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Abstract

This paper proposes a stochastic model of a bipartite credit network
between banks and the non-bank corporate sector that encapsulates basic
stylized facts found in comprehensive data sets for bank-firm loans for a
number of countries. When performing computational experiments with
this model, we find that it shows a pronounced non-linear behavior un-
der shocks: The default of a single unit will mostly have practically no
knock-on effects, but might lead to an almost full-scale collapse of the
entire system in a certain number of cases. The dependency of the overall
outcome on firm characteristics like size or number of loans seems fuzzy.
Distinguishing between contagion due to interbank credit and due to joint
exposures to counterparty risk via loans to firms, the later channel appears
more important for contagious spread of defaults.
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1 Introduction

The last few years have seen a surge of interest in the properties of the in-

terbank market and formal modelling of interbank connections via models and

methods of network theory. The major motivation for the emergence of this

new research area have been the events unfolding in 2008 and beyond after the

default of Lehman Brothers. As it appeared (and the same danger was lurk-

ing around the corner in minor local crises like the Greek and Cyprian debt

crises), the breakdown of one major (or even minor) component of the inter-

national financial system could have led to hitherto unexpected domino effects

via a variety of contagion channels culminating in the complete collapse of the

worldwide financial system. In the political arena, this has led to the aware-

ness of the importance of systemic risk and a shift from the micro prudential

framework of former Basle Accords to attempts to include systemic risk factors

in a new macro-prudential regulatory framework. Academic scientists, policy-

makers and the public realised that the inner life of the banking sector had been

very much of a blank spot in many respects: neither had there been much data

available on the size and distribution of activity within the banking sector, nor

had economists shown much interest in this component of the economic system,

or had developed particular models to explain its activity.

As of 2008, the pertinent literature consisted of a handful of empirically

oriented, data-analytical papers driven by natural scientists’ interest to study

large data sets from a network perspective (Boss et al., 2004; Inaoka et al., 2007;

Soramäki et al., 2007) and the theoretical literature on contagion effects in styl-

ized banking networks initiated by Allen and Gale (2000). A certain confluence

of both approaches happened with the first computational models of conta-

gion effects in the interbank market (Nier et al., 2008; Haldane and May, 2011;

among others). However, these first-generation interbank models have focused

their attention exclusively on the role of direct interbank credit as a contagion

channel. While they revealed important insights on the trade-off between risk
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sharing and risk propagation (the later aspect absent in traditional theorizing

about the financial sector), other channels of contagion of stress have only been

allowed for very recently. A number of authors have recently introduced ad-

ditional layers of network structure alongside direct credit into models of the

interbank market: Halaj and Kok (2013) consider funding risk together with

credit risk of interbank loans, whereas both Huang et al. (2013) and Montagna

and Kok (2013) consider the contagion effects induced by portfolio overlaps and

changing market valuation of portfolio components. Interestingly, they observe

a nonlinear interplay between the contribution of interbank credit and joint

portfolio exposures to overall systemic risk. In particular, they document, how

for a sample of the largest European banks, systemic risk under joint modelling

of both channels often turns out to be more than the sum of both components

considered in isolation. In the light of this literature, an overall aim in this paper

is to provide a foundation for the addition of another layer of network structure,

namely, joint exposures via loans extended to non-financial firms. While this

is somehow similar to portfolio overlaps, the network structure generated by

such joint credits might be different as the majority of firms typically does not

have credit connections to more than two banks, while portfolio synchronisation

might be much more common. However, as we will see, the resulting sparseness

of the bipartite network characteristic of bank-firm loans does not imply that it

is of less relevance from the viewpoint of contagious spread of stress.

The plan of the remainder of this paper is the following: In sec.2 we will

review basic stylized facts inferred from comprehensive data sets of bank-firm

loans for economies like the Italian and the Japanese. We will then propose a

stochastic model for generating a bipartite network that shares these stylized

facts and also is in line with the typically very heterogeneous, right-tailed distri-

bution of firm and bank sizes. In sec.3, we will introduce joint credit exposure

towards the non-bank corporate sector along with interbank credit into a model

of the banking sector with fully articulated balance sheet structures. In sec.4

we use this multi-layer network model to study the effect of defaults of single
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business firms on the overall system, and compare the relative contribution of

bank-firm and bank-bank credits to the spread of defaults through the system.

Thereby, interbank contagion works via the standard mechanism of defaults of

interbank loans causing losses in the creditor banks, while we assume that a

bank default spills over to the company sector via the loss of funding for the

banks’ borrowers. Sec. 5 concludes. A technical Appendix details the condi-

tion for emergence of a large connected component in our network of bank-firm

credit connections that is crucial for potentially system-wide contagious effects.

2 Construction of a Realistic Bipartite Credit

Network between Banks and Firms

In order to capture another important layer of contagion effects in the financial

sector, joint exposures via credit to the same set of borrowers should be included

into standard contagion models that so far lack this important channel. To this

end, a consistent and realistic bipartite network structure for loans from banks

to firms of the real sector of the economy needs to be designed. Some basic

plausible stylized facts can be inferred from the analysis of a comprehensive

Italian data set by de Masi and Gallegati (2012):

1. The distribution of degrees in this bipartite network is much wider for

banks than for firms. For instance, they find the mean for firms to be 1.8

and for banks to be 149, respectively. The maximum number of links of

firms as borrowers is 15 while on the lending side the most active bank

reports 6899 credit relationships.

2. The number of links, while heterogeneous, is size dependent for both banks

and firms: there are small banks that basically provide credit to mostly

such companies that themselves have few lenders while also large hubs ex-

ist among banks with a multitude of lending relationships to the corporate

sector.
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Similar results are reported for Japanese data in de Masi et al. (2011).

In particular, the average number of degrees for both banks and firms are very

close to the Italian case, while at the extremes of the degree distribution a larger

maximum degree for firms and a smaller maximum degree for banks is found.

In the following, we develop a simple simulation algorithm that is designed to

capture the basic design principles of this heterogeneous bipartite network. As in

Montagna and Lux (2013) we assume a Pareto distribution for the balance sheet

size of the banking sector and also, following well-known insights in industrial

economics, suppose a similar Pareto distribution of firms’ size.

To start with, we fix the number of banks and firms in our system (all

numbers used in the following might be changed over relatively wide intervals

without changing the basic structural features of the network). Typically, the

number of corporate firms in the real sector exceeds the number of banks by

at least one order of magnitude. De Masi and Gallegati (2012), for instance

investigate bank-firm relations for about 40000 firms and 500 banks.

We denote the number of banks and firms by Nb and Nf and the average

number of links of the firm sector by λf . Consequently, the average number of

links per bank is λb = λf · Nf

Nb
. However, we also assume that these average

degrees do not apply uniformly, but are the means of heterogeneous linking

probabilities both across banks and firms that are increasing with their balance

sheet size.

For banks, the balance sheet sizes are assumed to be random draws from

a truncated Pareto distribution, i.e. total assets Ai, i = 1, 2, . . . , Nb are dis-

tributed as:

Ai ∼
α · LαA−α−1i

1−
(
L
H

)α (1)

with L and H the minimum and maximum of the support and α the Pareto

index.

The simplest way to allow for a dependency of the number of links of a unit

on its size is to assume that the degrees are distributed proportionally to the
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balance sheets sizes, i.e. bank i (i = 1, 2, . . . , Nb) has an expected degree:

λi = λ̄bAi. (2)

This can be achieved in the following way: let us assume that the degrees are

random draws from a Poisson distribution. Then, the average expected degree

across the population of banks could be written as:

∫ H

L

λ̄bAif(Ai)dAi ≡ λb. (3)

We see that the constant λ̄b is simply obtained as:

λ̄b =
λb
Āi
, (4)

the given (observed) average degree λb divided by the mean balance sheet

size Āi across the system. Given the ensemble of banks with their balance sheets,

for each of them, its specific number of degrees is consequently obtained as a

draw from a Poisson distribution with specific parameter λ̄bAi i.e. a Poisson-

Pareto mixture distribution1 (other relationships could be used as well, as, for

example, logarithmic dependence of degrees on size, etc.).

We now turn to the firm sector and construct its distribution of loan sizes

and degrees so as to be consistent with those obtained for banks and the stylized

facts reported above. First of all, the mean loan size of firms can be obtained

as follows:

f̄j = θĀi ·
Nb
Nf

(5)

where θ is the (average) fraction of external assets (here only loans to firms) in

banks’ balance sheets.

Assuming that the firm size distribution (and with it the distribution of

loans) follows a Pareto distribution with the same shape parameter α as for

1This type of mixture distribution is well-known in the actuarial literature, cf. Albrecht
(1984).
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banks, we can obtain a truncated Pareto distribution for firms by using this

mean together with a lower threshold l and upper threshold h obtained in the

same way:

l = θL
Nb
Nf

, h = θH
Nb
Nf

. (6)

Our assumption of a larger number of firms than banks guarantees that the

truncated distribution of loans by firms lies to the left of the one we had used

for banks.

Having obtained the parameters of the loan size distribution, l, h, and α, we

randomly draw the individual realizations for the ensemble of firms, and, again

similar to the previous approach for banks, determine the number of links of

each firm j, j = 1, 2, ..., Nf , by Poisson draws with parameters:

λj = λ̄fBi , with λ̄f =
λf
B̄i

(7)

where λf is the average degree across all firms (1.8 in de Masi and Gallegati)

and B̄i is the average (total) loan size across firms.

Both the resulting numbers for the sum of degrees over all banks and firms,

respectively, as well as the total amount of loans from the perspective of both

lenders and borrowers should be in rough agreement as their expectations are

the same in our stochastic framework. Since both are realizations of stochastic

numbers, they will, of course, not be exactly identical in any realization of this

system. We provide for consistency by taking the minimum of the aggregate

links of banks and firms, and add connections one after the other by following

the approach of the so-called static model for scale-free networks (Goh et al.,

2001): we first assign to each node (bank or firm) a weight according to the

realization of its degree. We, then, choose randomly one node from the weighted

ensemble of banks and a second one from the weighted ensemble of firms and

connect these. The pool of potential links is then reduced by the two stumps

that we have used from the distribution of degrees of banks and firms to form

this link, and we proceed in the same fashion with all remaining links until
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the minimum of available links from either banks’ or firms’ side is exhausted.

Finally, we divide the total loan amount of a bank to its multiple borrowers

proportionally to their loan sizes obtained from the Pareto distribution of firms.

This preserves the relative increase of degrees with loan sizes across firms while

the exact numbers would, of course, not exactly add up to the pertinent loan

positions of banks that have been generated by independent random draws.

Figs. 1 through 3 illustrate the resulting universe of connections between

the financial and corporate sector. In Fig. 1 we have aligned banks (red) and

firms (blue) in two lines ordered by size, grey lines indicating an existing credit

relationship between bank i and company j. Figs. 2 and 3 show the network

structures within both the banking and corporate sectors that are created via

joint credit and lending relationships. The pertinent adjacency matrices are

created as follows: Denote by M the incidence matrix with dimension Nb ×Nf

that lists simply the (valued) credit links from any bank i to company j. The

adjacency matrix for banks is then obtained by the one-mode projection B =

MM>,while the one for firms results from the operation F = M>M . The

network structure that comes about indirectly via joint credit relationships is

surprisingly dense. Fig. 2 shows that the network of banks forms a complete

graph, while the network of companies of Fig. 3 exhibits a few singlets together

with a large connected component containing the majority of links. However,

these singlets are simply those firms whose random Poisson draws were equal to

zero, i.e., they have not been assigned any credit relationships from the outset.

If we would modify the model in a way to impose at least one loan for each

firm, then they would likely also belong to the large connected component.

Note that the average number of loans per firms is λf = 2. Despite this very

restricted average number of connections from firms to the banking sector, we

find a network structure that practically amounts to a complete graph for both

sectors of the economy. The Appendix shows that one could expect the existence

of a giant connected component in our bipartite network generation algorithm

with the chosen parameter values, and indeed for any typical combination of
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Figure 1: Connections between banking (red) and corporate (blue) sectors in a
network with Nb = 20, Nf = 200, λf = 2, λf = 20 and Pareto distributed sizes
of banks and firms. Banks and firms are ordered with respect to their balance
sheet and total loan sizes, respectively. Numbers are assigned consecutively for
firms and banks upon initialisation of the system.
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Figure 2: The network of banks’ interlocks obtained from the one-mode projec-
tion of the bipartite network.
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Figure 3: The network of firms’ interlocks obtained from the one-mode projec-
tion of the bipartite network.
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the average degrees λb and λf as well as the Pareto shape parameter α of the

size distributions.

3 Embedding the Bank-Firm Network in a Model

of the Interbank Market

We now use the realistic topology of credit relationships between the banking

sector and the real sector of the economy to add an additional layer of con-

nectivity between banks. As our workhorse interbank market model, we adopt

the framework of Montagna and Lux (2013) that is similarly motivated in its

structural assumpions by stylized facts of interbank credit. Their approach is

based on a simplified representation of the balance sheet structure of banks as

depicted in Fig. 4.
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Figure 4: Balance sheet structure of banks. The number of loans to firms
depends on the size of the bank and is determined via the stochastic model
presented in sec.2.

12



This model allows for the following aggregate categories of assets and liabil-

ities: On the liability side, it distingushes between equity (ei), deposits (di) and

interbank borrowing (bi) so that total liabilities Ii of bank i can be written as:

Ii = ei + di + bi. (8)

Assets are simply broken down into interbank loans (li) and external assets (xi)

so that total assets Ai are given as:

Ai = li + xi. (9)

In the approach of Montagna and Lux (2013) as well as in similar interbank

models, external assets are simply a constant book-keeping entity while the

focus is on contagion processes evolving via interbank loans. Here we implement

external assets by substituting for this position the structure of firm-bank loans

established in sec. 2. Since in the interbank market model of Montagna and Lux

(2013) balance sheet sizes of banks are also drawn from a Pareto distribution,

the generating mechanisms for the banking sector’s structure and for the loans

extended from banks to firms are fully consistent. With the addition of a fully

specified banking sector, the complete model exhibits a multi-layered network

structure of the financial sector: The traditional contagion channel of interbank

loans becomes intertwined with the new potential contagion mechanism of joint

exposures to the same counterparties. Both are designed to replicate the stylized

facts of empirical data. We have detailed the generating mechanism of bank-firm

loans above. Interbank loans are generated via one of the probability generating

functions used by Montagna and Lux (2013). Given balance sheet sizes Ai and

Ak of banks i and k, a draw from:

pik = P (Ai, Ak) = d

(
Ai

Amax

)a1 ( Ak
Amax

)α2

. (10)

will determine the probability of an interbank credit link existing between i and
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k (a1, a2, d being parameters, and Amax the balance sheet size of the largest

bank). A second binary draw of aik ∈ {0, 1} with probabilities 1− pik and pik,

respectively, will then determine whether the link will be created or not in the

simulation.

We assume that the relative size of external assets and interbank loans are

fixed at proportions θ and 1− θ of the total balance sheet size:

li = (1− θ)Ai , xi = θAi, (11)

and that, given the realization of the link structure aik of the interbank

network, the breakdown of interbank loans is determined via:

lik =
lipikAk∑
k pikAk

(12)

under the constraint that
∑
k lik = li, where lik is the credit extended from

bank i to k. Eq. (12) assumes that banks with a higher balance sheet size will

also exchange a higher volume of credit. The overall allocation of interbank

credits, of course, also defines the liability side of the interbank market, bi, and

the system is closed by deposits as the residual of the book-keeping operations

while equity is fixed as a certain percentage of the overall balance sheet size.

The most important characteristic of this generating mechanism is that the

resulting interbank network shares the stylized fact of disassortativity, i.e. a

negative correlation between the degrees of connected banks i and k. Hence,

there will be typically nodes with high degrees connected with partners with

a relatively low degree while the association of similarly active banks will be

observed less frequently. This is in conformity with some banks (mostly large

banks) assuming the role of money center banks, and the disassortative mixing

also seems in harmony with recent findings of a core-periphery structure of the

banking network (Craig and von Peter, 2014; Fricke and Lux, 2014).
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4 Simulation Details

We now conduct a series of computational experiments to scrutinize the stability

or vulnerability of the system defined in Sec. 2 and 3 in the presence of external

shocks. While we have run various simulations with alternative settings without

qualitative change of the results, we confine the presentation to the following

baseline set of parameters: The number of banks and firms are set equal to Ns =

250 and Nf = 10, 000, respectively. The bank size distribution is determined

by a truncated Pareto distribution with shape parameter α = 1.2, and the

boundaries of the support are set equal to L = 5 and H = 100.2 Following the

empirical evidence, the average number of links is assumed to be λα = 2 for

firms and λb = 80 for banks. Simulation of the incidence matrix and the loan

sizes for the bank-firm network then proceeds in the following steps:

1. We first determine the balance sheet size of an ensemble of banks via

draws from the truncated Pareto distribution,

2. Given the overall size distribution, and the aggregate characteristics of the

bank-firm network, we determine the number of outgoing links (loans to

firms) of banks via their specific Poisson distributions,

3. Assuming that firms’ size distribution follows a Pareto law as well, and

that this is reflected in the distribution of individually aggregated loans,

the size distribution of loans of firms is determined via the rescaled trun-

cated Pareto distribution with parameters α, l and h for consistency with

the size (and loan) distribution already drawn for banks,

4. Given loan sizes of each firm, realisations of their size-dependent Poisson

distribution can be drawn to determine the respective number of incoming

links, i.e. the number of loans taken from different banks,

2Using a truncated rather than the original Pareto distribution helps facilitate interpreta-
tion of the results. While it preserves to a large extend the observed degree of size heterogeneity
of the banking sector, the truncated Pareto law has finite moments of all orders. In contrast
many statistics would have infinite expectations under a pure Pareto law, so that the statistics
of different simulations would not converge to any limiting value.
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5. Given the full distribution of in-degrees and out-degrees of firms and

banks, these can be connected along the lines of typical network gen-

erating mechanisms as explained in sec.2. When the allocation of all links

is completed, we make sure that each firm and each bank has at least one

connection to the other category of actors, and that each bank is partic-

ipating in the interbank credit market. If necessary, additional links to

randomly determined partners are added for hitherto isolated banks or

firms.

Finally, in the algorithm generating the interbank linkages and complete

balance sheets of banks, we assume that external assets (loans to firms) amount

to a fraction θ of overall assets (the remainder being interbank loans), and

that all banks have an equity share of 3 %. Parameters of the link-generating

mechanism in the interbank market have been set equal to d = 0.5, a1 = 0.25

and a2 = 1.

5 Contagion through Joint Exposures

We are now ready to study the relevance of the firm-bank network as a channel

for the propagation of shocks. While previous studies have typically studied

the effect of a complete or percentage failure of the external assets of one or

more banks, in our framework we can distinguish more specifically between

different sources of such a shock. In particular, it suggests itself to led a shock

to the system consist in the default of a single firm in the network. We will

go through the whole corporate sector and consider the default of each firm

and its aftereffects one after the other. Note that in doing so we also allow

for interbank contagion if one of the creditor banks of the defaulted firm does

not survive the shock itself. This will actually be a rare result in our network

because of the different numbers of banks and firms, and, therefore, the relatively

minor importance of any borrower from the corporate sector for any bank.
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Nevertheless, a small fraction of induced defaults of banks is happening3. We

allow then for aftereffects not only in the banking sector, but also for a feedback

to the corporate sector in that the borrowers of defaulted banks may default

themselves because of lack of funding. We assume that firms will fail, if their

available funding drops below a certain percentage of their ex-ante credit volume

due to defaults of one or more creditor banks. Like interbank contagion this

second channel might unfold over a number of rounds. For instance, a firm

might survive the first round of knock-on effects even if one of its creditors

defaults, but the missing funding is relatively small. However, as the shock

spreads through the system, another creditor bank of the same firm might go

out of business, and the cumulative loss of funding components could become

too high for the firm so that it eventually is driven into default. In this way,

multiple rounds of domino effects are possible in principle.

While defaults of firms due to discontinuance of funding are modelled here

in a relatively simple fashion, any alternation of it (default with a certain prob-

ability, positive recovery value) would just change the quantitative outcome,

not the qualitative effects. Fig. 5, 6 and 7 exhibit the typical outcome of such

simulations. First, Fig. 5 gives the average (over all 10, 000 firms as candidates

for an external shock) and maximum number of defaults of banks when varying

the fraction of external loans from 0 to 100 percent of banks’ balance sheet with

the minimum required level of maintained funding being set equal to 80 percent.

As can be seen, it needs a certain minimum size (about 20% in our example) of

external loans to induce any subsequent defaults at all. Beyond this threshold

the average number of bank defaults increases slightly to reach about 8 percent

of all banks when loans to firms are the only category of assets. What is sur-

prising is, however, not the mean of the number of defaults, but its maximum

(across the hypothesized default of any of the 10, 000 firms). The maximum

jumps sharply from zero to a full breakdown of the banking sector in certain

3One might object that regulatory provision should prevent that one single borrower could
jeopardize the solvency of a bank. However, we could easily widen our interpretation of the
corporate sector by viewing ’firms’ as slightly more general sectoral or regional aggregates
than in any legal definition of these entities.
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cases as soon as any defaults are recorded at all. Fig. 6 and 7 show defaults for

the case θ = 0.6. Both display a bimodal distribution of the contagious bank

defaults. Apparently, either no aftereffects happen at all, or if the initial firm

default leads to knock-on effects in the banking sector the combined contagion

channels of joint exposures and interbank credit lead to a complete breakdown

of the banking sector.

No intermediate cases are actually observed. Fig. 6 shows results in com-

parison to the size of the defaulting firm, Fig. 7 in comparison to the number

of links, i.e. the number of its loans and, therefore, the number of initially af-

fected banks. In both cases, there is no strong relationship between the firms’

attributes and the number of bank defaults eventually caused by the firm’s de-

faults. While the largest and most connected firms are among the ‘disastrous’

candidates, there are also both large firms and firms with many loans where

default remains without subsequent effects as well as relatively small firms and

firms with few loans that could cause a system-wide collapse. Hence, it depends

on the exact positioning of firms in the network and a prediction of each firm’s

contribution to systemic vulnerability appears at least not straight forward. Es-

timation of a Binary Probit model underscores this point: Regressing the binary

variable ”collapse/no collapse”4 on firm’s size and degree we find both highly

significant coefficients and marginal effects of both variables (all probabilities

are < 0.0001) with McFadden’s pseudo R square being 0.65. However, the pre-

dictions derived from the model are very unsatisfactory: Out of 191 cases of a

systemic collapse only about half (100) are correctly predicted using the firm-

specific input data. The adjusted percentage of correctly predicted outcomes is

disappointingly low at 0.32.

4Cases with a few contagious defaults only (displayed on the left-bank side of Fig. 6 and
7) are classified as ”no collapse”.
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Figure 5: Dependency of bank defaults on the fraction of external assets (loans
to firms) in banks’ balance sheet.
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Figure 6: Number of bank defaults versus balance sheet size of defaulting firms.
The fraction of external assets is θ = 0.6. Note that the right-hand side cluster
of full system-wide breakdown covers only about 2 percent of all cases.
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Figure 7: Number of bank defaults vs. degree of defaulting firms (i.e., number
of loans). Again, θ = 0.6 and the right-hand cluster only represents about 2
percent of all cases.
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Figure 8: Dependency of bank defaults on the required fraction of continuing
funding. ”Mean full” and ”Max full” denote the average and maximum af-
tereffects to single firm defaults in the complete system. The labels “banks”
and “firms” identify those cases in which after the initial shock only interbank
contagion or bank-firm contagion is considered, respectively.

Fig. 8 shows how default cascades depend on the minimum fraction of

funding that firms need to maintain (considering first only the lines labelled

”mean full” and ”max full” for the entire system defined above). Similarly as

with Fig. 5 we see a sharp transition at about 75 percent (or the loss of a quarter

of its credit lines) at which the system bifurcates from a completely stable to a

bimodal outcome.

How much does interbank contagion and how much contagion through the

bank-firm network contribute to this outcome? Fig. 9 shows the same scenario

as in Fig. 5 together with the outcome of the contagious process with either

only the interbank network or the bank-firm network activated.

As it turns out, it is the bank-firm funding channel that basically determines

the results. The standard bank-bank contagion contributes a small number
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of defaults and it seems unable in our setting to trigger a full-scale collapse.

The same can be inferred under variation of the required fraction of continuing

funding in Fig. 8. This is in contrast to the results of Montagna and Lux (2013).

The reason is that mostly any borrower’s default wipes out only a small portion

of a bank’s equity (while in Montagna and Lux, the shock consists in a complete

loss of all external assets). An initial bank default happens when one borrower

makes up a large portion of a bank’s portfolio. This default spreads more easily

via the funding channel (since most firms rely on few creditors), while losses in

the interbank market are much more broadly distributed and are more easily

covered by the other banks.

Fig. 10 performs a similar analysis varying the capitalization of banks,

assuming again θ = 0.6 and a benchmark of continuing funding by bank credit

of 80 percent. The interesting outcome in this case is that higher capitalisation

can provide a cushion against a full-scale collapse. In the present setting, an

equity ratio of about 7.4 percent will be needed to make the system safe against

a complete breakdown, if only firm-bank connections were considered. Again,

interbank credit does not add much to systemic risk in the present setting.
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Figure 9: Dependency of bank defaults on the fraction of external assets in
banks’ balance sheets. ”Mean full” and ”Max full” denote the average and
maximum aftereffects to single firm defaults in the complete system (same as
Fig. 5). The labels “banks” and “firms” identify those cases in which after
the initial shock only interbank contagion or bank-firm contagion is considered,
respectively.
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Figure 10: Dependency of bank defaults on the equity ratio of banks. Again,
the effects in the complete system and in systems with one contagion channel
only are displayed. Labels have the same meaning as in Fig. 9.

The last figure show the sensitivity of the system behaviour towards some

of its deep parameters. Fig. 11 considers the simultaneous variation of both

the Pareto indices of the bank size and firm size distribution. As can be seen,

contagion eventually dies out when the heterogeneity of the sizes of the entities

in both sectors is reduced. While this effect is completely monotonic for firms, a

slight hump can be observed for banks when moving from a very heterogeneous

system (α = 1) to higher values. This non-monotonicity might be due to the

probability distribution for the generation of interbank links which leads to a

sparse matrix when applied to a very heterogeneous distribution of bank sizes

(cf. Montagna und Lux, 2013). Overall, however, a system with more equally

sized units appears more favourable for the stability of the system. The reason

is very likely that with more homogeneous sizes, all mutual exposures become

so small that knock-on effects become more and more improbable, and hence
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the detrimental activation of cumulative contagion channels can be avoided.

Figure 11: Dependency of bank default rates on the distribution of firm and
bank sizes. Both size distributions are assumed to to follow a truncated Pareto
law with shape parameters allowed to vary between 1 and 10.

6 Conclusion

We have provided a stochastic model of network generation for credit linkages

between the financial sector and non-financial firms based upon well-known

and plausible stylized facts confirmed by recent studies using comprehensive

data sets for a number of indistrialized countries. We have embedded this

network into a model of interbank credit similarly based upon the stylized facts

of pertinent data, and have explored the potential of this multi-layer system to

give rise to contagious domino effects spreading throughout the entire system.
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The results show a distinctively dichotomic behaviour of this system: After

the default of a single unit from the real economy, the system either shows

practically no repercussions at all, or, if some domino stones are starting to

jiggle they will drag all others with them. Note that this happens beyond a

certain threshold defined by the parameters of the system (low equity ratio in

particular) beyond which the system appears completely safe. But if it is in a

vulnerable state, its fragility expresses itself in the lurking danger of a system-

wide breakdown occurring with small probability, rather than disruptions of

different magnitudes. Interbank contagion slightly aggravates the problem while

the bank-firm connections are by themselves sufficiently contagious to cause

systemic events for a large range of settings. Our results are similar to some

extend to these reported by Huang et al. (2013). These authors study the

contagious potential of portfolio overlaps and also find a similar dichotomic

structure like the present paper. They do not, however, consider interbank

contagion, and have a more schematic model of the distribution of portfolio

components across banks. Our network formation algorithm, in contrast, is

closely geared towards replication of well-established stylized facts.

The analysis in the Appendix shows that given what we know about the

empirical firm size distribution and and the distribution of credit links between

banks and non-financial firms, the resulting network very likely is characterized

by a large connected component. In fact, all empirical estimates (e.g. in the

shape of the size distribution) or mere numbers observed in the data (λb and

λf which are empirical averages) are located far away from the bifurcation line

where a giant component first emerges. Taking these numbers as given, the

credit markets of modern economies do link practically all actors via a net of

joint exposures and joint credits. A possible (but perhaps unlikely) rescue could

be provided through higher-order characteristics like strong clustering within

this network (as also identified by de Masi et al, 2011; de Masi and Gallegatti,

2012 for the cases of Japan and Italy). Clustering amounts to more links being

concentrated in certain regions of the network which implies that some other
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parts would be more sparse in their connectivity. This structure might separate

some parts of the overall network from others and could in principle prevent

or postpone (in relation to some other parameters) the appearance of a large

connected component. Since clustering coefficients are known for the empir-

ical counterparts of a network, the change of results brought about by these

additional micro-structural features needs to be explored in future research.

However, even if clustering breaks up the large component into a few strongly

connected clusters, the potential for contagious spread of defaults caused by

small disturbances may still be relatively high. Given the difficulty of identi-

fying the critical nodes in the firm sector, the present analysis speaks in favor

of appropriately increasing the cushions (equity ratios) to prevent a full-fledged

crisis to evolve from small origins. In principle, with an even closer calibration

to empirical data the present framework could provide an estimate for what

a sufficient cushion would be for a system where basic properties (number of

banks and firms, size and degree distributions) are known.
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Appendix

Here we show how we can obtain some insights into the qualitative proper-

ties of the bipartite bank-firm credit network via application of the generating

function formalism developed by, among others, Newman et al. (2001).

To set the stage, note that the degree distribution of both banks and firms in

our framework are both given by a Poisson-Pareto mixture distribution. Dis-

regarding the upper boundaries used in our simulations, and defining the lower

boundaries for the Pareto distribution of the Poisson parameters λ1 and λ2 for

banks and firms by λ1 and λ2, the degree distributions can be written as:

P1(k) =

∫ ∞
λ1

e−λ1λk1
k!

α
λ1
α

λα+1
1

dλ1. (13)

P2(k) =

∫ ∞
λ2

e−λ2λk2
k!

α
λ2
α

λα+1
2

dλ2. (14)

assuming that the distribution of both λ1 and λ2 (and, hence, the bank and

firm size distributions) are characterized by the same shape parameter α.

Since the number of links of all banks and firms have to be the same, we have

the consistency requirement that:

E[λ1] Nb = E[λ2] Nf ⇐⇒
α

α− 1
λ1 Nb =

α

α− 1
λ2 Nf ⇐⇒ λ2 = λ1

Nb
Nf

. (15)

Many interesting properties of networks can be derived from the probabil-

ity generating function of the degree distributions. Here, we can take stock of

the fact that, in general, the probability generating function of Poisson mix-

ture models is well-known. Namely, denoting the mixing distribution by ϕ(λ),

the generating function of the mixture model can be written (cf. Karlis and

Xekalaki, 2005):

H(s) = E[sk] =

∫ ∞
0

eλ(s−1)ϕ(λ) dλ. (16)

In our case of Pareto mixing distributions, we obtain the generating functions
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f0(s) and g0(s) for banks’ and firms’ degree distributions, respectively:

f0(s) =

∫ ∞
λ1

eλ1(s−1) α
λ1
α

λα−11

dλ1, (17)

g0(s) =

∫ ∞
λ2

eλ2(s−1) α
λ2
α

λ−α−12

dλ2. (18)

We can immediately verify that the distribution is correctly normalized since

f0(1) = g0(1) = 1 holds. As another property of the generating function it

should hold that f ′0(1) and g′0(1) are equal to the average degrees of banks and

firms. This can be verified as well:

f ′0(s) = α λ1
α

∫ ∞
λ1

λ1 e
λ1(s−1) λ−α−11 dλ1. (19)

We see that for s = 1, this equation boils down to the formula for the mean

of the Pareto distribution, and hence:

f ′0(1) =
α

α− 1
λ1 = E[λ1], (20)

and similar for g′0(1) where both mean values are finite only if α > 1 holds.

Randomly choosing one edge (connection), the distribution of the remaining

edges of the vertex that belongs to it is:

f1(s) =
f ′0(s)

f ′0(1)
=

αλ1
α

α
α−1λ1

∫ ∞
λ1

eλ1(s−1) λ−α1 dλ1 = (α−1)λ1
α−1

∫ ∞
λ1

eλ1(s−1) λ−α1 dλ1

(21)

and similarly for g1(s).

Connecting both parts of the bipartite network, the degree distribution of the

banks to which the firms from a randomly drawn bank-firm link are connected,

is given by (cf. Newman et al., 2001):

G1(s) = f1(g1(s)). (22)
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With the help of this function, one can determine whether, given the pa-

rameters, connectivity in the system is high enough to give rise to a so-called

giant component, i.e. a cluster that includes via indirect linkages most of the

two categories of vertices (i.e., banks and firms). In this case, distress could

easily expand from local origins to the whole system and lead to a system-wide

breakdown of activity.

A joint component forms first when G′1(1) = 1 holds, and prevails for

G′1(1) > 1 in general. To elaborate on this condition, we apply the chain rule

of differentiation:

G′1(s) = f ′1(g1(s)) · g′1(s). (23)

We easily obtain:

f ′1(s) = (α− 1) λ1
α−1

∫ ∞
λ1

eλ1(s−1) λ1−α1 dλ1 (24)

g′1(s) = (α− 1) λ2
α−1

∫ ∞
λ2

eλ2(s−1) λ1−α2 dλ2 (25)

g1(1) = (α− 1) λ2
α−1

∫ ∞
λ2

λ−α2 dλ2 = 1. (26)

We, then, obtain:

G′1(1) =

{
(α− 1) λ1

α−1
∫ ∞
λ1

λ1−α1 dλ1

}{
(α− 1) λ2

α−1
∫ ∞
λ2

λ1−α2 dλ2

}
.

(27)

With appropriate normalisation, the integrals define the second moment of

the Pareto distribution so that we arrive at:

G′1(1) =
α− 1

α
λ1
−1 E[λ21] · α− 1

α
λ2
−1 E[λ22]. (28)

Since E[λ21] = α
α−2λ

2
1, E[λ22] = α

α−2λ
2
2, we end up with
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G′1(1) =

(
α− 1

α− 2

)2

λ1 λ2 =

(
α− 1

α− 2

)2

λ1
2 Nb
Nf

. (29)

Hence, a giant duster forms if
(
α−1
α−2

)2
λ21

Nb

Nf
> 1. Local containment of

disturbances thus requires that α > 2 as a necessary condition and that addi-

tionally, if this condition is met, λ1 <
α−2
α−1

(√
Nf

Nb

)
or E[λ1] < α−2

α

√
Nf

Nb

holds. Unfortunately, most empirical evidence for firm (and bank size) distribu-

tions speaks plainly against the first condition (Zipf’s law amounts to α = 1),

and even if this were fulfilled, the typical empirical numbers would require an

unrealistically low left-hand border for the banks’ degree distribution, cf. Fig.

A1.

Figure A1: Bifurcation to giant clustered component. The figure shows the ex-
pectation E[λ1] for given α and numbers of banks and firms at which a transition
to a giant connected component occurs. Nf = 10, 000 in all cases.

32



References

[1] Albrecht, P., 1984, Laplace transformation, Mellin transforms and
mixed Poisson processes, Scandinavian Acturial Journal, 11, 58-64.

[2] Allen, F. and D. Gale, 2000, Financial contagion, Journal of Po-
litical Economy, 108, 1-33.

[3] Boss, M., H. Elsinger, M. Summer and S. Thurner, 2004, Network
topology of the interbank market, Quantitative Finance, 4(6), 677-
684.

[4] Craig, B. R. and G. von Peter, 2014, Interbank tiering and money
center banks, Journal of Financial Intermediation, in press.

[5] Fricke, D. and T. Lux, 2014, Core-periphery structure in the
overnight money market: Evidence from the e-MID trading plat-
form, Computational Economics, in press.

[6] Goh, K.-I., B. Kahng and D. Kim, 2001, Universal behavior of
load distribution in scale-free networks, Physical Review Letters,
87, 278701.

[7] Haldane, A. and R. M. May, 2011, Systemic risk in banking ecosys-
tems, Nature, 469, 351-355.

[8] Huang, X., I. Vodenska, S. Havlin and H. E. Stanley, 2013, Cas-
cading failures in bi-partite graphs: Model for systemic risk prop-
agation, Scientific Reports, 3, 1219.

[9] Inaoka, H., T. Ninomiya, K. Taniguchi, T. Shimizu and H.
Takayasu, 2004, Fractal Network Derived from Banking Transac-
tion? An Analysis of Network Structures Formed by Financial In-
stitutions. Bank of Japan Working Papers, 4.

[10] de Masi, G., Y. Fujiwara, M. Gallegati, B. Greenwald and J.
Stiglitz, 2011, An analysis of the Japanese credit network, Evo-
lutionary and Institutional Economics Review, 7, 209-232.

[11] de Masi, G. and M. Gallegati, 2012, Bank-firms topology in Italy,
Empirical Economics 43, 851-866.

[12] Montagna, M., C. Kok, 2013, Multi-Layered Interbank Model for
Assessing Systemic Risk, Kiel Working Paper 1873.

[13] Nier, E., J. Yang, T. Yorulmazer, A. Alentorn, 2007, Network mod-
els and financial stability, Journal of Economic Dynamics and Con-
trol, 31, 2033-2060.

[14] Gai, P. and S. Kapadia, 2010, Contagion in financial networks,
Proceedings of the Royal Society A, 466, 2401-2423.

[15] Halaj, G. and C. Kok, 2013, Modelling Emergence of the Interbank
Networks. Working paper, European Central Bank.

33



[16] Karlis, D. and E. Xekalaki, 2005, Mixed Poisson distributions, In-
ternational Statistical Review, 73, 35-58.

[17] Montagna, M. and T. Lux, 2013, Hubs and Resilience: Towards
More Realistic Models for the Interbank Market, IfW Working Pa-
per, No. 1826, 02/2013.

[18] Newman, M., S. Strogatz and D. Watts, 2001, Random graphs
with arbitrary degree distributions and their applications, Physical
Review E, 64, 026118.
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