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Abstract

Early results of evolutionary game theory showed that the risk dominant
equilibrium is uniquely selected in the long run under the best-response
dynamics with mutation. Bergin and Lipman (1996) qualified this result
by showing that for a given population size the evolutionary process can
select any strict Nash equilibrium if the probability of choosing a nonbest
response is state-dependent. This paper shows that the unique selection
of the risk dominant equilibrium is robust with respect to state dependent
mutation in local interaction games. More precisely, for a given mutation
structure there exists a minimum population size beyond which the risk
dominant equilibrium is uniquely selected. Our result is driven by con-
tagion and cohesion among players, which exist only in local interaction
settings and favor the risk dominant strategy. Our result strengthens the
equilibrium selection result of evolutionary game theory.

Keywords: Contagion, state dependent mutations, risk dominance, local
interaction games.

JEL classification: C72; D83
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1 Introduction
Kandori, Mailath and Rob (1993) and Young (1993) showed that the risk
dominant equilibrium is uniquely selected for global interaction games
with mutation under the best-response dynamics. When a group of agents
play a given coordination game among themselves and there is a small mu-
tation probability that each agent may choose a strategy that is not a best
response, the risk dominant equilibrium is selected uniquely as the prob-
ability of mutation vanishes to zero. While the strength of the result fol-
lows from the parsimony of the model, Bergin and Lipman (1996) showed
that the result depends crucially on the mutation parameters of the model.
In particular the equilibrium selection result may be overturned in favor
of the payoff dominant equilibrium if state dependent mutation is allowed
and the ratio of the mutation probabilities becomes unbounded in the limit.
If agents are more cautious when playing the payoff dominant action than
the risk dominant action and make fewer mistakes or experiment less, then
playing payoff dominant action remains the long-run equilibrium.

This paper reexamines the argument of Bergin and Lipman for equi-
librium selection in the context of local interaction games i.e., in games
where each player interacts only with a subset of the population called
neighbors. We show that for a given mutation structure there exists a min-
imum finite population size such that for population size above that level,
the risk dominant equilibrium is uniquely selected. This result is driven by
the specific feature of local interaction games that the equilibrium selec-
tion depends on the size of the population. This is also the reason why we
obtain a different result from that of Bergin and Lipman (1996). They take
the population size as given, and then pick a mutation structure that selects
some long run equilibrium. In contrast, we fix the mutation structure first,
then we set the finite population size sufficiently so that the risk dominant
equilibrium is selected. Since the equilibrium selection is independent of
the population size in global interaction games [see the motivating exam-
ple in Bergin and Lipman (1996)], in such an environment it does not make
a difference which parameter is regarded as fixed relative to the other one.
In contrast, it does matter for local interaction games. The crucial require-
ment is that the ratio of the mutation probabilities remains bounded as the
population size changes. For example, this requirement is satisfied if the
mutation structure depends only on the local configuration, which seems
coherent with the approach of the local interaction games.

The nature of our result is easiest to understand in the model where
agents play against the nearest neighbors on a circle of size N as in El-
lison’s (1993) example. Assume that the probability of nonbest reply is
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smaller when playing the payoff dominant action than when playing the
risk dominant action. Note that if there are two adjacent players playing
the risk dominant action, they continue to play it independent of the strat-
egy profile played in the remainder of the circle. Moreover local interac-
tion environment allows that one particular strategy can spread gradually
through the population from one neighborhood to the next i.e., it allows
for contagion. This works determininistically in one dimension because
the neighbors of the two players mentioned above simply switch to the
risk dominant action in the next period in the absence of mutation. Thus,
transition from the configuration of playing the payoff dominant strategy
everywhere to that of playing risk dominant strategy everywhere takes just
2 mutations. In contrast, transition from the configuration of playing the
risk dominant strategy everywhere to that of playing the payoff dominant
strategy everywhere requires N simultaneous mutations because of cohe-
sion among players playing the risk dominant strategy. The number of
mutations required to make a transition to the state of playing the risk
dominant strategy everywhere is independent of the population size while
the transition to the state of playing the payoff dominant strategy every-
where depends on the population size. Therefore, if the population is big
enough, the latter transition probability can be made much smaller than
the former if the mutation structure across the two strategies is taken as
fixed.

More generally, we demonstrate the above result in an environment
where the players are located on a two dimensional torus and they inter-
act with their nearest neighbors. We have chosen this structure for two
reasons. First, this relatively simple setup shares some fundamental fea-
tures of more general local interaction environments: it allows for cohesive
groups formed by players located close to each other, and, in contrast to
the one dimensional case, it makes contagion a stochastic phenomenon.
Thus, it requires a non-trivial generalization of the one dimensional ar-
gument. Secondly, this environment is the simplest one that allows us to
show how to apply some useful tools to study local interaction environ-
ments. We explore the general idea of renormalization based on cohesion
and we characterize the evolution in terms of connected islands of players
playing the same strategy.

The basic mechanism that characterizes local interaction environments
is the presence of contagion. This mechanism is fairly trivial and deter-
ministic in the one dimensional setup. In contrast, it is fundamentally
stochastic in two dimensions. To see this point, consider a two dimen-
sional large torus and suppose that all agents on a square of side length 2
play the risk dominant strategy. It is easy to see that these agent continue
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to play the risk dominant strategy regardless of the strategy profile in the
remainder of the torus without mutation. Hence the square plays a similar
role to the 2 adjacent agents playing the risk dominant strategy on the cir-
cle. However the risk dominant strategy does not spread beyond the square
in the absence of an additional agent playing it next to the square. We need
further mutations to induce contagion, which is a stochastic event. Hence
we consider the analysis as an exercise on the interaction of contagion dy-
namics and mutation dynamics. Without mutation (or initial randomness
as in Lee and Valentinyi (2000)), there is no seed for contagion to work
on; however if there is a little mutation or randomness that contagion can
work on, the rest is driven by the contagion, and not mutation.

To simplify the analysis we rely on two ideas. The first one is renor-
malization which makes use of the following observations. If all members
of a group play the risk dominant strategy and these players never abandon
it without mutation, then we say that the environment allows for cohesive
groups. The smallest such a group is called a team, and a team is said
to play the risk dominant strategy if and only if all of its team members
play it. This construction ensures that if a team plays the risk dominant
strategy, then so does all of its members in the original process. However,
if a player plays the risk dominant strategy in the original process, it may
belong to a team that plays the payoff dominant strategy. It follows that
if we want to show that the whole population eventually adopts the risk
dominant strategy, then it is sufficient to show that the population of teams
adopts it. The switch from players to teams is called renormalization. The
advantage of the renormalized process is that teams playing the risk dom-
inant strategy never disappear unless their members mutate. Thus, the
set of teams playing the risk dominant strategy can only grow over time
without mutation, but cannot shrink.

Our second idea deals with the problem of having a large and com-
plicated state space. Indeed, for a torus of size N, the number of states
is 2N . The following argument enables us to simplify the analysis of this
large state space. Note that each configuration contains a (possibly empty)
connected island of teams playing the risk dominant strategy. We show
that the transition from one state to another depends crucially on the size
of the largest such island contained in the configuration. More precisely,
in a two dimensional environment we need only to know the size of the
largest square of teams playing the risk dominant strategy contained in
a configuration to estimate the transition probabilities to the other states.
The intuitive reason is the following: small squares of teams playing the
risk dominant strategy disappear with few mutations. In contrast, large
squares are more difficult to break because the required number of muta-
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tions is proportional to their size. Therefore, the size of the largest square
is pivotal in determining the transition to another state. In particular, we
show that once the process reached a state which contains a square of crit-
ical size where all teams in the square play the risk dominant strategy,
that square exhibits a strong growth property. Thus, contagion makes it
very likely that it grows further ensuring convergence to the risk dominant
equilibrium.

Recently a number of papers have analyzed local interaction games.
For instance Anderlini and Ianni (1996), Bala and Goyal (1998), Blume
(1993, 1994, 1995), Lee and Valentinyi (2000) and Morris (2000) exam-
ined the issue of equilibrium selection in local interaction games with and
without mutation. However, none of these papers addresses the issue for
the analysis of robustness of the equilibrium selection to state dependent
mutations. Our idea about how to analyze the complicated state space
is related to the recent work of Ellison (2000). He develops a powerful
technique for the determination of the long-run distribution of a stochas-
tic process when there are many limit states in the system. This also can
be applied in local interacting settings. He focuses on how the system
evolves step-by-step from one limit set to the next. In a similar spirit,
we focus on how the system evolves from one configuration containing
a large connected island of players playing the risk dominant strategy to
the next similar configuration. However, it is not clear from Ellison’s ar-
gument why step-by-step evolution should favor the selection of the risk
dominant equilibrium. Our paper demonstrates why the dynamics of the
local interaction model favors the selection of risk-dominant equilibrium.

Since Bergin and Lipman (1996) suggested a careful examination of
implication of the state dependent mutation, more attention has been paid
to the issue. For instance van Damme and Weibull (2000) examine the
decision making process associated with the cost of mistake. They con-
clude that the introduction of state dependent mutation does not overturn
the standard equilibrium selection result since the concern for the cost of
mistake favors the mutation toward the risk dominant strategy. Similarly,
Young (1998) investigates whether one can relax the uniformity of muta-
tion in a plausible way without changing the stochastically stable outcome.
Although refining the decision making process is an important issue, we
believe that it is at least as important to prove the robustness of the equi-
librium selection result for a certain environment. In particular, since any
refinement is susceptible to a perturbation of how the refinement has been
made, it is important to establish the robustness of mutation for an impor-
tant environment.

The rest of the paper organized as follows. Section 2 describes a 2-
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dimensional environment of local interaction. Section 3 contains the main
result of the paper. This section starts with a renormalization argument,
then characterizes the stochastically stable outcome using a series of lem-
mas and propositions. Section 4 concludes the paper.

2 Local Interaction Game

2.1 A framework of local interaction
There is a population of N2 players located on a 2-dimensional torus
Λ(N) = Z2 ∩ [0,N)2 (mod N) for N ≥ 1. A player with address x ∈ Λ(N)
interacts with her nearest neighbors. The set of neighbors for the origin
is defined by N ≡ {y : ‖y‖ = 1} where ‖y‖ ≡ (|y1| + |y2|), and the set of
neighbors for player x is given by x +N ≡ {y : ‖x − y‖ = 1}, namely the
translation of N by x.

There are two actions {A, B}; and pure strategies st : Λ(N) −→ {A, B}.
We characterize the population at time t in terms of the set of players
playing A, thus

S t = {x : st(x) = A, x ∈ Λ(N)}. (1)

2.2 Coordination game
Consider the 2 × 2 coordination game given in Table 1. We require that
a > c, d > b and (a − c) > (d − b) so that both (A, A) and (B, B) are Nash
equilibria and (A, A) is the risk dominant one.

A B
A a, a b, c
B c, b d, d

Table 1: Coordination Game

All players play the game simultaneously over discrete periods and in-
finite horizon. The feature of local interaction is reflected in that the payoff

of each player depends on the strategy played by herself and everyone in
the neighborhood. The payoff of player x playing strategy A in period t is
given by

ut(x, A) = b + (a − b)
|S t ∩ (x +N)|
|x +N| , (2a)
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where | · | denotes the cardinality of a set. Similarly, the payoff of player
x playing strategy B in period t is given by

ut(x, B) = d + (c − d)
|S t ∩ (x +N)|
|x +N| . (2b)

In the absence of mutation, players are assumed to play the myopic best-
response: player x in period t + 1 chooses

st+1(x) = arg max
{A,B}
{ut(x, A), ut(x, B)}. (3)

Thus player x plays A in period t + 1 if

|S t ∩ (x +N)|
|x +N| ≥ d − b

(a − c) + (d − b)
≡ θ. (4)

Since (A, A) is the risk dominant equilibrium, θ < 1/2. This describes the
dynamics of the model without mutations.

2.3 State Dependent Mutation
We introduce mutation into the model: the agent may make a mistake or an
experiment and thus chooses a strategy at random with a small probabil-
ity. In particular we consider a stochastic process {S ε

t }t≥0 which is derived
from {S t}t≥0, allowing for randomness due to mutation. In the configura-
tion of the noise structure, we recognize explicitly the possibility of state
dependent mutation probabilities.

State dependent mutations are allowed for in the following framework.
Let

p : Λ(N) × [0, 1] × {A, B}Λ(N) × {A, B} −→ [0, 1]

be a map assigning two non-negative numbers, p(x, ε, S , A) and p(x, ε, S , B),
to player x that represent the probability of mutation to A and B, respec-
tively. We require that p(x, ε, S , A) + p(x, ε, S , B) ∈ [0, 1]. The probability
depends on the location of the player, on the overall state of the economy,
on the state of the player and on a scaling parameter ε.

Define {λt(x)}x∈Λ(N) for all t as a collection of independent random vari-
ables uniformly distributed on [0, 1], and define Xt as:

Xt+1(x, S t, ε) =


A if λt(x) ≤ p(x, ε, S ε

t , A)
B if λt(x) ≥ 1 − p(x, ε, S ε

t , B)
0 otherwise.

(5)
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Thus, agent x in state S t mutates to A in period t + 1 if Xt(x, S t, ε) = A;
mutates to B if Xt(x, S t, ε) = B; and does not mutate otherwise. Also note
that {Xt(x, S t, ε)}x∈Λ(N) is a collection of random variables for each t that
are independent across players and time. The specification ensures that the
mutation probability depends on the state of the population, the location of
the agent, and so on. In particular, the state of the population includes the
state of agent x so that the mutation probability may be different depending
on whether the agent plays A or B and one strategy may be chosen with
a higher mutation probability than the other one. To simplify notation we
drop the arguments S t, ε from Xt(x, S t, ε) and use Xt(x) if it does not lead
to confusion.

We make the following assumption about the mutation structure.

Assumption 1 The mutation probability satisfies:

1. limε→0 p(x, ε, S , · ) = 0 for all x ∈ Λ(N) and S ⊂ Λ(N), and

2. there exist α(A) > 0 and α(B) > 0 such that

inf
N

min
x∈Λ(N),S⊂Λ(N)

p(x, ε, S , A) = εα(A) (6a)

sup
N

max
x∈Λ(N),S⊂Λ(N)

p(x, ε, S , B) = εα(B). (6b)

The first assumption is standard. The second one requires that the muta-
tion probabilities are uniformly bounded across agents, states and popu-
lations sizes i.e., εα(A) and εα(B) are the lower bound and upper bound on
the probability that an agent chooses strategy A and B as a consequence of
mutation, respectively. This assumption is not more restrictive than other
similar assumptions used in the literature (see Ellison (2000) and Young
(1993) for example). Note that εα(B) can be of a lower order than εα(A),
so that the ratio of the mutation probabilities may well be unbounded as
ε ↓ 0, and also B can be adopted increasingly more frequently than A as
ε ↓ 0. Hence this is compatible with the environment for which Bergin-
Lipman’s result holds for a given population size.

Using the construction, the transition rule for the process {S ε
t }t≥0 can

be formally written as

S ε
t+1 = Φ(S ε

t )

≡
{
x ∈ Λ(N) : Xt+1(x)=0,

|S ε
t ∩ (x+N)|
|x +N| ≥ θ

}
∪

{
x : Xt+1(x)= A

}
. (7)

This construction defines a Markov-chain S ε
t .
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Denoting the event where everybody plays A by ~A, we are interested
in the long-run probability of the event ~A:

µε(~A) = lim
t→∞

Pr(S ε
t = Λ(N)). (8)

which is the same as the probability of ~A under the invariant distribution
of S ε

t . In particular our main goal is to characterize µε(~A) as ε ↓ 0.

3 Best Response Dynamics with State Depen-
dent Mutations

Our analysis of the long-run distribution of the population consists of two
steps. First, we construct a new process which satisfies a sample path
inequality with respect to the original process; the sample path inequality
then implies a certain distributional inequality.1 Secondly, we characterize
the long-run distribution for the new process and deduce the properties of
the limiting distribution of the original process using the distributional
inequality. The main benefit of the stepwise approach is the analytical
convenience the new process provides.

3.1 Renormalization and Coupling Argument
Suppose that N is even.2 Let Λ(M) be a torus where M ≡ N/2, and assign
to each y ∈ Λ(M) a set of four players from the original torus Λ(N) by

H(y) =
{
x ∈ Λ(N) : xi ∈ {2yi, 2yi + 1}, i = 1, 2, y ∈ Λ(M)

}
. (9)

We call y and x ∈ H(y) a team and a team member, respectively. We
shall also refer to the population of teams as the renormalized population.
Let zt : Λ(M) −→ {A, B} be a map which represents the state of team y
at time t, which will be defined shortly. As before, we characterize the
dynamics of the population in terms of the set of teams playing A, thus
Zε

t = {y : zt(y) = A}. We construct an initial configuration Zε
0, and a

transition rule such that that if the state of a team is A, then all of its team
members play A in the original population.3

First, we define the initial state for the renormalized process. At time
zero, a team is said to play A if all of its members in the original population

1This is called the coupling technique. See Aldous and Fill (1999, Chapter 14).
2We discuss later what happens if N is odd.
3On the other hand we do not require if a team plays B, then all members play B.
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play A; otherwise it plays B. Formally, Zε
0 is defined by

Zε
0 = {y : z0(y) = A}. (10)

where

z0(y) =

A if s0(x) = A ∀x ∈ H(y)
B otherwise.

(11)

Note that
{x ∈ H(y) : y ∈ Z0} ⊂ S 0. (12)

Thus, the set of agents belonging to teams playing A in the initial period
is a subset of the set of agents playing A in the original population.

Secondly, we construct the transition rule for the renormalized process
without mutation such that the condition {x ∈ H(y) : y ∈ Zt} ⊂ S t (if a
team plays A, then all of its members in the original population play A)
is satisfied for all t ≥ 0. Observe that if all members of a team play A
in the original population, then the best response for all team members is
A. Therefore, if a team plays A, it will never adopt B in the absence of
mutation. Moreover, let

Gi(y) = {y − ei, y + ei}, for i = 1, 2 where e1 = (1, 0) e2 = (0, 1).

That is, Gi(y) represents the two neighbors of team y in coordinate direc-
tion i. It is easy to see that if a team playing B encounters two other teams
all of whose members are playing A in two different coordinate directions,
then all members of the team adopt A in at most 3 periods under the orig-
inal process (see Figure 1 where the reference to time indicates the period
when the agent adopts A).

For future reference we summarize the transition rule for the renor-
malized process in the absence of mutation by the following lemma.

Lemma 1 (Contagion) In the absence of mutations

1. if a team y plays A, then never adopts B,

2. if a team y has at least one member playing B, then all of its mem-
bers adopt A if Gi(y) ∩ Zε

t , ∅ for both i = 1 and i = 2.

Thirdly, we construct a random variable representing mutations for the
renormalized population using the random variable representing mutations
for the original population. We do so in two steps. Let

ξt(x) =


A if λt(x) ≤ εα(A)

B if λt(x) ≥ 1 − εα(B)

0 otherwise.
(13)
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Figure 1: Propagation mechanism for the teams with no mutation
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• agents playing A in period t

The construction ensures that the event {ξt(x) = A} implies {Xt(x) = A},
and {Xt(x) = B} implies {ξt(x) = B}. Next, let Yt(y) be a random variable
with values

Yt(y) =


A if ξ3t(x) = A ∀ x ∈ H(y)
0 if ξn(x) , B ∀ x ∈ H(y) and n = 3t − 2, 3t − 1, 3t,

and ξ3t(x) , A
B otherwise.

(14)

In words {Yt(y) = A} is the event in which all team members mutate to
A in period 3t, {Yt(y) = 0} is the event that no mutation to B occurred
during the periods 3t − 2, 3t − 1, 3t, and we are not in the previous case.
Finally, {Yt(y) = B} is the event that at least one team mutates to B during
the periods 3t − 2, 3t − 1, 3t, and all team members do not mutate to A in
period 3t.

There are two important facts about Yt(x). First, the construction of
Yt(x) and Lemma 1 ensure that the stochastic process for the renormalized
population is a Markov process. Secondly, the timing for the renormal-
ized population is different from that of the original population. As we
can see on Figure 1, it takes three periods under the original process for all
team members to adopt A. Therefore the clock for the renormalized pop-
ulation ticks slower: three periods under the original process correspond
to one period under the renormalized one. This is reflected by the timing
convention used in the definition of the random variable Yt(x).

We can use Assumption 1 to provide bounds on the events that a team
mutates to A or to B. Setting ᾱ(A) = 4α(A), we obtain

Pr(Yt(y) = A) = εᾱ(A). (15a)
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Moreover, a team mutates to B with probability at most 12εα(B). For small
ε there is a ᾱ(B) such that this probability is at most εᾱ(B) i.e.,

Pr(Yt(y) = B) ≤ εᾱ(B) (15b)

Finally, after the construction of the transition rule without mutations,
and defining the random variable representing mutations for the teams, we
can construct the transition rule for the renormalized process with muta-
tion

Zε
t+1 =Ψ(Zε

t )

≡
{
y < Zε

t :Yt+1(y)=0,Gi(y)∩Zε
t ,∅,∃uYt+1(u)=0, u∈Gi(y) ∀i

}
∪

{
y∈Zε

t : Yt+1(y)=0
}
∪

{
y ∈ Λ(M) : Yt+1(y) = A

}
.

(16)

Equation (16) can be decomposed to three transition mechanisms: con-
tagion, cohesion, and mutation. Contagion is represented by the first
bracket. If team y is playing B at time t, and meets two other teams play-
ing A in two different coordinate directions, it chooses A at time t + 1.
Since we require that neither team y nor any of the two other teams mutate
at time t + 1, the construction in (14) implies that no members of any of
these three teams mutated in the original process at 3t + 1, 3t + 2, 3t + 3.
Therefore, all members of team y make a transition from B to A during
3t + 1, 3t + 2, 3t + 3. Consequently, all players in these three teams plays A
at time 3t + 3 in the original process. Cohesion is captured by the second
bracket. It indicates that a team playing A continues with the same choice
in the absence of mutation. Since Yt+1(y) = 0 implies that no member of
team y mutates during 3t + 1, 3t + 2, 3t + 3, all members of team y play A
at time 3t + 3 in the original process. Mutation is represented by the last
bracket. Again, the construction of mutation for teams ensures that if team
y mutates to A at time t + 1, so do all team members at time 3t + 3 in the
original process.

All three mechanisms are inherited from the original population; re-
normalization makes cohesion explicit and simplifies the way contagion
works. The above decomposition also highlights the analytical advantage
of working with the renormalized process rather then the original one.
Transition from B to A can take place both in the presence and the absence
of mutation in the original process. In contrast, transition from B to A
takes place only as a consequence of mutation in the renormalized process.
This simplifies the derivation of the limit distribution of the renormalized
process.

It follows from our discussion above that our construction ensures
the desired relationship between the original and renormalized process as
stated in the next proposition.
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Proposition 1 The process {Zε
t }t≥0 governed by the transition rule (16)

and starting from the initial condition (10) satisfies

{x ∈ H(y) : y ∈ Zε
t } ⊂ S ε

3t. (17)

for all t.

Proposition 1 in turn has an important consequence for our analysis cap-
tured by the following statement. Let νε(~A) be the long run probability of
the event where all teams play A.

Corollary 1 If limε→0 νε(~A) = 1, then limε→0 µε(~A) = 1.

Proof. It suffices to prove that µε dominates νε, i.e. νε(~A) ≤ µε(~A). This
follows from equation (17) i.e., the event that Zε

∞ = Λ(M) implies the
event that S ε

∞ = Λ(N). �

3.2 Contagion versus State Dependent Mutation
This subsection presents the main result of the paper. Our main goal is
to demonstrate that for any state dependent mutation structure satisfying
the conditions in Assumption 1, contagion dominates mutation: given the
mutation structure, the risk dominant equilibrium will be uniquely selected
in the long run for a suffuciently large but finite population.

The proof is built around two important concepts.

Definition 1 (Lock-in) A state Z is called a lock-in if no team changes
strategy in the absence of mutation. The set of these states is denoted by
L.

If strategy A does not spread further through contagion, then the state is a
lock-in.4 The next concept is new.

Definition 2 (k-restricted lock-in) Draw an M × M square representa-
tion of the torus. Denote the “left-upper” k × k square by R(k). For state
Z, define the restriction of Z to R(k) to be a state where all teams inside
R(k) play the strategy according to Z while all teams outside R(k) play B.
If the restriction of Z to R(k) is a lock-in, then Z is called a k-restricted
lock-in. The set of k-restricted lock-ins is denoted by Lk.

4This state is also called a limit set of the mutationless process in the literature.
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Figure 2: The sufficient number of teams ensuring coordination on A with-
out mutation

����� �����

• agents playing A in period t

Put differently, we treat all teams outside R(k) as if they played B. If
no team ever adopts A inside R(k) due to contagion, then Z ∈ Lk. The
definition describes the set of states where the configuration outside R(k)
does not generate contagion5 i.e., there are no contagious effects coming
from outside R(k). It is easy to see that a k-restricted lock-in is also an
l-restricted lock-in for all l < k. Although a restricted lock-in is not neces-
sarily a lock-in, any lock-in Z is a k-restricted lock-in for all k < M.

We start by proving a preparatory lemma. Let LA
k be the set of k-

restricted lock-ins with all teams in R(k) playing A. Moreover, let Zk be
the set of configurations where at least k teams in R(k) play B.

Lemma 2 If Z ∈ L − ~A i.e, {Z ∈ L : Z , ~A}, then Z ∈ ZM i.e., it contains
at least M teams playing B. If Z ∈ Lk − LA

k , then Z ∈ Zk i.e., it contains
at least k teams playing B.

Proof. Consider the statement for lock-ins. Observe that it is sufficient
for the whole population to adopt A in the absence of mutation if at least
M teams play A at t = 0 and these teams are located on a diagonal [see
the illustration in Figure 2a]. It is easy to see that all teams next to the
diagonal have two neighbors in two different coordinate directions playing
A. Therefore these teams adopt A by lemma 1. Applying induction, we
obtain that all teams adopt A at t = M − 1.

Next, suppose that at most M − 1 teams play B initially. To see that
such a configuration cannot be a lock-in, note that a torus of size M × M

5To ensure that the teams at the boundary of the M ×M square have a regular neigh-
borhood structure, we assume that there is an (M + 1)st row and column of teams all
playing B for all t ≥ 0.
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can be viewed as an object consisting of M parallel diagonals of length M.
If at most M − 1 teams play B at t = 0, there must be at least one diagonal
on the torus on which all teams play A. Hence our previous argument
implies that the the whole population adopts A which proves the first part
of our lemma.

Now consider the statement for k-restricted lock-ins. Since a k-restric-
ted lock-in is not a torus but a square which cannot be viewed as an object
consisting of parallel diagonals, the previous argument cannot be applied
directly. However, a redefinition of the concept “diagonal” for squares
solves our problem. View R(k) as consisting of an upper and a lower tri-
angle plus the main diagonal. Pick up a diagonal of length n1 from the
upper triangle and the corresponding diagonal of length n2 = k − n1 from
the lower triangle. Let a “diagonal” be defined by these two pieces. The
k − 1 such “diagonals” plus the main diagonal give us k “diagonals”. Ele-
mentary argument shows that if any of the constructed diagonals contains
k teams playing A, all teams in R(k) eventually adopt A in the absence of
mutation [see the illustration in Figure 2b]. Therefore our previous argu-
ment applies proving the second part of the lemma. �

These two results are a very useful when we need to know the minimum
number of mutations required to leave the basin of attraction of ~A or a
k-restricted lock-in with all teams in R(k) playing A.

After this preparation, we shall characterize the limit distribution of
the process {Zε

t } using a result on first passage times. First, we introduce
some notation. Let Z and Z′ be two states and TZ = inf{t > 0 : Zε

t = Z} be
the first passage time to state Z. Let

Pr Z(Zε
t = Z′) ≡ Pr(Zε

t = Z′|Zε
0 = Z).

and
PrZ(E) = inf

Z∈Z
Pr Z(E)

for an event E andZ ⊂ Λ(M). We use the following well-known identity
for ergodic Markov-processes to characterize the long run distribution [see
Durrett (1996, Chapter 5)]:

νε(Z)

νε(~A)
=

Pr ~A
(
TZ < T ~A

)
Pr Z

(
T ~A < TZ

) (18)

To show that for a given mutation structure, ~A is played most of the time
in a sufficiently large but finite population as ε ↓ 0, we look for an ap-
propriate upper bound in terms of ε on the above ratio. We estimate the
numerator and denominator separately. The key is to estimate the latter.
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Now we turn to the proof for the main theorem which is constructed
via three lemmas. Although they are somewhat technical, we believe that
there is a clear intuition behind each of these lemmas. The first lemma es-
tablishes the order of the probability of getting from one lock-in to another
one which has “fewer teams” playing A.

Lemma 3 Let Z and Z′ be two lock-ins with Z * Z′. The probability of
getting from lock-in Z to lock-in Z′ without hitting any other lock-in is
given by

Pr Z(TZ′ < TL−Z′) = O(εᾱ(A)|Z\Z′|). (19)

Proof. We estimate the following sum

Pr Z(TZ′ < TL−Z′) =

∞∑
t=1

Pr Z(TZ′ = t,TL−Z′ > t).

First, observe that for any t, the event {TZ′ = t,TL−Z′ > t} requires that the
process leaves Z in the first period since Z ∈ L − Z′. Next, if the process
leaves Z, at least one team adopts A in every period due to contagion until
the next lock-in is reached. Since the process may hit ~A at time t = M2,
we need at least max{t − M2, 0} mutations to B not to hit a lock-in by
time t. Moreover, since Z * Z′ and transition from A to B is not possible
without mutation, we need at least |Z\Z′| more mutations to B to reach
Z′. Thus, reaching Z′ by time t without hitting any other lock-in along
a given trajectory has probability at most εᾱ(B)(|Z|−|Z′|+max{t−M2,0}). We have
to multiply this value by the number of possible trajectories. Since each
trajectory is t long, by choosing a sufficiently large K depending only on
M, we can estimate this number by Kt.6 For ε sufficiently small, the sum
in the inequality

Pr Z(TZ′ < TL−Z′) ≤ εᾱ(B)(|Z\Z′|)
∞∑

t=1

Ktεᾱ(B) max{t−M2,0}.

is convergent. Indeed the sum is O(1) which proves our claim. �

Note that any configuration with fewer then M teams playing B (other then
~A) is not a lock-in by Lemma 2. Therefore this lemma also implies that
if the process starts from ~A, the probability that it hits any configuration
with at least M teams playing B before getting back to ~A is bounded from
above by Kεᾱ(A)M.

6Different K’s appearing in different formulas may be different.
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The next lemma formulates a “local” version of this observation. In
words, the lemma says that the probability of leaving a configuration which
contains a k × k square of teams playing A and returning to a similar con-
figuration before hitting a state where the k × k square has at least a row
or column of players playing B is bounded by some constant multiple of
εᾱ(B)k. This local version of the previous lemma will make it possible to
track the evolution of the process more closely and in the end prove our
main claim.

Lemma 4 For some K > 0 independent of ε

Pr LA
k

(
TZk < TLA

k

)
≤ Kεᾱ(B)k. (20)

Proof. The proof is based on the construction of a shadow process Zk,ε
t ,

which is intended to keep track of only those events taking place inside
of R(k). We prove the claim for the shadow process making use of the
previous lemma and then we transform the result to Zε

t by using a coupling
argument.

First we construct the shadow process as follows. At the initial state,
teams inside R(k) in Zk,ε

0 play the same strategy they play in Zε
0. However,

teams outside R(k) in Zk,ε
0 play B. This is to ensure that we focus only on

the “local problem” i.e., what happens inside R(k). We define the transition
rule as follows. Teams inside R(k) in Zk,ε

t mutate to a given strategy if they
do so inside R(k) in Zε

t . Contagion within R(k) in Zk,ε
t takes place according

to the standard rule for teams. Finally, teams outside R(k) in Zk,ε
t play B

forever.
It is easy to see that Zk,ε

t ⊂ Zε
t for all t ≥ 0. It is true for t = 0 by

construction. Since no team ever plays A outside R(k) in Zk,ε
t , we have

to show only that our claim is true inside R(k). First, mutation generates
teams playing A under Zk,ε

t whenever it does so under Zε
t . Secondly, since

contagion is induced only by A and teams outside R(k) play B forever,
teams outside R(k) have no contagious effects on teams inside R(k) in Zk,ε

t .
Since this is not true for Zε

t , we have Zk,ε
t ⊂ Zε

t .
Consider now the shadow process Zk,ε

t . Lemmas 2 and 3 imply for the
shadow process that the probability of getting to Zk before returning to
LA

k is bounded from above by Kεᾱ(B)k.7 The condition Zk,ε
t ⊂ Zε

t implies
that if Zε

t hits Zk, then so does Zk,ε
t , and conversely if Zk,ε

t returns to LA
k ,

then so does Zε
t . It follows that the event that Zε

t hits Zk before returning
to LA

k implies the event that Zk,ε
t hits Zk before returning to LA

k . Thus if

7Note that from the point of view of the shadow process the set LA
k could be consid-

ered to be a singleton since teams outside R(k) do not count anyway.



19

the required inequality holds for Zk,ε
t , then it also holds for Zε

t . The lemma
is proved. �

The next lemma builds on the previous two lemmas to provide the key
to the proof of our main claim.

Lemma 5 Let

m ≡
⌈
ᾱ(A)
ᾱ(B)

⌉
, (21)

where d.e is the ceiling function (the next integer up if ᾱ(A)/ᾱ(B) is not an
integer). For all M > m,

1

Pr Z

(
T ~A < TZ

) = O(ε−ᾱ(A)m) (22)

for any Z ∈ L − ~A.

Proof. We construct an event which is a subset of the event {T ~A < TZ}, and
estimate its probability from below. The key step of the proof is to show
that for all k ≥ m play A, there is a positive probability independent of ε
that all teams in R(k + 1) will play A before returning to Z. Thus m plays
the role of a critical mass: once a sufficiently large set of teams (measured
by m) play A, it is easy to proceed. So the difficulty lies in reaching this
critical mass of m, and hence the bound εᾱ(A)m.

Since Z ∈ L− ~A, it follows from lemma 2 that state Z contains at least
M teams playing B. Draw an M×M square representation of the torus such
that the uppermost and leftmost team plays B in Z. Denote the “left upper”
k × k square in this M ×M torus by R(k), and the set of diagonal elements
by D(k). Observe that this construction ensures that Z ∈ Lk − LA

k for all
k = m, . . . ,M which implies by lemma 2 that Z ∈ Zk for all k = m, . . . ,M.

To estimate Pr Z

(
T ~A < TZ

)
from below, consider the following inequal-

ity:

Pr Z

(
T ~A < TZ

)
≥ Pr Z

(
TLA

m
< TZ

) M−1∏
k=m

Pr LA
k

(
TLA

k+1
< TZk

)
. (23)

To see why this inequality holds, first note thatLA
M = ~A. Next observe that

the first term is the probability that the process visits an m-restricted lock-
in where all teams in R(m) play A before getting back to Z. The second
term is the product of probabilities. Each term in this product measures
the probability that the process passes from a k-restricted lock-in to a k+1-
restricted lock-in without hitting Zk. Along such a path the process does
not hit Z because Z ∈ Zk for all k = m, . . . ,M. Since this chain of events
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is sufficient but not necessary for
{
T ~A < TZ

}
to occur, its probability is a

lower bound on Pr Z

(
T ~A < TZ

)
. Thus the inequality indeed holds.

We now turn to estimate each term on the right hand side of the above
inequality separately. We shall complete this estimation in two steps.
Step 1. Suppose that at least the teams in D(m) mutate to A in the ini-
tial period and no mutations to B take place during the next m periods.
Lemma 1 implies that all teams in R(m) play A after at most m periods,
and we have not returned to Z. Thus

Pr Z

(
TLA

m
< TZ

)
≥ K1ε

ᾱ(A)m (24)

for some K1 > 0 and ε small.
Step 2. We prove now that the probability of getting fromLA

k toLA
k+1 with-

out hitting Zk is bounded from below by a constant independently of ε.
To find this bound we recycle our construction of the shadow process from
the previous lemma to construct an event that is a subset of

{
TLA

k+1
< TZk

}
.

Let T̃ i
Z be the ith hitting times of the shadow process Zk,ε

t on some
subsetZ of the M×M representation of the torus. Consider the following
inequality:

Pr LA
k

(
TLA

k+1
< TZk

)
≥
∞∑

i=1

Pr LA
k

(
T̃ i
LA

k
< T̃Zk

)
× Pr

 The team in D(k + 1)/D(k) does not mutate
to A in Zε

t for the first (i− 1) times when Zk,ε
t

hits LA
k , but it does at the ith time.


× Pr

(
No mutation to B occurs in Λ(M) for

k + 1 periods

)
.

The right hand side captures the following event. The shadow process
starting from LA

k returns to LA
k several times without hitting Zk. One of

these times the next team along the diagonal mutates to A. Finally, no
mutation takes place for the next k + 1 periods after that. We can write
the probability of this joint event in a product form because of the Markov
property and because the shadow process is independent of what mutations
take place outside R(k) in Zε

t (and of course D(k+1)/D(k) is outside R(k)).
If this joint event happens, then all teams in R(k) play A in Zε

t and Zε
t

did not hit Zk on the way because Zk,ε
t ⊂ Zε

t by construction. Since the
next team along the diagonal mutated to A, and no mutations happened
afterwards for k + 1 periods, contagion drove all teams in R(k + 1) to play
A in the end. Therefore the probability of this joint event is indeed a lower
bound for the left-hand side.
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We estimate each term on the right hand side separately. The strong
Markov property of the stopping times T̃ i

LA
k
, i = 1, 2, . . . and Lemma 4

imply for the first event on the right hand side that

Pr LA
k

(
T̃ i
LA

k
< T̃Zk

)
≥

(
1 − Kεᾱ(B)k

)i ≥
(
1 − Kεᾱ(A)

)i
,

where we use the fact that ᾱ(A) ≤ ᾱ(B)k for all k ≥ m by construction.
The second term is equal to

(
1 − εᾱ(A)

)i−1
εᾱ(A). Finally, the probability of

the third term i.e., that no team mutates to B for k + 1 periods is bounded

from below by
(
1 − εᾱ(B)

)M2(k+1)
.

Putting these three pieces together yields

Pr LA
k

(
TLA

k+1
< TZk

)
≥
∞∑

i=1

(
1 − Kεᾱ(A)

)i (
1 − εᾱ(A)

)i−1
εᾱ(A)

(
1 − εᾱ(B)

)M2(k+1)

= εᾱ(A)(1 − εᾱ(B))M2(k+1) 1 − Kεᾱ(A)

Kεᾱ(A) + εᾱ(A) − Kε2ᾱ(A)

≥ εᾱ(A)(1 − εᾱ(B))M2(k+1) 1 − Kεᾱ(A)

(1 + K)εᾱ(A) ≥ K2. (25)

for some K2 > 0 independent of ε. The second step is complete.
Putting the results from equation (24) and (25) together proves the

lemma. �

The heart of the previous lemma is step 2 where we assess the outcome of
a “race”: the next diagonal team needs to mutates to A before too many
teams at wrong locations inside R(k) mutate to B. The probability of the
event that the next diagonal team mutates to A at each occasion when all
teams play A inside R(k) is εᾱ(A). The probability of the event that the
process hits a k-restricted lock-in with positive number of teams playing B
in R(k) is at most Kεᾱ(B)k. The fact that the ratio of these two probabilities
is bounded from below by a constant for k ≥ m implies that the set of
teams playing A has a strong growth property for small ε. This is due
to two factors. One is cohesion: once a large group of teams plays A, it
is very hard to destroy them. Secondly, contagion ensures that only one
additional team is required for the large group playing A to grow beyond
its boundaries. Intuitively, m acts as a “critical mass” in the argument;
once the teams in R(m) play A, the critical mass has been reached and it is
easy to proceed.

The next theorem states our main result.

Theorem 1 For M ≥ m2,

lim
ε→0

νε(~A) = 1,



22

where m is defined in equation (21).

Proof. We prove our claim in two steps. The first step focuses on Z ∈ L− ~A
whereas the second step considers Z < L.
Step 1. Consider the states Z ∈ L − ~A. We have that

νε(Z)

νε(~A)
=

P~A(TZ < T ~A)
PZ(T ~A < TZ)

.

Since Z is a lock-in and Z , ~A, Z has at least M teams playing B. It
follows from Lemma 3 that

PA(TZ < TA) = O
(
εᾱ(B)M

)
. (26a)

Indeed, starting from ~A, the first lock-in on the way requires at least M
mutations to B.

Moreover, the previous lemma implies

1
PZ(T ~A < TZ)

= O
(
ε−ᾱ(A)m

)
(26b)

for M ≥ m.
Putting these together yields

νε(Z)

νε(~A)
= O

(
εᾱ(B)M−ᾱ(A)m

)
.

In particular, for M ≥ m2,
νε(Z)

νε(~A)
→ 0

as ε→ 0.
Step 2. Consider the states Z < L. Let Ẑ be the state to which Z converges
in the absence of mutations. Then

νε(Z)
νε(Ẑ)

=
PẐ(TZ < TẐ)
PZ(TẐ < TZ)

.

The denominator is of order 1, because if no mutation occurs for the next
M2 periods (which happens with probability approaching 1) then we hit Ẑ
without hitting Z for sure. The numerator goes to zero as ε → 0 because
of Assumption 1. Indeed, a mutation is required in the first step, otherwise
we would stay at Ẑ. The aforementioned condition guarantees that all
mutation probabilities tend to zero.
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Therefore
νε(Z)
νε(Ẑ)

→ 0

as ε→ 0. This holds true for Ẑ = ~A as well as other lock-ins. All in all we
have that

νε(Z)

νε(~A)
→ 0

for any Z such that Z , ~A. The proof is complete. �

Putting together this result and Proposition 1 yields that for N ≥ 2M
even, the only long-run stochastically stable set of the original {S ε

t }t≥0 pro-
cess is ~A.

It remains to consider the situation when N is odd. Let N = 2M + 1.
Consider a a 2M × 2M rectangle on the torus. Note that throughout the
proofs so far we have not used the fact that the environment is a torus,
and not an M × M square. Thus the theorem is applicable for the 2M ×
2M square on the torus. Note that if all teams in the 2M × 2M square
are playing A, then contagion in the absence of mutation implies that the
(2M + 1)st column and row will also play A in a finite time period. Since
mutation probabilities go to zero, we can conclude that ~A is the only long-
run stochastically stable set of the game for N = 2M + 1 too. Thus the
following corollary holds.

Corollary 2 For N ≥ 2m2 we have

lim
ε→0

µε(~A) = 1

where m is defined in (21), and µε is the unique invariant distribution of
S ε

t .

4 Conclusion
In contrast to the crucial role of state dependent mutation in the equi-
librium selection for global interaction games, the details of the muta-
tion structure do not matter much for local interaction games. The result
strengthens the equilibrium selection result of the evolutionary game the-
ory. Moreover it justifies the approach that deliberately avoids a detailed
formulation of the decision making process. Finally considering the fact
that the situations captured by the approach are mainly social phenom-
ena involving many loosely-related agents, the local interaction frame-
work could be a better description of the reality than the global interaction
framework.
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Our proof uses two basic features of the local interaction environment.
First, it allows for cohesive groups based on the risk dominant strategy
which make the the risk dominant strategy more resistant to mutations rel-
ative to the payoff dominant strategy. Secondly, the environment is suffi-
ciently connected that contagion can propagate the risk dominant strategy
through the whole population.

It is likely that our argument can be extended to more general settings
with a higher dimension, a larger interaction range and many strategies.
Using results from Blume (1995), one can construct cohesive teams for
more general interaction ranges. Since contagion also works in a sim-
ilar fashion as in our case, the main idea of our proof applicable. Fur-
thermore, higher dimensional environment also allows the construction of
teams (hypercubes of the corresponding dimension), and the arguments
of Schonmann (1992) imply that the contagion mechanism works in the
same way, hence we believe that our proof can be applied. Finally, if we
consider many strategies, but there is a unique strategy A that it is a best
response to any configuration where at least half of the opponents play A,
then stable teams can be constructed, and our proof can be applied.

We can also draw some conclusions about the relationship between
mutation and contagion in a more general local interaction environment
than the torus; see Morris (2000) and Young (1998, Chapter 6). The exis-
tence of cohesive groups and the contagion mechanism is essential for our
argument to work. If both cohesion and contagion favors the risks domi-
nant strategy, then the intuition behind our result implies that the number
of mutations required to eliminate a large group playing the risk dominant
strategy will depend on the size of the group. In contrast, to propagate the
risk dominant strategy through contagion requires few mutations, indepen-
dent of the population size. This asymmetry should ensure that results on
state-dependent mutations similar to ours are obtained in a more general
spatial environment.
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