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Abstract. We propose flexible models for multivariate realized volatility dynamics which in-

volve generalizations of the Box-Cox transform to the matrix case. The matrix Box-Cox model

of realized covariances (MBC-RCov) is based on transformations of the covariance matrix

eigenvalues, while for the Box-Cox dynamic correlation (BC-DC) specification the variances

are transformed individually and modeled jointly with the correlations. We estimate transfor-

mation parameters by a new multivariate semiparametric estimator and discuss bias-corrected

point and density forecasting by simulation. The methods are applied to stock market data

where excellent in-sample and out-of-sample performance is found.
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1 Introduction

Dynamic modeling of multivariate financial volatility has recently gained significant interest.

On the one hand, it constitutes an essential part of portfolio decisions, in empirical asset pricing

models and for derivative analysis. On the other hand, recent financial crises have accentuated

the importance of quantifying systemic risk. The latter also requires multivariate rather than

univariate models. Such models require a precise measure of the otherwise latent asset variance

and covariance processes and a framework for modeling the dynamics. Precise measures are

available due to recent and significant achievements on multivariate realized financial volatility

modelling; see, e.g., Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004).

There are several approaches for modeling covariance dynamics. A prominent model class

is based on conditionally Wishart distributed processes (see, e.g., Golosnoy et al.; 2012). Al-

ternatively, linear vector time series models are applied to specific transformations of realized

covariance matrices. The latter approach has the advantage of simplicity; model estimation,

checking and inference is implemented in econometric software packages, while suitable ways of

handling high-dimensional panels of time series are well-established. Various transformations

have recently been suggested: Chiriac and Voev (2011), for instance, use the elements of a

triangular matrix square-root transform, while the matrix logarithm has been considered by

Bauer and Vorkink (2011) as well as Gribisch (2013). For these models, fitted covariance matri-

ces and out-of-sample forecasts are automatically positive definite through the corresponding

retransformations.

Likewise, approaches that separate variance and correlation dynamics, so called dynamic

correlation (DC) models have been a fruitful direction of research. With appropriate factor or

panel structure assumptions, Golosnoy and Herwartz (2012) model the z-transformed realized

correlations (cf. (6) below). Correlation eigenvalues along with locally constant eigenvectors,

sampled at different frequencies, are used by Hautsch et al. (2014). Separate realized variance

and correlation dynamics in mixed frequency models are also investigated by Halbleib and

Voev (2011).

In the univariate time series literature, where transformation-based methods have a long

tradition, the model of Box and Cox (1964) has become popular to find a suitable transform

prior to ARIMA analysis (Box and Jenkins; 1970). Similar approaches were used for univariate

volatility modeling, e.g., by Higgins and Bera (1992), Yu et al. (2006), Zhang and King (2008)
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and Goncalves and Meddahi (2011).

We propose two flexible models in the spirit of Box and Cox (1964) for the dynamic mul-

tivariate realized volatility setup. Both generalize the univariate Box-Cox transform to the

matrix case and contain several well-known transforms as special cases. The matrix Box-Cox

model of realized covariances (MBC-RCov) is based on transformations of the covariance ma-

trix eigenvalues. On the other hand, for the Box-Cox dynamic correlation (BC-DC) model,

the variances are transformed individually and modeled together with the z-transformed cor-

relations.

We introduce a semiparametric estimator of the transformation parameters in the multi-

variate setup by generalizing the univariate approach of Proietti and Lütkepohl (2013). It does

not require the specification of a dynamic model and makes a computationally simple two-step

approach feasible. A simulation-based forecasting procedure is presented to reduce the bias

of the näıve re-transform forecasts. Simulated paths of the realized volatilities may also be

used to obtain density forecasts of the daily returns which will often be the aim of studying

covariance matrix dynamics.

We apply these methods to the data set of Chiriac and Voev (2011) and find that a sparse

vector autoregressive vector moving average (VARMA) specification provides a reasonable fit

to the transformed series. A pseudo out-of-sample forecast comparison is conducted, where the

BC-DC specification either with estimated transformation parameters or restricted to the loga-

rithmic case emerges as favorable in practice. Bias correction provides significant improvements

over the näıve forecasts. Notably, also the conditional Wishart models as popular benchmarks

are outperformed by our transformation-based approach. These results are robust to different

dynamic specifications and remain qualitatively intact for most of the loss functions recently

used for evaluations of this kind.

The paper is organized as follows: In section 2 the new models are introduced. Parameter

estimation and forecasting is described in sections 3 and 4, respectively. Section 5 presents

the estimation results, while section 6 contains the out-of-sample forecast evaluation. Section

7 concludes.
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2 Multivariate Box-Cox volatility models

In univariate regression and time series models, the Box-Cox transformation (Box and Cox;

1964) has been applied to obtain a linear, homoscedastic specification for the transformed

dependent variable. For a scalar x > 0, it is parameterized by δ and given by

h(x; δ) =


xδ−1
δ for δ 6= 0,

log(x) for δ = 0.

(1)

For specific choices of δ, the transform corresponds to a linear mapping of the raw series (δ = 1)

or of various popular transforms such as the square root (δ = 0.5), the logarithm (δ = 0) and

the inverse (δ = −1). The reverse transform is given by

h−1(y; δ) =


(δy + 1)

1
δ for δ 6= 0,

exp(y) for δ = 0,

(2)

which is defined for y > −1
δ if δ > 0 and for y < −1

δ if δ < 0, and gives strictly positive values.

2.1 The matrix Box-Cox model of realized covariances

To generalize the Box-Cox method for modeling covariance matrices we define a matrix version

of the latter, the matrix Box-Cox (MBC) transform. For a positive definite (k× k) covariance

matrix Xt, and t = 1, 2, . . . denoting time periods, we suggest to apply Box-Cox transfor-

mations to the eigenvalues of Xt, each with a distinct transformation parameter collected in

δ = (δ1, . . . , δk)
′,

Yt(δ) := H(Xt; δ) = Vt


h(λ1t; δ1) 0 . . . 0

0 h(λ2t; δ2)
. . .

...
...

. . .
. . . 0

0 . . . 0 h(λkt; δk)

V ′t . (3)

Here λ1t ≥ . . . ≥ λkt ≥ 0 are the eigenvalues of Xt, h(λit; δi), i = 1, . . . , k, are their univariate

Box-Cox transforms and Vt denotes the matrix of eigenvectors of Xt.

To understand the consequences of the MBC approach for modelling covariance matrices,
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it is useful to consider the inverse transformation, applied to a symmetric (k × k) matrix Yt,

H−1(Yt; δ) = Vt


h−1(λy1t; δ1) 0 . . . 0

0 h−1(λy2t; δ2)
. . .

...
...

. . .
. . . 0

0 . . . 0 h−1(λykt; δk)

V ′t . (4)

Here, by λyjt, j = 1, . . . , k, we denote the eigenvalues of Yt, while Vt contains the eigenvectors of

both Yt and H−1(Yt; δ), which remain unaffected by the transform. Notably, when the inverse

MBC transform is well defined and applied to a symmetric matrix, the re-transformed fitted

or forecasted matrices are always positive definite.

The reverse Box-Cox transform is not always well-defined, however. As mentioned below

(2), existence of h−1 and hence of H−1 requires that the eigenvalues satisfy certain restrictions,

namely λyjt(δj) > −
1
δj

for δj > 0 and λyjt(δj) < −
1
δj

for δj < 0. This requirement limits the

set of feasible values of δ for a given sequence of matrices (e.g., forecasts) to which the inverse

transform has to be applied. Our empirical results for stock market data suggest that this

potential drawback may be irrelevant as long as the applied transformation parameters are not

chosen grossly at odds with estimates from the data (i.e. for δj > −0.25 in our application).

As in the univariate setup, the matrix transform contains as special cases linear combina-

tions of the raw matrix entries (δ1 = δ2 = . . . = δk = 1), of the (symmetric) matrix square

root δ1 = δ2 = . . . = δk = 0.5), of the matrix logarithm (δ1 = δ2 = . . . = δk = 0) and of the

inverse (δ1 = δ2 = . . . = δk = −1). It thus incorporates several empirically relevant approaches

to covariance modeling within a common framework. We call this approach for modeling and

forecasting multivariate realized volatility the matrix Box-Cox model of realized covariances

(MBC-RCov).

For all periods t = 1, . . . , T , the MBC-transform is applied to the realized covariance

matrices Xt for an appropriate vector of parameters δ. In this way we obtain a sequence of

symmetric matrices Yt(δ) from which only the lower triangular elements (including the main

diagonal) need to be modeled. A time series model is thus fitted only to the k(k + 1)/2-
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dimensional vector process yt(δ) := vech(Yt(δ))
1. For generality, we assume a linear process

yt(δ) =
∞∑
j=0

Ψj(θ)ut−j , ut ∼ IID(0; Σu), (5)

with Ψ0 = I. We let θ as well as Σu consist of unknown parameters. Specific models will be

considered in the empirical application in section 5. Here, we apply diagonal vector autoregres-

sive moving average (VARMA) models as well as fractionally integrated VARMA (VARFIMA)

and multivariate heterogeneous autoregressive (HAR) models.

2.2 The Box-Cox dynamic correlation model

As an alternative to the matrix version of the Box-Cox transform, we consider a decompo-

sition of variances and correlations. Applying the Box-Cox transform to the individual as-

set variances we introduce the Box-Cox dynamic correlation (BC-DC) model. In the spirit

of dynamic conditional correlation models (Engle; 2002), we write Xt = DtRtDt, where

Dt = diag(
√
X11,t, . . . ,

√
Xkk,t) is a diagonal matrix containing the univariate realized stan-

dard deviations while Rt is the sequence of realized correlation matrices. Applying Fisher’s

z-transformation

R̃ij,t :=
1

2
log

1 +Rij,t
1−Rij,t

(6)

to the correlations has several advantages as compared to using the raw correlations (see

Golosnoy and Herwartz; 2012), so that we propose modelling the vector time series

zt(δ) := g(Xt; δ) := (h(X11,t; δ1), . . . , h(Xkk,t; δk), R̃21,t, R̃31,t, . . . , R̃k k−1,t)
′, (7)

as a linear process analogous to (5).

The inverse BC-DC transform g−1, when applied to forecasted zT+h, yields positive vari-

ances due to the inverse Box-Cox and correlations in the range (−1; 1) due to the inverse Fisher

transform. In contrast to the matrix Box-Cox approach, positive definiteness is not guaranteed

for k > 2, however.2 Whenever positive definiteness fails, it has to be enforced and a well-

1A different strategy would be to fit a model directly to the transformed eigenvalues and free elements of the

eigenvectors, analogously to the approach of Hautsch et al. (2014). They find that the eigenvectors are rather

noisy and unstable at daily frequency which is not the case for our vech-transformation.
2As a counterexample where the unrestricted forecasts do not yield a valid correlation matrix, consider k = 3

and suppose that the inverse Fisher transform gives R12,t = R13,t = 0.8 along with R23,t = −0.8. The quadratic

form γ′Rtγ is negative, e.g., for γ = (1, −1, −1)′.
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conditioned matrix must be obtained by some sort of eigenvalue trimming or shrinkage proce-

dure. Positive definiteness, however, is not problematic empirically even in high-dimensional

stock market applications for z-transformed correlation matrices as the results of Golosnoy and

Herwartz (2012) suggest. Compared to the MBC-RCov approach, the estimated dynamics of

the linear model (5) fitted to zt(δ) are easily interpreted. The matrix Σu, for example, pro-

vides guidance about the extent of instantaneous co-movement within groups of variances or

correlations but also between correlations and variances. Dynamic spill-overs may be modeled

by non-diagonal specifications for Ψj(θ).

In addition to enabling a linear homoskedastic specification, the Box-Cox transform has

originally been introduced to reduce the deviation from normality of the involved variables

or model residuals. However, for the univariate transform (1) it holds that h(x; δ) > −1
δ for

δ > 0 and h(x; δ) < −1
δ for δ < 0. Due to its bounded support, hence, the BC-transformed

variable cannot literally be Gaussian whenever δ 6= 0; see, e.g., Amemiya and Powell (1981).

Merits of the transform even in cases where Gaussianity fails have been pointed out by Draper

and Cox (1969). Although in the matrix case the MBC-transformed series are not individually

bounded, the same logic implies that the MBC- and BD-DC-transformed series cannot be

exactly multivariate normal. We do not need the Gaussianity assumption at this stage but

empirically assess whether the transformed data are at least approximately Gaussian later on.

3 Semiparametric estimation of the transformation parameter

In this section we discuss semiparametric estimation of the vector of transformation parame-

ters δ. Among others, Han (1987) has proposed a semiparametric approach to estimate the

transformation parameter of a single variable. Likewise, the recently developed estimator of

Proietti and Lütkepohl (2013) for time series data does not involve specifying a parametric

dynamic model. It is computed by minimizing a frequency-domain estimate of the prediction

error variance of the transformed series. In the following, we generalize their approach to

multivariate BC-DC and MBC-RCov setups. For the BC-DC model, our multivariate method

provides a potentially more efficient estimator than applying the univariate estimator to all k

variance series individually and allows to impose cross-equation restrictions. Moreover, in the

MBC-RCov context, estimation is inherently multivariate and hence the existing semiparamet-

ric approaches would not be applicable without modifications.
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In multivariate (vector) Box-Cox regression models, where each of the k nonnegative en-

dogenous variables, say realized variances (X11,t, . . . , Xkk,t)
′, are transformed individually, the

standard estimation strategy has been maximum likelihood under the auxiliary assumption

of Gaussian transformed variables; see, e.g., Velilla (1993). Maximum likelihood estimation

can be straightforwardly extended to the MBC-RCov model, as we outline in Appendix A. In

case of dynamic models, the likelihood is simultaneously maximized with respect to both, the

dynamic and the transformation parameters. In contrast, our approach allows the researcher

to proceed in two steps: After the estimation of the transformation parameters, which involves

a k-dimensional optimization for both the BC-DC and MBC-RCov approach, the dynamic

model specification and estimation is carried out for the transformed series as if δ was known.

To sketch our semiparametric approach for a generic k-dimensional vector process xt with

strictly positive elements, we consider the Jacobian of the vector Box-Cox transform

Jt(δ) :=
∂(h(x1; δ1), . . . , h(xk; δk))

′

∂x′

∣∣∣∣
x=xt

,

such that a normalized transform with unit Jacobi determinant is given by

ξt(δ) :=

∣∣∣∣∣
T∏
s=1

Js(δ)

∣∣∣∣∣
− 1
kT

(h(x1,t; δ1), . . . , h(xk,t; δk))
′. (8)

The transformed values h(xj,t; δj) are corrected for the change in scale induced by the Box-Cox

function. The Jacobian is diagonal with elements given by Jjj,s(δ) = x
δj−1
j,s , so that ξt(δ) is

easily computed from {xt}Tt=1 and δ. Alternatively, the well-known normalization ξ̌j,t(δj) :=

(
∏T
s=1 xj,s)

δj−1

T h(xj,t; δj) can be applied to the individual time series. It also succeeds in

obtaining scale-invariance and gives numerically identical results for the estimation procedure

described in this section.

Without referring to a specific dynamic process, denote the one-step ahead prediction

error as ηt(δ) := ξt(δ) − Proj(ξt(δ)|It−1), where Proj(·|It−1) is the best linear predictor of

a time series given an information set It−1 which consists of the series’ own past in this case

and let Ση(δ) := V ar(ηt(δ)). Under the assumption that there exists a vector δ∗ for which

E(ξt(δ
∗)|It−1) is linear in ξt−j(δ

∗), j ≥ 1, we characterize this true value δ∗ as minimizing

the determinant of the prediction error covariance matrix |Ση(δ)|, the so-called generalized

variance of ηt(δ).

A least generalized variance estimator for δ becomes feasible by utilizing the nonparametric

methods proposed by Jones (1976) and further developed by Mohanty and Pourahmadi (1996)
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to obtain nonparametric estimates of |Ση(δ)|, for a given δ. This generalized prediction error

variance is related to the (k×k) spectral density matrix gξ(ω) of ξt by a multivariate extension

of the Szegö-Kolmogoroff-Formula (cf. Priestley; 1982, p. 761),

log |Ση| =
1

2π

∫ π

−π
log 2π|gξ(ω)|dω.

In practice, the integral may be approximated by the mean over a finite number M of frequen-

cies, ωj = (πj)/(M + 1) for j = 0, 1, . . . ,M−1,

log |ΣM
η | =

1

M

M−1∑
j=0

log 2π|gξ(ωj)|,

while the unknown spectral density can be estimated by smoothing the (k × k) periodogram

matrix Iξ(ω; δ) of ξt(δ) over frequencies in the neighborhood of ω,

ĝξ(ω;m) =
∑
|l|<m

Wm(l)Iξ

(
ω +

2πl

T
; δ
)
.

To this end, a bandwidth m and a kernel Wm(l) are applied for which m → ∞, m/T → 0

as T → ∞ and
∑
|l|<mWm(l) = 1 hold, and which satisfy also further regularity conditions

of Mohanty and Pourahmadi (1996). Taken together, a straightforward estimator for the

innovation generalized variance satisfies

log |Σ̂M
η (δ;m)| = 1

M

M−1∑
j=0

log

∣∣∣∣∣∣2π
∑
|l|<m

Wm(l)Iξ

(
ωj +

2πl

T
; δ
)∣∣∣∣∣∣ . (9)

A possible bias correction term for estimating |Σ̂M
η (δ;m)| is not considered here since it does

not change the optimization problem for the resulting estimator,

δ̂ = arg min
δ

log |Σ̂M
η (δ;m)|. (10)

The univariate minimum prediction error variance approach of Proietti and Lütkepohl

(2013) results as a special case for k = 1 by choosing the uniform kernel Wm(l) = 1/(2m− 1)

and averaging the smoothed log periodogram over M = [(T − 1)/(2m)] frequencies.

In the matrix Box-Cox model, semiparametric estimation of the transformation parameter

is more demanding since a scale-preserving normalized transform as in (8) is not available

in closed form. In this context, define x̃t := vech(Xt), denote the MBC transformation in

vech-space as ϕ : x̃t 7→ yt(δ) and the corresponding Jacobi-matrix as

J̃t(δ) :=
∂ϕ(x̃; δ)

∂x̃′

∣∣∣∣
x̃=x̃t

(11)
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for a given observation. A normalized transform is obtained by

ξ̃t(δ) :=

∣∣∣∣∣
T∏
s=1

J̃s(δ)

∣∣∣∣∣
− 1

0.5k(k+1)T

yt(δ).

For computational reasons, it is often preferable to work with log determinants by substituting

the latter expression into the log of the innovation generalized variance,

log |Σ̂M
η (δ;m)| = log |Σ̂M

u (δ;m)| − 2

T

T∑
t=1

log
∣∣∣J̃t(δ)∣∣∣ , (12)

where |Σ̂M
u (δ;m)| is the estimated generalized innovation variance of the non-normalized trans-

form yt(δ); see (5). When used as an objective for minimization with respect to δ, the Jacobi

determinant has to be evaluated numerically.

As a first check if a transformation is relevant for a specific problem at all, it is useful to

construct interval estimates for the transformation parameters. If the intervals include unity,

then an untransformed approach may be used. Alternatively, matrix logarithmic or square-

root models may be a reasonable approximation if the corresponding δ (0 or 0.5, respectively)

is contained in the confidence region. Such regions for BC-DC and MBC-RCov transformation

parameters can be based on the pivot method, see Casella and Berger (2002, Sec. 9.2.2).

To see how this can be achieved in the current setup, note that for a given δ, the asymptotic

distribution of the log innovation generalized variance estimate does not depend on unknown

parameters. Mohanty and Pourahmadi (1996, Theorem 3.1(c)) show that under reasonable

conditions, for M fixed and T →∞,
√
M√

k
∑
|j|<mWm(j)2

(
log |Σ̂M

η (δ;m)| − log |ΣM
η (δ)|

)
d−→ N(0; 1),

which is an asymptotically pivotal statistic. A feasible confidence interval for log |ΣM
η (δ∗)| is

given by

log |Σ̂M
η (δ̂;m)| ±

√
M√

k
∑
|j|<mWm(j)2

z1−α/2, (13)

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution. Following Proietti and

Lütkepohl (2013), the confidence region for δ consists of all values δ for which log |Σ̂M
η (δ;m)|

is contained in (13).

As a practical issue, for both point and interval estimation, the bandwidth parameter m

has to be selected. For the univariate approach, a value of m = 3 has been found to provide a
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good balance between bias and variance in Monte Carlo simulations by Proietti and Lütkepohl

(2013). In the multivariate case, m > k is required to have positive definite spectral density

estimates and hence a nonzero determinant of ĝ(ω; δ). We try different choices of m in the

empirical application below to assess the robustness with respect to the bandwidth choice.

Furthermore, we follow Mohanty and Pourahmadi (1996) and set M to the integer part of

0.5T
∑
|j|<mWm(j)2, while a uniform kernel is used throughout.

Using this procedure for the realized covariance models introduced in section 2, the trans-

formation parameters can be estimated in a first step. While the MBC-RCov model calls for

the multivariate approach, for the BC-DC model either the individual asset variances Xii,t may

be used to determine δi, i = 1, . . . , k in turn, or the minimization (10) is carried out for the full

vector of realized variances. Leaving dynamic model specification and estimation to a second

step makes the analysis computationally convenient: Estimates of the dynamic parameters θ

and innovation covariance matrix Σu are determined from yt(δ̂) or zt(δ̂), respectively. Depend-

ing on the dynamic specification, e.g., least squares or Gaussian quasi maximum likelihood

methods may be considered.

4 Forecasting and bias correction

4.1 Realized covariance forecasting

Once the parameters of the MBC-RCov model have been appropriately determined, it can be

used for forecasting

yT+h|T (δ) := E[yT+h(δ)|IT ],

where IT consists of both returns and realized covariances up to period T . To obtain forecasts

of the realized covariance matrices it is necessary to re-transform these predictions into positive

definite matrices. Reconstructing a symmetric (k × k) matrix YT+h|T (δ) = vech−1(yT+h|T (δ))

and applying the inverse of the MBC transform

X̃T+h|T = H−1(YT+h|T ; δ̂) (14)

may be used as a näıve point forecasts of the realized covariance matrix XT+h.

Due to the nonlinearity of the MBC-transform and its inverse, point forecasts obtained in

this way may be severely biased for the conditional mean of XT+h. We therefore propose a
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simple simulation-based bias correction. Given estimated or pre-specified parameters δ, Σu, θ

and assuming normally distributed disturbances, we simulate realizations of y
(i)
T+h(δ) given IT

from the model (5) using simulated errors

u
(i)
t ∼ N(0; Σu), t = T + 1, . . . , T + h, i = 1, . . . , R.

The reverse MBC-transform yields positive definite X
(i)
T+h, i = 1, . . . , R. Averaging over these

simulated covariance matrices provides an approximately unbiased point forecast

X̂T+h|T =
1

R

R∑
i=1

X
(i)
T+h, (15)

provided that the normality assumption gives a good description of the actual data generat-

ing process. A re-sampling of the model residuals to draw paths of y
(i)
T+j(δ) may lead to a

procedure which is more robust to deviations from normality. The same procedure can be

straightforwardly applied to the BC-DC model and other approaches to transformation-based

forecasting as well.

As has been pointed out in section 2, the normality assumption for transformed variables

cannot be satisfied whenever δ 6= 0 due to their bounded support. Correspondingly, the

re-transformed values of simulated trajectories may not always exist. We circumvent this

shortcoming by using draws from a truncated distribution as follows: We first draw paths u
(i)
t ,

t = T, . . . , T + h for i = 1, . . . R as described above. Whenever a simulated value y
(i)
T+j(δ)

cannot be re-transformed, we discard the whole trajectory and average over the remaining

ones in our bias-correction.

4.2 Forecasting the return distribution

In addition to point forecasts of realized covariance matrices, we consider density prediction

of daily returns rT+h conditional on information in period T , denoted fr(rT+h|IT ), as this is

a key input, e.g., to portfolio decisions and value-at-risk assessment. Joint models of realized

covariance and return dynamics have been found beneficial to obtain suitable density forecasts,

see Noureldin et al. (2012) or Jin and Maheu (2013). In a Bayesian framework of conditional

Wishart models the latter propose computation of such predictive densities that also involves

the parameter uncertainty. Our frequentist setup naturally differs from their approach by

treating the parameters as fixed and ignoring the estimation error in the computation of density

forecasts.
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Depending on the intra-day dynamics of returns, the method for computing Xt and the

time-span from which daily returns are computed (open-to-close versus close-to-close returns),

the unconditional mean of Xt may differ from the unconditional covariance matrix of daily

returns, and a re-scaling of the realized measure will be needed. We follow Jin and Maheu

(2013) and assume for the daily returns

rt|Xt ∼ N(0;X
1
2
t ΛX

1
2
t ), (16)

where the parameters of the symmetric (k × k) scaling matrix Λ are estimated by maximum

likelihood using daily returns rt, t = 1, . . . , T . Suppressing the conditioning on IT for notational

convenience, we obtain draws from fX(XT+h) by simulating X
(i)
T+h as described in section 4.1

and hence approximate the predictive density at a point rT+h according to

fr(rT+h) =

∫
fr|X(rT+h|XT+h)fX(XT+h)dXT+h ≈

1

R

R∑
i=1

fr|X(rT+h|X
(i)
T+h), (17)

where fr|X is the multivariate normal density of (16).

5 Estimation results

We apply the proposed models to US stock market return and volatility data to assess their

usefulness in practice. The data set of Chiriac and Voev (2011) is used which is based on

tick-by-tick bid and ask quotes from the NYSE Trade and Quotations (TAQ) database for the

period from 2000-01-01 to 2008-07-30 (T = 2156). Six liquid stocks are considered, namely

(1) American Express Inc., (2) Citigroup, (3) General Electric, (4) Home Depot Inc., (5)

International Business Machines and (6) JPMorgan Chase & Co. Chiriac and Voev (2011)

describe the computation of the realized covariance matrices from intraday data. They are

available from http://qed.econ.queensu.ca/jae/2011-v26.6/chiriac-voev.

Estimates of the transformation parameters for the MBC-RCov model are shown in the

upper panel of Table 1. They are computed by minimizing (12) for different bandwidths m,

using the uniform kernel and setting M to the integer part of 0.5T
∑
|j|<mWm(j)2 in (9).

Both the unrestricted estimates and the restricted ones under δ1 = . . . = δk are presented.

The table reveals that the estimated δj are negative but close to zero. The values are all in the

range from -0.05 to 0 and are insensitive with regard to the choice of the bandwidth parameters.

The confidence intervals which are shown below the respective unrestricted point estimates and
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at the right of the restricted ones provide statistical evidence against untransformed, matrix

square-root or inverse models. In contrast, the matrix logarithmic model is supported, since

all confidence intervals include zero.

To assess the robustness with respect to the estimation method, we also provide the max-

imum likelihood results for a simple baseline dynamic specification. Details on the estimation

approach are given in Appendix A. We assume that the vector of MBC-transformed series

follows a VARMA process without dynamic spill-overs, so that each series is represented by an

ARMA(p,q)

(1−αi1L− . . .−αipLp)(yit(δ)−µi) = (1+φi1L+ . . .+φiqL
q)uit(δ), i = 1, . . . , k(k+1)/2. (18)

If ARMA models are estimated for yit(δ̂), i = 1, . . . , k, with δ determined by the semiparametric

method, the BIC favors orders (p, q) of (1,1), (2,1) or, less frequently, (2,2) for all but 2 of the 21

series. We choose the diagonal VARMA(2,1) model as it reconciles these outcomes with a quest

for parsimony. With three dynamic parameters per series, this model is similar in complexity to

recent successful approaches to daily (co-)variance modeling; see, e.g., Chiriac and Voev (2011).

As in their model, Granger-causality relations between the series are excluded. The maximum

likelihood estimates, given in the lower panel of Table 1, are close to the semiparametric ones.

Estimation results for the transformation parameters of univariate asset variances, which

are utilized in the BC-DC approach, are provided in Table 2. The Box-Cox parameters are

again negative with small magnitude. In contrast to the MBC-RCov case, the univariate

estimates are spread over the range [−0.1; 0]; the multivariate estimates are closer to zero

again. By including zero, the confidence intervals suggest that a linear time series model may

simply be applied to the log realized variances and z-transformed correlations. This conclusion

does not change when the maximum likelihood estimator for the diagonal VARMA(2,1) model

is considered. Again, this is the specification which is individually favored by the BIC for most

series.

Figure 1 shows two time series plots of each, the raw series Xt, the MBC-transformed

yt(δ̂) (with semiparametric estimates δ̂j and m = 42) and the BC-DC transformed zt(δ̂) (with

univariate semiparametric estimates δ̂j and m = 3) in the left two panels. While large positive

outliers occur and volatility strongly co-moves with the level of the untransformed variances and

covariances, the distribution of the transformed series is more stable and symmetric around

their persistent movements. Interestingly, the dynamics of the first diagonal entry of the
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MBC series, y1,t(δ̂), are very similar to the univariate transformed variance z1,t(δ̂), while the

nondiagonal MBC entry y2,t(δ̂) evolves in close parallel to the corresponding z-transformed

correlation z7,t(δ̂). This reflects the finding of Gribisch (2013, p.4) who found and discussed

the closeness of the matrix logarithm’s diagonal and off-diagonal elements to log variances and

correlations, respectively.

We assess the in-sample success of various nonlinear transforms for our dataset. The ap-

propriateness of a transform for modeling purposes can be seen by a parsimonious ARMA

representation for the transformed variable. Additionally, the stabilization of conditional vari-

ances, i.e. the conditional homoscedasticity of the residuals, is an important goal of the trans-

formation. Further, the approximate normality of transformed variable or model residuals

are frequently stated as the motivation for a transformation-based approach. To evaluate

these goals, diagnostic residual tests are carried out for our benchmark VARMA(2,1) speci-

fication which is applied to different transforms. As straightforward and familiar choices, we

use univariate Ljung-Box tests both on raw residuals and on squared residuals to check serial

correlation and conditional heteroscedasticity, respectively, while Jarque-Bera tests are used

to detect deviations from normality. In our comparison, we consider the raw realized variances

and covariances (vech), the nonzero terms of the Cholesky factors (chol) as well as the unique

terms of the symmetric matrix square-root (sym-root), of the matrix logarithm (mlog) and of

the inverse covariance matrices (inverse).

The results of these diagnostic tests, more precisely the number of rejections across series

for different significance levels, is given in Table 3. Transformations of the realized covariance

matrices which are not appropriate may be detectable by the failure of linear time series

models to produce serially uncorrelated residuals. Therefore, consider the test for residual

autocorrelation, given in the upper panel. Both the MBC-RCov and the BC-DC models have

a non-negligible fraction of rejections. There remains significant autocorrelation even at the

0.1% level for one of the 21 series. Autocorrelation is modest compared to some of the other

transformations, e.g., the Cholesky factorization, however. For the latter, the p-values are

smaller than 1% in 9 cases and the majority (14 out of 21) of the residual series exert significant

autocorrelation at the 5% level. The matrix logarithm transform is the hardest competitor

but still exceeds the BC-DC model with respect to the number of rejections (4 versus 2 at the

1% level). A better fit of the models could be obtained by using larger VARMA model orders
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globally, or by specifying the ARMA models individually for each series. We have consistently

chosen an intuitive and sparse specification to enhance comparability with other model classes

in light of the out-of-sample forecasting study carried out below.

Compared to the other transforms and special cases, the BC-DC and even more the MBC-

RCov model (2 and 1 rejection, respectively, at the 1% level) succeed in stabilizing the residual

variance. Except for the mlog-transform, all other models suffer from extreme conditional

heteroscedasticity with very high rejection rates when autocorrelation of the squared residuals

is tested.

Normality of the model residuals is frequently rejected for the Box-Cox specifications,

namely 10 times out of 21 at the 1% level. It thus performs worse than the matrix logarithm.

Given that the matrix logarithm is contained in the family of MBC-transforms it turns out

that when choosing the transformation parameters for our dataset, we face a tradeoff between

obtaining linear time series models, stabilizing variance and yielding normally distributed vari-

ables. The estimated δj < 0 thus prioritize the former goals but fail with respect to the latter.

Still, the normal approximation is strongly improved compared to the raw variance and co-

variance series. Kernel density plots of the model residuals in the right panel of Figure 1 show

the approximate normality of the transformed series as compared to the untransformed ones.

6 Forecast comparison

We assess the forecast performance of the MBC-RCov and the BC-DC models, also in light

of popular competitor methods. To this end, we use the data set introduced in section 5 and

conduct a quasi out-of-sample forecast exercise, recursively using a pre-specified window of

data for parameter estimation and forecasting, and then, subsequently, evaluating the forecasts

against realized data outside that range.

We address the following questions in the forecasting exercise. To take a closer look at the

methods introduced in section 4.1, we first assess whether bias-correction leads to a significant

improvement of the forecasts. Further, for both the MBC-RCov and the BC-DC model, we

evaluate which value of the transformation parameter δ dominates in terms of out-of-sample

precision and whether the estimates presented in section 5 are also superior out of sample. We

are also interested in whether the dynamic correlation specification outperforms the matrix

transform or vice versa.
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Another main objective of the study is to assess the value of the transformation-based

approach as compared to other methods. As a recently suggested and popular competitor

we consider the class of models that assume conditionally Wishart distributed realized co-

variance matrices. More specifically, two models are included in our baseline comparison, the

Conditional Autoregressive Wishart (CAW) model of Golosnoy et al. (2012) and the Condi-

tional Autoregressive Wishart Dynamic Conditional Correlation (CAW-DCC) specification of

Bauwens et al. (2012).

6.1 Models and setup

To tackle the questions above, we apply the baseline diagonal VARMA(2,1) specification for the

MBC-RCov and BC-DC model and apply a grid of fixed values for the transformation parame-

ter which seem relevant for a specific comparison, e.g., δ1 = . . . = δk ∈ {−0.1,−0.05, 0, 0.5, 1}.

The other model parameters are re-estimated for each estimation window.

For the Wishart models used as benchmarks, the distributional assumption is

Xt|It−1 ∼Wn(ν, St/ν), (19)

where Wn denotes the central Wishart density, ν is the scalar degrees of freedom parameter

and St/ν is a (k× k) positive definite scale matrix, which is related to the conditional mean of

Xt by E[Xt|It−1] = St. The baseline CAW(p,q) model of Golosnoy et al. (2012) specifies the

conditional mean as

St = CC ′ +

p∑
j=1

BjSt−jB
′
j +

q∑
j=1

AjXt−jA
′
j , (20)

C, Bj and Aj denoting (k × k) parameter matrices, while the CAW-DCC model of Bauwens

et al. (2012) employs a decomposition

St = HtPtH
′
t, (21)

where Ht is diagonal and Pt is a well-defined correlation matrix. As a sparse and simple DCC

benchmark we apply univariate realized GARCH(pv,qv) specifications for the realized variances

H2
ii,t = ci +

pv∑
j=1

bvi,jH
2
ii,t−j +

qv∑
j=1

avi,jXii,t−j , (22)
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along with the ‘scalar Re-DCC’ model (Bauwens et al.; 2012) for the realized correlation matrix

Rt,

Pt = P̄ +

pc∑
j=1

bcjPt−j +

qc∑
j=1

acjRt−j . (23)

The diagonal CAW(p,q) and the CAW-DCC(p,q) specification with p = pv = pc = 2 and

q = qv = qc = 1 are selected since they are similar in complexity to the diagonal VARMA(2,1)

model and provide a reasonable in-sample fit among various order choices.

For a given forecasting method, the evaluation is carried out as follows: We split the avail-

able data in a sample X1, . . . , X1508 which is used only for estimation and an evaluation sample

X1509, . . . , X2156. For each T ′ ∈ [1508; 2156−h], the model is estimated using a rolling sample

XT ′−1507, . . . , XT ′ of 1508 observations and forecasts of XT ′+h, h = 1, 5, 10, 20, are computed.

For the transformation-based forecasts, we consider both the näıve forecast X̃T ′+h|T ′ , based on

(14), and the bias-corrected forecast X̂T ′+h|T ′ , see (15), using R = 1000 simulated realizations.

In addition, density forecasts of the returns rT ′+h given IT ′ are computed using the same

simulated trajectories as for the bias-corrected covariance forecasts.

As outlined in section 4.1, in the simulations we discard trajectories where the transfor-

mation from y
(i)
t to X

(i)
t is not well-defined. Additionally, to attenuate the effect of extreme

outliers in the simulated paths, we replace an element of the bias-corrected covariance matrix

forecast by the uncorrected forecast if the fraction between the two exceeds 5 in absolute value.

Such a procedure reflects a practically feasible plausibility check. Both modifications of the

forecasts are needed only for small values of the transformation parameters δ ≤ −0.25 in our

study which are anyway inconsistent with the empirical interval estimates presented above.

We compare the forecasting models by presenting average losses, i.e. risks, over the evalua-

tion period. To gain insights about statistical significance of the differences, model confidence

sets (MCS) are constructed following Hansen et al. (2011) using the MulCom package (Hansen

and Lunde; 2010) in Ox Console Version 6.21. The Max-t statistic is bootstrapped with a block

lengths of d = max{5, h} and 10000 iterations. A confidence level of 90% is used throughout.

6.2 Baseline results

We begin with an evaluation of the forecasting performance using a simple squared prediction

error loss function, evaluated using the true realized covariance matrices. For h = 1, 5, 10, 20

and T ′ = 1508, . . . , 2156−h, we compute the period loss as the Frobenius norm of the forecast
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error

LF
{s}
T ′,h =

k∑
i=1

k∑
j=1

(
Xij,T ′+h −X

{s}
ij,T ′+h|T ′

)2
, (24)

where X
{s}
T ′+h|T ′ is a covariance matrix forecast obtained from one of the different methods.

To assess the value of the bias-correction we compare the risk

LF
{s}
h =

1

2156− h− 1507

2156−h∑
T ′=1508

LF
{s}
T ′,h

of the corrected forecasts to the näıve ones by calculating the fraction of the two for the

different models and transformation parameters. The results are given in Table 4. Despite the

adjustment of miss-behaved bias-corrected forecasts outlined in section 6.1, the simulation-

based forecasts are worse than the uncorrected ones for δ ≤ −0.25. This is most pronounced

for the MBC-RCov model and for short horizons. In such cases, the normality assumption

provides a poor description of the transformed variables and hence the simulated y
(i)
t series do

not produce well-behaved re-transformed forecasts.

The valuation of bias correction changes fundamentally when δ ≥ −0.1 is considered. This

is the empirically relevant span as the estimates of section 5 suggest. The simulation-based

procedure leads to marked improvements of the forecasts. The reduction in risks for the MBC-

RCov model is as high as 12% for h = 1 and δ = −0.1; it gradually reduces as δ approaches

one. There, the MBC-transform corresponds to the raw covariance series and bias-correction

is not needed. This broad picture is reflected also by the BC-DC transformed series, where

δ = 0.5, corresponding to a model of realized standard deviations, is minimally prone to bias.

For δ = 1, when untransformed realized variances are approximated by a Gaussian process in

the simulations, the latter fail to reduce bias, and even devastate the forecast accuracy.

Having shown the usefulness of bias correction, we now turn to a comparison of bias-

corrected forecasts of the proposed models along with the CAW and CAW-DCC specification

for which a correction is not needed. The corresponding Frobenius risks are shown in the left

part of Table 5. The boldface numbers, which indicate the best-performing model for each

horizon, show that the BC-DC specification with δ ∈ {−0.1,−0.05} emerges as favorable for

all horizons.

The asterisks indicate models contained in the 90% model confidence set for a given horizon

h. The MBC-RCov forecasts are contained only for a few specific values of δ. For one-step

forecasts, only the matrix square root transformed (δ = 0.5) and untransformed (δ = 1)
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forecasts cannot be rejected. For some other horizons, no MBC-RCov specification (h = 5) or

only those with negative δ (h = 20) resist a rejection. Neither the matrix logarithm (δ = 0)

nor the semiparametric estimates of δ provide a reasonable performance which is robust with

respect to the chosen horizon. The BC-DC model forecasts are elements of the MCS for a wide

range of transformation parameters including the estimates from section 5 as well as δ = 0.

This holds for all considered forecast horizons. A comparison to the Wishart models reveals

that despite their larger risk, both models cannot be rejected by the MCS approach except for

the two-weeks horizon h = 10.

These conclusions about superiority change when the density forecasts are considered. We

evaluate the forecasts by the logarithmic scoring rule; see, e.g., Gneiting et al. (2008),

LD
{s}
T ′,h = − log f{s}r (rT ′+h|IT ′), (25)

computing negative logarithms of the density forecast f
{s}
r , evaluated at the realized daily

returns h periods ahead. The logarithmic rule is a strictly proper scoring rule, rewarding

careful and honest assessments (Gneiting and Raftery; 2007). It is local in the sense that

no point of f
{s}
r other than the realized return is evaluated, which is also an intuitively and

computationally appealing property.

The results are given in the right part of Table 5. Here, the MBC-RCov with δ ≈ 0

outperforms the BC-DC model; significantly for h = 1 as the MCS consists of only one spec-

ification there. For larger horizons, the differences are less pronounced and both models with

transformation parameters close to zero seem appropriate.

To understand this outcome, note that the whole density of XT ′+h given XT ′ is involved

in computing the conditional return density forecasts. The matrix logarithmic model stands

out from its competitors in yielding relatively close-to-Gaussian residuals, as has been seen

in section 3. Since we use the truncated normal distribution in our simulation of X
(i)
T ′+h, the

different model rankings with respect to covariance forecasts and return density forecasts can

be understood in light of this finding.

Also the Wishart models are rejected using the log density metric. We regard this as

evidence that the Gaussianity assumption for transformed realized covariances provides a better

approximation than the Wishart specification — at least when it comes to forecasting the return

distribution.
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To conclude the baseline results, the BC-DC model with small negative δ outperforms in

terms of covariance matrix forecasting, while the MBC-RCov model with δ ≈ 0 emerges when

the aim is forecasting the return density. The Wishart models are outperformed significantly

in the latter case.

6.3 Robustness regarding model specification

Up to now, the results for MBC-RCov and BC-DC forecasts are based on a simple diago-

nal VARMA(2,1) specification. We check whether our conclusions with regard to the data

transformations remain intact for other models which have been used for volatility dynamics.

We first assess whether the choice of VARMA order matters for our conclusion. To this

end, we compute forecasts and risks also for other specifications. The result for the Frobenius

loss and h = 10 is exemplarily shown in Figure 2 and mirrors the result for other horizons.

To make the figures comparable, here and henceforth, the risks are plotted as a fraction of

a common benchmark, the BC-DC model with VARMA(2,1) dynamics and δ = 0. It turns

out that the VARMA(2,1) specification is among the best choices for most of the different

transformation parameters. Importantly, the conclusion about favorable transforms does not

interfere with the choice of model orders.

Daily financial volatility is often associated with a long memory behaviour, so we also

include such models to our robustness checks. As a first alternative, we consider the heteroge-

neous autoregressive model of Corsi (2009). Lags of yit(δ), averaged over 1, 5 and 20 trading

days in the process

yit(δ) = ci + αi1yi,t−1(δ) + αi5

(1

5

5∑
j=1

yi,t−j(δ)
)

+ αi20

( 1

20

20∑
j=1

yi,t−j(δ)
)

+ uit (26)

introduce long-memory-like persistence. The parameters are estimated by least squares. In

contrast, Chiriac and Voev (2011) use a flexible fractionally integrated vector ARMA (VARFIMA)

specification with “real” long memory behavior. We also follow their approach but do not re-

strict the memory parameter to be the same across series, and hence estimate series-specific

parameters θi = (di, αi1, . . . , αip, φi1, . . . , φiq, µi) of

(1− αi1L− . . .− αipLp)(1− L)di(yit(δ)− µi) = (1 + φi1L+ . . .+ φiqL
q)uit. (27)

Again, correlation between the series is introduced only through the noise covariance matrix
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Σu. Like Chiriac and Voev (2011) we set p = q = 1 which gives the same model complexity as

in our benchmark VARMA(2,1).

Overall, the VARFIMA setup provides smaller forecast errors than the VARMA bench-

mark, while the HAR is outperformed by both competitors; see the results in Figure 3. The

excellent results for the ARFIMA model are in line with the results of Chiriac and Voev (2011).

Further gains may be attainable by considering more sophisticated models, e.g., taking possible

dynamic spillovers, factor structures and structural breaks into account. While a comprehen-

sive comparison of different dynamic specifications is beyond the scope of this paper, we direct

attention to the relative benefits of the various transformations for a given model. The relative

rankings remain remarkably unchanged, independently of the dynamic specification. Again,

the BC-DC model with small negative δj stands out.

Lastly, we compare our transformation-based approach to other models of the conditional

Wishart family. To this end, we conduct a comparison of several diagonal CAW(p,q) models

and CAW-DCC(p,q) models with different orders p and q. Additionally, the component mod-

els proposed by Jin and Maheu (2013) are considered. Regarding the latter, we estimate a

Wishart Additive Component (CAW-ACOMP) model. The distributional assumption (19) is

complemented by

St = CC ′ +
K∑
j=1

Bj � Γt,lj , Bj = bjb
′
j , Γt,l =

1

l

l−1∑
i=0

Xt−i, (28)

where � denotes the elementwise (Hadamard) product and, analogously to the HAR model,

past averages of the covariances enter the conditional mean equation in a linear manner.

Similarly, such lower frequency components are also involved in the Wishart Multiplicative

Component (CAW-MCOMP) model

St =

 1∏
j=K

Γ
γj
2
t,lj

CC ′
 K∏
j=1

Γ
γj
2
t,lj

 , (29)

which we also assess in our study. As for the HAR model, we set K = 3 and average over

l1 = 1, l2 = 5 and l3 = 20 past observations. In accordance with all other Wishart models

considered so far, the parameters are estimated by maximum likelihood for all rolling samples.

The results which are shown in Figure 4 for the Frobenius loss are clear-cut. None of

the models outperforms the BC-DC benchmark, irrespective of the forecasting horizon. This

is indicated by the relative risks that are above one for all models. In contrast, the ranking
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among the Wishart models varies with the horizon. At least for the smaller horizons, the chosen

benchmark orders p = 2 and q = 1 correspond to well-performing models. The component

models show an ambiguous figure. The additive model does well for most horizons, but the

multiplicative approach is worthwhile only for rather long-term forecasts (h = 20).

Overall, the robustness checks find that the results of the baseline setup remain qualitatively

unchanged also when other dynamic models, both for the Box-Cox models and for the Wishart

family, are taken into account. Among the considered alternatives, long memory BC-DC

models are the most relevant direction for improvements.

6.4 Robustness regarding loss function

So far we have focussed on the Frobenius norm of the forecast error when evaluating the

covariance matrix forecasts. In the matrix case, there are several other loss functions which

may be appropriate for different practical forecasting situations; see, e.g., Laurent et al. (2013)

for a discussion. In our out-of-sample study, we additionally consider the Stein distance

LST ′,h = tr
[
X−1T ′+h|T ′XT ′+h

]
− log

∣∣∣X−1T ′+h|T ′XT ′+h

∣∣∣− k, (30)

and the asymmetric loss

L3T ′,h =
1

6
tr
[
X3
T ′+h|T ′ −X

3
T ′+h

]
− 1

2
tr
[
X2
T ′+h|T ′(XT ′+h −XT ′+h|T ′)

]
, (31)

which is used by Laurent et al. (2011). Forecast comparisons based on LF , LS and L3 may

differ because LS penalizes underpredictions more heavily than LF while overpredictions are

more influential with the L3 loss, see Laurent et al. (2011), section 2.3. Additionally, the loss

functions differ in their relative importance of high versus low volatility periods since only the

Stein distance is homogeneous of order 0 and hence scale invariant.

The results of the evaluation with the Frobenius norm is replicated using both the LS

and the L3 norms. Again, as Table 6 reveals, the BC-DC models perform better than their

MBC-RCov counterparts and their forecasting superiority is not rejected with zero or small

negative transformation parameter. The CAW models are statistically rejected in some cases,

even if the power of the MCS procedure appears small for the L3 loss.

A reasonable loss function may also be chosen to involve the economic cost of prediction

errors. A risk-averse investor may be interested in the variance of an ex-ante minimum-variance
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portfolio (MVP) which is computed from the covariance matrix forecast. Using the realized

variance of the MVP as the ex-post loss, we therefore consider

LMVT ′,h = w′XT ′+hw, where w = (ι′XT ′+h|T ′ι)
−1XT ′+h|T ′ι, (32)

where ι = (1, . . . , 1)′. Alternatively, the squared daily return w′rT ′+hr
′
T ′+hw of the ex-ante

MVP is used instead of the realized variance.

Table 7 shows rather inconclusive results. The discriminating power is weak for these two

losses, so that many models are included in the model confidence sets. Notably, however,

BC-DC with δ = 0 outperforms in three out of eight horizon-loss combinations and is always

included in the MCS.

To summarize, the forecasting results are unchanged if other dynamic models are considered

and reveal relatively little ambiguity also with alternative loss functions. Overall, the Box-Cox

dynamic correlation specification with log variances (δ = 0) seems to be a good and robust

choice in practice. It is close to the best performing model for most horizons and with regard

to many of the evaluation criteria. The MBC-RCov model, however, has a superior forecasting

performance for specific criteria such as predictive densities. Further research appears fruitful

to further clarify these facts, e.g., in light of datasets for different asset classes.

7 Conclusion

We have proposed two new approaches to multivariate realized volatility modeling and applied

them to US stock market data. The empirical results, including an out-of-sample forecasting

comparison, seem promising, also in comparison to the main competitors, the conditional

autoregressive Wishart model of Golosnoy et al. (2012) and several variants thereof. Our

assessment of various transformation parameters supports a convenient special case of our

Box-Cox approaches: the use of standard linear time series models to a multivariate time

series of log realized variances and z-transformed correlations. Its appropriateness can be

easily checked for a specific dataset using the inferential methods introduced in this paper.

The present study leaves significant questions for further research. With a focus on forecast-

ing, investigating more advanced dynamic specifications appears worthwhile, possibly including

dynamic spillovers and structural changes along with the long memory dynamics briefly consid-

ered in this paper. Additionally, in applications to data sets of higher dimensions, our approach
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allows the assessment of cross-sectional properties such as factor structures in a methodolog-

ically and computationally straightforward setup. In addition to the realized volatility setup

with utilization of intraday data, our models are also relevant for the study of multivariate

stochastic volatility based on a latent covariance matrix specification.
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A Maximum likelihood estimation

This appendix describes Maximum Likelihood estimation of the MBC-RCov model as con-

ducted in section 5 and shown in the lower panel of Table 1. Although the transformed series

cannot be exactly Gaussian due to the bounded support, we use

ut ∼ NID(0; Σu)

as an approximating auxiliary assumption for parameter estimation, alongside a dynamic model

specification (5), the VARMA model (18) in our case. Under this assumption, the conditional

distribution of yt(δ) is also Gaussian N(µt; Σu) with conditional mean µt(θ) determined by

the time series model. Denoting, as in section 3, the vector of untransformed variances and

covariances by x̃t := vech(Xt), the MBC transformation in vech-space as yt(δ) = ϕ(x̃t; δ) and

the Jacobi matrix as J̃t(δ) (see (11)), the joint density of x̃t is given by

fx(x̃t; δ,Σu, θ) = |J̃t(δ)||2πΣu|−
1
2 exp

{
−1

2
(ϕ(x̃t; δ)− µt(θ))′Σu(ϕ(x̃t; δ)− µt(θ))

}
,

see, e.g., Härdle and Simar (2007, section 3.7).

The log-likelihood, conditional on pre-sample values x0, x−1, . . ., is hence

l(δ,Σu, θ) =

T∑
t=1

log |J̃t(δ)| −
T

2
log |Σu| −

1

2

T∑
t=1

(ϕ(x̃t; δ)− µt(θ))′Σ−1u (ϕ(x̃t; δ)− µt(θ)). (33)

Given δ and θ, the unrestricted maximum likelihood estimator of Σu is computed by Σu(θ, δ) =

1
T

∑T
t=1(ϕ(x̃t; δ) − µt(θ))(ϕ(x̃t; δ) − µt(θ))′ which can be plugged into (33) to obtain the con-

centrated likelihood

lc(δ, θ) =

T∑
t=1

log |J̃t(δ)| −
T

2
log

∣∣∣∣∣ 1

T

T∑
t=1

(ϕ(x̃t; δ)− µt(θ))(ϕ(x̃t; δ)− µt(θ))′
∣∣∣∣∣ . (34)

In practice, a further concentration step seems worthwhile. Compute, for a given parameter

vector δ, the maximum likelihood estimator for the dynamic parameters θ. The term log |J̃t(δ)|

does not affect this optimization so that computation of the Jacobian can be suppressed. The

concentrated likelihood (34) is then maximized with respect to δ only, with the Jacobian

numerically computed at each likelihood evaluation.
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Tables

Table 1: Estimates of the transformation parameters δ1, . . . , δk for the covariance eigenvalues in

the MBC-RCov model based on (3) and (5). The semiparametric estimator outlined in section

3 as well as the Maximum Likelihood estimator for the VARMA(2,1) specification (18) (see

Appendix A) are applied to the realized covariance matrices. Estimates under the constraint

δ1 = . . . = δk (“restricted”) and without this constraint (“unrestricted”) are presented.

m δ1 δ2 δ3 δ4 δ5 δ6

Semiparametric unrestricted

21 -0.0306 -0.0397 -0.0180 -0.0144 -0.0176 -0.0266

[-0.11; 0.06] [-0.11; 0.03] [-0.09; 0.05] [-0.09; 0.06] [-0.09; 0.06] [-0.12; 0.07]

42 -0.0265 -0.0315 -0.0272 -0.0271 -0.0143 -0.0231

[-0.11; 0.06] [-0.10; 0.03] [-0.09; 0.04] [-0.09; 0.06] [-0.10; 0.06] [-0.12; 0.07]

63 -0.0230 -0.0274 -0.0206 -0.0157 -0.0162 -0.0253

[-0.10; 0.06] [-0.11; 0.03] [-0.08; 0.06] [-0.09; 0.06] [-0.09; 0.06] [-0.12; 0.07]

Semiparametric restricted δ1 = . . . = δk

21 -0.0328 [-0.12; 0.05]

42 -0.0270 [-0.12; 0.05]

63 -0.0252 [-0.12; 0.05]

Maximum Likelihood

unrestr. -0.0238 -0.0279 -0.0225 -0.0180 -0.0213 -0.0316

restr. -0.0239
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Table 2: Estimates of the transformation parameter δ1, . . . , δk for the realized variances in

the BC-DC model based on (7) and (5). The semiparametric estimator outlined in section

3 as well as the Maximum Likelihood estimator for the VARMA(2,1) specification (18) (see

Appendix A). The variances are ordered as (1) American Express Inc., (2) Citigroup, (3)

General Electric, (4) Home Depot Inc., (5) International Business Machines and (6) JPMorgan

Chase & Co. Estimates under the constraint δ1 = . . . = δk (“restricted”) and without this

constraint (“unrestricted”) are presented, while this restriction is not possible for the univariate

estimators.

m δ1 δ2 δ3 δ4 δ5 δ6

Semiparametric univariate

1 -0.0616 -0.0934 -0.0715 -0.0346 -0.0762 -0.0569

[-0.20; 0.07] [-0.23; 0.05] [-0.23; 0.08] [-0.22; 0.14] [-0.25; 0.09] [-0.19; 0.08]

3 -0.0619 -0.0888 -0.0645 -0.0382 -0.0758 -0.0525

[-0.20; 0.07] [-0.22; 0.04] [-0.22; 0.09] [-0.22; 0.14] [-0.24; 0.08] [-0.19; 0.08]

10 -0.0613 -0.0832 -0.0592 -0.0353 -0.0708 -0.0533

[-0.19; 0.07] [-0.22; 0.05] [-0.21; 0.09] [-0.22; 0.13] [-0.24; 0.09] [-0.19; 0.07]

Semiparametric multivariate unrestricted

6 -0.0093 -0.0354 -0.0433 -0.0165 -0.0501 -0.0127

[-0.2; 0.17] [-0.2; 0.12] [-0.25; 0.15] [-0.29; 0.24] [-0.3; 0.18] [-0.18; 0.14]

12 -0.0189 -0.0365 -0.0346 -0.0114 -0.0435 -0.0095

[-0.2; 0.16] [-0.2; 0.12] [-0.24; 0.16] [-0.27; 0.23] [-0.29; 0.18] [-0.18; 0.15]

36 -0.0205 -0.0376 -0.0311 -0.0101 -0.0443 -0.0158

[-0.21; 0.16] [-0.21; 0.12] [-0.24; 0.17] [-0.28; 0.24] [-0.29; 0.18] [-0.19; 0.14]

Semiparametric multivariate restricted

6 -0.0268 [-0.13; 0.08]

12 -0.0259 [-0.12; 0.07]

36 -0.0267 [-0.12; 0.07]

Maximum Likelihood

univ. -0.0569 -0.0795 -0.0596 -0.0367 -0.0676 -0.0604

unrestr. -0.0121 -0.0123 -0.0121 -0.0121 -0.0121 -0.0114

restr. -0.0122
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Table 3: Number of rejections for univariate diagnostic residuals tests of the VARMA(2,1)

model (18) based on different transformations: the raw variance and covariance processes

(vech), the Cholesky decomposition (chol), the symmetric matrix square root (sym-root), the

matrix logarithm (mlog), the inverse as well as MBC and BC-DC given by (3) and (7), respec-

tively, with estimated transformation parameters. Upper panel: Ljung-Box test with 10 lags

for no autocorrelation in residuals. Middle panel: Ljung-Box tests with 10 lags for no auto-

correlation in squared residuals. Lower panel: Jarque-Bera test for normality of the residuals.

P-Value vech chol sym-root mlog inverse MBC BC-DC

Residual autocorrelation

0.05 21 14 14 8 15 7 6

0.01 21 9 11 4 11 4 2

0.001 17 6 10 1 7 1 1

Conditional heteroskedasticity

0.05 21 21 21 4 21 3 4

0.01 20 21 21 2 21 1 2

0.001 19 21 21 1 21 1 1

Non-normality

0.05 21 21 21 11 21 13 12

0.01 21 21 21 9 21 10 10

0.001 21 21 21 8 21 8 8
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Table 4: Fraction of mean Frobenius loss (24) between bias-corrected (15) vs. naive (14)

forecasts. The forecasts are from the diagonal VARMA(2,1) model (18) based on the MBC

transform (3) and the BC-DC transform (7).

h = 1 h = 5 h = 10 h = 20

δ MBC BC-DC MBC BC-DC MBC BC-DC MBC BC-DC

-0.5 1.8150 4.0653 2.2496 2.1426 1.6510 1.7354 1.6164 1.3337

-0.1 0.8758 0.9068 0.8750 0.9083 0.8882 0.9120 0.8922 0.9043

-0.05 0.8847 0.9177 0.8920 0.9192 0.9031 0.9216 0.9052 0.9133

0 0.9037 0.9326 0.9098 0.9304 0.9172 0.9306 0.9166 0.9212

0.05 0.9286 0.9513 0.9317 0.9464 0.9357 0.9445 0.9336 0.9345

0.1 0.9375 0.9576 0.9393 0.9518 0.9414 0.9491 0.9378 0.9393

0.5 0.9956 0.9925 0.9893 0.9866 0.9853 0.9826 0.9792 0.9765

1 1.0011 1.3840 1.0021 1.3087 1.0026 1.2046 1.0029 1.1479
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Table 5: Risks from VARMA(2,1) forecasts based on the MBC transform (3) and the BC-DC

transform (7), as well as CAW(2,1) and CAW-DCC(2,1) benchmarks (models (20) and (21)-

(23), respectively). Left: Frobenius loss function (24) from bias-corrected forecasts. Right:

Negative logarithmic score (25) of density forecasts. Asterisks denote the 90% model confidence

set for a given loss function and horizon h. The best-performing forecast is in boldface. Models

for which at least one of the forecasts is not positive definite have missing predictive densities

(—).

Frobenius Loss Predictive Density

h = 1 h = 5 h = 10 h = 20 h = 1 h = 5 h = 10 h = 20

MBC(-0.1) 92.45 138.98 176.74 211.33∗ 8.155 8.276∗ 8.356∗ 8.438∗

MBC(-0.05) 92.53 139.75 177.42 212.45∗ 8.152 8.274∗ 8.351∗ 8.431∗

MBC(0) 93.17 140.34 177.68 212.98∗ 8.146∗ 8.268∗ 8.348∗ 8.428∗

MBC(0.5) 86.58∗ 141.55 179.39 217.35∗ 8.166 8.313 8.414 8.514

MBC(1) 89.50∗ 169.19 212.93 246.54∗ — — — —

BC-DC(-0.1) 84.86∗ 133.85∗ 170.98∗ 206.42∗ 8.160 8.276∗ 8.355∗ 8.432∗

BC-DC(-0.05) 84.73∗ 134.01∗ 171.47∗ 207.29∗ 8.158 8.277∗ 8.359∗ 8.439∗

BC-DC(0) 85.09∗ 134.43∗ 172.03∗ 208.07∗ 8.153 8.269∗ 8.352∗ 8.431∗

BC-DC(0.5) 85.43∗ 142.84 181.56 218.82∗ 8.200 8.350 8.450 8.585

BC-DC(1) 122.39 218.40 258.76 284.48 — — — —

Cholesky 86.20∗ 141.42 178.03 215.75∗ 8.179 8.318 8.415 8.519

CAW(2,1) 85.97∗ 137.34∗ 176.50 214.60∗ 8.187 8.318 8.410 8.503

CAW-DCC(2,1) 86.32∗ 137.77∗ 178.11 217.52∗ 8.302 8.415 8.497 8.616
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Table 6: Risks from bias-corrected VARMA(2,1) forecasts based on the MBC transform (3)

and the BC-DC transform (7), as well as CAW(2,1) and CAW-DCC(2,1) benchmarks (models

(20) and (21)-(23), respectively). Left: Stein loss function (30). Right: L3 loss function (31).

Asterisks denote the 90% model confidence set for a given loss function and horizon h. The

best-performing forecast is in boldface. The case δ = 1 is missing since there at least one of

the forecasts is not positive-definite.

Stein Loss L3 Loss

h = 1 h = 5 h = 10 h = 20 h = 1 h = 5 h = 10 h = 20

MBC(-0.1) 0.997∗ 1.416∗ 1.720∗ 2.118∗ 201.0∗ 254.9∗ 293.9∗ 325.0∗

MBC(-0.05) 0.997∗ 1.420 1.731∗ 2.142∗ 197.2∗ 254.4∗ 293.4∗ 324.3∗

MBC(0) 0.996∗ 1.420 1.733∗ 2.149∗ 197.1∗ 254.9∗ 293.4∗ 324.4∗

MBC(0.5) 1.076 1.573 1.936 2.430 183.0∗ 256.5∗ 294.5∗ 328.1∗

BC-DC(-0.1) 1.000∗ 1.410∗ 1.697∗ 2.074∗ 182.5∗ 249.6∗ 288.3∗ 322.8∗

BC-DC(-0.05) 0.996∗ 1.404∗ 1.696∗ 2.090∗ 181.9∗ 249.5∗ 288.7∗ 322.7∗

BC-DC(0) 0.995∗ 1.405∗ 1.698∗ 2.098∗ 182.3∗ 249.8∗ 289.0∗ 323.1∗

BC-DC(0.5) 1.052 1.527 1.891 2.414 181.7∗ 258.6 296.8∗ 327.9∗

Cholesky 1.099 1.581 1.945 2.440 181.7∗ 256.6∗ 293.3∗ 327.3∗

CAW(2,1) 1.025 1.436 1.740∗ 2.158∗ 184.3∗ 261.2 298.0∗ 332.6∗

CAW-DCC(2,1) 1.004∗ 1.409∗ 1.712∗ 2.170∗ 186.6∗ 262.7 298.6 333.1∗
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Table 7: Risks from bias-corrected VARMA(2,1) forecasts based on the MBC transform (3)

and the BC-DC transform (7), as well as CAW(2,1) and CAW-DCC(2,1) benchmarks (models

(20) and (21)-(23), respectively). Left: Realized variance of minimum variance portfolio (32).

Right: Squared daily return of minimum variance portfolio as defined below (32). Asterisks

denote the 90% model confidence set for a given loss function and horizon h. The best-

performing forecast is in boldface. The case δ = 1 is missing since there at least one of the

forecasts is not positive-definite.

Realized variance of MVP Squared daily return of MVP

h = 1 h = 5 h = 10 h = 20 h = 1 h = 5 h = 10 h = 20

MBC(-0.1) 0.7924 0.8036∗ 0.8107∗ 0.8253∗ 0.6414∗ 0.6550∗ 0.6703∗ 0.6906

MBC(-0.05) 0.7915∗ 0.8027∗ 0.8099∗ 0.8245∗ 0.6409∗ 0.6542∗ 0.6694∗ 0.6887

MBC(0) 0.7912∗ 0.8022∗ 0.8092∗ 0.8233∗ 0.6409∗ 0.6538∗ 0.6685∗ 0.6870∗

MBC(0.5) 0.7920∗ 0.8030∗ 0.8119 0.8267∗ 0.6425∗ 0.6543∗ 0.6692∗ 0.6905

BC-DC(-0.1) 0.7915∗ 0.8025∗ 0.8089∗ 0.8230∗ 0.6396∗ 0.6520∗ 0.6663∗ 0.6842∗

BC-DC(-0.05) 0.7919∗ 0.8030∗ 0.8098∗ 0.8243∗ 0.6399∗ 0.6520∗ 0.6667∗ 0.6856∗

BC-DC(0) 0.7916∗ 0.8025∗ 0.8088∗ 0.8224∗ 0.6397∗ 0.6514∗ 0.6656∗ 0.6840∗

BC-DC(0.5) 0.7928 0.8034∗ 0.8121 0.8272∗ 0.6434∗ 0.6534∗ 0.6702∗ 0.6913

Cholesky 0.7921∗ 0.8026∗ 0.8109∗ 0.8249∗ 0.6409∗ 0.6535∗ 0.6665∗ 0.6896

CAW(2,1) 0.7930 0.8038∗ 0.8110 0.8241∗ 0.6385∗ 0.6514∗ 0.6630∗ 0.6891

CAW-DCC(2,1) 0.7928 0.8039∗ 0.8101∗ 0.8231∗ 0.6443∗ 0.6496∗ 0.6632∗ 0.6869∗
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Figures

X11, t X21, t
vech−Residuals
N(0,1)

y1, t(δ̂) y2, t(δ̂)
MBC−Residuals
N(0,1)

z1, t(δ̂) z7, t(δ̂)
BC−DC−Residuals
N(0,1)

Figure 1: Left two panels: Time series plots of raw variance and covariance series (above),

of the MBC-transformed data with δ estimated by the unrestricted semiparametric estimator

(middle), as well as the BC-transformed variance z1t(δ̂) and z-transformed correlation z7t(δ̂) =

R̃12,t. Right panel: Kernel density estimates of standardized VARMA(2,1) residuals (grey) of

the vech, MBC-RCov and BC-DC series. The standard normal density is shown as the black

dashed line.
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Figure 2: Robustness of out-of-sample results with respect to the order specification of the

VARMA model (18). For h = 10, the Frobenius loss (24) is plotted as a fraction of the loss for

the BC-DC-VARMA(2,1) specification with δ = 0.
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Figure 3: Robustness of out-of-sample results with respect to specification of dynamic persis-

tence. The baseline VARMA(2,1) model (18) is compared to the VARFIMA model (27) and

the HAR model (26). For h = 10, the Frobenius loss (24) is plotted as a fraction of the loss

for the BC-DC VARMA(2,1) model with δ = 0.
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Figure 4: Robustness of out-of-sample results with respect to order specification of the CAW

model (20) and the CAW-DCC model (21)-(23) and to the CAW-ACOMP model (28) and the

CAW-MCOMP model (29). For each horizon, the Frobenius loss (24) is plotted as a fraction

of the loss for the BC-DC-VARMA(2,1) model with δ = 0.
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