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Abstract

The strong consistency and asymptotic normality of the maximum likelihood
estimator in observation-driven models usually requires the study of the model
both as a filter for the time-varying parameter and as a data generating process
(DGP) for observed data. The probabilistic properties of the filter can be sub-
stantially different from those of the DGP. This difference is particularly relevant
for recently developed time varying parameter models. We establish new condi-
tions under which the dynamic properties of the true time varying parameter as
well as of its filtered counterpart are both well-behaved and We only require the
verification of one rather than two sets of conditions. In particular, we formulate
conditions under which the (local) invertibility of the model follows directly from
the stable behavior of the true time varying parameter. We use these results to
prove the local strong consistency and asymptotic normality of the maximum
likelihood estimator. To illustrate the results, we apply the theory to a number
of empirically relevant models.

Keywords: Observation-driven models, stochastic recurrence equations, contrac-
tion conditions, invertibility, stationarity, ergodicity, generalized autoregressive
score models.

1 Introduction

For a general class of observation-driven time varying parameter models, we present
two contributions with respect to the local asymptotic properties of the maximum
likelihood estimator (MLE). First, we show that, under appropriate conditions, local
model invertibility can be obtained as a by-product of establishing the stationarity
and ergodicity of the data generating process (DGP) through a contraction condition.
We show that, depending on the nature of the model, these conditions may be very
mild or quite restrictive. Second, we explore the theory developed in Blasques et al.
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Predictive Likelihoods”, Tenerife, for helpful comments and discussions. Blasques and Lucas thank
the Dutch National Science Foundation (NWO; grant VICI453-09-005) for financial support. Koop-
man acknowledges support from CREATES, Center for Research in Econometric Analysis of Time
Series (DNRF78), funded by the Danish National Research Foundation. Email correspondence:
f.blasques@vu.nl, s.j.koopman@vu.nl, a.lucas@vu.nl.
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(2014b) and prove their unsubstantiated claims concerning the local strong consis-
tency and asymptotic normality of the MLE for the parameters of a correctly-specified
generalized autoregressive score model. We analyze the underlying conditions and
the extent to which they may be restrictive.

We present our results for the class of generalized autoregressive score (GAS)
models which are developed by Creal et al. (2011, 2013) and Harvey (2013). In
the GAS framework, model parameters are made time varying through the score
of the predictive observation density function. The GAS model encompasses well-
known observation driven time varying parameter models including the generalized
autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and
Bollerslev (1986) and the autoregressive conditional duration (ACD) model of En-
gle and Russell (1998). It further gives rise to new interesting models such as the
observation-driven mixed measurement dynamic factor models of Creal et al. (2014),
the dynamic models for location, volatility, and multivariate dependence for fat-tailed
densities of Creal et al. (2011), Lucas et al. (2014), Harvey and Luati (2014), Andres
(2014), and many more. A complete compilation of GAS-model related work can be
found online at http://gasmodel.com.

For an observation yt with density py(yt|ft;λ), time-varying parameter ft and
fixed static parameter vector λ, the GAS model determines the next value ft+1 based
on the current values for ft and yt. The GAS model is an observation-driven model
as defined in Cox (1981). The defining feature of GAS is its use of the score function
of the conditional or predictive observation density in the parameter updating. The
basic GAS model is specified as

yt ∼ py(yt|ft;λ), ft+1 = ω + α s(ft, yt;λ) + β ft, (1)

where s(ft, yt;λ) is the scaled score of the predictive density py,

s(ft, yt;λ) = S(ft;λ) · ∂ log py(yt|ft;λ)/∂ft,

with some positive scaling function S(ft;λ) and fixed static parameters ω, α and β.
The use of the score function as a driving mechanism for the time varying param-
eter ft makes the GAS framework generically applicable whenever one is willing to
assume a specification for the conditional density py. For example, if py is a normal
distribution with mean zero and variance ft, and if we set S(ft;λ) = 2f2

t , i.e. the
inverse conditional Fisher information of ft as in Creal et al. (2013), we obtain

yt = f
1/2
t ut, ft+1 = ω∗ + α∗y2

t + β∗ft, ut ∼ N(0, 1), (2)

with α∗ = α and β∗ = β−α. We easily recognize (2) as the familiar GARCH model of
Engle (1982) and Bollerslev (1986); see for example Straumann (2005), Straumann
and Mikosch (2006) and Francq and Zaköıan (2010) for overviews of asymptotic
results for the GARCH model. We refer to Creal et al. (2013) and Harvey (2013) for
more details on and examples of GAS models.

The likelihood function for the GAS model is known in closed form by means of a
prediction error decomposition. This facilitates parameter estimation via the method
of maximum likelihood. The theoretical properties of the MLE for GAS models have
been explored recently by Harvey (2013) and Blasques et al. (2014b). The optimality
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properties of using the score function in (1) are investigated in Blasques et al. (2014a).
Theoretical work for the GAS model is complicated given its dual intepretation as a
data generating process for the observations yt and as an estimation method for the
latent time varying parameter process. In the former case we refer to (1) as a GAS
process and in the latter case as a GAS filter.

We explore the theory further by providing insight into the intricate relationship
between the stability conditions for the GAS process versus the GAS filter. The
conditions for the GAS process are needed to investigate the properties of yt. The
conditions for the GAS filter are needed to establish the properties of the time varying
parameter estimates evaluated at a static parameter value unequal to the true static
parameter. The filtered estimates also determine the value of the likelihood function.
The filtering problem is closely linked to the issue of model invertibility; see the
elaborate discussion in Wintenberger (2013). To establish consistency and asymptotic
normality of the MLE, we require two separate sets of conditions corresponding to
two sets of nonlinear dynamic systems: the process and the filter.

In our current study we formulate a new set of conditions under which the above
two sets of separate conditions become (locally) equivalent. Model invertibility can
then be obtained as a by-product of establishing stationarity and ergodicity of the
GAS process evaluated at the true parameter value. These results further allow
us to formulate the conditions under which we obtain local strong consistency and
asymptotic normality results which are provided in Blasques et al. (2014b). We find
that the conditions needed for equivalence of the stability of the GAS filter and of the
GAS process can be rather restrictive, but still applicable to a number of relevant
empirical models. We further notice that the differences between the contraction
conditions for the filter and the process are not always sharply distinguished and
sufficiently highlighted in the current literature; see for example the discussion in
Harvey and Luati (2014). This is particularly relevant within the class of GAS
models because the nature of the nonlinearity for GAS filtering recursions can be
very different from the nonlinearity of the GAS data generating process.

The results in our study rely heavily on the contraction approach for stochastic
recurrence equations as developed by Bougerol (1993) and Straumann and Mikosch
(2006). The remainder of this paper is organized as follows. In Section 2, we introduce
the main framework for our analysis and highlight the main differences between
obtaining local versus global results for observation-driven time series models. In
Section 3, we formulate the asymptotic properties of the GAS process and of the MLE
of the static parameters in the model. In Section 4, we provide three key examples
illustrating the vastly different implications of considering either the process or filter
dynamics. Section 5 concludes, and the Appendix gathers the proofs. A supplemental
technical appendix is available with some of the more technical derivations.
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2 Stochastic Properties of Observation-Driven Models

2.1 The Observation-Driven Model as a Data Generating Process

Under an axiom of correct specification, there exists a θ0 ∈ Θ such that observed data
{yt}Tt=1 is a subset of the realized path of a stochastic sequence {yt}t∈Z generated by

yt = g(ft(θ0), ut), ut ∼ pu( · ;θ0), (3)

ft(θ0) = φy(ft(θ0), yt;θ0) ∀ t ∈ Z, (4)

where {ft(θ0)}t∈Z is the true sequence of time varying parameters with elements
taking values in a convex set F ⊂ R; {ut}t∈Z is a sequence of independently and
identically distributed (i.i.d.) innovations; ft characterizes the conditional density of
{yt}t∈Z via the function g in the observation equation (3); and φy is the function that
defines the dynamic update equation for ft(θ0), Whenever convenient, we drop the
argument of ft(θ0) and write ft instead. As an example, consider the GAS model
in (1). We have φy(ft, yt;θ0) = ω0 + α0s(ft, yt;λ0) + β0ft. In particular for the
GARCH model in equation (2), we obtain g(ft, ut) = (ft)

1/2ut, ut ∼ N(0, σ2
0), and

ft+1 = φy(ft, yt;θ0) = ω0 + α0y
2
t + β0ft.

In order to analyze the stochastic properties of the true time-varying parameter
{ft(θ0)}t∈Z it is important to work with both equations (3) and (4) so as to recognize
that changes in ft(θ0) affect the data yt through (3), which in turn feed back into
ft+1(θ0) through the update equation (4). This feedback is conveniently analyzed by
re-writing the recursion for ft(θ0) in (4) in terms of the innovations ut only,

ft+1(θ0) = φu
(
ft(θ0), ut;θ0

)
:= φy

(
ft(θ0), g(ft(θ0), ut);θ0

)
∀ t ∈ Z. (5)

For example, for the GARCH model (2), the recursion in (5) takes the form

ft+1 = φu(ft, ut;θ0) = ω0 + (β0 + α0u
2
t )ft.

The recursive form in (5) thus plays a central role in analyzing the properties of the
true sequence {ft(θ0)}t∈Z and those of the data {yt}t∈Z generated by the observation-
driven model. For example, when φu is differentiable, then the following log moment
and contraction conditions render the process {ft+1(θ0)}t∈Z strictly stationary and
ergodic: (SE)

E log+ |φu(f, ut;θ0)| <∞, E log sup
f
|φ′u(f, ut;θ0)| < 0,

where φ′u(f, ut;θ0) := ∂φu(f, ut;θ0)/∂f ; see e.g. Bougerol (1993) and Straumann
and Mikosch (2006).1 If g is continuous, then it follows also by Krengel (1985) that
{yt}t∈Z is SE.

2.2 The Observation-Driven Model as a Filter

When we are interested in analyzing the properties of the model as a filter for the true
unknown time-varying parameter {ft(θ0)}t∈Z, then the analysis focuses essentially

1Alternative conditions are found in the geometric ergodicity literature; see e.g. Cline and Pu
(1999) and Meyn and Tweedie (2009).
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on the φy recursion in (4). Let {f̃t(θ, f̄1)}t∈N denote the filtered dynamic parameter
evaluated at θ and initialized at f̄1 ∈ F ⊆ R. Then the postulated data generating
process in (4) suggests the following filtering equation for {f̃t(θ, f̄1)}t∈N,

f̃t+1(θ, f̄1) = φy
(
f̃t(θ, f̄1), yt;θ

)
∀ t ∈ N. (4′)

Recall that a random variable f̃t(θ, f̄1) converges exponentially fast almost surely
(e.a.s.) to a random variable f̃t(θ) if there exists a c > 1 such that ct |f̃t(θ, f̄1) −
f̃t(θ)| → 0 a.s.; see Straumann and Mikosch (2006). If {yt}t∈Z is SE, then the
following log moment and contraction conditions ensure filter invertibility as well as
e.a.s. convergence of the filtered parameter {f̃t(θ, f̄1)}t∈N to a strictly stationary and
ergodic (SE) limit process {f̃t(θ)}t∈Z with

E log+ |φy(f, yt;θ)| <∞, E log sup
f
|φ′y(f, yt;θ)| < 0,

where φ′y(f, yt;θ) := ∂φy(f, yt;θ)/∂f ; see Straumann and Mikosch (2006) and Win-
tenberger (2013). Note that the expectations above are always taken w.r.t. the true
measure, which may be indexed by θ0 ∈ Θ when the model is correctly specified.
Also note that we can establish the SE nature of the data {yt}t∈Z under correct
specification by studying the φu recursion as in Section 2.1.

If the filtered sequence is analyzed at θ0 and under correct initialization f̄1 =
f1(θ0) a.s., then we can clearly re-write the filtered parameter as

f̃t+1(θ0, f̄1) = φu
(
f̃t(θ0, f̄1), ut;θ0

)
∀ t ∈ N, (5′)

because {f̃t+1(θ0, f̄1)}t∈N = {ft(θ0)}t∈N a.s. So without correct initialization, the
contraction in φu does not ensure the invertibility of the filter nor its e.a.s. convergence
to an SE limit, not even at θ0. Invertibility is only ensured by the contraction in φy,
which may differ considerably from that in φu since in general

φ′u(f, ut;θ0) = ∂φy(f, g(f, ut);θ0)/∂f 6= ∂φy(f, yt;θ0)/∂f = φ′y(f, yt;θ0).

The e.a.s. convergence of the filter {f̃t(θ0, f̄1)}t∈N at θ0 to an SE limit is implied
by the contraction in φu, but only if one is willing to assume correct initialization.
The contraction in φy also ensures the vanishing effect of the initial condition as it
implies that the difference |f̃t(θ, f̄1)− f̃t(θ0)| vanishes asymptotically e.a.s. since∣∣f̃t+1(θ, f̄1)− f̃t+1(θ)

∣∣ =
∣∣φ′y(f̃∗t (θ0, f̄1), yt;θ

)∣∣× ∣∣f̃t(θ, f̄1)− f̃t(θ)
∣∣.

2.3 Relations Between the DGP and the Filter

So far, we have seen that the contractions in φu and φy play very different roles
as sufficient conditions for characterizing the observation-driven model as a data
generating process or as a filter. Both φu and φy play unique roles irrespective of
considering θ = θ0 or θ 6= θ0. Proposition 1 further highlights this difference by
showing that φu(f, ut;θ) = φy(f, yt;θ) holds only at f = ft, and that φ′u(f, ut;θ) 6=
φ′y(f, yt;θ) holds for any f ∈ F ⊆ R in a large class of observation-driven models.
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Proposition 1. For every f ∈ F and θ ∈ Θ, let the function g ∈ C2(F × U) in (3)
and φy ∈ C in (4) satisfy the conditions

∂g(f, u)/∂f 6= 0, ∂φy(f, y;θ)/∂y 6= 0, ∂2φy(f, y;θ)/∂f∂y = 0, (6)

for almost every (f, u, y) ∈ F × U × Y. Then the recursions φu and φy satisfy a.s.

φu(f, ut;θ) 6= φy(f, yt;θ) ∀ (θ, f) ∈ Θ×F : f 6= ft,

φ′u(f, ut;θ) 6= φ′y(f, yt;θ) ∀ (θ, f) ∈ Θ×F .

Proposition 1 highlights that the contraction conditions needed to establish model
model invertibility and the e.a.s. convergence of the filtered parameter {f̃t(θ)}t∈Z to
an SE limit are, for a large class of models, entirely different from those needed for
establishing the SE nature of the true time-varying parameter {ft(θ0)}t∈Z and the
data {yt}t∈Z. The first claim of Proposition 1 is obtained by noting that for every
θ ∈ Θ and any f ∈ F we have

φu(f, ut;θ) = φy(f, g(f, ut);θ) = φy(f, y
∗
t ;θ), (7)

with y∗t = yt if and only if f = ft. The second claim is obtained by noting that even
at f = ft and θ = θ0 we have

φ′u(ft, ut;θ0) = φ′y(ft, yt;θ0) + ey(ft, yt;θ0), (8)

where ey(ft, yt;θ0) :=
(
∂φy(ft, yt;θ0)/∂y

)
×
(
∂g(ft, ut)/∂f

)
6= 0 (a.s.) and evaluated

at ut satisfying yt = g(ft, ut). We call ey(ft, yt;θ0) the ‘feedback’ of the observation-
driven model as it measures the impact of ft on ft+1 via its impact on yt. This is
clear by re-writing the feedback as

ey(ft, yt;θ0) = (∂ft+1/∂yt) × (∂yt/∂ft).

When convenient, we will re-write the feedback in terms of the innovations

eu(ft, ut;θ0) = ey(ft, g(ft, ut);θ0) = ey(ft, yt;θ0).

Similarly to the relation between φu and φy, the relation between eu and ey is also
subtle. In particular, it is important to keep in mind the inequality

eu(f, ut;θ0) = ey(f, g(f, ut);θ0) 6= ey(f, yt;θ0) ∀ f 6= ft.

In Proposition 1, the first two inequalities in (6) are crucial to ensure that the
time-varying parameter has an impact on the distribution of the data and that the
data a.s. influences the path of the time-varying parameter. This makes the model
‘observation-driven’ as otherwise the observations would not necessarily drive the
time-varying parameter, nor would the time-varying parameter necessarily drive the
distribution of the data.

The zero cross-derivative condition restricts our attention to the class of obser-
vation driven models where the derivative φ′y does not depend on the data. Many
observation-driven models like the GARCH and the ACD model of Engle and Rus-
sell (1998) satisfy this property. In any case, this condition can easily be avoided by
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instead imposing the following a.s. restriction on the feedback,

φ′y(f, y
∗
t ;θ)− φ′y(f, yt;θ) 6= −e(f, y∗t ;θ),

where y∗t := g(f, yt;θ).
Proposition 2 offers a counterpart to Proposition 1 by showing that despite

the a.s. difference between φu(f, ut;θ) and φy(f, yt;θ) as well as the derivatives
φ′u(f, ut;θ) and φ′y(f, yt;θ), there are still cases in which the contraction in φu implies
(and is implied by) the contraction in φy. Blasques et al. (2014b) make implicit use
of such conditions in stating some unproven local asymptotic results. As we shall see
here, these conditions are quite restrictive and available only in specific cases.

Proposition 2. Let the observation-driven model defined in (3) and (4) satisfy

∂2φy(f, y;θ)

∂f∂y
=
∂2φy(f, y;θ)

∂y2
= 0 ∀ (f, y) ∈ F × Y ⊆ R2, (9)

for some θ ∈ Θ. Then there exists a δ > 0 such that if∣∣E log sup
f
|ey(f, yt;θ)|

∣∣ < δ, (10)

then
E log sup

f
|φ′u(f, ut;θ)| < 0 ⇔ E log sup

f
|φ′y(f, yt;θ)| < 0. (11)

Condition (10) in Proposition 2 requires that the feedback effect is sufficiently
small. This is a natural requirement for obtaining the contraction equivalence (11),
since (8) shows that the only difference between the two contractions is precisely
that φu takes the feedback into account, whereas φy does not. In essence, if there
were no feedback effect, then both recursions would be the same. As pointed out in
Proposition 1, however, the feedback cannot be zero as it is a fundamental feature of
observation-driven models.

The second derivative conditions in (9) can be explained by the fact that (8) only
holds at f = ft. For every other f 6= ft, the relation between φu and φy becomes
more complex as shown in (7). These conditions hold easily in models where φy is
a linear function of yt. For example, the autoregressive conditional duration (ACD)
model of Engle and Russell (1998) has

φy(ft, yt;θ) = ω + αyt + βft,

and hence (9) holds trivially. These conditions do not hold however in the case of
the original GARCH model since the second derivative of φy w.r.t. yt is α, and this
parameter must satisfy the inequality α 6= 0 for the model to satisfy the conditions of
Proposition 1. In many cases, however, we can reformulate the measurement equation
(3) such that the conditions in (9) easily hold again. For example, for the GARCH
model we can equivalently define the whole model in terms of zt = y2

t rather than
in terms of yt. We then obtain φy(f, zt;θ) = ω + αzt + βf , such that the derivative
condition is satisfied with respect to zt rather than yt.

Proposition 3 provides an alternative to Proposition 2 by relaxing the possibly
problematic second-derivative condition in (9). This allows a direct application to
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the original GARCH model.

Proposition 3. Let the observation-driven model defined in (3) and (4) satisfy,

∂2φy(f, y;θ)

∂f∂y
= 0 ∀ (f, y) ∈ F × Y ⊆ R2, (12)

for some θ ∈ Θ. Then there exists a δ > 0 such that if∣∣E log sup
f
|eu(f, ut;θ)|

∣∣ < δ, (13)

then
E log sup

f
|φ′u(f, ut;θ)| < 0 ⇔ E log sup

f
|φ′y(f, yt;θ)| < 0.

The use of eu instead of ey in Proposition 3 allows us to relax the second order
derivative condition in (9) of Proposition 2. Consider again the GARCH model.
Proposition 3 holds easily since

∂2φy(f, y;θ)

∂f∂y
=
∂β

∂y
= 0 ∀ (f, y) ∈ F × Y,

and the feedback eu(f, ut;θ) is given by

eu(f, ut;θ) = 2αf
1/2
t ut ×

1

2
f
−1/2
t ut = αu2

t > 0 a.s.

Hence, the uniform log feedback moment condition at θ ∈ Θ stated in (12) of Propo-
sition 3 is given by

E log sup
f
|eu(f, ut;θ)|

∣∣ =
∣∣E log sup

f
|αu2

t |
∣∣ = |E log |αu2

t || < δ.

The feedback at θ thus becomes smaller and the contraction in φu approaches the
contraction in φy at θ as log |α| gets close to −E log |u2

t |.
Proposition 4 shows that the differentiability conditions can be completely avoided

when dealing with uniform contraction conditions on φu and φy. As we shall see,
the uniform contraction conditions can play an important role in obtaining bounded
unconditional moments for the filtered process {f̃t(θ, f̄1)}t∈N as well as for the true
{ft(θ0)}t∈Z and the data {yt}t∈Z when working with an axiom of correct specification.

Proposition 4. For any observation-driven model defined as in (3) and (4) and
every θ ∈ Θ, there exists a δ > 0 such that if

sup
f,y
|ey(f, y;θ)| < δ, ∨ sup

f,u
|eu(f, u;θ)| < δ, (14)

then

E log sup
f
|φ′u(f, ut;θ)| < 0 ⇐ sup

f,u
|φ′u(f, u;θ)| < 1

⇔ sup
f,y
|φ′y(f, y;θ)| < 1 ⇒ E log sup

f
|φ′y(f, yt;θ)| < 0.
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In general, observation-driven models feature a feedback ey(ft, yt;θ) that is either
positive or negative almost surely. To make use of this property, we introduce the
following definition.

Definition 1 (weak and strong stability). An observation-driven model is said to
produce a weakly stable feedback at θ if

sign
(
ey(f, y;θ)

)
6= sign

(
φ′y(f, y

∗;θ)
)
∧ |ey(f, y;θ)| < 2|φ′y(f, y∗;θ)|, (15)

for almost every (f, y) ∈ F × Y and y = y∗. The feedback is strongly stable if (15)
holds for almost every (f, y, y∗) ∈ F × Y2. The feedback is weakly unstable if

sign
(
ey(f, y;θ)

)
= sign

(
φ′y(f, y

∗;θ)
)
∨ |ey(f, y;θ)| > 2|φ′y(f, y∗;θ)|, (16)

for almost every (f, y) ∈ F ×Y and y∗ = y. The feedback is strongly unstable if (16)
holds for almost every (f, y, y∗) ∈ F × Y2.

For example, in the case of the GARCH model and for the empirically relevant
case of α, β > 0, we have ey(f, y;θ) = αy2/f > 0 ∀ (f, y) ∈ F ×Y since f ∈ F ⊆ R+.
Since φ′y(f, y;θ0) = β > 0, we directly obtain that the GARCH feedback is strongly
unstable. The unstable nature of the GARCH feedback is not surprising: the model
is precisely designed with the idea that a high (low) volatility at time t produces
further high (low) volatilities at time t+ 1.

In observation-driven models with unstable feedback mechanisms, the contraction
in φu implies the contraction in φy as the former is more difficult to obtain than the
latter. On the other hand, the contraction in φy does not necessarily imply the
contraction in φu, since the latter still accounts for the feedback effect. As noted
above, the GARCH model provides an immediate example since for α > 0 and β > 0
we have

E log sup
f
|φ′u(f, ut;θ)| = E log |αu2

t + β| < 0 ⇒ E log sup
f
|φ′y(f, y;θ)| = log |β| < 0.

Conversely, when the feedback effect is stable then the contraction in φy implies the
contraction in φu as the latter takes the stabilizing feedback into account. Proposition
5 below highlights the intuitive role of the feedback effects ey and eu from Propositions
2 and 3 in linking the contraction in φu to the contraction in φy.

Proposition 5. Let the observation-driven model defined in (3) and (4) satisfy the
conditions in (9). If the feedback is weakly stable then it follows that

E log sup
f
|φ′y(f, yt;θ)| < 0 ⇒ E log sup

f
|φ′u(f, ut;θ)| < 0.

If the feedback is weakly unstable then it follows that

E log sup
f
|φ′y(f, yt;θ)| < 0 ⇐ E log sup

f
|φ′u(f, ut;θ)| < 0.

Note that Proposition 5 allows the feedback effect to be large, as long as it is
in the ‘right direction’. Furthermore, Proposition 5 does not establish equivalence
between the contraction in φu and φy. Instead, it describes the conditions under
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which one contraction implies another. This contrasts sharply with Propositions 2-4,
which focus on contraction equivalence when the feedback effect is small.

Proposition 6 shows that the second derivative condition (9) can be avoided in
the presence of strong rather than weak forms of feedback stability.

Proposition 6. Let the observation-driven model defined in (3) and (4) satisfy con-
dition (12). If the feedback is strongly stable, then

E log sup
f
|φ′y(f, yt;θ)| < 0 ⇒ E log sup

f
|φ′u(f, ut;θ)| < 0.

If the feedback is strongly unstable, then

E log sup
f
|φ′y(f, yt;θ)| < 0 ⇐ E log sup

f
|φ′u(f, ut;θ)| < 0.

Note that whereas Proposition 3 reveals the conditions under which the contraction
in φy implies the contraction in φu, Proposition 6 explains that, in general, the
contraction in φu implies the contraction in φy for unstable feedback mechanisms.

Inspection of the proof of Proposition 6 reveals also that condition (12) can be
relaxed by requiring that the cross-derivative to be sufficiently small. This is stated
in Corollary 1.

Corollary 1. Suppose that (12) does not hold. Then there exists an ε > 0 such
that the claims of Proposition 6 are still true as long as

sup
f,y

∣∣∣∂2φy(f, y;θ)

∂f∂y

∣∣∣ < ε.

Our final Proposition 7 states a useful result for bounded feedback terms.

Proposition 7. Let the observation-driven model defined in (3) and (4) satisfy (12)
and

sup
f,y
|ey(f, y;θ)| < 1 ∨ E log sup

f
|eu(f, ut;θ)| < 0.

Then
E log sup

f
|φ′y(f, yt;θ)| < 0 ⇒ E log sup

f
|φ′u(f, ut;θ)| < 0.

2.4 Maximum Likelihood Estimation of Static Parameters

For any θ ∈ Θ, the likelihood function implied by the observation-driven model in
(3) takes the form

`T (θ, f̄1) =
1

T

T∑
t=2

(
p̃t(θ, f̄1) + log g̃′t(θ, f̄1)

)
, (17)

where g̃t(θ, f̄1) := g̃(f̃t(θ, f̄1), yt) := g−1(f̃t(θ, f̄1), yt), where g−1 denotes the inverse
of g with respect to its second argument, and where g̃′t(θ, f̄1) := g̃′(f̃t(θ, f̄1), yt) :=
∂g̃(f̃t(θ, f̄1), y)/∂y|y=yt , and p̃t(θ, f̄1) := log pu(g̃t(θ, f̄1);θ). Consistency and asymp-
totic normality of the maximum likelihood estimator (MLE)

θ̂T (f̄1) ∈ arg max
θ∈Θ

`T (θ, f̄1) (18)

10



are thus obtained by studying the stochastic properties of the random sequence
{`T (θ, f̄1)}t∈N, which are in turn defined by the properties of the stochastic se-
quences {p̃t(θ, f̄1)}t∈N and {log g̃′t(θ, f̄1)}t∈N in (17). The stochastic properties of
the likelihood function depend on those of the data {yt}t∈Z and the filtered sequence
{f̃t(θ, f̄1)}t∈N for every θ ∈ Θ.

As we have seen above, the φu recursions in (5) and (5′) are important at θ0

for describing the properties of the data {yt}t∈Z when working under an axiom of
correct specification. The φy recursions in (4) and (4′) are relevant at any θ ∈ Θ
for establishing model invertibility and the e.a.s. convergence of the filter to an SE
limit. In general, we are thus interested in ensuring that the φu contraction holds
at θ0 and the φy contraction holds over Θ. As noted above, Propositions 2-7 can be
used to switch between contraction conditions on φu and φy as these two conditions
are related in many ways and are sometimes even equivalent. For concreteness, we
describe below how Propositions 2-7 can be used in different contexts that often
determine the strategy adopted for establishing asymptotic results. A similar remark
holds for the recent results in Harvey and Luati (2014) that concentrate on the
verification of conditions on φu rather than φy.

Case 1 (local asymptotics for well-specified models)
When the feedback is stable then, by Propositions 2-7, we often require only the
contraction of φy at θ0 and continuity of φ′y to ensure contraction of φu at θ0 and of
φy in a neighborhood of θ0. Alternatively, when the feedback is unstable, then we
just need the contraction in φu at θ0 and the continuity of either φ′u or φ′y. If the
feedback term is sufficiently small, then the contractions are equivalent and we can
work with either condition regardless of the stable or unstable nature of the feedback.

Case 2 (global asymptotics for well-specified models)
When the feedback is stable for every θ ∈ Θ then we can often work exclusively with
the contraction of φy on Θ. Alternatively, when the feedback is unstable on Θ, then
we just need the contraction of φu to hold over the parameter space Θ. If the feedback
term is sufficiently small uniformly on Θ, then the contractions are equivalent over
Θ and we can work with either condition.

Case 3 (asymptotics for mis-specified models)
When we abandon the axiom of correct specification, then the properties of observed
data {yt}t∈Z cannot be derived from the structure of the GAS model. Since the
stochastic properties of {yt}t∈Z are in such cases known by assumption, we only need
to study the filtered sequence {f̃t(θ, f̄1)}t∈N which is generated by the φy recursion for
any θ ∈ Θ. Theorems 2 and 4 in Blasques et al. (2014b) obtain the strong consistency
and asymptotic normality of the MLE for a mis-specified GAS model w.r.t. to some
pseudo-true parameter that minimizes the Kullback-Leibler divergence between the
the true probability measure of {yt}t∈Z and the model implied measure. In any case,
as we shall see, we can still appeal to Propositions 2-7 and make use of contraction
conditions on the φu recursion of the misspecified model in order to show that the
model is invertible and that the filter is asymptotically SE.

Though the results in this paper are applicable to a wider class of observation-
driven models and settings, we now focus on obtaining local asymptotic results in the
subclass of GAS models through conditions on φu. This allows us to provide proofs
for the yet unsubstantiated claims in Blasques et al. (2014b) that made implicit use
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of the fact that, under appropriate conditions, a study of the φu recursion suffices for
local results under correct specification.

3 Asymptotic Properties of MLE for GAS Models

3.1 Stationarity, ergodicity and moments of GAS processes

In the remainder of this paper we specify the GAS model for a dy-dimensional series
yt as an observation-driven model where φy and φu are given by

φy(f, yt;θ) = ω + α sy
(
f, yt;λ

)
+ βf, (19)

φu(f, ut;θ) = ω + α su
(
f, ut;λ

)
+ βf, (20)

where su
(
f, ut;λ

)
:= sy

(
f, g(f, ut);λ

)
, λ ∈ Λ ⊆ Rdλ a parameter vector, and θ> =

(ω, α, β, λ>) ∈ Θ ⊆ R3+dλ . We assume that the density pu( · ;θ) ≡ pu( · ;λ) depends
on λ only and has support U containing an open set for every λ. The link function
g : F × U → Y is strictly increasing in its second argument with inverse g̃(f, · ) =
g−1(f, · ) for almost every f ∈ F . Throughout we assume that g̃ ∈ C(2,0)(F × Y),
g̃′ ∈ C(2,0)(F × Y), p̃ ∈ C(2,2)(G × Λ), and S ∈ C(2,2)(F × Λ), where G := g̃(Y,F).

In order to establish the asymptotic properties of the filtered sequences {f̃t(θ, f̄1)}t∈N
as well as of the true sequence {ft(θ0)}t∈Z and the data {yt}t∈Z under correct specifi-
cation, we define the random derivative function s′u(f, ut;λ) := ∂su(f, ut;λ)/∂f and
the kth power of the supremum

ρku,t(θ) := sup
f∗∈F∗

|β + α s′u(f∗, ut;λ)|k,

with F ⊆ F∗ ⊂ R. Similarly, we define s′y(f, yt;λ) := ∂sy(f, yt;λ)/∂f and

ρky,t(θ) := sup
f∗∈F∗

|β + α s′y(f
∗, yt;λ)|k.

Proposition 8 uses the contraction equivalence results established in Section 2 to
derive the stochastic properties of both true and filtered sequences in a neighborhood
of θ0. This is relevant for obtaining the local asymptotics of the MLE. Below we let
Bε(θ0) denote an ε neighborhood of θ0; i.e. Bε(θ0) := {θ : ‖θ − θ0‖ < ε}.

Proposition 8. Let {ut}t∈Z be an i.i.d. sequence, g be continuous and assume that
∃ f̄1 ∈ F ⊆ F∗ for a convex F such that

E log+ |su(f̄1, u1;λ0)| <∞, E log ρ1
u,1(θ0) < 0. (21)

Then {ft(θ0)}t∈Z and {yt}t∈Z are SE. If furthermore, s′y is continuous and sy satisfies

E log+ |sy(f̄1, yt;λ0)| <∞, ∂2sy(f, y;θ0)

∂f∂y
= 0 ∀ (f, y) ∈ F × Y, (22)

then there exists δ > 0 and ε > 0 such that if∣∣E log sup
f
|eu(f, ut;θ0)|

∣∣ < δ, (23)
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then {f̃t(θ, f̄1)}t∈N converges e.a.s. to the unique SE solution {f̃t(θ)}t∈Z for every
θ ∈ Bε(θ0) ⊆ Θ with {f̃t(θ0)}t∈Z = {ft(θ0)}t∈Z a.s.

Proposition 8 is based on the conditions of Theorem 3.1 in Bougerol (1993) and
Straumann and Mikosch (2006) and extends Proposition 1 of Blasques et al. (2014b)
by considering also the filter properties and points θ in a neighborhood of θ0. This
extension was made possible by the contraction equivalence results in Section 2.

Recall from Section 2 that the cross derivative condition in (22) can be easily
avoided by imposing stricter conditions on the feedback term or reformulating the
measurement equation of the GAS model in terms of transformations of the original
observable variables. Similarly, the condition on the feedback term can be relaxed by
considering further second derivative conditions. Here we have considered a local re-
sult based on the contraction equivalence of Proposition 3, but alternative conditions
could have been used by building on the other propositions in Section 2.

Proposition 9 shows that the moments of the true and filtered sequences can also
be bounded locally in a neighborhood of θ0. For random variables X and Y we write
X ⊥ Y if X and Y are independent.

Proposition 9. Let the conditions of Proposition 8 hold and let ∃ nf > 0 such that

E|su(f̄1, u1;λ0)|nf <∞, Eρnfu,t(θ0) < 1. (24)

Then E|ft(θ0)|nf <∞. If furthermore,

E|sy(f̄1, u1;λ0)|nf <∞, f̃t(θ, f̄1) ⊥ ρnfy,t(θ) ∀ (t, f̄1;θ) ∈ N×F ×Θ, (25)

then there exists δ > 0, ε > 0, and Θ ⊇ Bε(θ0) such that if

E sup
f
|eu(f, ut;θ0)|nf < δ, (26)

then supt E|f̃t(θ, f̄1)|nf <∞ for every θ ∈ Θ.

Following Blasques et al. (2014b) we note that the orthogonality conditions in
(25) can be avoided by using the stricter uniform contraction condition and feedback
bound

sup
u∈U

ρ1
u,t(θ0) < 1, sup

f,u
|eu(f, u;θ0)| < δ.

This substitution is made possible through application of Proposition 4.
Corollary 2 extends Proposition 8 using the stability properties of the feedback

effect to establish local results. A crucial difference with respect to Proposition 8 is
thus that we no longer rely on contraction equivalence. As a result, the ‘size’ of the
feedback term is not restricted to a small δ.

Corollary 2. Let {ut}t∈Z be an i.i.d. sequence, g be continuous, and let ∃ f̄1 ∈
F ⊆ F∗ for a convex F such that (21) holds. Suppose further that s′y is continuous,
sy satisfies (22), and the feedback is strongly unstable at θ0. Then ∃ ε > 0 and Θ ⊇
Bε(θ0) such that {f̃t(θ, f̄1)}t∈N converges e.a.s. to the unique SE solution {f̃t(θ)}t∈Z
for every θ ∈ Θ.

Corollary 3 extends the moment bounds of Proposition 9 by again allowing the
‘size’ of the feedback term not to be restricted.
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Corollary 3. Let the conditions of Corollary 2 hold and suppose that (24) and
(25) hold. Then ∃ ε > 0 and Θ ⊇ Bε(θ0) such that supt E|f̃t(θ, f̄1)|nf <∞ for every
θ ∈ Θ.

Note again that we can produce many similar corollaries exploring the different com-
binations of conditions used in Propositions 5–7. For example, we could substitute
the strong stability conditions by weak stability conditions by appealing to Proposi-
tion 6.

Propositions 8 and 9 and Corollaries 2 and 3 are important for our subsequent
analysis. They establish the asymptotic behavior of the filtered sequence {f̃t(θ, f̄1)}t∈N
in a neighborhood of θ0 as well as of the true sequence {ft(θ0)}t∈Z and the data
{yt}t∈Z. These three properties are key to establishing consistency and asymptotic
normality in the remainder of this section.

3.2 Consistency and Asymptotic Normality

Consider the MLE θ̂T (f̄1) defined in (18) with log likelihood function `T given in (17).
To ensure that we have a sufficient number of moments for the likelihood function
and its derivatives for consistency and asymptotic normality, we introduce the notion
of moment preserving maps. This notion provides a direct link between the number
of moments of the data (ny) and the filtered time varying parameter (nf ) and the
number of moments for the likelihood function and its derivatives. As such, it allows
us to formulate low-level conditions for consistency and asymptotic normality; see
Blasques et al. (2014b) for further details.

Definition 2. (Moment Preserving Maps)
Let xt(θ) = (x1,t, . . . , xq,t(θ))> be a random variable for every θ ∈ Θ. A func-
tion h : Rq × Θ → R is said to be n/m-moment preserving, denoted as h(·;θ) ∈
M(n,m), if and only if E|xi,t(θ)|ni < ∞ for n = (n1, . . . , nq) and i = 1, . . . , q im-
plies E|h(xt(θ);θ)|m <∞.

Many familiar functions are n/m moment preserving, for example bounded functions,
polynomial functions, and many more. Taking the GARCH model (2) as an example,
s(ft, yt;λ) = y2

t − ft, we have s ∈ M((nf , ny),m) with m = min(nf , ny/2). A
catalogue of relevant functions and their moment preserving properties is provided
in Lemma TA.6 of Blasques et al. (2014b).

We now introduce our assumptions for consistency and asymptotic normality of
the MLE. Let U denote the support of ut(λ0).

Assumption 1.

(i) ∃nu ≥ 0 with E|ut|nu <∞;

(ii) g ∈M(n, ny) with n := (nf , nu) and ny ≥ 0;

(iii) py(y|f ;λ) = py(y|f ′;λ′) holds for almost every y ∈ Y iff f = f ′ and λ = λ′.

Condition (i) of Assumption 1 ensures that the innovations have a common finite
moment of order nu. Condition (ii) imposes that g is moment preserving and en-
sures the existence of ny moments if nf moments of the time varying parameter and
nu moments of the innovations exist, respectively. Finally, condition (iii) ensures
that the static model ft ≡ f is well-identified, such that we obtain a well-separated
maximum of the likelihood.
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Assumption 2. ∃ f̄ ∈ F ⊆ F∗ and nf > 0 such that either

(i) E|su(f̄ , u1;λ0)|nf <∞, Eρnfu,t(θ0) < 1, and f̃t(θ, f̄1) ⊥ ρnfy,t(θ) ∀ (t, f̄1;θ);

or

(i ′) supu∈U |su(f̄ , u;λ0)| = su(f̄ ;λ0) <∞ and supf∗∈F∗ |∂su(f∗;λ0)/∂f | < 1.

Furthermore, Θ is compact, and for almost every y ∈ Y we have α0 ∂sy(f, y;λ0)/∂y 6=
0 for every f ∈ F .

Condition (i) or (i ′) ensures that the true {fut (θ0)} is SE and has nf moments by
application of Proposition 8. Together with condition (ii) in Assumption 1 we then
conclude that the data {yt(θ0)}t∈Z itself is SE and has ny moments. The inequality
stated in Assumption 2, together with the assumption that α 6= 0 ensures that the
data {yt(θ0)} entering the update equation (20) renders the filtered {f̃t} stochastic
and non-degenerate.

Moment preservation is a natural requirement in the consistency and asymptotic
normality proofs, as the likelihood and its derivatives are nonlinear functions of the
original data yt, the filtered time-varying parameter f̃t(θ, f̄1), and its derivatives with
respect to θ. Let nlog g̃′ and np̃ define the moment preserving orders of log g̃′ and p̃,
respectively; i.e. let log g̃′ ∈M(n, nlog g̃′) and p̃ ∈M(n, np̃) where n := (nf , ny). Note
that by defining n := (nf , ny), we abstract from moment requirements with respect
to λ. The later can be done without loss of generality, as λ is not stochastic.

Assumption 3. min{nlog g̃′ , np̃} ≥ 1.

Finally, Assumption 4 below explores the results of Sections 2 and 3 in order to
obtain local asymptotic results for the filtered sequence without directly assuming
the contraction of the φy recursion.

Assumption 4. s′y is continuous and sy satisfies

E|sy(f̄1, y1;λ0)|nf <∞ ∧ ∂2sy(f, y;θ0)/∂f∂y = 0 ∀ (f, y) ∈ F × Y.

Theorem 1 derives the existence and identification of the ML estimator and es-
tablishes the strong consistency of the estimator as T →∞.

Theorem 1. (Consistency) Suppose that {yt}t∈Z is generated by the GAS model in
(3) and (4) and let Assumptions 1–4 hold. If the feedback effect is strongly unstable
at θ0, then there exists Θ ⊇ Bε(θ0) with ε > 0 such that θ̂T (f̄1)

a.s.→ θ0 as T →∞.

Theorem 1 exploits the results established in Corollary 3. Alternative conditions
are possible as well. For example, we could use Proposition 9 such that instead of
assuming that the feedback was strongly unstable, we could establish consistency of
the MLE under an assumption that the feedback is small is expectation.

Corollary 4. If Assumptions 1–4 hold, there exists δ, ε > 0 and Θ ⊇ Bε(θ0) such
that if E supf |eu(f, ut;θ0)|nf < δ, then θ̂T (f̄1)

a.s.→ θ0 as T →∞.

To establish asymptotic normality, we need additional assumptions. To formulate
bounds on the moments of the likelihood and its derivatives, it is useful to introduce
the following notation. Let

s(k)(f, y;λ) = ∂k1+k2+k3s(f, y;λ)/(∂fk1∂yk2∂λk3),
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with k = (k1, k2, k3). As s(k)(f, y;λ) is a function of both the data and the time
varying parameter, we impose moment preserving properties on each of the s(k). For

example, s(k) ∈M(n, n
(k)
s ), with n

(k)
s being the number of bounded moments of s(k)

when its first two arguments have n := (nf , ny) moments. Again we suppress the
third argument of s, the parameter λ, from the moment preserving requirements
without loss of generality. We also adopt the more transparent short-hand notation

nfs := n
(1,0,0)
s to denote the preserved moment for the derivative of s with respect to

f . Similarly, we define nffs := n
(2,0,0)
s , nλs := n

(0,0,1)
s , nλλs := n

(0,0,2)
s , nfλs := n

(1,0,1)
s

etc. Similar definitions hold for the functions log g̃′ and p̃. Using these definitions,

we can ensure the existence of the n
(1)
f th and n

(2)
f th moments of the first and second

derivative of f̃(θ, f̄1) with respect to θ and evaluated at θ = θ0, respectively, where

n
(1)
f = min

{
nf , ns, n

λ
s

}
,

n
(2)
f = min

{
n

(1)
f , nλs , n

λλ
s ,

nfsn
(1)
f

nfs + n
(1)
f

,
nffs n

(1)
f

2nffs + n
(1)
f

,
nfλs n

(1)
f

nfλs + n
(1)
f

}
.

Finally, we also define

n`′ = min

{
nλp̃ ,

nflog g̃′n
(1)
f

nflog g̃′ + n
(1)
f

,
nfp̃n

(1)
f

nfp̃ + n
(1)
f

}
,

and

n`′′ = min

{
nλλp̃ ,

nfλp̃ n
(1)
f

nfλp̃ + n
(1)
f

,
nffp̃ n

(1)
f

2nffp̃ + n
(1)
f

,

nfp̃n
(2)
f

nfp̃ + n
(2)
f

,
nflog g̃′n

(2)
f

nflog g̃′ + n
(2)
f

,
nfflog g̃′n

(1)
f

2nfflog g̃′ + n
(1)
f

}
.

The required moment condition can now be stated as follows.

Assumption 5. n`′ ≥ 2 and n`′′ ≥ 1.

Theorem 2 establishes the T−1/2-convergence and asymptotic normality of the
MLE θ̂T (f̄1).

Theorem 2. (Asymptotic Normality) Suppose that {yt}t∈Z is generated by the GAS
model in (3) and (4) and let Assumptions 1–5 hold.

If the feedback effect is strongly unstable at θ0, then there exists Θ ⊇ Bε(θ0) with
θ0 ∈ int(Θ) and ε > 0 such that

√
T (θ̂T (f̄1)− θ0)

d→ N
(
0, I−1(θ0)

)
as T →∞,

where I(θ0) := E˜̀′′
t (θ0) is the Fisher information matrix and ˜̀

t denotes the likelihood
contribution of the tth observation.
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4 Examples

In this section we discuss several examples to illustrate how we can easily apply
the theory from Sections 2 and 3 to GAS models that are of empirical interest. In
addition, the examples reveal how the correct specification axiom sometimes makes
proofs much simpler, while the opposite is true in other cases.

4.1 GAS Models for Time Varying Location and Fat Tails

Consider the time varying location model yt = ft + λ
−1/2
1 ut as in Harvey and Luati

(2014). Assume that ut has a standard Student’s t distribution with λ2 degrees of
freedom, such that λ1, λ2 > 0. When the unit scaling function S(f ;λ) = 1 is adopted,
the scaled score that drives the update is given by

sy(ft, yt;λ) = −λ1(λ2 + 1)(ft − yt)
λ1(ft − yt)2 + λ2

and su(ft, ut;λ) = −(λ2 + 1)λ
3/2
1 ut

λ2
1u

2
t + λ2

. (27)

If we adopt instead the inverse information scaling S(ft;λ) = λ−1
1 (λ2 + 1)−1(λ2 + 3),

then the scaled score is given by

sy(ft, yt;λ) =
(1 + 3λ−1

2 )(yt − ft)
(1 + λ1 · (yt − ft)2/λ2)

, su(ft, ut;λ) =
λ
−1/2
1 (1 + 3λ−1

2 )ut
(1 + u2

t /λ2)
. (28)

In both scaling cases, the contraction condition for φu is trivially satisfied for
|β| < 1 as su(ft, ut;λ) does not depend on ft. The contraction in φy is however more
difficult to establish, regardless of the adopted scaling function.

Unfortunately, since the contraction in φu alone is not sufficient to obtain the
asymptotic results for the MLE established in Section 3, we cannot claim the consis-
tency and asymptotic normality of the MLE. Below, we explore the relation between
the contraction in φu and the contraction φy established in Section 2 to obtain the
desired asymptotic results for the MLE. We consider first the case where the feed-
back effect is sufficiently small for the two contractions to be equivalent. Next, we
consider the case where the feedback is strongly unstable, so that the contraction in
φu implies the contraction in φy.

Negligible Feedback and Contraction Equivalence

The feedback term in the unit-scaling model S(f ;λ) = 1 is given by

ey(ft, yt;θ) =
∂ft+1

∂yt

∂yt
ft

= α
λ1(λ2 + 1)

(
λ2 − λ1(ft − yt)2

)
(λ1(ft − yt)2 + λ2)2 .

Since the feedback term is uniformly bounded by

sup
f,y
|ey(ft, yt;θ)| = |α|λ1 (1 + λ−1

2 ), (29)

we can make the feedback arbitrarily small, uniformly in y and f , by letting λ1 → 0.
By Proposition 4, the contractions are thus equivalent for small enough λ1. As a
result, the contraction in φu implied by |β| < 1 becomes sufficient for the consistency
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Figure 1: Value of feedback term ey(ft, yt;θ) (left) as function of ft − yt for α = 0.1,
λ1 = 0.5 and λ2 = 5 and contour plot (right) of maximum feedback value in equation
(29)as function of λ1 and λ2.

and asymptotic normality of the MLE, as long as λ1 is small enough. The restrictive-
ness of this condition depends on how close |β| is to 1. Using the above conditions,
the MLE for the GAS model is locally strongly consistent. Under additional moment
conditions, we also obtain asymptotic normality.

Figure 1 plots the feedback ey(ft, yt;θ) (left) as a function of ft − yt for α = 0.1,
λ1 = 0.5 and λ2 = 5 as well as the contour plot (right) of its maximum value for
different combinations of λ1 and λ2. The contour plot also reveals the pairs (λ1, λ2)
for which the feedback is ‘small enough’, for any given value of |β|. For example,
the region to the left of the contour line with value 0.02 indicates the admissible
combinations of λ1 and λ2 for the case |β| < 0.98. Interestingly, the closer we get to
the normal case (i.e. the larger the value of λ2) the less restrictive the condition is on
λ1. This is the case considered in example 5.1 in Blasques et al. (2014). The claim
made there that |β| < 1 is sufficient for obtaining asymptotic results holds true for
the class of models with small enough λ1.

Strong Feedback Instability and Model Invertibility

Consider now the case where the scaling function is the inverse conditional Fisher
information matrix S(ft;λ) = λ−1

1 (λ2 + 1)−1(λ2 + 3) with score given in (28). As
noted above, we find ourselves once again in a setting where the contraction in φu is
trivially implied by |β| < 1, but the contraction in φy is less obvious. We note that
the cross-derivative statisfies

∂2sy(ft, yt;λ)

∂ft∂yt
= −2λ1λ

−1
2 (1 + 3λ−1

2 )
(yt − ft)(λ1λ

−1
2 (yt − ft)2 − 3)

(1 + λ1λ
−1
2 (yt − ft)2)3

.

Its absolute value thus attains a maximum at λ1λ
−1
2 (yt − ft)2 =

√
2− 1, such that

∣∣∂2sy(ft, yt;λ)/∂ft∂yt
∣∣ ≤ 2λ

1/2
1 λ

−1/2
2

(
1 + 3λ−1

2

) (3

8
+

1

4

√
2

)
.

We can make this arbitrarily small by taking the ratio λ1/λ2 close to zero. This is
required by Corollary 1 if we wish to exploit the strong instability of the feedback
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effect. The effect on the non-linearity in equation (28) is clear. For small λ1/λ2 the
non-linearity almost disappears, and the contraction condition for φy reduces in the
limit of λ1/λ2 = 0 to |β − α(1 + 3λ−1

2 )| < 1. We can thus obtain the contraction in
φy (and hence model invertibility) by appealing to Proposition 6, Corollary 1, and
the fact that the feedback effect is strongly unstable under appropriate conditions.
By Definition 1, this requires the sign of ∂φy(ft, yt;θ)/∂ft to be equal to the sign of
ey(ft, yt;θ). For our model, we have

∂φy(ft, yt;θ)

∂ft
= β + α

∂sy(ft, yt;λ)

∂ft
= β − α∂sy(ft, yt;λ)

∂yt
(30)

= β − ∂φy(ft, yt;θ)

∂yt
= β − ey(ft, yt;θ). (31)

Note that sy(ft, yt;λ) in (28) is uniformly bounded in ft and yt. We thus obtain
strong instability if α is sufficiently small. Under these conditions, the MLE for the
GAS model is locally strongly consistent. Under additional moment conditions, we
also obtain asymptotic normality.

Consider the limiting case of the normal distribution, λ−1
2 → 0. In that case, we

get strong instability if sign(β − α) = sign(α). As the contraction condition for φu
is still |β| < 1, we obtain local consistency and asymptotic normality over the entire
familiar triangle area 1 > β > α > 0. The regions can thus be quite wide.

4.2 GAS Models for Time Varying Scale and Fat Tails

Consider the GAS volatility model

yt = g(ft, ut) = λ−1
1 ft ut, ut ∼ pu(ut;λ), (32)

with pu denoting an F (1, λ2) distribution. Scaling by the inverse conditional Fisher
information matrix S(ft;λ) = 2f2

t · (1 + 3λ−1
2 ), we have

sy(ft, yt;λ) = (1 + 3λ−1
2 )

(
(1 + λ−1

2 )λ1yt
1 + λ1yt/(λ2ft)

− ft
)
, (33)

su(ft, ut;λ) = (1 + 3λ−1
2 )

(
(1 + λ−1

2 )ut
1 + ut/λ2

− 1

)
· ft, (34)

∂sy(ft, yt;λ)

∂ft
= (1 + 3λ−1

2 )

(
(1 + λ−1

2 )λ−1
2 (λ1yt/ft)

2

(1 + λ1yt/(λ2ft))2
− 1

)
, (35)

∂2sy(ft, yt;λ)

∂ft∂yt
= 2(1 + 3λ−1

2 )

(
(1 + λ−1

2 )λ−1
2 λ2

1yt/f
2
t

(1 + λ1yt/(λ2ft))3

)
. (36)

To ensure positivity of the scale, we impose β > (1 + 3λ−1
2 )α > 0 and ω ≥ ω > 0.

This model embeds the Student’s t GAS volatility model of Creal et al. (2011)
and Harvey (2013) as a special case. If we let λ2 diverge to infinity, we also recover
the original GARCH model with normally distributed errors of Engle (1982) and
Bollerslev (1986). This is easiliy seen by taking yt to be the squared observations
from the original GARCH model; see also Creal et al. (2013) and Harvey (2013) for
details. For derivations of the asymptotic distribution properties of the MLE for
GARCH models, we refer to the original contributions of Lee and Hansen (1994) and
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Figure 2: Score function sy (left), derivative of update function φ′y (center), and
feedback effect ey(ft, yt;θ) (right) for thin-tailed GAS model (solid) with λ2 → ∞
and fat tailed λ2 = 5 GAS model (dashed) with λ1 = 1, α = 0.1 and β = 0.8.

Lumsdaine (1996), and references in the extensive reviews provided by Straumann
(2005) and Francq and Zaköıan (2010).

Recall from Section 2 that the feedback effect in the GARCH model is strongly
unstable and hence the contraction in φu implies the contraction in φy. As such, the
invertibility condition |β| < 1 can be freely omitted as in Blasques et al. (2014b). The
same argument applies to the fat tailed t-GARCH model. The fat tailed GAS model
is however considerably more complicated to analyze due to its complex nonlinear
dynamic behavior. The GAS scale model is also substantially different from the GAS
location model considered in the previous section. Indeed, whereas in the location
case su did not depend on ft, now su is linear in ft.

Figure 2 compares the score function sy, the derivative of the update function φ′y,
and the feedback ey of the thin-tailed and fat-tailed GAS models. In our scale GAS
model, the contraction condition for φu(ft, ut;θ) is given by

E log

(
β − α (1 + 3λ−1

2 ) + α
(1 + 3λ−1

2 )(1 + λ−1
2 )ut

1 + ut/λ2

)
< 0.

If we require a first order moment of ft to exist, the log inside the expectations needs
to be dropped, and we get the condition 1 > β > (1 + 3λ−1

2 )α > 0; see also Blasques
et al. (2012). The contraction in φy is however very difficult to ascertain. Figure
2 suggests however that the feedback effect is strongly unstable (since the feedback
term ey has the same sign as the update’s derivative φ′y) and hence that we might
be able to make use of Proposition 6 and Corollary 1 to obtain the contraction in φy
through the contraction in φu.

In order to apply Proposition 6 and Corollary 1, we note first from (36) that

0 ≤ ∂2sy(ft, yt;λ)

∂ft∂yt
≤ 8

27
(1 + 3λ−1

2 )(1 + λ−1
2 )λ1

1− β
ω

,

as ft ≥ ω/(1− β) for all t if f1 > ω/(1− β). We can thus make the cross derivative
in (36) arbitrarily small if we set either λ1 close to zero, β close to 1, or ω sufficiently
large. Alternatively, we can make the feedback effect small directly by picking α
close to zero. Inspection of Figure 2 reveals that φ′y(ft, yt;θ) > 0 under the current

restriction that β > (1 + 3λ−1
2 )α > 0 and that ∂yt/∂ft = λ−1

1 ut > 0. Whether or not
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the model is strongly unstable thus depends entirely on the sign of ∂ft+1/∂yt. As

∂ft+1/∂yt = α(1 + 3λ−1
2 )(1 + λ−1

2 )
λ1

(1 + λ1yt/(λ2ft))2
> 0,

almost surely, the model is strongly unstable as suggested by Figure 2. Using Propo-
sition 6, Corollary 1 and Theorem 1, we thus obtain local strong consistency in the
entire triangle region β > (1+3λ−1

2 )α > 0 and ω ≥ ω > 0. Under additional moment
restrictions that shrink the region further, we also obtain asymptotic normality of the
MLE. These results substantiate earlier unproven claims in Blasques et al. (2014b).

4.3 GAS count data model

Observation-driven models for time series of Poisson counts have been initiated by
Davis et al. (2003). For the specific class of integer autoregression models, see
Fokianos et al. (2009). In both contributions estimators and their asymptotic prop-
erties are developed. When we consider the GAS model for the Poisson distribution
with intensity ft and scaling by the conditional variance of the score, we obtain
the general framework of Davis et al. (2003) with updating function for the Poisson
intensity given by

ft+1 = ω + α(yt − ft) + βft, (37)

with β > α > 0. This recursion is linear in both yt and ft, such that Eρ̃kt (θ) = |β −
α| < 1 is the key contraction condition for all k. The theory developed in this paper
can thus also be used for establishing consistency and asymptotic normality for count
data models under mis-specification. It appears that such results for GAS models
have not been noted elsewhere. By contrast, adopting the correct specifiation axiom is
problematic in this case: the recursion φu(ft, ut;θ) is not continuous, which requires
the use of alternative methods to the current contraction conditions to establish
stationarity and ergodicity of the corresponding GAS data generated process. In
contrast to the examples in Sections 4.1 and 4.2 where correct specification facilitated
the contraction conditions on φu(ft, ut;λ), in the case of count data the correct
specification axiom for GAS models seems to complicate matters considerably.

5 Final Remarks

To study consistency and asymptotic normality of the maximum likelihood estimator
(MLE) of observation driven models under an axiom of correct specification typically
requires the study of two non-linear dynamic systems: one for the true, and one for
the filtered time varying parameter. In this paper we highlighted the intricate and
subtle differences between the two sets of dynamic systems and the corresponding
stability conditions. Moreover, we formulated a new set of restrictions on observation
driven models under which the two sets of conditions are locally equivalent. If these
restrictions hold, one only needs to verify one set of conditions to get local stability of
both dynamic systems. In particular, we showed how these conditions could be used
to establish model invertibility (for filtering purposes and consistency and asymptotic
normality of the MLE), while only verifying stationarity and ergodicity of the true
time varying parameter. We used these results to provide formal proofs of (as yet
unsubstantiated) local asymptotics results for the MLE in generalized autoregressive
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score models. The results extended those in Harvey (2013) to score driven models
that go beyond the MEM class and the exponential parameterization, and also help
to clarify some of the subtle issues in the proofs of for example Harvey and Luati
(2014) and Blasques et al. (2014b).

Appendix: Proofs

Proof of Proposition 1. If g is continuously differentiable in F ⊆ R with strictly non-zero deriva-
tive, then it is also injective. Hence g(f, y) = g(f ′, y) if and only if f = f ′. With this in mind, the
first claim follows immediately by noting that

φu(f, ut;θ) = φy(f, g(f, ut);θ) = φy(f, y∗t ;θ) = φy(f, yt;θ) +
∂φy(f, y∗∗t ;θ)

∂y
(y∗t − yt),

and hence φu(f, ut;θ) 6= φy(f, yt;θ) ∀ (θ, f) ∈ Θ × F : f 6= ft a.s. because ∂φy(f, y∗∗t ;θ)/∂y 6=
0 a.s. ∀ f ∈ F , but φu(f, ut;θ) = φy(f, yt;θ) at f = ft a.s. because then y∗t = g(f, ut;θ) =
g(ft, ut;θ) = yt.

The second claim follows naturally by noting that

φ′u(f, ut;θ) = φ′y(f, g(f, ut);θ) +
∂φy(f, g(f, ut);θ)

∂y

∂g(f, ut)

∂f

= φ′y(f, yt;θ) +
∂2φy(f, y∗∗t ;θ)

∂f∂y
(y∗t − yt) +

∂φy(f, g(f, ut);θ)

∂y

∂g(f, ut)

∂f

= φ′y(f, yt;θ) +
∂φy(f, g(f, ut);θ)

∂y

∂g(f, ut)

∂f
,

and hence φ′u(f, ut;θ) 6= φ′y(f, yt;θ) ∀ f ∈ F since by the condition

∂φy(f, g(f, ut);θ)

∂y

∂g(f, ut)

∂f
6= 0 a.s.

Proof of Proposition 2. The claim follows by noting that under the maintained assumptions

φ′u(f, ut;θ) = φ′y(f, yt;θ) +
∂2φy(f, y∗∗t ;θ)

∂f∂y
(y∗t − yt) + ey(f, yt;θ) +

∂ey(f, y∗∗∗t ;θ)

∂y
(y∗t − yt)

= φ′y(f, yt;θ) + ey(f, yt;θ).

This implies that

E log sup
f
|φ′u(f, ut;θ)| = E log sup

f
|φ′y(f, ut;θ) + ey(f, yt;θ)|

≤ E log sup
f
|φ′y(f, yt;θ)|+ E log sup

f
|ey(f, yt;θ)|,

and as a result∣∣∣E log sup
f
|φ′u(f, ut;θ)| − E log sup

f
|φ′y(f, yt;θ)|

∣∣∣ ≤ ∣∣E log sup
f
|ey(f, yt;θ)|

∣∣.

Proof of Proposition 3. The claim follows by noting that under the maintained assumptions

φ′u(f, ut;θ) = φ′y(f, yt;θ) +
∂2φy(f, y∗∗t ;θ)

∂f∂y
(y∗t − yt) + eu(f, ut;θ) = φ′y(f, yt;θ) + eu(f, ut;θ),

which implies that

E log sup
f
|φ′u(f, ut;θ)| = E log sup

f
|φ′y(f, yt;θ) + eu(f, ut;θ)|

≤ E log sup
f
|φ′y(f, yt;θ)|+ E log sup

f
|eu(f, ut;θ)|
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⇒
∣∣∣E log sup

f
|φ′u(f, ut;θ)| − E log sup

f
|φ′y(f, yt;θ)|

∣∣∣ ≤ ∣∣E log sup
f
|eu(f, ut;θ)|

∣∣.
Proof of Proposition 4. The claim follows by noting that

φ′u(f, ut;θ) = φ′y(f, y∗t ;θ) + ey(f, y∗t ;θ) = φ′y(f, y∗t ;θ) + eu(f, ut;θ,

with y∗t = g(f, ut). Hence, | supf,u |φ′u(f, u;θ)| − supf,y |φ′y(f, y;θ)|| ≤
∣∣ supf,u |eu(f, u;θ)|

∣∣, and

sup
f,u
|φ′u(f, u;θ)| = sup

f,u
|φ′y(f, g(f, u);θ) + ey(f, g(f, u);θ)| ≤ sup

f,y
|φ′y(f, y;θ)|+ sup

f,y
|ey(f, y;θ)|

⇒
∣∣∣ sup
f,u
|φ′u(f, u;θ)| − sup

f,y
|φ′y(f, y;θ)|

∣∣∣ ≤ ∣∣ sup
f
|ey(f, y;θ)|

∣∣.
Proof of Proposition 5. In the proof of Proposition 2 we showed that under the second-derivative
conditions in (9) we have

φ′u(f, ut;θ) = φ′y(f, yt;θ) + ey(f, yt;θ),

and hence that

E log sup
f
|φ′u(f, ut;θ0)| = E log sup

f
|φ′y(f, yt;θ0) + ey(ft, yt;θ0)|.

Now, if the feedback is weakly stable then we have a.s.

sign
(
ey(f, yt;θ)

)
6= sign

(
φ′y(f, yt;θ)

)
∧ |ey(f, yt;θ)| < 2|φ′y(f, yt;θ)|,

which implies that |φ′y(f, yt;θ0)| ≥ |φ′y(f, yt;θ0) + ey(f, yt;θ0)| holds a.s. and hence that

log sup
f
|φ′y(f, yt;θ0)| ≥ log sup

f
|φ′y(f, yt;θ0) + ey(f, yt;θ0)| = E log sup

f
|φ′u(f, ut;θ0)| a.s.

As a result E log supf |φ′y(f, yt;θ0)| < 0 ⇒ E log supf |φ′u(f, ut;θ0)| < 0. Alternatively, if the feed-
back is weakly unstable then

sign
(
ey(f, yt;θ)

)
= sign

(
φ′y(f, yt;θ)

)
∨ |ey(f, yt;θ)| > 2|φ′y(f, yt;θ)| a.s.,

which implies that |φ′y(f, yt;θ0)| ≤ |φ′y(f, yt;θ0) + ey(f, yt;θ0)| holds a.s. and hence

E log sup
f
|φ′y(f, yt;θ0)| ≤ E log sup

f
|φ′y(f, yt;θ0) + ey(f, yt;θ0)| = E log sup

f
|φ′u(f, ut;θ0)|,

and as a result E log supf |φ′y(f, yt;θ0)| < 0 ⇐ E log supf |φ′u(f, ut;θ0)| < 0.

Proof of Proposition 6. The proof follows by noting that under (12)

φ′u(f, ut;θ) = φ′y(f, y∗t ;θ) + ey(f, y∗t ;θ) = φ′y(f, yt;θ) +
∂φ′y(f, y∗∗t ;θ)

∂y
(y∗t − yt) + ey(f, y∗t ;θ)

= φ′y(f, yt;θ) + ey(f, y∗t ;θ). (A1)

Hence, if the feedback is strongly stable, we have a.s.

sign
(
ey(f, y∗t ;θ)

)
6= sign

(
φ′y(f, yt;θ)

)
∧ |ey(f, y∗t ;θ)| < 2|φ′y(f, yt;θ)|,

which implies that |φ′y(f, yt;θ)| ≥ |φ′y(f, yt;θ) + ey(f, y∗t ;θ)| holds a.s. and hence that

E log sup
f
|φ′y(f, yt;θ)| ≥ E log sup

f
|φ′y(f, yt;θ) + ey(f, y∗t ;θ)| = E log sup

f
|φ′u(f, ut;θ)|.

As a result E log supf |φ′y(f, yt;θ)| < 0⇒ E log supf |φ′u(f, ut;θ0)| < 0. Alternatively, if the feedback
is strongly unstable then

sign
(
ey(f, y∗t ;θ)

)
= sign

(
φ′y(f, yt;θ)

)
∨ |ey(f, y∗t ;θ)| > 2|φ′y(f, yt;θ)| a.s.,
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which implies that |φ′y(f, yt;θ0)| ≤ |φ′y(f, yt;θ) + ey(f, y∗t ;θ)| holds a.s. and hence

E log sup
f
|φ′y(f, yt;θ)| ≤ E log sup

f
|φ′y(f, yt;θ) + ey(f, y∗t ;θ)| = E log sup

f
|φ′u(f, ut;θ)|,

and as a result E log supf |φ′y(f, yt;θ)| < 0 ⇐ E log supf |φ′u(f, ut;θ)| < 0.

Proof of Proposition 7. Using (A1), we have that

E log sup
f
|φ′u(f, ut;θ)| = E log sup

f
|φ′y(f, yt;θ) + ey(f, y∗t ;θ)|

≤ E log sup
f
|φ′y(f, yt;θ)|+ E log sup

f
|ey(f, y∗t ;θ)|

≤ E log sup
f
|φ′y(f, yt;θ)|+ log sup

f,y
|ey(f, y;θ)|,

with log supf,y |ey(f, y;θ)| < 0 since supf,y |ey(f, y;θ)| < 1, and thus

E log sup
f
|φ′y(f, yt;θ)| < 0 ⇒ E log sup

f
|φ′u(f, ut;θ)| < 0.

Alternatively, using the fact that

φ′u(f, ut;θ) = φ′y(f, yt;θ) +
∂φ′y(f, y∗∗t ;θ)

∂y
(y∗t − yt) + ey(f, y∗t ;θ) = φ′y(f, yt;θ) + eu(f, ut;θ),

we obtain

E log sup
f
|φ′u(f, ut;θ)| = E log sup

f
|φ′y(f, yt;θ) + eu(f, ut;θ)|

≤ E log sup
f
|φ′y(f, yt;θ)|+ E log sup

f
|eu(f, ut;θ)|.

Since E log supf |eu(f, ut;θ)| < 0, it follows that

E log sup
f
|φ′y(f, yt;θ)| < 0 ⇒ E log sup

f
|φ′u(f, ut;θ)| < 0.

Proof of Proposition 8. Proposition 1 in Blasques et al. (2014b) shows that {ft(θ0)}t∈Z is SE
under the conditions in (21). By continuity of g and the iid nature of {ut}t∈Z, we conclude that
{yt}t∈Z is also SE by Krengel (1985). Proposition 3 shows that under condition (22), the contraction
condition in (21) implies

E log sup
f
|α0s

′
y(f, yt, λ0) + β0| < 0.

By Proposition 2 in Blasques et al. (2014b) the filtered process {f̃t(θ0, f̄1)}t∈N converges e.a.s. to the
unique SE solution {f̃t(θ0)}t∈Z. Continuity of sy and s′y ensures that ∃ ε > 0 and Θ ⊇ Bε(θ0) such

that {f̃t(θ, f̄1)}t∈N converges e.a.s. to the unique SE solution {f̃t(θ)}t∈Z for every θ ∈ Θ. Berge’s
maximum theorem ensures continuity of the supremum.

Proof of Proposition 9. By Proposition 8, {ft(θ0)}t∈Z. Under the conditions in (24), Proposition
1 Blasques et al. (2014b) shows that E|ft(θ0)|nf < ∞. A simple adaptation of the proof of Propo-
sition 3 shows that under the cross-derivative condition in (22) and the feedback condition (26) we
have that Eρnfu,t(θ0) < 1 ⇒ Eρnfy,t(θ0) < 1, because

φ′u(f, ut;θ) = φ′y(f, yt;θ) +
∂2φy(f, y∗∗t ;θ)

∂f∂y
(y∗t − yt) + eu(f, ut;θ) = φ′y(f, yt;θ) + eu(f, ut;θ),

which implies that

E sup
f
|φ′u(f, ut;θ)|nf = E sup

f
|φ′y(f, yt;θ) + eu(f, ut;θ)|nf

≤ E sup
f
|φ′y(f, yt;θ)|nf + E sup

f
|eu(f, ut;θ)|nf .2
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By Proposition 2 of Blasques et al. (2014b) and under condition (25), we then have supt E|f̃t(θ0, f̄1)|nf <
∞. Continuity of sy and s′y ensures that the same conditions hold in a neighborhood of θ0 and hence

that ∃ε > 0 and Θ ⊇ Bε(θ0) such that supt E|f̃t(θ, f̄1)|nf <∞ holds for every θ ∈ Θ. Again, Berge’s
maximum theorem ensures continuity of the supremum.

Proof of Theorem 1. Assumptions 2 and 4 imply the conditions of Proposition 3, thus establishing
the equivalence of the contraction condition for φ′u(f, u;θ) in Assumption 2 to that of φ′y(f, y;θ) over
some small compact neighborhood Θ ⊆ Bε(θ0) for some small ε > 0. Given that the contraction
condition is satisfied for φ′y(f, y;θ) over this neighborhood, the rest of the proof follows directly
along the same lines as the proof of Theorem 2 in Blasques et al. (2014b). See technical appendix
for further details.

Proof of Theorem 2. As in the proof of Theorem 1, the equivalence of the contraction condition for
φ′u(f, u;θ) in Assumption 2 to that of φ′y(f, y;θ) over some small compact neighborhood Θ ⊆ Bε(θ0)
for some small ε > 0 again follows from Proposition 3. Using the additional moment conditions in
Assumption 5, the rest of the proof follows directly along the lines of the proof of Theorem 4 in
Blasques et al. (2014b). See technical appendix for further details.

References

Andres, P. (2014). Computation of maximum likelihood estimates for score driven models for positive
valued observations. Computational Statistics and Data Analysis, page forthcoming.

Billingsley, P. (1961). The Lindeberg-Levy theorem for martingales. Proceedings of the American
Mathematical Society, 12(5):788–792.

Blasques, F., Koopman, S. J., and Lucas, A. (2012). Stationarity and ergodicity of univariate
generalized autoregressive score processes. Discussion Paper Tinbergen Institute TI 12-059/4.

Blasques, F., Koopman, S. J., and Lucas, A. (2014a). Information theoretic optimality of observation
driven time series models. Discussion Paper Tinbergen Institute TI 14-046/III.

Blasques, F., Koopman, S. J., and Lucas, A. (2014b). Maximum likelihood estimation for generalized
autoregressive score models. Discussion Paper Tinbergen Institute TI 14-029/III.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, 31(3):307–327.

Bougerol, P. (1993). Kalman filtering with random coefficients and contractions. SIAM Journal on
Control and Optimization, 31(4):942–959.

Cline, D. and Pu, H. (1999). Geometric ergodicity of nonlinear time series. Statistica Sinica,
9(4):1103–1118.

Cox, D. R. (1981). Statistical analysis of time series: some recent developments. Scandinavian
Journal of Statistics, 8:93–115.

Creal, D., Koopman, S. J., and Lucas, A. (2011). A dynamic multivariate heavy-tailed model for
time-varying volatilities and correlations. Journal of Business and Economic Statistics, 29(4):552–
563.

Creal, D., Koopman, S. J., and Lucas, A. (2013). Generalized autoregressive score models with
applications. Journal of Applied Econometrics, 28(5):777–795.

Creal, D., Schwaab, B., Koopman, S. J., and Lucas, A. (2014). Observation driven mixed-
measurement dynamic factor models. Review of Economics and Statistics, page forthcoming.

Davis, R., Dunsmuir, W., and Streett, S. (2003). Observation-driven models for poisson counts.
Biometrika, 90:777–790.

25



Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of
United Kingdom inflations. Econometrica, 50:987–1008.

Engle, R. F. and Russell, J. R. (1998). Autoregressive conditional duration: a new model for
irregularly spaced transaction data. Econometrica, pages 1127–1162.

Fokianos, K., Rahbek, A., and Tjostheim, D. (2009). Poisson autoregression. Journal of the American
Statistical Association, 104:1430–1439.
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Technical Appendix

Feedback Effects, Contraction Conditions and

Asymptotic Properties of the Maximum Likelihood

Estimator for Observation-Driven Models‡

Francisco Blasquesa, Siem Jan Koopmana,b, André Lucasa

(a) VU University Amsterdam and Tinbergen Institute
(b) CREATES, Aarhus University

Proof of Theorem 1. Existence of the ML estimator and identification of θ0 is ensured under the
present conditions by Theorems 1 and 3 in Blasques et al. (2014b). As a result, θ̂T (f̄1) is a measurable
map ∀ f̄1 ∈ F and `∞(θ0) > `∞(θ) ∀ θ ∈ Θ : θ 6= θ0. Following the classical consistency argument
found e.g. in White (1994, Theorem 3.4) or Gallant and White (1988, Theorem 3.3), we obtain
θ̂T (f̄1)

a.s.→ θ0 from the uniform convergence of the criterion function and the identifiable uniqueness
of the maximizer θ0 ∈ Θ

sup
θ∈Θ:‖θ−θ0‖>ε

`∞(θ) < `∞(θ0) ∀ ε > 0.

Step 1, uniform convergence: Let `T (θ) denote the likelihood function `T (θ, f̄1) with f̃t(y
1:t−1,θ, f̄1)

replaced by f̃t(y
t−1,θ). Also define `∞(θ) = E˜̀

t(θ) ∀ θ ∈ Θ, with ˜̀
t denoting the contribution of

the tth observation to the likelihood function `T and note that

supθ∈Θ |`T (θ, f̄1)− `∞(θ)| ≤ supθ∈Θ |`T (θ, f̄1)− `T (θ)|+ supθ∈Θ |`T (θ)− `∞(θ)|. (A2)

The first term converges by the e.a.s. convergence of f̃t(y
1:t−1,θ, f̄1) to f̃t(y

t−1,θ) and a continuous
mapping argument. The second term converges by the ULLN in Ranga Rao (1962).

For the first term in (A2), we show that supθ∈Θ |˜̀t(θ, f̄1)− ˜̀
t(θ)| a.s.→ 0 as t→∞. The expression

for the likelihood in the technical appendix of Blasques et al. (2014b) and the maintained differentia-
bility conditions ensure that ˜̀

t(·, f̄1) = `(f̃t(y
1:t−1, ·, f̄1), yt, ·) is continuous in (f̃t(y

1:t−1, ·, f̄1), yt).
Since the conditions of Corollary 2 hold, and these imply the conditions of Corollary 1, we know

that there exists a unique SE sequence {f̃t(y1:t−1,θ)}t∈Z such that

|f̃t(y1:t−1,θ, f̄1)− f̃t(yt−1,θ)| a.s.→ 0 ∀ f̄1 ∈ F

for every θ ∈ Θ. In fact, there exists a unique SE sequence {ft(y1:t−1, ·)}t∈Z such that

sup
θ∈Θ
|ft(y1:t−1,θ, f̄1)− ft(yt−1,θ)| a.s.→ 0 ∀f̄1 ∈ F

and supt E supθ∈Θ |ft(y1:t−1,θ, f̄1)|nf < ∞ and E supθ∈Θ |ft(yt−1,θ)|nf < ∞ with nf ≥ 1. Hence,
the first term in (A2) strongly converges to zero by an application of the continuous mapping theorem
for ` : C(Θ,F)× Y ×Θ→ R.

For the second term in (A2), we apply the ergodic theorem for separable Banach spaces of
Ranga Rao (1962) (see also Straumann and Mikosch (2006, Theorem 2.7)) to the sequence {`T (·)}
with elements taking values in C(Θ), so that supθ∈Θ |`T (θ)−`∞(θ)| a.s.→ 0 where `∞(θ) = E˜̀

t(θ) ∀ θ ∈
Θ. The ULLN supθ∈Θ |`T (θ)−E˜̀

t(θ)| a.s.→ 0 as T →∞ follows, under a moment bound E supθ∈Θ |˜̀t(θ)| <
∞, by the SE nature of {`T }t∈Z, which is implied by continuity of ` on the SE sequence {(ft(yt−1, ·), yt)}t∈Z
and Proposition 4.3 in Krengel (1985). The moment bound E supθ∈Θ |˜̀t(θ)| < ∞ is ensured by
supθ∈Θ E|ft(yt−1,θ)|nf < ∞ ∀ θ ∈ Θ, E|yt|ny < ∞ which holds again by Corollary 2, and the fact
that Assumption 4 implies ` ∈ M(n, n`) with n = (nf , ny) and n` ≥ 1; see the technical appendix
of Blasques et al. (2014b).

‡Blasques and Lucas thank the Dutch National Science Foundation (NWO; grant VICI453-09-
005) for financial support. Koopman acknowledges support from CREATES, Center for Research in
Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research Founda-
tion. Email correspondence: f.blasques@vu.nl, s.j.koopman@vu.nl, a.lucas@vu.nl.
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Step 2, uniqueness: Identifiable uniqueness of θ0 ∈ Θ follows from for example White (1994)
by the assumed uniqueness, the compactness of Θ, and the continuity of the limit E˜̀

t(θ) in θ ∈ Θ,
which is implied by the continuity of `T in θ ∈ Θ ∀ T ∈ N and the uniform convergence of the
objective function proved earlier.

Proof of Theorem 2. In this proof we denote the ith order derivative of the filter {f̃t(θ, f̄1)}t∈N
by f

(i)
t (y1:t−1,θ, f̄

0:i
1 ), which takes values in F (i), with f̄

0:i
1 ∈ F (0:i) = F × ...×F (i) being the fixed

initial condition for the first ith order derivatives; see the Supplementary Appendix of Blasques et
al. (2014) for further details.

Following the classical proof of asymptotic normality found e.g. in White (1994, Theorem 6.2)),
we obtain the desired result from: (i) the strong consistency of θ̂T

a.s.→ θ0 ∈ int(Θ); (ii) the a.s. twice
continuous differentiability of `T (θ, f̄1) in θ ∈ Θ; (iii) the asymptotic normality of the score

√
T`′T

(
θ0,f

(0:1)
1 )

d→ N(0,J (θ0)
)
, J (θ0) = E

(
˜̀′
t

(
θ0)˜̀′

t

(
θ0)>

)
; (A3)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥`′′T (θ,f
(0:2)
1 )− `′′∞(θ)

∥∥ a.s.→ 0; (A4)

and finally, (v) the non-singularity of the limit `′′∞(θ) = E˜̀′′
t (θ) = I(θ).

Step 1, consistency and differentiability: The consistency condition θ̂T
a.s.→ θ0 ∈ int(Θ) in

(i) follows under the maintained assumptions by Theorem 2 and the additional assumption that
θ0 ∈ int(Θ). The smoothness condition in (ii) follows immediately from Assumption 2 and the
likelihood expressions in the technical appendix.

Step 2, CLT: The asymptotic normality of the score in (A6) follows by Theorem 18.10[iv] in
Van der Vaart (2000) by showing that,

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖ e.a.s.→ 0 as T →∞. (A5)

From this, we conclude that ‖
√
T`′T

(
θ0,f

(0:1)
1 ) −

√
T`′T

(
θ0)‖ =

√
T‖`′T

(
θ0,f

(0:1)
1 ) − `′T

(
θ0)‖ a.s.→ 0

as T →∞. We apply the CLT for SE martingales in Billingsley (1961) to obtain

√
T`′T

(
θ0)

d→ N(0,J (θ0)
)

as T →∞, (A6)

where J (θ0) = E(˜̀′
t

(
θ0)˜̀′

t

(
θ0)>) < ∞ follows from having n`′ ≥ 2; see the expressions for the

likelihood in Section B.1 of the technical appendix of Blasques et al. (2014b).
To establish the e.a.s. convergence in (A5), we use the e.a.s. convergence

|f̃t(y1:t−1,θ0, f̄1)− f̃t(yt−1,θ0)| e.a.s.→ 0 and ‖f̃ (1)

t (y1:t−1,θ0, f̄
(0:1)
1 )− f̃ (1)

t (y1:t−1,θ0)‖ e.a.s.→ 0.

The convergence of the filter directly implied by the fact that the conditions of Corollary 1 hold as
they are implied by those of Corollary 2. The convergence of its derivatives holds by Proposition 2 in
Blasques et al. (2014) which shows that the derivative processes converge under the same conditions
as the filter itself and the maintained moment preservation conditions. From the differentiability of

˜̀′
t(θ, f̄

(0:1)
1 ) = `′

(
θ, y1:t, f̃

(0:1)

t (y1:t−1,θ, f̄
(0:1)
1 )

)
in f̃

(0:1)

t (y1:t−1,θ,f
(0:1)
1 ) and the convexity of F , there exists a set Θ containing θ0 where we can

apply the mean-value theorem to obtain

‖`′T
(
θ0, f̄

(0:1)
1 )− `′T

(
θ0)‖ ≤

4+dλ∑
j=1

∣∣∣∂`′(y1:t, f̂
(0:1)

t )

∂fj

∣∣∣∣∣f̃ (0:1)

j,t (y1:t−1,θ0, f̄
(0:1)
1 )− f̃ (0:1)

j,t (y1:t−1,θ0)
∣∣,
(A7)

where f̃
(0:1)

j,t denotes the j-th element of f̃
(0:1)

t , and f̂
(0:1)

is a point between f̃
(0:1)

j,t (y1:t−1,θ0, f̄
(0:1)
1 )

and f̃
(0:1)

j,t . By Proposition 2 in Blasques et al. (2014) it follows that under the maintained conditions
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there exists a set Θ containing θ0 such that

E
∣∣∣∂`′(y1:t, f̂

(0:1)

t )

∂fj

∣∣∣ <∞
and, as a result,

∣∣∂`′(y1:t, f̂
(0:1)

t )/∂f
∣∣ = Op(1). The strong convergence in (A7) is now ensured by

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖ =

4+dλ∑
i=1

Op(1)oe.a.s(1) = oe.a.s.(1).

Step 3, uniform convergence of `′′: The proof of the uniform convergence in (iv) is similar to
that of Theorem 1. We note

sup
θ∈Θ
‖`′′T (θ, f̄1)− `′′∞(θ)‖ ≤ sup

θ∈Θ
‖`′′T (θ, f̄1)− `′′T (θ)‖+ sup

θ∈Θ
‖`′′T (θ)− `′′∞(θ)‖. (A8)

To prove that the first term vanishes a.s., we show that supθ∈Θ ‖˜̀′′t (θ, f̄1)− ˜̀′′
t (θ)‖ a.s.→ 0 as t→∞.

The differentiability of g̃, g̃′, p̃, and S ensure that

˜̀′′
t (·, f̄1) = `′′(yt, f̃

(0:2)

t (y1:t−1, ·, f̄0:2), ·)

is continuous in (yt, f̃
(0:2)

t (y1:t−1, ·, f̄0:2)). Furthermore, the continuous differentiability of these maps

ensures also that there exists a set Θ containing θ0 and a unique SE sequence {f̃ (0:2)

t (yt−1, ·)}t∈Z
with elements taking values in C(Θ×F (0:i)) such that

sup
θ∈Θ

∥∥(yt, f̃
(0:2)

t (y1:t−1,θ, f̄0:2))− (yt, f̃
(0:2)

t (yt−1,θ)
∥∥ a.s.→ 0

and satisfying, for for nf ≥ 1,

sup
t

E sup
θ∈Θ
‖f̃ (0:2)

t (y1:t−1,θ, f̄0:2)‖nf <∞

and also E supθ∈Θ ‖f̃
(0:2)

t (yt−1,θ)‖nf < ∞. The first term in (A8) now converges to 0 (a.s.) by an

application of a continuous mapping theorem for `′′ : C(Θ×F (0:2))→ R.
The second term in (A8) converges under a bound E supθ∈Θ ‖˜̀′′t (θ)‖ < ∞ by the SE nature of

{`′′T }t∈Z. The latter is implied by continuity of `′′ on the SE sequence {(yt,f (0:2)
t (y1:t−1, ·))}t∈Z and

Proposition 4.3 in Krengel (1985), where SE of {(yt,f (0:2)
t (y1:t−1, ·))}t∈Z follows under the maintained

assumptions on some Θ containing θ0. The moment bound E supθ∈Θ ‖˜̀′′t (θ)‖ <∞ follows from the
fact that under the present conditions, Corollary 2 holds, and hence, by Proposition 2 in Blasques
et al. (2014), the filtered process and its derivatives have nf , n

(1)
f and n

(2)
f moments, respectively, at

θ0. As a result, n`′′ ≥ 1 ensures E‖˜̀′′t (θ0)‖ < ∞, and by continuity of `′′, ∃ some Θ containing θ0

such that E supθ∈Θ ‖˜̀t(θ)‖ <∞.

Finally, the non-singularity of the limit `′′∞(θ) = E˜̀′′
t (θ) = I(θ) in (v) is implied by the unique-

ness of θ0 as a maximum of `′′∞(θ) in Θ and the usual second derivative test calculus theorem.
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