOND INDUSTRIES
231561 CURTISS-WRIGHT CORP
562876 MANHATTAN INDUSTRIES INC 

-999 N.A
754093 RATH PACKING CO
721510 PILLSBURY CO
209219 CONSOLIDATED FOODS CORP 

-999 N.A
904784 UNILEVER N V
934488 WARNER-LAMBERT CO
889039 TODD SHIPYARDS CORP
423074 HEINZ (H.J.) CO
368838 GENERAL AMERICAN TRANS CORP
486638 KAYSER-ROTH CORP
076635 BEECH AIRCRAFT CORP
211291 CONTINENTAL COPPER &STL IND
370118 GENERAL INSTRUMENT CORP
864592 SUCRESTCORP
374280 GETTY OIL CO
122781 BURROUGHS CORP
857721 STAUFFER CHEMICAL CO
383883 GRACE (W.R.) & CO
117043 BRUNSWICK CORP
029609 AMERICAN SHIP BUILDING CO
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S30013 LIBBY, MCNEILL & LIBBY
361428 GAFCORP
887360 TIMES MIRROR CO
635128 NATIONAL CAN CORP 

-999 N.A 
088665 BIBB CO
460043 INTL MULTIFOODS CORP

-999 N.A
071707 BAUSCH &LOMB INC
350244 FOSTER WHEELER CORP
416162 HART SCHAFFNER & MARX CO
081437 SEMIS CO
291210 EMHART CORP
296470 ESMARK INC
744635 PUBUCKER INDUSTRIES INC
286434 ELGIN NATIONAL INDUSTRIES
755111 RAYTHEON CO
549662 LUDLOW CORP
902525 U & i m C
228255 CROWN CORK & SEAL CO INC
725701 PITTSTÖNCO
525030 LEHIGH VALLEY INDS
073239 BAYUK CIGARS INC
115223 BROWN Ä SHARPE MFG CO
237424 DART INDUSTRIES
502210 LTV CORP
826622 SIGNAL COS
369334 GENERAL CIGAR CO INC
883203 TEXTRON INC
680665 OLINCORP
759200 REICHHOLD CHEMICALS INC
676346 OGDEN CORP
369550 GENERAL DYNAMICS CORP
196864 COLT INDUSTRIES m e


