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Abstract

In this paper we consider two cases of pairs trading strategies: a conditional

statistical arbitrage method and an implicit statistical arbitrage method. We use

a simulation-based Bayesian procedure for predicting stable ratios, defined in a

cointegration model, of pairs of stock prices. We show the effect that using an

encompassing prior under an orthogonal normalization has for the selection of pairs

of cointegrated stock prices and for the estimation and prediction of the spread

between cointegrated stock prices and its uncertainty. An empirical application is

done using stocks that are ingredients of the Dow Jones Composite Average index.

The results show that the normalization has little effect on the selection of pairs of

cointegrated stocks on the basis of Bayes factors. However, the results stress the

importance of the orthogonal normalization for the estimation and prediction of the

spread – the deviation from the equilibrium relationship – which leads to better

results in terms of profit per capital engagement and risk than using a standard

linear normalization.

Keywords: Bayesian analysis; cointegration; linear normalization; orthogonal nor-

malization; pairs trading; statistical arbitrage.

JEL classification: C11, C15, C32, C58, G17
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1 Introduction

In this paper we consider statistical arbitrage strategies. These statistical arbitrage strate-

gies presume that the patterns observed in the historical data are expected to be repeated

in the future. As such the statistical arbitrage is a purely statistical approach designed

to exploit market inefficiencies.

Khadani and Lo (2007) consider a specific strategy – first proposed by Lehmann (1990)

and Lo and MacKinlay (1990) – that can be analyzed directly using individual equities

returns. Given a collection of securities, they consider a long/short market-neutral equity

strategy consisting of an equal dollar amount of long and short positions, where at each

rebalancing interval, the long positions are made up of “losers” (underperforming stocks,

relative to some market average) and the short positions are made up of “winners” (out-

performing stocks, relative to the same market average). By buying yesterday’s losers and

selling yesterday’s winners at each date, such a strategy actively bets on mean reversion

across all stocks, profiting from reversals that occur within the rebalancing interval. For

this reason, such strategies have been called “contrarian” trading strategies that benefit

from market overreaction, i.e., when underperformance is followed by positive returns and

vice-versa for outperformance. The same key idea is the basis of pairs trading strategies,

which constitute another form of statistical arbitrage strategies.

The idea of pairs trading relies on long-term equilibrium among the pair of stocks. If

such an equilibrium exists, then it is presumed that a specific linear combination of prices

reverts to zero. A trading rule can be set up to exploit the temporary deviations (spread)

to generate profit. When the spread between two assets is positive it is sold; that is, the

outperforming stock is shorted and the long position is opened in the underperforming

stock. In the opposite case, when the spread is negative, we buy it. Gatev et al. (2006)

investigate the performance of this arbitrage rule over a period of 40 years and they find

huge empirical evidence in favor of it. It is fundamental for the pairs trading strategy to

precisely estimate the current and expected spread among the stock prices. In this paper

we interpret spread as the deviation from the equilibrium in the cointegration model. This

approach differs from Gatev et al. (2006), who implement a nonparametric framework.

Gatev et al. (2006) choose a matching partner for each stock by finding the security that
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minimizes the sum of squared deviations between the two normalized price series; pairs

are thus formed by exhaustive matching between normalized daily prices, where price

includes reinvested dividends. On the other hand, in the cointegration analysis that we

perform the spread between two assets is modeled as the temporary deviation from the

long-term equilibrium among the time series of asset prices. This deviation is computed as

a linear combination of stock prices, where the weights in the linear combination are given

by the cointegrating vector. Therefore, the pairs trading strategy is strongly dependent

on the stability of the ratios of pairs of stocks.

The estimated and predicted spread are both computed from the estimated cointegra-

tion model. For the estimation of the cointegration model, we work with the Metropolis-

Hastings (M-H) type of sampler derived under an encompassing prior. This sampling

algorithm is derived by Kleibergen and Van Dijk (1998) for the Simultaneous Equations

Model and by Kleibergen and Paap (2002) for the cointegration model. They specify

a linear normalization to identify the parameters in the model. However, Strachan and

Van Dijk (2004) point out the possible distortion of prior beliefs associated with the lin-

ear normalization. Moreover, in our application we find out that the distribution of the

spread is particularly sensitive to the choice of normalization.

Therefore we make use of an alternative normalization, the orthogonal normalization,

in order to identify the parameters in the cointegration model. Hence, we implement

the M-H sampler for the cointegration model under this normalization. We compare the

performance of the pairs trading strategy under the orthogonal normalization with the

performance of the counterpart under the linear normalization.

We find that the orthogonal normalization is highly favored over the linear normaliza-

tion with respect to the profitability and risk of the trading strategies.

The results imply that within the statistical arbitrage approach of pairs trading based

on the cointegration model, the normalization is not only a useful device easing the

parameter identification but it primarily becomes an important part of the model.

To take into account the non-normality of the conditional distribution of daily returns,

we do not only consider the normal distribution, but we also extend our approach to the

case of the Student’s t distribution.
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The outline of the paper is as follows. In Section 2 the conditional and implicit

statistical arbitrage approaches are discussed. In Section 3 the Bayesian analysis of the

cointegration model under the encompassing prior is explained. In Section 4 we consider

an empirical application using stocks in the Dow Jones Composite Average index. Section

5 concludes. The appendices contain technical derivations and additional tables with

detailed results from our empirical application.

2 Pairs trading: implicit and conditional statistical

arbitrage

Suppose that there exists a statistical fair price relationship (Burgess, 1999) between the

prices yt,1 and yt,2 of two stocks, where the spread

st = β1yt,1 + β2yt,2 (1)

is the deviation from this statistical fair price relationship, or “statistical mispricing”, at

the end of day t. In this paper we consider two types of trading strategies that are based

upon the existence of such a long-run equilibrium relationship: conditional statistical

arbitrage (CSA) and implicit statistical arbitrage (ISA), where we use the classification

of Burgess (1999). We will implement these strategies in such a way that at the end of

each day the holding is updated, after which the holding is kept constant for a day. In

the CSA strategy the desired holding at the end of day t is given by

CSA(st, k) = sign(E(Δst+1|It)) |E(Δst+1|It)|k, (2)

where It is the information set at the end of day t, and where we consider k = 0 and

k = 1. A positive value of CSA(st, k) means that we buy CSA(st, k) spreads and a

negative value of CSA(st, k) means that we short CSA(st, k) spreads. That is, if β1 > 0

and β2 < 0, then a positive value of CSA(st, k) means that we buy β1 × CSA(st, k) of

stock 1 and short (−β2) × CSA(st, k) of stock 2. For k = 1 the obvious intuition of the

CSA strategy is that we want to invest more in periods with larger expected profits. In the

case of k = 0 we only look at the sign of the expected change in the next day. Note that
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the expectation in (2) is taken over the distribution of Δst+1 (given the information set It

and the ‘fixed’ values of β1 and β2). In the sequel of this paper, we will use the posterior

median to obtain estimates of model parameters, where the expectation in (2) will still

be taken given these ‘fixed’ estimated values. We will use the posterior median, since

the posterior distribution has Cauchy type tails in one of the model specifications that

we compare, where these Cauchy type tails cause that the coefficients have no posterior

means.

In the ISA strategy the desired holding at the end of day t is given by:

ISA(st) = −st. (3)

A positive value of ISA(st) means that we buy ISA(st) spreads and a negative value of

ISA(st) means that we short ISA(st) spreads. Or equivalently, a negative value of st

means that we buy −st spreads and a positive value of st means that we short st spreads.

That is, if β1 > 0 and β2 < 0, then a positive value of ISA(st) means that we buy

β1 × ISA(st) = β1 × (−st) of stock 1 and short (−β2)× (−ISA(st)) = (−β2)× st of stock

2. In the sequel of this paper, we will substitute the posterior medians of β1 and β2 to

obtain an estimate of the spread in (1).

The CSA and ISA strategies raise several questions. First, how do we define such

long-run equilibrium relationships? How are the coefficients β1 and β2 estimated? Sec-

ond, how do we find pairs of stocks that satisfy such a long-run equilibrium relationship?

Third, how do we estimate how the stock prices adjust towards their long-run equilibrium

relationship? In the next section, we will consider how the Bayesian analysis of the coin-

tegration model (under linear or orthogonal normalization) answers all these questions.

In order to answer the first and third questions we will use the posterior distribution

(more precisely, the posterior median) of the parameters in the cointegration model. In

order to answer the second question we will compute the Bayes factor of a model with a

cointegration relationship versus a model without a cointegration relationship for a large

number of pairs of stocks.

At this point, we stress why we make use of the CSA and ISA strategies, rather than

the approach of Gatev et al. (2006). In the strategy of Gatev et al. (2006) a holding is
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taken as soon as it is found that a pair of prices has substantially diverged. After that, the

holding remains constant until the prices have completely converged to the equilibrium

relationship. A disadvantage of that trading strategy is that there is not much trading

going on (i.e., in most periods there is no trading at all), which makes it more difficult

to investigate the difference in quality between different models given a finite period, or

equivalently a very long period may be required to be able to find significant differences

in trading results between models.

3 Bayesian analysis of the cointegration model under

linear and orthogonal normalization

Consider a vector autoregressive model of order 1 (VAR(1)) for an n-dimensional vector

of time series {Yt}T
t=1

Yt = ΦYt−1 + εt, (4)

εt is an independent n-dimensional vector normal process with zero mean and n × n

positive definite symmetric (PDS) covariance matrix Σ. We will consider two alternative

distributions for εt: a multivariate normal distribution and a multivariate Student’s t

distribution. Φ is an n×n matrix with with autoregressive coefficients. The initial values

in Y1 are assumed fixed. The VAR model in (4) can be written in error correction form

ΔYt = Π′Yt−1 + εt, (5)

where Π′ = Φ − In (with In the n × n identity matrix) is the long-run multiplier matrix,

see e.g. Johansen (1991) and Kleibergen and Paap (2002).

If Π is a zero matrix, the series Yt contains n unit roots. If the matrix Π has full rank,

the univariate series in Yt are stationary. Cointegration appears if the rank Π equals r

with 0 < r < n. The matrix Π′ can be written as the outer product of two full rank n× r

matrices α′ and β:

Π′ = α′β′.
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The matrix β contains the cointegration vectors, which reflect the stationary long-run

(equilibrium) relations between the univariate series in Yt; that is, each element of β′Yt

can be interpreted as the deviation from a long-run (equilibrium) relations. The matrix

α contains the adjustment parameters, which indicate the speed of adjustment to the

long-run (equilibrium) relations.

To save on notation, we write (5) in matrix notation

ΔY = Y−1Π + ε,

with (T − 1) × n matrices ΔY = (ΔY2, . . . , ΔYT )′, Y−1 = (Y1, . . . , YT−1)
′ and ε =

(ε2, . . . , εT ).

Under the cointegration restriction Π = βα, this model is given by:1

ΔY = Y−1βα + ε. (6)

The individual parameters in βα are non-identified as βα = βBB−1α for any nonsingular

r×r matrix B. That is, postmultiplying β by an invertible matrix B and premultiplying α

by its inverse leaves the matrix βα unchanged. Therefore, r× r identification restrictions

are required to identify the elements of β and α, so that these become estimable. In this

paper we will consider two different normalization restrictions. The first normalization is

the most commonly used normalization, the linear normalization, where we have

β =

 Ir

β2

 . (7)

That is, the r × r elements of the first r rows must form an identity matrix.

The second normalization is the orthogonal normalization, where we have

β′β = Ir. (8)

In this paper we will consider the case of n = 2 time series (of stock prices) in Yt =

(yt,1, yt,2), where the rank of Π is equal to r = 1: yt,1

yt,2

 =

 α1

α2

 (β1yt,1 + β2yt,2) +

 εt,1

εt,2

 (9)

1We also considered models with a constant term inside the cointegration relationship and/or drift

terms in the model equation. The inclusion of such terms did not change the conclusions of our paper.
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with spread

st = β1yt,1 + β2yt,2 (10)

and  E(Δyt+1,1|It)

E(Δyt+1,2|It)

 =

 α1

α2

 (β1yt,1 + β2yt,2) =

 α1

α2

 st, (11)

so that

E(Δst+1|It) = β1E(Δyt+1,1) + β2E(Δyt+1,2) = (α1β1 + α2β2)st. (12)

From (10) and (12) it is clear that our ISA trading strategy depends on β1 and β2, whereas

our CSA trading strategy also depends on α1 and α2.

Under the linear normalization we have β1 = 1:

β =

 1

β2

 , (13)

whereas under the orthogonal normalization we have

β′β = β2
1 + β2

2 = 1, (14)

which is (under the further identification restriction β2 ≥ 0) equivalent with

β2 =
√

1 − β2
1 . (15)

Since the adjustment coefficients α1 and α2 may be close to 0, there may be substantial

uncertainty about the equilibrium relationship. The linear normalization allows β2 to

take values in (−∞,∞), whereas the orthogonal normalization allows β1 to take values

in [−1, 1] and β2 in [0, 1]. One may argue that the spread under the linear normalization

is just a re-scaled version of the spread under the orthogonal normalization (where the

spread under the linear normalization would result by dividing the spread under the

orthogonal normalization by β1). However, we will consider a moving window, where

the parameters will be updated every day, so that the re-scaling factor is not constant

over time. Therefore, the profit/loss of the ISA strategy under the linear normalization

is not just a re-scaled version of the profit/loss of the ISA strategy under the orthogonal
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normalization. Further, we estimate the parameters using their posterior median, where

the posterior median of β2 under the linear normalization will typically differ from the

ratio of the posterior medians of β2 and β1 under the orthogonal normalization. The

profit/loss of the strategies under the linear normalization may be much affected by a

small number of days at which the β2 is estimated very large (in an absolute sense),

whereas under the orthogonal normalization the profit/loss may be more evenly affected

by the different days, as (the estimates of) β1 and β2 can not ‘escape’ to extreme values

outside [−1, 1] × [0, 1].

3.1 Encompassing framework for prior specification and poste-

rior simulation

As mentioned above, we consider the case of n = 2 time series (of stock prices), where the

rank of Π = βα is equal to r = 1. That is, the matrix Π needs to satisfy a reduced rank

restriction. A natural way to specify a prior for α and β is given by the encompassing

framework, in which one first specifies a prior on Π without imposing a reduced rank

restriction and then obtains the prior in our model as the conditional prior of Π given

that the rank of Π is equal to 1.

As singular values are generalized eigenvalues of non-symmetric matrices, they are a

natural way to represent the rank of a matrix. Using the singular values we can artificially

construct the full rank specification of Π via an auxiliary parameter given by the (n −

r) × (n − r) matrix λ; i.e. λ is a scalar in our case with n = 2 and r = 1. The reduced

rank matrix βα is extended into the full rank specification:

Π = βα + β⊥λα⊥. (16)

where β⊥ and α′
⊥ are n× (n− r) matrices that are specified such that β′β⊥ ≡ 0, β′

⊥β⊥ ≡

In−r, α⊥α′ ≡ 0 and α⊥α′
⊥ ≡ In−r. The full rank specification encompasses the reduced

rank case given by λ = 0. In this framework the probability p(λ = 0|Y ) can be interpreted

as a measure quantifying the likelihood of reduced rank. The specification in (16) is
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obtained using the singular value decomposition Π = USV ′ of Π, where the n×n matrices

U and V are orthogonal such that U ′U = In and V ′V = In and the n × n matrix S is

diagonal and has the singular values of Π on its diagonal in a decreasing order.

To derive the elements of equation (16) in terms of parameters Π we partition Π

according to the specifics of the chosen normalization. Under the linear normalization,

we partition the matrices U , S and V as follows

U =

U11 U12

U21 U22

 , S =

S1 0

0 S2

 , and V ′ =

V ′
11 V ′

21

V ′
12 V ′

22

 .

The matrices in decomposition (16) in terms of the blocks of U , S and V are given by

α = U11S1

(
V ′

11 V ′
21

)
, α⊥ = (V22V

′
22)

1/2V −1
22

′
(
V ′

12 V ′
22

)
,

β2 = U21U
−1
11 , β⊥ =

U12

U22

U−1
22 (U22U

′
22)

1/2,

λ = (U22U
′
22)

−1/2U22S2V
′
22(V22V

′
22)

−1/2.

Under the orthogonal normalization, the matrices are partitioned as

U =
(
U1 U2

)
, S =

S1 0

0 S2

 and V ′ =

V ′
1

V ′
2

 ,

and the following relations hold:

α = S1V
′
1 , α⊥ = V ′

2

β = U1, β⊥ = U2,

λ = S2.

Under the orthogonal normalization λ is directly equal to S2, whereas under the linear

normalization it is just a rotation of S2. In both cases restriction λ = 0 is equivalent with

restricting the n − r smallest singular values of Π to 0.

The prior on (α, β) is equal to the conditional prior of the parameters (α, β, λ) given
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that λ = 0, which is proportional to the joint prior for (α, β, λ) evaluated at λ = 0:

p(α, β) ∝ p(α, β, λ)|λ=0 ∝ p(Π(α, β, λ))|λ=0|J(Π, (α, β, λ))||λ=0, (17)

where |λ=0 stands for evaluated in λ = 0, where J(Π, (α, β, λ)) denotes the Jacobian of

the transformation from Π to (α, β, λ). Kleibergen and Paap (2002) derive the closed

form expression for the determinant of the Jacobian |J(Π, (α, β, λ))| for the general case

of n variables and reduced rank r under the linear normalization. In Appendix B we

derive a computationally more convenient expression for this Jacobian under the linear

normalization. In Appendix C the Jacobian is derived under the orthogonal normaliza-

tion of β. Gatarek et al. (2010) prove that under certain conditions the encompassing

prior is equivalent to Jeffreys’ prior in the cointegration model with normally distributed

innovations, irrespective of the normalization applied.

In a similar fashion, the posterior of (α, β) is equal to the conditional posterior of the

parameters (α, β, λ) given that λ = 0, which is proportional to the joint posterior for

(α, β, λ) evaluated at λ = 0:

p(α, β|Y ) = p(α, β|λ = 0, Y )

∝ p(α, β, λ|Y )|λ=0 = p(Π(α, β, λ|Y ))|λ=0|J(Π, (α, β, λ))||λ=0, (18)

where the detailed expression for p(Π(α, β, λ)|Y ) is given by Kleibergen and Paap (2002),

and where

p(α, β, λ|Y ) = p(Π(α, β, λ)|Y )|Π=βα+β⊥λα⊥|J(Π, (α, β, λ))|. (19)

For Bayesian estimation of the cointegration model we need an algorithm to sample

from the posterior density in (18). However this posterior densities does not belong to

any known class of distributions, see Kleibergen and Paap (2002), and as such can not

be sampled directly. The idea of the Metropolis-Hastings (M-H) algorithm is to generate

draws from the target density by constructing a Markov chain of which the distribu-

tion converges to the target distribution, using draws from a candidate density and an

acceptance-rejection scheme. Kleibergen and Paap (2002) present the M-H algorithm to

sample from (18) for the cointegration model with normally distributed disturbances un-

der the linear normalization. In this algorithm (19) is used to form a candidate density.
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The general outline of this sampling algorithm is presented in Appendix A. Appendix

C presents the approach to evaluate the acceptance-rejection weights under the orthogo-

nal normalization. The posteriors of the coefficients under the linear normalization have

Cauchy type tails, so that there exist no posterior means for the coefficients. Therefore,

we estimate the coefficients using the posterior median (which we do under both normal-

izations to keep the comparison between the normalizations as fair as possible).

We also consider the model under a multivariate Student’s t distribution for the inno-

vations εt. Then the M-H algorithms are straightforwardly extended, see Geweke (1993).

3.2 Bayes factors

We evaluate the Bayes factor of rank 1 versus rank 2 and the Bayes factor of rank 0

versus rank 2. The Bayes factor of rank 1 versus rank 0 is obviously given by the ratio

of these Bayes factors. For the evaluation of these Bayes factors we use the method of

Kleibergen and Paap (2002) who evaluate the Bayes factor as the Savage-Dickey density

ratio, see Dickey (1971) and Verdinelli and Wasserman (1995). The Bayes factor for the

restricted model with λ = 0 (where Π has rank 0 or 1) versus the unrestricted model with

unrestricted λ (where Π has rank 2) equals the ratio of the marginal posterior density of

λ, and the marginal prior density of λ, both evaluated in λ = 0. However, in the case of

our diffuse prior specification this Bayes factor for rank reduction is not defined, as the

marginal prior density of λ is improper. Therefore, we follow Chao and Phillips (1999)

who use as prior height (2π)−(2nr−r2)/2 to construct their posterior information criterium

(PIC). We assume equal prior probabilities 1
3

for the rank 0, 1 or 2, so that the Bayes

factor is equal to the posterior odds, the ratio of posterior model probabilities. For pairs

of stock prices we will mostly observe that the estimated posterior model probability is

highest for rank 0, the case of two random walk processes without cointegration. Only for

a small fraction of pairs, we will observed that the estimated posterior model probability

is highest for rank 1, the case of two cointegrated random walk processes.
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4 Empirical application

The CSA and ISA strategies are applied to components of the Dow Jones Composite

Average index. We work with daily closing prices recorded over the period of one year,

from January 1, 2009 until December 31, 2009. We consider the 65 stocks with the highest

liquidity. First, we identify cointegrated pairs based on the estimated posterior probability

of cointegration (i.e., Π having rank 1) computed for the first half year of the data. That

is, among the 65×64
2

= 2080 pairs we select the 10 pairs with the highest Bayes factor of

rank 1 versus rank 0 (where these Bayes factors are larger than 1) for both the linear and

orthogonal normalization. The 10 pairs are identical for both normalizations; these pairs

are given by Table 1. Second, those pairs are used in the CSA and ISA trading strategies

during the last 6 months of 2009. We use a rolling window, where the parameter estimates

are updated at the end of each trading day, after which the positions are updated and

kept constant until the end of the next trading day. We will analyze the profits from these

trading strategies, where we take into account the common level of transaction costs of

0.1% (c = 0.001).

Next to the ‘standard’ CSA approach described before, we will also perform a more

cautious, more conservative CSA strategy that takes into account parameter uncertainty.

Here we only take a position if we are more certain about the sign of the current spread

(and hence the sign of the expected change of the spread, which is the opposite sign).

We only take a position if the (50 + ξ/2)% percentile and the (50 − ξ/2)% percentile of

the posterior distribution of the current spread have the same sign, where we consider

the cases of ξ = 20%, 30%, 40%, 50% or 60%. The case of ξ = 60% is the most cautious

strategy, where the sign of the posterior 20% and 80% percentiles of the spread must be

the same. Note that for ξ = 0% this strategy reduced to the original CSA strategy.

In order to evaluate the CSA and ISA strategies in the cointegration models under the

linear and orthogonal normalization and under a normal and Student’s t distribution for

the innovations, we compute two measures. First of all, the strategy can not be evaluated

in terms of the percentage return on initial capital investment, as we are not only buying

stocks but we are also shorting stocks. Suppose that we perform our strategies for T

consecutive trading days (where in our case T is the number of trading days in the last 6
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Table 1: Ten pairs of stocks with highest Bayes factor of model with Π having rank 1

(cointegration) versus model with Π having rank 0 (two random walks) under both the

linear normalization and the orthogonal normalization (among stocks in the Dow Jones

Composite Average index, using daily closing prices recorded over the period of January

1, 2009 until June 30, 2009)

AA - OSG : ALCOA Inc. - Overseas Shipholding Group, Inc.

CNP - OSG : CenterPoint Energy, Inc. - Overseas Shipholding Group, Inc.

DUK - IBM : Duke Energy Corp. - International Business Machines Corp.

DUK - OSG : Duke Energy Corp. - Overseas Shipholding Group, Inc.

MO - UPS : Altria Group, Inc. - United Parcel Service, Inc.

NI - NSC : NiSource, Inc. - Norfolk Southern Corp.

NI - OSG : NiSource, Inc. - Overseas Shipholding Group, Inc.

NI - R : NiSource, Inc. - Ryder System, Inc.

NI - UNP : NiSource, Inc. - Union Pacific Corp.

NI - UTX : NiSource, Inc. - United Technologies Corp.

months of 2009). Then the average daily capital engagement is given by:

ADCECSA(k,x%) ≡ 1

T

T−1∑
t=0

|CSA(st, k, x%)|
(
|β̂t,1|yt,1 + |β̂t,2|yt,2

)
, (20)

ADCEISA ≡ 1

T

T−1∑
t=0

|ISA(st)|
(
|β̂t,1|yt,1 + |β̂t,2|yt,2

)
, (21)

where β̂t,1 and β̂t,2 are the posterior medians of β1 and β2 computed at the end of the t-th

day in the trading period. That is, β̂t=0,1 and β̂t=0,2 are computed at the end of the last

trading day before the trading period. Our first performance measure is a profitability

measure that is given by the total return of the strategy divided by the average daily

capital engagement:

ProfitabilityCSA(k,x%) ≡ Cumulative Return of CSA(k, x%) at time T

ADCECSA(k,x%)

, (22)

ProfitabilityISA ≡ Cumulative Return of ISA at time T

ADCEISA

. (23)

Our second performance measure concerns the risk of the strategies. In order to

estimate risk we use paths of cumulative return. When the cumulative return at time t+1
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is often lower than the cumulative return at time t, then a strategy can be considered

risky. On the other hand, if the cumulative return is growing or remains steady over

most periods the strategy can be considered as having low risk. In the latter case the

signals generated by the trading rule are accurate and yield (mostly) profit. We define

our measure as:

Risk ≡ #{Cum. return at time t + 1 < Cum. return at time t}
#{Cum. return at time t + 1 6= Cum. return at time t}

(24)

for each strategy.

Table 2 presents the average of the Profitability measure in (22)-(23) over the ten

selected (cointegrated) pairs of stocks. Detailed results, for every pair of stocks, are

presented in Appendix D. The hypothesis that the normalization plays an important role

in pairs trading strategies is confirmed by the empirical findings. Table 2 confirms that the

orthogonal normalization substantially outperforms the linear counterpart, irrespectively

of the assumed distribution for the innovations. It is particularly pronounced when the

profitability of the CSA strategies under k = 0 is compared with the counterpart under

k = 1. For the linear normalization the increase from k = 0 to k = 1 is linked with

substantial decrease in profitability. It means that predictions of the change of the spread

under the linear normalization are relatively poor compared with the orthogonal case. For

k = 1 where not only the direction but also the size of predicted change of the spread play

an important role, the linear normalization performs relatively poorly. On the contrary,

the orthogonal normalization shows an appreciable increase in profitability for k = 1

compared to k = 0.

As expected, the Risk measure for the CSA strategies in Table 3 decreases for more

cautious, more conservative strategies with larger values of ξ. The Risk measure under

the linear normalization is similar or worse than the counterpart under the orthogonal

normalization. Obviously, this only means that the percentage of trading days with a

decrease of the cumulative return is similar. The size of these decreases may be larger.

In further research, we will take a closer look at the riskiness of the alternative strategies

in the different models.
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Now we compare the performance between the normal distribution and the Student’s

t distribution. The Risk measure is slightly better under the Student’s t distribution. For

the Profitability measure the difference (in favor of the Student’s t distribution) seems

somewhat more clearly present. However, it should be noted that the difference between

the orthogonal and linear normalizations is much larger than the difference between the

Student’s t and the normal distribution. The normalization is clearly the key factor for

the profitability of the trading strategies. One possible reason for this result is that the

profit/loss of the strategies under the linear normalization may be much affected by a

small number of days at which the β2 is estimated very large (in an absolute sense),

whereas under the orthogonal normalization the profit/loss may be more evenly affected

by the different days, as (the estimates of) β1 and β2 can not ‘escape’ to extreme values

far outside [−1, 1]× [0, 1]. The latter may happen in the case of the linear normalization if

the adjustment coefficients α1 and α2 are close to 0. The latter may be found for certain

pairs of empirical time series of stock prices (in certain periods), where the error correction

may be rather slow. In future research, we will take a closer look at the reasons for the

substantial difference in profitability between the normalizations.
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Table 2: Performance evaluation measure Profitability in (22)-(23)(in %). Average over

10 pairs of assets.

CSA (k = 0)

ξ

0% 20% 30% 40% 50% 60%

linear normalization

normal 12.52 17.08 19.72 26.94 31.32 47.37

Student’s t 19.87 24.23 30.11 32.9 38.74 61.03

orthogonal normalization

normal 57.10 64.8 63.61 76.56 83.49 112.2

Student’s t 60.27 66.41 67.67 81.78 91.53 114.05

ISA CSA (k = 1)

ξ

0% 20% 30% 40% 50% 60%

linear normalization

normal 15.42 4.80 5.73 6.07 6.98 8.82 11.89

Student’s t 16.82 7.81 9.77 12.57 13.53 15.32 20.34

orthogonal normalization

normal 46.11 67.78 83.03 90.24 104.62 118.09 160.68

Student’s t 46.32 68.38 83.75 91.37 106.04 113.93 155.67
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Table 3: Risk evaluation measure Risk in (24). Average over 10 pairs of assets.

CSA (k = 0)

ξ

0% 20% 30% 40% 50% 60%

linear normalization

normal 0.45 0.43 0.42 0.42 0.42 0.35

Student’s t 0.44 0.42 0.41 0.41 0.40 0.32

orthogonal normalization

normal 0.40 0.40 0.42 0.41 0.40 0.34

Student’s t 0.39 0.40 0.40 0.39 0.36 0.33

ISA CSA (k = 1)

ξ

0% 20% 30% 40% 50% 60%

linear normalization

normal 0.47 0.51 0.48 0.45 0.45 0.44 0.35

Student’s t 0.48 0.50 0.47 0.46 0.46 0.44 0.34

orthogonal normalization

normal 0.45 0.48 0.46 0.48 0.46 0.45 0.37

Student’s t 0.46 0.47 0.47 0.45 0.42 0.39 0.35
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5 Conclusions and further research

We considered two cases of pairs trading strategies: a conditional statistical arbitrage

method and an implicit statistical arbitrage method. We used a simulation-based Bayesian

procedure for predicting stable ratios, defined in a cointegration model, of pairs of stock

prices. We showed the effect that using an encompassing prior under an orthogonal nor-

malization has for the selection of pairs of cointegrated stock prices and for the estimation

and prediction of the spread between cointegrated stock prices and its uncertainty. An

empirical application was done using stocks that are ingredients of the Dow Jones Com-

posite Average index. The results showed that the normalization has little effect on the

selection of pairs of cointegrated stocks on the basis of Bayes factors. However, the results

stressed the importance of the orthogonal normalization for the estimation and prediction

of the spread, which leads to better results in terms of profit per capital engagement and

risk than using a standard linear normalization.

If we consider the percentiles of the predictive distribution for the future spread during

the trading strategy, taking into account the uncertainty in future innovations, then it is

more important to specify the distribution of the innovations more carefully. In future

research, we will consider a finite mixture of Gaussian distributions for the innovations.

However, the algorithm for the posterior simulation will not be a straightforward exten-

sion of the algorithm under the normal distribution, which was the case for the Student’s

t distribution. We will extend the partial and permutation-augmented MitISEM (Mixture

of t by Importance Sampling weighted Expectation Maximization approaches of Hooger-

heide et al. (2012) to perform the posterior simulation for the cointegration model with

errors obeying a finite mixture distribution.
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A Posterior distribution and sampling algorithm un-

der encompassing prior

In this appendix we make use of two models, where we follow the terminology of Kleibergen

and Paap (2002). First, the linear error correction (LEC) model is given by

ΔYt = Π′Yt−1 + εt, εt ∼ N(0, Σ), (25)

in which we impose no rank reduction restriction on

Π = βα + β⊥λα⊥. (26)

We will use the posterior of (α, β, λ, Σ) in this LEC model as a candidate distribution in

a Metropolis-Hastings algorithm.

Second, the cointegration model is given by

ΔYt = Π′Yt−1 + εt, εt ∼ N(0, Σ), (27)

in which we impose the rank reduction restriction

Π = βα. (28)

The posterior of (α, β, Σ) in this cointegration model is the actual target distribution that

we are interested in. Straightforwardly using a Gibbs sampler by simulating α and β from

their full conditional posteriors is not possible due to their difficult dependence structure,

see Kleibergen and Van Dijk (1994).

The encompassing prior assumes that rank restriction on Π is expressed explicitly

using the decomposition (26), where not only the prior in the LEC model but also the

posterior of α, β, λ|Σ, Y in the LEC model satisfies the transformation of random variables

defined by (26) such that

pLEC(α, β, λ|Σ, Y ) = pLEC(Π|Σ, Y )|Π=βα+β⊥λα⊥|J(Π, (α, β, λ))|. (29)

where J(Π, (α, β, λ)) denotes the Jacobian of the transformation from Π to (α, β, λ).

The conditional posterior α, β|λ, Σ, Y in the LEC model, which is obviously propor-

tional to the joint, can be evaluated in λ = 0 to obtain the posterior of α, β|Σ, Y in our
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cointegration model with rank reduction:

p(α, β|Σ, Y ) = pLEC(α, β|λ, Σ, Y )|λ=0

∝ pLEC(α, β, λ|Σ, Y )|λ=0

= pLEC(Π|Σ, Y )|Π=βα|J(Π, (α, β, λ))||λ=0.

(30)

Hence, we can consider the rank reduction as a parameter realization λ = 0.

Sampling algorithm based on diffuse prior on Π and nesting

We specify a diffuse prior on the parameters Π and Σ in the LEC model: pLEC(Σ) ∝

|Σ|−n+1
2 and pLEC(Π|Σ) ∝ 1 (where n is the dimension of Yt). The conditional posterior

of Σ given Π in the LEC model is a matric-variate normal distribution. The marginal

posterior of Σ in the LEC model is an inverted Wishart distribution. See Zellner (1971) for

a discussion of Bayesian analysis in the linear model. The decomposition in (26) allows us

to obtain a (joint) draw of α and β (and λ) from a draw of Π. The dependencies between

α and β are fully taken into account by determining α and β simultaneously.

This poses the problem that our posteriors of interest in the cointegration model,

p(α, β, Σ|Y ) and p(α, β|Y, Σ), do not involve λ while it is sampled in the posterior draws

for the LEC model. Kleibergen and Paap (2002) adopt the approach suggested by Chen

(1994). For simulating from the posterior p(α, β|Σ, Y ) it is first extended with an artificial

extra parameter λ whose density we denote by g(λ|α, β, Σ, Y ). We use a Metropolis-

Hastings (M-H) sampling algorithm for simulating from the joint density

pg(α, β, λ, Σ|Y ) = g(λ|α, β, Σ, Y )p(α, β, Σ|Y ). (31)

The posterior p(α, β, λ|Σ, Y ) from (29) is used as the candidate generating density. When

pg(α, β, λ, Σ, Y ) is marginalized with respect to λ in order to remove the artificial parame-

ter λ, the resultant distribution is p(α, β, Σ|Y ). The simulated values of α, β, Σ (discarding

λ) therefore are a sample from p(α, β, Σ|Y ).

The choice of g(λ|α, β, Σ, Y ) leads to the weight function w(α, β, λ, Σ) for use in the

M-H algorithm. The acceptance probability in the M-H depends on a weight function
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which is the ratio of the target density (31) and the candidate generating density (29),

w(α, β, λ, Σ) =
pg(α, β, λ, Σ|Y )

pLEC(α, β, λ, Σ|Y )

=
g(λ|α, β, Σ, Y )p(α, β|Σ, Y )

pLEC(α, β, λ, Σ|Y )

=
g(λ|α, β, Σ, Y ) exp(−1

2
(tr(βα − Π̂)′(βα − Π̂))

exp(−1
2
(tr(βα + β⊥λα⊥ − Π̂)′(βα + β⊥λα⊥ − Π̂))

|J ||λ=0

|J |
,

(32)

where Π̂ is the OLS estimator.

The exponentiated trace expressions in numerator and denominator are related to each

other by

tr((βα + β⊥λα⊥ − Π̂)′(βα + β⊥λα⊥ − Π̂))

=tr((βα − Π̂)′(βα − Π̂)) + tr((λ − β⊥
′Π̂α⊥

′)′(λ − β⊥
′Π̂α⊥

′))

+ tr((β⊥
′Π̂α⊥

′)′β⊥
′Π̂α⊥

′)

=tr((βα − Π̂)′(βα − Π̂)) + tr((λ − λ̃)′(λ − λ̃)) + tr(λ̃′λ̃)

(33)

where λ̃ = β⊥
′Π̂α⊥

′. A sensible choice for the density function g(λ|α, β, Σ, Y ) thus turns

out to be

g(λ|α, β, Σ, Y ) ∝ exp

(
−1

2
tr((λ − λ̃)′(λ − λ̃))

)
. (34)

Using this choice of g(λ|α, β, Σ, Y ) the weight function reduces to

w(α, β, λ, Σ) ∝ exp

(
−1

2
tr(λ̃′λ̃)

)
|J(Π, (α, β, λ))||λ=0

|J(Π, (α, β, λ))|
. (35)

For the determinant of the Jacobian |J(Π, (α, β, λ))| under the linear normalization

we refer to the appendix of Kleibergen and Paap (2002). In Appendix C we derive the

determinant of the Jacobian under the orthogonal normalization.

The steps required in the sampling algorithm are,

1. Draw Σi+1 from pLEC(Σ|Y ).

2. Draw Πi+1 from pLEC(Π|Σ, Y ).

3. Compute αi+1, βi+1, λi+1 from Πi+1 using the singular value decomposition.

4. Accept Σi+1, αi+1 and βi+1 with probability min
(

w(αi+1,βi+1,λi+1,Σi+1)
w(αi,βi,λi,Σi)

, 1
)
.
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B Jacobian of the transformation from Π to (α, β, Σ)

under linear normalization

This discussion is based on Kleibergen and Paap (2002). They derive the Jacobian trans-

formation under the linear normalization.

It is convenient to derive the Jacobian in two steps based on (26)

Π = βα + β⊥λα⊥ = βα1θ + β⊥λθ⊥,

where α =
(
α1 α2

)
, θ = α−1

1 α, and θ =
(
Ir −θ2

)
. First the derivatives of Π with

respect to (α1, θ2, λ, β2) are computed, and then in the final step, with respect to (α, λ, β2).

∂vec(Π)

∂vec(α1)′
= θ′ ⊗ β

∂vec(Π)

∂vec(θ2)′
=

 0

−In−r

 ⊗ βα1 + (In ⊗ β⊥λ)
∂vec(θ⊥)

∂vec(θ2)′

∂vec(Π)

∂vec(λ)′
= θ′⊥ ⊗ β⊥

∂vec(Π)

∂vec(β2)′
= θ′α′

1 ⊗

 0

−In−r

 + (θ′⊥λ′ ⊗ In)
∂vec(β⊥)

∂vec(β2)′

with

∂vec(θ⊥)

∂vec(θ2)′
= (In ⊗ θ

− 1
2

n )
∂vec

(
θ′2 In−r

)
∂vec(θ2)′

+ (

 θ2

In−r

 ⊗ In−r)
∂vec(θ

− 1
2

n )

∂vec(θ
1
2
n )′

∂vec(θ
1
2
n )

∂vec(θn)′
∂vec(θn)

∂vec(θ2)′

∂vec(β⊥)

∂vec(β2)′
= (β

− 1
2

n ⊗ In)
∂vec(

(
β2 In−r

)′
)

∂vec(β2)′
+ (In−r ⊗

 β′
2

In−r

)
∂vec(β

− 1
2

n )

∂vec(β
1
2
n )′

∂vec(β
1
2
n )

∂vec(βn)′
∂vec(βn)

∂vec(β2)′
,

where θn = In−r + θ′2θ2 and βn = In−r + β2β
′
2. Also, θ⊥ = θ

− 1
2

n

(
θ′2 In−r

)
and β⊥ =(

β2 In−r

)
β
− 1

2
n .
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∂vec
(
θ′2 In−r

)
∂vec(θ2)′

= (

Ir

0

 ⊗ In−r)Kn−r,r

∂vec(θ
− 1

2
n )

∂vec(θ
1
2
n )′

= −θ
− 1

2
n

′ ⊗ θ
− 1

2
n

∂vec(θ
1
2
n )

∂vec(θn)′
= (θ

1
2
n
′ ⊗ In−r + In−r ⊗ θ

1
2
n )−1

∂vec(θn)

∂vec(θ2)′
= In−r ⊗ θ′2 + (θ′2 ⊗ In−r)Kn−r,r

∂vec(
(
β2 In−r

)′
)

∂vec(β2)′
= (In−r ⊗

Ir

0

)Kn−r,r

∂vec(β
− 1

2
n )

∂vec(β
1
2
n )′

= −β
− 1

2
n

′ ⊗ β
− 1

2
n

∂vec(β
1
2
n )

∂vec(βn)′
= (β

1
2
n
′ ⊗ In−r + In−r ⊗ β

1
2
n )−1

∂vec(βn)

∂vec(β2)′
= β2 ⊗ In−r + (In−r ⊗ β′

2)Kn−r,r

where Km,n is a commutation matrix such that Km,nvec(A) = vec(A′) for any matrix A

of dimension m × n.

B.1 Jacobian with λ unrestricted

This discussion goes beyond Kleibergen and Paap (2002). We derive some convenient

computational reductions compared to Kleibergen and Paap (2002). We start with (26)

again in order to obtain:

dΠ = d(βα) + d(β⊥λα⊥)

= β(dα) + (dβ)α + β⊥λ(dα⊥) + β⊥(dλ)α⊥ + (dβ⊥)λα⊥.
(36)

Hence,

∂vec(Π)

∂vec(α)′
= In ⊗ β + (In ⊗ β⊥λ)

∂vec(α⊥)

∂vec(α)′

∂vec(Π)

∂vec(β2)′
= α′ ⊗

 0

−In−r

 + (α′
⊥λ′ ⊗ In)

∂vec(β⊥)

∂vec(β2)′

∂vec(Π)

∂vec(λ)′
= α′

⊥ ⊗ β⊥.
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For the derivation of the Jacobian we thus need ∂vec(α⊥)
∂vec(α)′

and ∂vec(β⊥)
∂vec(β2)′

. We shall derive

the derivative ∂vec(β⊥)
∂vec(β)′

using the implicit function theorem. The other derivatives can be

obtained from it. By definition, it holds

β′
⊥β = 0n−r×r. (37)

Also, we have restricted β⊥ to be semi-orthogonal, that is

β′
⊥β⊥ = In−r. (38)

Define the function

f(β⊥; β) =
(
β′
⊥β β′

⊥β⊥ − In−r

)
= 0n−r×n.

Then a sufficient condition for the implicit function theorem is that the matrix ∂vecf(β⊥;β)
∂vec(β⊥)′

is non-singular. We find that

∣∣∣∂vec(f(β⊥;β))
∂vec(β⊥)′

∣∣∣ =

∣∣∣∣∣∣
∂vec(β′

⊥β)

∂vec(β⊥)′

∂vec(β′
⊥β⊥−In−r)

∂vec(β⊥)′

∣∣∣∣∣∣ (39)

=

∣∣∣∣∣∣ (β′ ⊗ In−r)Kn,n−r

In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r

∣∣∣∣∣∣ (40)

=

∣∣∣∣∣∣
 (β′ ⊗ In−r)Kn,n−r

In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r

 (β′ ⊗ In−r)Kn,n−r

In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r

′∣∣∣∣∣∣
1
2

(41)

=

∣∣∣∣∣∣β
′β ⊗ In−r 0

0 4Nn−r

∣∣∣∣∣∣ = 0, (42)

because

(In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r)(In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r)
′ =

2I(n−r)2 + (In−r ⊗ β′
⊥)Kn−r,n(β⊥ ⊗ In−r) + (β′

⊥ ⊗ In−r)Kn,n−r(In−r ⊗ β′
⊥) =

2I(n−r)2 + (In−r ⊗ β′
⊥)(In−r ⊗ β⊥)Kn−r + (β′

⊥ ⊗ In−r)(β
′
⊥ ⊗ In−r)Kn−r =

4Nn−r,

and Nn−r = 1
2
(I(n−r)2 + Kn−r) is a matrix with rank 1

2
(n− r)(n− r + 1), see e.g. Magnus

and Neudecker (1999). The Jacobian (39) thus has a rank deficiency of (n− r)n− 1
2
(n−
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r)(n − r + 1) = 1
2
(n − r)(n − r − 1). There are currently not enough restrictions to

uniquely identify the derivative. For instance, for any orthogonal matrix C of dimension

(n − r) × (n − r) with C ′C = In−r the matrix β⊥C also satisfies (37) and (38).

One might be tempted to conclude that restrictions (37) and (38) taken together suffice

for identification of ∂vec(β⊥)
∂vec(β)′

, since n×(n−r) restrictions are needed. However, restriction

(38) represents at most 1
2
(n − r)(n − r + 1) unique restrictions, since both left and right

hand sides are symmetric matrices. Additional restrictions are needed.

The additional restrictions can be chosen to be consistent with the explicit expressions

for β⊥ and α′
⊥ from Kleibergen and Paap (2002) by partitioning β⊥ as

β⊥1

β⊥2

, with

β⊥1 : r × (n − r) and β⊥2 : (n − r) × (n − r) such that β⊥2 =
(
0n−r×r In−r

)
β⊥, and

requiring β⊥2 to be symmetric, i.e.

β⊥2 = β′
⊥2. (43)

It is convenient to combine the restrictions (38) and (43) into a single restriction such

that the non-singularity condition for the implicit function theorem can be made to hold.

Therefore, we replace (38) by the sum of (38) and (43) such that

β′
⊥β⊥ +

(
0n−r×r In−r

)
β⊥ − β′

⊥

0r×n−r

In−r

 = In−r. (44)

Note that restriction (44) implies both (38) and (43). This is easily seen by adding (44)

and its transpose together and dividing the result by two, which reduces to (38).

Define the function

g(β⊥; β) =

β′
⊥β β′

⊥β⊥ +
(
0 I

)
β⊥ − β′

⊥

0

I

 − I

 ,
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then

∣∣∣∂vec(g(β⊥;β))
∂vec(β⊥)′

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂vec(β′
⊥β)

∂vec(β⊥)′

∂vec(β′
⊥β⊥+

(
0 I

)
β⊥−β′

⊥

0

I

−I)

∂vec(β⊥)′

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
(β′ ⊗ In−r)Kn,n−r

In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r + In−r ⊗
(
0 I

)
− (

0

I

 ⊗ In−r)Kn,n−r

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
 (β′ ⊗ In−r)Kn,n−r

In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r

 (β′ ⊗ In−r)Kn,n−r

In−r ⊗ β′
⊥ + (β′

⊥ ⊗ In−r)Kn,n−r

′∣∣∣∣∣∣
1
2

=

∣∣∣∣∣∣ β′β ⊗ In−r (β′
2 ⊗ I)(I − K)

(I − K ′)(β2 ⊗ I) 4Nn−r

∣∣∣∣∣∣ 6= 0.

Thus, we find that the matrix ∂vec(g(β⊥;β))
∂vec(β⊥)′

is non-singular, which is what was required.

The additional condition imposed on β and β⊥ via (44) can be easily met by a trans-

formation of a given matrix β⊥ that satisfies only (38). To that end we first define β+ =

(β′β)−1β′. Now assume that there exists β⋆
⊥ that satisfies condition (38), i.e. β⋆

⊥
′β = 0.

Then a transformation of this matrix, given by β⊥ = β⋆
⊥β⋆

⊥2
+ [β⋆

⊥2(β
⋆
⊥
′β⋆

⊥)−1β⋆
⊥2

′]
1
2 will

satisfy both (38) and (44).

Condition (44) has implications on derivations of ∂vec(β⊥)
∂vec(β)′

, ∂vec(β⊥)
∂vec(β2)′

and ∂vec(α⊥)
∂vec(α)′

. We

derive ∂vec(β⊥)
∂vec(β)′

as it provides the workhorse for finding ∂vec(β⊥)
∂vec(β2)′

and ∂vec(α⊥)
∂vec(α)′

.

We denote by dβ⊥ the effect of the additional condition imposed by (38) and (44)

together, compared to (38) only. Thus, if a given β⊥ satisfies condition (38), then β⊥+dβ⊥

satisfies both (38) and (44). We substitute β⊥ + dβ⊥ for β⊥ in (44) using the convention

that products of differentials vanish. Then,

β′
⊥β⊥ + β′

⊥dβ⊥ + dβ′
⊥β⊥ +

(
0 I

)
β⊥ +

(
0 I

)
dβ⊥ − β′

⊥

0

I

 − dβ′
⊥

0

I

 = In−r

and by exploiting (38) and (43) this reduces to

β′
⊥dβ⊥ = −dβ′

⊥β⊥ −
(
0 I

)
dβ⊥ + dβ′

⊥

0

I

 . (45)
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From orthogonality, it holds that dβ⊥ = −β+′dβ′β⊥ − β⊥dβ′
⊥β⊥ and hence also β′

⊥dβ⊥ =

−β′
⊥β+′dβ′β⊥ − β′

⊥β⊥dβ′
⊥β⊥ = −dβ′

⊥β⊥. Let us define

Q = β′
⊥dβ⊥ = −dβ′

⊥β⊥. (46)

Then, based on 45 and 46, we obtain

dβ⊥ = −β+′dβ′β⊥ + β⊥Q

= −β+′dβ′β⊥ + β⊥

−dβ′
⊥β⊥ −

(
0 I

)
dβ⊥ + dβ′

⊥

0

I

 .

Collecting terms with dβ⊥ at the left-hand side and terms involving dβ at the right-hand

side:

dβ⊥ + β⊥dβ′
⊥β⊥ + β⊥

(
0 I

)
dβ⊥ − β⊥dβ′

⊥

0

I

 = −β+′dβ′β⊥. (47)

In vec notation we obtain:[
In−r ⊗ In + (β′

⊥ ⊗ β⊥)K + In−r ⊗ β⊥

(
0 I

)
− (

(
0 I

)
⊗ β⊥)K

]
vecdβ⊥ =

−(β′
⊥ ⊗ β+′)Kvecdβ,

and thus

∂vec(β⊥)

∂vec(β)′
= −

[
In−r ⊗ In + (β′

⊥ ⊗ β⊥)K + In−r ⊗ β⊥

(
0 I

)
− (

(
0 I

)
⊗ β⊥)K

]−1

×

(β′
⊥ ⊗ β+′)K

= −
[
In(n−r) + (β′

⊥ ⊗ β⊥)K +
(
0 (In−r ⊗ β⊥)(I − K)

)]−1

(β′
⊥ ⊗ β+′)K.

Equation (47) provides the workhorse for finding ∂vec(β⊥)
∂vec(β2)′

and ∂vec(α⊥)
∂vec(α)′

.

C Jacobian of the transformation from Π to (α, β, Σ)

under orthogonal normalization

This discussion is based on Gatarek et al. (2010). Under the orthogonal normalization

the components in decomposition (26) can be computed from Π using the singular value

30



decomposition with matrices U, S and V partitioned according to

Π = USV ′ =
(
U1 U2

) S1 0

0 S2

V ′
1

V ′
2

 , (48)

where U =
(
U1 U2

)
and V =

(
V1 V2

)
are orthonormal matrices. U1 and V1 are p × r,

U2 and V2 are p× (p− r), and S1 and S2 are diagonal r× r and (p− r)× (p− r). Then for

orthogonal normalization the following relation hold: β = U1, α = S1V
′
1 , β⊥ = U2, α⊥ =

V ′
2 , and λ = S2.

β1 is identified uniquely by β2.
2 So, it suffices to derive J(Π, (α, β2, λ))

J(Π, (β2, α, λ)) =
(

∂vecΠ
∂(vecβ2)′

∂vecΠ
∂(vecα)′

∂vecΠ
∂(vecλ)′

)
. (49)

The expression for ∂vecΠ
∂(vecα)′

is given by

∂vecΠ

∂(vecα)′
= (Ip ⊗ β) +

∂vecΠ

∂(vecα⊥)′
∂vecα⊥

∂(vecα)′
(50)

and

∂vecΠ

∂(vecα⊥)′
= (I ⊗ β⊥λ). (51)

If we assume c =
(
Ir 0

)′
and c⊥ =

(
0 Ip−r

)
, we have α⊥ = c′⊥

(
Ir − α′(αc)′−1c′

)
and

∂vecα⊥

∂(vecα)′
=

((
c(αc)−1 ⊗ (c(αc)−1αc⊥)′

)
−

(
c(αc)−1 ⊗ c′⊥

))
Kr,p, (52)

so that

∂vecΠ

∂(vecα)′
= (Ip ⊗ β) +

(
c(αc)−1 ⊗ β⊥λc′⊥

(
(c(αc)−1α)′ − Ip

))
Kr,p. (53)

Then for β2 we obtain

∂vecΠ

∂(vecβ2)′
=

∂vecΠ

∂(vecβ)′
∂vecβ

∂(vecβ1)′
∂vecβ1

∂(vecβ2)′
+

∂vecΠ

∂(vecβ⊥)′
vecβ⊥

∂(vecβ)′
∂vecβ

∂(vecβ1)′
∂vecβ1

∂(vecβ2)′
=

(α′ ⊗ In)

Ir ⊗

 Ir

0(n−r)×r

 ∂vecβ1

∂(vecβ2)′
+ (α′

⊥λ′ ⊗ In)
vecβ⊥

∂(vecβ)′

Ir ⊗

 Ir

0(n−r)×r

 ∂vecβ1

∂(vecβ2)′

2In general we can add restrictions to the normalization restriction β′β = Ir in order to uniquely

identify the r × r matrix β1 given the (n − r) × r matrix β2, where β = (β′
1 β′

2)
′. For example, if we

assume that n = 2, r = 1, then we can add the restriction β1 ≥ 0, so that only β1 =
√

1 − β2
2 satisfies

β2
1 + β2

2 = 1. Note that without that restriction β1 ≥ 0 we could have β1 =
√

1 − β2
2 or β1 = −

√
1 − β2

2 ,

so that in that case β1 would not be uniquely identified by β2.
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The formula for ∂vecβ1

∂(vecβ2)′
is derived based on the orthogonal normalization condition.

We have:

Ir = β′
1β1 + β′

2β2

0 = d(β′
1β1) + d(β′

2β2)

0 = (β1 ⊗ Ir)dvecβ′
1 + (Ir ⊗ β′

1)dvecβ1

+(β2 ⊗ Ir)dvecβ′
2 + (Ir ⊗ β′

2)dvecβ2

As Krvec(A) = vec(A′), see we have

0 =Kr(Ir ⊗ β′
1)dvecβ1 + (Ir ⊗ β′

1)dvecβ1 + Kr(Ir ⊗ β′
2)dvecβ2 + (Ir ⊗ β′

2)dvecβ2

=(Kr + Ir)
(
(Ir ⊗ β′

1)dvecβ1

)
+ (Kr + Ir)

(
(Ir ⊗ β′

2)dvecβ2

)
=2Nr

(
(Ir ⊗ β′

1)dvecβ1

)
+ 2Nr

(
(Ir ⊗ β′

2)dvecβ2

)
,

(54)

where Nr = 1
2
(Ir + Kr). Thus we obtain

0 = 2Nr(Ir ⊗ β′
1)dvecβ1 + 2Nr(Ir ⊗ β′

2)dvecβ2 (55)

and

∂vecβ1

∂(vecβ2)′
= −

(
Nr(Ir ⊗ β′

1)
)−1(

Nr(Ir ⊗ β′
2)

)
. (56)

Further, because β = U1 and β⊥ = U2 we can derive vecβ⊥
∂(vecβ)′

based on the orthomorphic

transformation between U =
(
U1 U2

)
and X̃, where X̃ = (I + U)−1(I − U) and U =

(I + X̃)−1(I − X̃). We find that

vecβ⊥

∂(vecβ)′
=

∂vecβ⊥

∂(vecX̃)′
∂vecX̃

∂(vecβ)′

= −

I ⊗

 0

Ip−r

(
(Ip + U)′ ⊗ (Ip + X̃)−1

)
×

−
I ⊗

Ir

0

(
(Ip + X̃)′ ⊗ (Ip + U)−1

) ,

(57)

where U1 = U
(
Ir 0

)′
and U2 = U

(
0 Ip−r

)′
and d

(
(I + U)−1(I − U)

)
= −(I +

U)−1dU(I + U)−1(I − U) − (I + U)−1dU .

For ∂vecΠ
∂(vecλ)′

we obtain

∂vecΠ

∂(vecλ)′
= α′

⊥ ⊗ β⊥. (58)
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D Tables for ten pairs of stocks
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