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Abstract

We consider cointegration rank estimation for a p-dimensional Fractional Vector Error

Correction Model. We propose a new two-step procedure which allows testing for further

long-run equilibrium relations with possibly different persistence levels. The first step

consists in estimating the parameters of the model under the null hypothesis of the

cointegration rank r = 1, 2, . . . , p − 1. This step provides consistent estimates of the

order of fractional cointegration, the cointegration vectors, the speed of adjustment to

the equilibrium parameters and the common trends. In the second step we carry out a

sup-likelihood ratio test of no-cointegration on the estimated p− r common trends that
are not cointegrated under the null. The order of fractional cointegration is re-estimated

in the second step to allow for new cointegration relationships with different memory. We

augment the error correction model in the second step to adapt to the representation of

the common trends estimated in the first step. The critical values of the proposed tests

depend only on the number of common trends under the null, p−r, and on the interval of
the orders of fractional cointegration b allowed in the estimation, but not on the order of

fractional cointegration of already identified relationships. Hence this reduces the set of

simulations required to approximate the critical values, making this procedure convenient

for practical purposes. In a Monte Carlo study we analyze the finite sample properties of

our procedure and compare with alternative methods. We finally apply these methods

to study the term structure of interest rates.

Keywords: Error correction model, Gaussian VAR model, Likelihood ratio tests,

Maximum likelihood estimation. JEL: C12, C15, C32.
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1 Introduction

Fractional cointegration generalizes standard models with I(1) integrated time series and

I(0) cointegration relationships. In general, observed time series can display different orders

of integration, while equilibrium relationships can be just characterized by a lower persistence

or order of integration than the levels, perhaps allowing different values if there is more than

one equilibrium relationship. Much focus of the literature has been placed on parameter

estimation, using both semiparametric (e.g. Marinucci and Robinson (2001)) or parametric

methods, which specify also short run dynamics (e.g. Robinson and Hualde (2003); Johansen

and Nielsen (2012)). However, the estimation of the parameters of the cointegrated model

assumes the knowledge of a positive number of cointegration relationships (and regression

based methods also take the dependent variables as given), so the related testing problems

on the existence of cointegration and the cointegration rank have also been investigated in

the literature.

Fractional cointegration testing has been analyzed from different perspectives. One ap-

proach focuses on the estimation of the memory parameters, see e.g. Marinucci and Robinson

(2001), Nielsen (2004), Gil-Alaña (2003), Robinson (2008). Marmol and Velasco (2004) and

Hualde and Velasco (2008) compare OLS and different GLS-type estimates of the cointegrat-

ing vector to construct a test statistic. Łasak (2010) directly exploits a Fractional Vector Er-

ror Correction model (FVECM) to propose Likelihood Ratio (LR) tests for no-cointegration.

Recent work has proposed fractional cointegration tests inspired by multivariate methods.

Breitung and Hassler (2002) solve a generalized eigenvalue problem of the type considered

in the Johansen’s procedure for developing multivariate score tests of fractional integration,

see Johansen (1988, 1991, 1995) and Nielsen (2005). Avarucci and Velasco (2009) propose

to exploit a parametric FVECM for the development of Wald tests of the cointegration

rank. There have also been several semi-parametric proposals that focus on spectral matrix

estimates, see Robinson and Yajima (2002), Chen and Hurvich (2003, 2006) and Nielsen and

Shimotsu (2007).

We estimate the cointegration rank from a parametric perspective based on the specifica-

tion of a FVECM. We rely on pseudo-LR tests based on restricted maximum likelihood (ML)

estimates of the system. This is in contrast to Avarucci and Velasco (2009), who investigate

the rank of unrestricted OLS estimates. We propose in this paper to perform a sequence

of hypothesis tests based on a new two-stage method. It extends the results of testing the

hypothesis of no-cointegration in Łasak (2010), of testing the cointegration rank in Johansen

and Nielsen (2012), and of estimating the fractionally cointegration systems in Łasak (2008)

and Johansen and Nielsen (2012). The first step of the proposed procedure consists in the

estimation of the parameters of the FVECM under the null hypothesis of the cointegration
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rank r = 1, 2, . . . , p− 1. Under the null of the cointegration rank r, this estimation step pro-

vides consistent estimates of the order of fractional cointegration, the cointegration vectors

and the speed of the adjustment to the equilibrium parameters, together with an approxi-

mation to the common trends. In the second step, we implement the no-cointegration sup

LR tests considered in Łasak (2010) to the estimated common trends. The order of frac-

tional cointegration is re-estimated in the second step, to allow for different persistence in the

extra cointegration relationships. Our procedure results in tests statistics with asymptotic

distribution depending only on the number of common trends under the null hypothesis of

rank r, and on the interval of possible orders of cointegration, but not on the true order of

cointegration, which can be seen as an advantage for an empirical work.

However, to adapt to the representation of the estimated common trends, we need to

augment the error correction model in the second step to account for terms spanned by the

cointegrating residuals. Then, parameter estimates are consistent and the cointegration test

statistics of Łasak (2010) maintain the same asymptotic distribution as when original data is

used, since parameter estimation from the first step is also shown to be asymptotically negli-

gible. We analyze the performance of the proposed procedures in finite samples and compare

our approach with the LR rank test of Johansen and Nielsen (2012). Their method imposes

the assumption that all cointegration relationships share the same memory and results in an

asymptotic distribution that depends on the true order of (fractional) cointegration. We also

compare our tests with the benchmark LR test based on the standard VECM that assumes

that the order of cointegration is known and equal to one, see Johansen (1988, 1991).

The reminder of the paper is organized as follows. Section 2 presents the basic FVECM,

ML inference and sup-tests for no cointegration. Section 3 introduces our new two-step

procedure for testing the cointegration rank. In Section 4 we present models with short

run dynamics and discuss the generalization of our procedure for these models. Section 5

presents results of the Monte Carlo analysis. Section 6 contains the empirical analysis of the

term structure of the interest rates. Section 7 concludes. The Appendix contains the proofs

of our main results.

2 ML inference for fractional systems

In this section we introduce the basic FVECM, its ML estimation and ideas on cointegration

testing that constitute the basis of our rank testing procedure presented in Section 3.

For a p× 1 vector time series Xt, we consider the following representation

∆dXt = ∆d−bLbαβ
′Xt + εt, (1)
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where the fractional difference operator ∆d is defined by the binomial expansion ∆d =∑∞
j=0 (−1)

(
d
j

)
Lj , L being the lag operator, d and b, respectively, orders of integration and

cointegration satisfying 0 < b ≤ d, and Lb = 1−∆b, so that the filtered series LbXt depends

on lagged values of Xt but does not depend on the current value in period t. The coeffi cients

α and β are p× r full rank matrices, 0 ≤ r ≤ p, and εt is a p× 1 vector of independent and

identically distributed (i.i.d) errors with zero mean and positive definite variance-covariance

matrix Ω. The matrix α contains the speed of adjustment to the equilibrium coeffi cients

and β contains the cointegrating relationships. If r = 0, it implies that Π = αβ′ = 0, so

Xt is integrated of order d and no nontrivial linear combination of Xt has smaller order of

integration. In the special case r = p, the matrix Π = αβ′ is unrestricted.

Equation (1) corresponds to a fractional VARd,b (0) model in Johansen and Nielsen (2012)

and implies under some further conditions that there exists r, 0 < r < p, different linear

combinations β of the time series Xt that are integrated of order d− b, which is denoted by
I (d− b) , whileXt is integrated of order d, i.e. Xt ∼ I (d) . In Johansen and Nielsen (2012) the

time seriesXt is called a cofractional process of order d−b with r, r > 0, being the cofractional

or cointegration rank. Model (1) is encompassed by the fractional representations proposed

in Granger (1986), Johansen (2008, 2009) and Avarucci and Velasco (2009) presented later

in Section 4.

We assume that all initial values are set to zero, Xt = εt = 0, t ≤ 0, so ∆d can be replaced

by ∆d
+, i.e. the fractional filter truncated to positive values, ∆d

+Xt = ∆dXt1 {t > 0} . The
assumption that all initial values are zero is convenient to accommodate non square summable

filters when d ≥ 0.5. It is also possible to work conditional on a finite set of nonzero initial

values for Xt but we prefer to keep the exposition as simple as possible.

Łasak (2010) has solved the problem of testing whether the system (1) is cointegrated

searching for the true value of b in the interval (0.5, d] and d > 0.5, so all potential cointe-

grating relationships are (asymptotically) stationary when d < 1 because then d − b < 0.5.

The restriction b > 0.5 leads to asymptotics related to those of Johansen (1988) but based

on fractional Brownian motions. ML estimation of the FVECM under the assumption that

the cointegration rank r is known, r > 0, has been considered in Łasak (2008) and Johansen

and Nielsen (2012) adapting Johansen’s (1988) procedure. Johansen and Nielsen (2012) has

derived the asymptotic distribution of the likelihood ratio test (LR) for testing any rank r,

0 ≤ r < p, which depends on the unknown order of fractional cointegration b. Note that when

r > 1 all cointegrating relationships implied by the VARd,b (0) model have the same order of

integration d− b. We do not maintain this restriction in our new rank testing procedure and
we allow the extra cointegration relationships found in the second step to have a different

order of integration within the interval (0.5, d] than the relations found in the first step. It

could be possible to develop a related procedure that searches for values of b smaller than
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0.5, although the asymptotic theory would be different for these cases, see e.g. Avarucci and

Velasco (2009).

We present the ML inference of the FVECM by reduced rank regressions for the case

d = 1, which is the most relevant in applications, and our new testing procedure is also

motivated in Section 3 under the same assumption, although the analysis remains valid for

any d > 0.5. Define Z0t = ∆Xt and Z1t−1(b) =
(

∆−b+ − 1
)

∆Xt = ∆1−b
+ LbXt and note that

Z1t−1(b) does not depend on data at time t. Model (1) expressed in these variables becomes

Z0t = αβ′Z1t−1(b) + εt, t = 1, . . . , T.

Then, the log-likelihood function, log Lr, for the model (1), under the hypothesis of r coin-
tegrating relationships and the gaussianity of εt, is given, apart from a constant, by

logLr (α, β,Ω, b) = −T
2

log |Ω| − 1

2

T∑
t=1

[Z0t − αβ′Z1t−1(b)]′Ω−1[Z0t − αβ′Z1t−1(b)].

For fixed b the maximum of the likelihood is obtained by solving the eigenvalue problem

∣∣λi(b)S11(b)− S10(b)S−100 S01(b)∣∣ = 0 (2)

for eigenvalues λi(b) (ordered by decreasing magnitude for i = 1, . . . , p) and sample cross

moments

Sjk(b) = T−1
T∑
t=1

Zjt(b)Zkt(b)
′ j, k = 0, 1,

where Sjk is a function of b except when j = k = 0. The parameter b is estimated by

maximizing the concentrated likelihood in a compact set B ⊂ (0.5, 1], i.e.

b̂r = arg max
b∈B
Lr (b) ,

where we can write

Lr(b) =

[
|S00|

r∏
i=1

(1− λi(b))
]−T/2

(3)

when estimation is done under the hypothesis

Hr : rank (Π) = r.

Expression (3) can be used to construct the sequence of LR tests for testing the fractional

cointegration rank in the model (1). The first step is to test the null of no cointegration,

H0 : rank (Π) = 0.We can test it against two different alternatives, full cointegration rank of
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the impact matrix Π = αβ′, i.e. Hp : rank (Π) = p, or one extra cointegrating relationship,

H1 : rank (Π) = 1.

Łasak (2010) has described how to test H0 against Hp and H1. The LR statistic for

testing H0 against Hp (sup trace test) is defined by

LRpT (0|p) = −2 log
[
L0/Lp

(
b̂p

)]
= −T

p∑
i=1

log[1− λi(b̂p)], (4)

where b̂p = arg maxb∈B Lp(b), Lp is the likelihood under the hypothesis Hp of rank p and

L0 = |S00|−T/2 is the likelihood when r = 0.

Alternatively, the LR statistic for testing H0 against H1 (sup maximum eigenvalue test)

is defined by

LRpT (0|1) = −2 log
[
L0/L1

(
b̂1

)]
= −T log[1− λ1(b̂1)], (5)

where b̂1 = arg maxb∈B L1(b) and L1 denotes the likelihood under the hypothesis of rank 1,

H1. Recall that under the null of no cointegration (r = 0) we cannot hope that b̂1 or b̂p
estimate consistently a nonexisting true value of b in model (1), and because of that the

LR tests (4) and (5) can be interpreted as sup LR tests, in the spirit of Davies (1977) and

Hansen (1996).

Łasak (2010) has investigated the asymptotic distributions of the test statistics (4) and

(5) under H0 and Assumption 1.

Assumption 1 εt are i.i.d. vectors with mean zero, positive definite covariance matrix Ω,

and E||εt||q <∞, q ≥ 4, q > 2/ (2b
¯
− 1) , b

¯
= minB > 0.5, where B ⊂ (0.5, d] is a compact

set.

Then, under the null hypothesis of no cointegration H0,

LRpT (0|p) d→ sup
b∈B

trace [£p(b)]
def
= Jp (6)

and

LRpT (0|1)
d→ sup

b∈B
λmax [£p(b)]

def
= Ep, (7)

where

£p(b) =

∫ 1

0
(dB)B′b

[∫ 1

0
BbB

′
bdu

]−1 ∫ 1

0
Bb (dB)′ , (8)

Bb is a p-dimensional standard fractional Brownian motion with parameter b ∈ B, Bb (x) =

Γ−1 (b)
∫ x
0 (x− z)b−1 dB (z) , B = B1 is a standard Brownian motion on the unit interval

and Γ is the Gamma function. Łasak (2010) has obtained by simulation the quantiles of
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the asymptotic distributions in (6) and (7) for the interval B = [0.5; 1] . In this case, the

restrictions d = 1 and b > 0.5 imply that the test focuses on deviations from equilibrium

that are asymptotically stationary of any magnitude.

When we reject the null hypothesis H0 of no cointegration we only obtain the information

that the system (1) is cointegrated, but we do not know how many cointegration relationships

share the elements of Xt, so we need to proceed further and solve the problem of the cointe-

gration rank estimation. For testing the cointegration rank r against rank p, r = 1, . . . , p− 1

in model (1) we can use the general LR tests proposed by Johansen and Nielsen (2012) based

on the solutions of the eigenvalue problem (2) under both hypothesis, i.e.

LRpT (r|p) = −2T log
[
Lr
(
b̂r

)
/Lp

(
b̂p

)]
= −T

{
p∑
i=1

log[1− λi(b̂p)]−
r∑
i=1

log[1− λi(b̂r)]
}
,

(9)

where estimates of the cointegration order under the null (b̂r) and under the alternative (b̂p)

are different in general. The null asymptotic distribution of the test statistic LRT (r|p) for
b0 > 0.5, trace{£p−r(b0)} , depends on the true cointegration order, while is χ2((p−r)2) when
b0 < 0.5. Johansen and Nielsen (2012) suggest using the computer program by MacKinnon

and Nielsen (2013) to obtain critical values for the tests when b0 > 0.5.

In the next section we propose a new two-step procedure that leads to tests with the same

null asymptotic distributions as tests (4) and (5), which do not depend on any nuisance

parameters other than the number of the common trends under the null, p − r, and the

interval B which can be fixed arbitrarily close to (0.5, d].

3 New tests for the cointegration rank

In this section we propose a new two-step procedure to establish the cointegration rank in the

FVECM given in (1). This procedure extends the idea of testing the null of no cointegration

in Łasak (2010) and testing the cointegration rank in Johansen and Nielsen (2012). The main

novelty of our proposal is that different cointegration relations are allowed to have different

persistence. It leads to null asymptotic distributions based on (8) as for cointegration testing.

Our method exploits Granger’s representation for the cofractional VAR model. From

Theorem 2 in Johansen and Nielsen (2012), we can represent the cointegrated system (1) as

Xt = C∆−d+ εt + ∆b−d
+ Y +t ,

where C = β⊥ (α′⊥β⊥)−1 α′⊥ and Y
+
t is fractional of order zero, with initial conditions set to
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zero and det (α′⊥β⊥) 6= 0. Then, when projecting Xt in the direction β⊥,

β′⊥Xt = β′⊥C∆−d+ εt + ∆b−d
+ β′⊥Y

+
t , (10)

where β′⊥C is of rank p−r under the null Hr, so that the p−r series β′⊥Xt are just a rotation

of the I (d) common trends α′⊥∆−d+ εt plus the I (d− b) components ∆b−d
+ β′⊥Y

+
t . Therefore,

under Hr, β
′
⊥Xt is a non cointegrated (p− r)× 1 vector of I (d) series.

By contrast, under an alternative Hr+r1 generated by the model

∆Xt =
(
αβ′ + α1β

′
1

) (
∆−b+ − 1

)
∆Xt + εt, (11)

where the p× r matrices α and β are of rank r, and the p× r1 matrices α1 and β1 are of rank
r1, p − r ≥ r1 > 0, estimation under the null Hr cannot account for all the existing r + r1

cointegrating relationships. That is, any p× r vector β can only capture at most r out of the
r + r1 cointegrating directions so that β′⊥Xt must contain at least one further cointegration

relationship, and this should be detected by any fractional cointegration test such as Łasak’s

(2010).

These intuitions lead to a two step testing procedure. The first step consists in ML

estimation of model (1) under the null hypothesis Hr of cointegration rank r. This provides

consistent estimates of b and of the decomposition Π = αβ′, where α and β are p × r

matrices, as in Theorem 10 of Johansen and Nielsen (2012). Then we compute (super)

consistent estimates β̂⊥ of the full rank p × (p− r) matrix β⊥ satisfying β′⊥β = 0 and the

proxies of the p− r common trends β̂′⊥Xt.

The second step of our testing procedure exploits the fact that under the null Hr the

estimated common trends β̂
′
⊥Xt are not cointegrated, but must be cointegrated under the

alternative. Then, to test for the presence of additional cointegrating relationships in β̂
′
⊥Xt,

we propose to implement the sup LR tests (4) and (5) of the null of no cointegration described

in Section 2 to the p−r series β̂′⊥Xt using critical values from the Jp−r and Ep−r distributions

(see (6) and (7)). Given the consistency of β̂ and therefore of β̂⊥, replacing β⊥ by β̂⊥ in

β̂
′
⊥Xt does not affect the asymptotic null distribution of the tests if we further augment the

model to accommodate the extra I (d− b) term in (10) that is not present in model (1) when

Π = αβ′ = 0.

This approach has two particular characteristics. First, when searching for further coin-

tegration relationships among the estimated common trends, it does not restrict b to the

first-step estimate b̂r of the persistence of the cointegrating relationships under the null. Sec-

ond, the linear combinations β′⊥Xt are not pure I (1) processes, as it is implied by (1) for the

original series Xt when rank(Π) = 0. Our testing regressions take into account this particular
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feature of the projections β′⊥Xt compared to the data generated under (1) by introducing an

augmentation term. This augmentation is derived for the case of triangular systems, which

are easier to handle as we show next.

Consider the triangular representation of a fractionally cointegrated I (1) vector with

rank r,

β′Xt = ∆b−1
+ u1t, (12)

γ′Xt = ∆−1+ u2t,

see Johansen (2008, pp. 652-53), where β and γ are, respectively, p × r and p × (p− r)
matrices, ut = (u′1t, u

′
2t)
′ is iid (0,Σ) , with Σ > 0, and Θ = (β

... γ) has full rank p. Then we

can write

β′∆Xt =
(

∆−∆1−b
+

)
β′Xt + u1t,

γ′∆Xt = u2t,

so that from the identity γ⊥
(
β′γ⊥

)−1
β′ + β⊥ (γ′β⊥)−1 γ′ = Ip, it follows that the sys-

tem admits the FVECM (1) with d = 1, α = −γ⊥
(
β′γ⊥

)−1 and εt = Kut where K =

(γ⊥
(
β′γ⊥

)−1 ... β⊥ (γ′β⊥)−1). Therefore we obtain the representation

Xt = Θ−1′

(
∆b−1
+ u1t

∆−1+ u2t

)
,

and hence

β′⊥Xt = M1∆
b−1
+ u1t +M2∆

−1
+ u2t (13)

where M2 is a (p− r)× (p− r) full rank matrix so that there is no β1 such that β′1
(
β′⊥Xt

)
is an I (1− b1) process, for any b1 > 0, i.e. a process less integrated than β′⊥Xt. However,

as far as M1 6= 0, β′⊥Xt contains some I (1− b) terms, by contrast with equation (1) when
r = 0 and Π = 0. The interesting feature of the triangular model is that these I (1− b) terms
are spanned by the cointegrating residuals β′Xt = ∆b−1

+ u1t.

Then, noting that from (13),

β′⊥∆Xt = M1

(
∆b
+ − 1

)
u1t +M1u1t +M2u2t, (14)

a reduced rank regression of V̂0t = β̂
′
⊥∆Xt on V̂1t−1 (b1) = (1−∆−b1+ )β̂

′
⊥∆Xt has to control for

the predictable term M1

(
∆b
+ − 1

)
u1t in the right hand side of (14) to estimate consistently

the true coeffi cient Π1 = 0 under Hr. As a proxy for u1t we use the linear projection of
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β̂
′
∆Xt given εt

(
b̂, α̂, β̂

)
,

ũ1t =

(
T∑
t=1

β̂
′
∆Xtεt

(
b̂, α̂, β̂

)′)( T∑
t=1

εt

(
b̂, α̂, β̂

)
εt

(
b̂, α̂, β̂

)′)−1
εt

(
b̂, α̂, β̂

)
, (15)

which identifies the contemporaneous contribution of u1t in β′∆Xt = ∆b
+u1t out of the

first-step residuals εt
(
b̂, α̂, β̂

)
under Hr, εt (b, α, β) =

(
Ip − αβ′(∆−b+ − 1)

)
∆Xt. Then we

augment the FVECM of V̂0t with the filtered series
(

∆b̂
+ − 1

)
ũ1t,

V̂0t = Π1V̂1t−1 (b1) + Φ
(

∆b̂
+ − 1

)
ũ1t + errort, (16)

and fit the model by reduced rank regression.

Then our two-step rank testing procedure is as follows:

Step 1. Estimate the model (1) under the null Hr for the original data ∆Xt and recover

the common trends increments V̂0t = β̂
′
⊥∆Xt, the cointegrating residuals increments

β̂
′
∆Xt and the model residuals εt

(
b̂, α̂, β̂

)
.

Step 2. Compute the LR statistics for testing rank(Π1) = 0 against rank(Π1) = p − r and
rank(Π1) = 1, denoted as LRp−rT (0|p− r) and LRp−rT (0|1) , see (4) and (5), respec-

tively, from the augmented FVECM for V̂0t given in regression (16).

We next show that, paralleling cointegration testing, the null asymptotic distributions of

these LR test statistics are Ep−r and Jp−r, respectively, since replacing β⊥ by β̂⊥ and b0 by

b̂ has no asymptotic impact on the test statistics under Assumption 2.

Assumption 2

β̂ − β = Op

(
T−1/2

)
, α̂− α = Op

(
T−1/2

)
and b̂− b0 = Op

(
T−1/2

)
.

Then we present our first result, whose proof is contained in the Appendix, as well as

other proofs.

Theorem 1 Under Assumptions 1, 2 and model (12), the LR tests based on regression (16)

for testing rank(Π1) = 0, satisfy under the null hypothesis Hr,

LRp−rT (0|1)
d→ Ep−r,

LRp−rT (0|p− r) d→ Jp−r.
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The consistency rate for the ML estimates of β̂ is T b0 for 0.5 < b0 ≤ d and T 1/2 for b0 <
min {0.5, d} from Theorems 6 and 10 in Johansen and Nielsen (2012), so with Assumption 2

we are not imposing a lower bound on the true value of b, i.e. on the strength of the

cointegrating relationships under the null. However, the null asymptotic distribution in

Theorem 1 requires that the set B only contains values of b1 larger than 0.5, given that

d > 0.5. Therefore, only the degrees of freedom of Ep−r and Jp−r need to be adapted for the

dimension of β̂
′
⊥Xt under Hr, i.e. p−r, compared to the cointegration test for the null H0 as

in the usual unit root framework. These distributions do not depend on any further nuisance

parameter other than the set B, which can be taken as [0.5 + ε, d] for ε > 0 arbitrarily small.

For the analysis of the consistency of our tests we can consider the alternative hypothesis

Hr+r1 generated by the model (11). Since β̂⊥ is of dimension larger than the null space of

the actual cointegrating matrix (β β1) under Hr+r1 , β̂
′
⊥Xt still contains at least one further

cointegration relationship. Then, the consistency of the test would follow from the correlation

between β̂
′
⊥∆Xt and

(
∆−b1+ − 1

)
β̂
′
⊥∆Xt under Hr+r1 for a range of values of b1 and any full

rank p× (p− r) matrix β̂⊥ as in the usual test for cointegration.
If the value of the parameter d is unknown and has to be estimated, then we replace

V̂0t and V̂1t−1 (b1) by V̂0t
(
d̂
)

= β̂
′
⊥∆d̂Xt and V̂1t−1

(
b1, d̂

)
= (1−∆−b1+ )β̂

′
⊥∆d̂Xt in the test

statistics and possibly readjust the set B. Then the following corollary justifies this policy,
being similar to Theorem 1 in Robinson and Hualde (2003).

Corollary 2 The conclusions of Theorem 1 remain valid if ∆dXt is replaced by ∆d̂Xt and

d̂− d = Op
(
T−1/2

)
.

It is also possible to consider situations where elements of Xt have different memory so

that model (1) is generalized as

∆dXt = ∆−bLbαβ
′∆dXt + εt

where

∆dXt =


∆d1Xt

...

∆dpXt

 ,

d1 = d2 ≥ d3 ≥ · · · ≥ dp. Then we can proceed using our procedure as usual just replacing

vector ∆d̂Xt by the vector ∆d̂Xt =
(

∆d̂1Xt, . . . ,∆
d̂pXt

)′
and with a similar interpretation

of memory reduction of the magnitude b for linear combinations of
(
∆d1Xt, . . . ,∆

dpXt

)′
in

the direction β. Further, our method is also valid for series that have a nonzero mean µ, i.e.

when observed data is given by µ + Xt, since these series also satisfy equation (1) because

∆d1 = ∆d−b1 = 0 when d− b > 0, as noted by Johansen and Nielsen (2012).
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4 Rank testing in FVECM with short run dynamics

To make the FVECM (1) more flexible, a natural idea is to add a lag structure in terms of

fractional lags of ∆d
+Xt to produce a VARd,b (k) model,

∆d
+Xt = ∆d−b

+ Lbαβ
′Xt +

k∑
i=1

ΓiL
i
b∆

d
+Xt + εt, (17)

as in Johansen (2008, 2009). In this case ∆d
+Xt follows a VAR model in the lag operator

Lb =
(
1−∆b

+

)
rather than in the usual lag operator L = L1. Johansen and Nielsen (2012)

show that the existence of a Granger representation for Xt depends on det(α′⊥Γβ⊥) 6= 0 with

Γ = Ip +
∑k

i=1 Γi, Γk 6= 0, and on the roots of the matrix polynomial Ψ (y) = (1− y) Ip −
αβ′y −

∑k
i=1 Γi (1− y) yi.

The representations for the common trends from model (17) are not amenable for devel-

oping our two-step procedure because lags depend on b, but following Avarucci and Velasco

(2009) we allow for short run correlation in the levels of Xt using ordinary lags by assuming

that the prewhitened series X†t = A (L)Xt satisfy the model (1), but we actually observe Xt,

i.e.

∆d
+Xt = ∆d−b

+ Lbαβ
′A (L)Xt + (I −A (L)) ∆d

+Xt + εt, (18)

where A (L) = I−A1L−· · ·−AkLk. This model can be shown to encompass triangular models
used in the literature (cf. Robinson and Hualde (2003)) and has also nice representations if

the roots of the equation det [A (z)] = 0 are out of the unit circle, d > b. In fact, if X†t is

cointegrated with cointegrating vector β, Xt is also cointegrated with cointegrating vector in

the same space spanned by β given that A (1) is full rank.

Even under the assumption of known d,model (18) is nonlinear inΠ = αβ′ andA1, . . . , Ak,

so ML estimation can not be performed through the usual procedure of prewhitening the

differenced levels Z0t = ∆Xt and the fractional regressor Z1t−1 (b) = ∆1−b
+ LbXt given a par-

ticular value of b. However, it is easier to estimate the unrestricted linear model (in Aj and

A∗j ) given by

Z0t = αβ∗′Z1t−1 (b) +
k∑
j=1

A∗j∆Z1t−j (b) +
k∑
j=1

AjZ0t−j + εt, (19)

under the assumption of α and β∗ being p × r, without imposing A∗j = −ΠÃj . In (19)

β∗ = A (1)′ β spans the same cointegration space as β and we have used the decomposition

A (L) = A (1)−∆Ã (L) so that the coeffi cients of Ã (L) =
∑p−1

j=0 ÃjL
j satisfy Ãj =

∑p
i=1+j Ai,

j = 0, . . . , p−1. The estimation procedure follows as in the usual reduced rank regression but

12



with an initial step to prewhiten the series Z0t and Z1t−1 (b) on k lags of Z0t and ∆Z1t−1 (b) .

This estimation could be ineffi cient compared to ML, but is much simpler to compute and

analyze.

To test for the cointegration rank, we can construct the linear combinations V̂0t = β̂
′
⊥∆Xt

and V̂1t−1 (b1) = (1 −∆−b1+ )β̂
′
⊥∆Xt given the first-step estimates of β and b under the null

Hr, r > 0, and propose a similar second-step testing regression equation as for k = 0. In this

case the FVECM has to be enlarged by proxies of
(
∆b
+ − 1

)
u1t as well as by lags of ∆Xt,

V̂0t = Π1V̂1t−1 (b1) +
k∑
j=1

Cj∆Xt−j + Φ
(

∆b̂
+ − 1

)
ũ1t + errort. (20)

As when k = 0, ũ1t is obtained as in (15) from a projection of β̂
′
∆Xt on the FVECM residuals

εt

(
b̂, α̂, β̂, Â∗, Â

)
from (19) to isolate the u1t contribution in β′∆Xt, which might contain

other predictable contributions at time t due to the autoregressive structure. This can be

seen in a triangular model set up with the VAR modelization A (L)Xt = X†t in levels and

X†t generated by (12) so that

Xt = (I −A (L))Xt +Θ−1′

(
∆b−1
+ u1t

∆−1+ u2t

)
, (21)

and therefore

β′⊥Xt =

k∑
j=1

β′⊥AjXt−j +M1∆
b−1
+ u1t +M2∆

−1
+ u2t,

with M2 being full rank under Hr, justifying regression (20).

In sum, our two-step testing procedure in the presence of short run dynamics is as follows:

Step 1. Estimate the model (19) under the null Hr for the original data Z0t = ∆Xt with the

augmentation terms (∆Z1t−j (b) , Z0t−j) , j = 1, . . . , k, and recover the common trends

increments β̂
′
⊥∆X and the model residuals εt

(
b̂, α̂, β̂, Â∗, Â

)
.

Step 2. Compute the LR statistics for testing rank(Π1) = 0 against rank(Π1) = p − r and
rank(Π1) = 1, LRp−rT (0|p− r) and LRp−rT (0|1) , see (4) and (5), respectively, from the

augmented FVECM (20) for V̂0t = β̂
′
⊥∆Xt.

Theorem 3 shows that the asymptotic null distributions of the trace and maximum eigen-

value cointegration test statistics based on (20) remain Jp−r and Ep−r, respectively, if the

first step estimates converge fast enough.
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Theorem 3 Under Assumptions 1, 2, model (21) and

Â∗j −A∗j = Op

(
T−1/2

)
and Âj −Aj = Op

(
T−1/2

)
, j = 1, . . . , k,

the LR tests for testing Π1 = 0 based on regression (20) have the same asymptotic distribution

under the null Hr as in Theorem 1.

5 Finite sample properties of cointegration rank tests

In this section we analyze the performance of the proposed new procedure in finite sam-

ples. We simulate a cointegrated trivariate system (p = 3), with d = 1, using the following

triangular representation

Xt =

(
Ir δ

0 Ip−r

)
∆b−1
+ u0t

∆b1−1
+ u1t

∆−1+ u2t

 , t = 1, . . . , T, (22)

which implies the FVECM (1) with

α =

(
−Ir

0

)
and β′ = (Ir − δ) .

The innovations ut = (u′0t, u
′
1t, u

′
2t)
′ are independent standard Gaussian iid.

To investigate the empirical size of the tests we simulate (22) with cointegration rank

r = 1 and cointegrating vector β = [1 0 −1]′ and for the power study, when r = 2, we add

an extra cointegrating relationship β1 = [0 1 −0.5]′. Further we also consider the model with

short run dynamics (18) and with k = 1. For this model we add to (22) the autoregression

Zt = A1Zt−1 +Xt,

with Z0 = 0 and A1 = a Ip, where a = 0.5 or a = 0.8.

We simulate the systems with the memory of the first cointegrating relationship deter-

mined by b = 0.4, 0.51, 0.6, 0.7, 0.8, 0.9, 0.99, which covers the cases of strong (b > 0.5) and

weak cointegration (b = 0.4) of the existing cointegration relationship under r = 1, but for our

two step tests we always set B = [0.5, 1], which is only determined by the value d = 1. For the

power analysis the memory of the second cointegrating relationship is b1 = b, 0.20, 0.51, 0.9.

This way we can illustrate the power of the testing procedure when the memory d− b of the
second cointegrating relationship is the same as the memory of the first cointegrating rela-

tionship and when is relatively large or small, including the case b1 = 0.20 which is smaller
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than the lower bound of B = [0.5, 1] and all b′s. The sample size is set to T = 50, 100, 200, 400

for size simulations and T = 50, 100 for power analysis. For all simulations we use OxMet-

rics 7.00, see Doornik and Ooms (2007) and Doornik (2009 a,b) and we perform 10, 000

repetitions of each experiment.

We compare the performance of the following tests discussed in this paper, i.e.:

1. New two step procedures, i.e. trace test, 2s-LR2T (0|2) , and maximum eigenvalue test,

2s-LR2T (0|1) , based on the FVECM for β̂
′
⊥Xt, with the additional control

(
∆b̂ − 1

)
ũ1t

as in (16).

2. Trace and maximum eigenvalue LR tests, LR3T (1|3) and LR3T (1|2) respectively, based

on the standard VECM with d = b = 1 like in Johansen (1988, 1991), called Johansen’s

trace and Johansen’s maximum eigenvalue tests.

3. Trace LR test LR3T (1|3) proposed by Johansen and Nielsen (2012), where estimation

is restricted to d = 1 and critical values are obtained from the computer program of

MacKinnon and Nielsen (2013) with ML estimate of b rounded to a decimal point.

The asymptotic distribution of Johansen’s tests in 2. is not justified for the data gen-

erating process (22), as they are based on a misspecified model. However we check their

performance, since they are included in most econometric packages and they are routinely

used by practitioners. Similarly, Johansen and Nielsen (2012) test in 3. is only correctly

specified when k = 0, but not when k = 1, since it uses model (17) with fractional lags Lb
instead of (18) which is used to simulate data.

The results of our size simulations are presented in Tables 1-3. Table 1 provides the

percentage of rejections under the null hypothesis of cointegration rank r = 1 for k = 0 and

Tables 2 and 3 for k = 1 and for a = 0.5 and a = 0.8, respectively. When k = 0 the new

two step procedures are undersized for all sample sizes considered but improve slowly for

larger samples. For moderate and large sample sizes, rejections do not change much with b,

including b = 0.4. The trace LR test by Johansen and Nielsen (2012) is usually oversized,

but size distortions are decreasing with sample size T and true value b. Johansen’s LR tests

have size close to the nominal 5% in all considered cases, except of b = 0.4, for moderate

T , see Table 1. When k = 1 the two step procedures have higher empirical size than when

k = 0, being slightly oversized in smaller samples, but simulated size tends to decrease with

T. When k = 1 Johansen’s tests are undersized for small values of b in smaller samples

and size distortions in these cases increase with correlation a. The LR test of Johansen and

Nielsen (2012) heavily overrejects in all cases considered and size distortions increase with

sample size T and correlation a, but decrease with b.
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Table 1. Size simulation k = 0.

T Test b

0.40 0.51 0.60 0.70 0.80 0.90 0.99
50 2s-LR2T (0|1) , d = 1 2.0 2.3 2.4 2.3 3.1 2.7 3.0

2s-LR2T (0|2) , d = 1 1.8 2.2 2.5 2.5 2.9 2.6 2.8
LR3T (1|2) , d = b = 1 2.4 3.4 4.0 4.4 5.1 4.8 5.1
LR3T (1|3) , d = b = 1 2.4 3.7 4.1 4.6 5.2 4.9 5.3
LR3T (1|3) , d = 1 8.8 11.6 11.8 9.6 7.9 6.2 5.2

100 2s-LR2T (0|1) , d = 1 2.5 3.1 3.4 3.3 3.0 3.1 3.2
2s-LR2T (0|2) , d = 1 2.6 2.8 3.0 3.2 3.0 3.1 3.2
LR3T (1|2) , d = b = 1 3.3 4.6 4.9 5.1 4.9 4.9 5.4
LR3T (1|3) , d = b = 1 3.3 4.5 4.8 5.1 5.1 5.0 5.4
LR3T (1|3) , d = 1 9.3 10.6 11.3 9.5 7.7 6.2 5.4

200 2s-LR2T (0|1) , d = 1 3.1 3.1 3.2 2.9 3.0 3.1 2.8
2s-LR2T (0|2) , d = 1 3.0 3.0 3.2 2.8 3.0 3.1 2.7
LR3T (1|2) , d = b = 1 4.4 4.5 4.8 4.8 5.2 5.2 4.6
LR3T (1|3) , d = b = 1 4.4 4.5 4.9 4.8 5.2 5.3 4.8
LR3T (1|3) , d = 1 8.1 8.9 8.3 8.2 7.1 6.3 4.8

400 2s-LR2T (0|1) , d = 1 3.5 3.1 3.3 3.5 3.4 3.2 3.2
2s-LR2T (0|2) , d = 1 3.3 3.2 3.2 3.3 3.1 3.2 2.9
LR3T (1|2) , d = b = 1 4.8 4.5 4.8 5.2 5.2 5.0 5.0
LR3T (1|3) , d = b = 1 4.7 4.6 4.9 5.1 5.0 5.1 5.1
LR3T (1|3) , d = 1 6.5 7.6 7.6 7.0 6.3 5.8 5.1

Percentage of rejections by two step trace LR2T (0|2) and maximum eigenvalue test LR2T (0|1), B =

[0.5, 1] , Johansen’s trace LR3T (1|3) and maximum eigenvalue LR3T (1|2) tests with d = b = 1 and

trace test LR3T (1|3) of Johansen and Nielsen (2012) under the null hypothesis of cointegration rank

r = 1 in a p = 3 dimensional system with d = 1, k = 0. Nominal size 5%.
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Table 2. Size simulation k = 1, a = 0.5.

T Test b

0.40 0.51 0.60 0.70 0.80 0.90 0.99
50 2s-LR2T (0|1) , d = 1 7.2 7.2 8.2 8.7 9.9 10.3 10.7

2s-LR2T (0|2) , d = 1 7.4 7.1 8.4 8.5 9.8 10.6 10.6
LR3T (1|2) , d = b = 1 1.5 1.5 2.1 2.6 3.4 4.2 5.0
LR3T (1|3) , d = b = 1 1.7 1.7 2.6 3.1 3.8 4.6 5.3
LR3T (1|3) , d = 1 11.5 13.3 13.1 11.5 9.6 8.6 7.1

100 2s-LR2T (0|1) , d = 1 4.6 5.2 6.0 6.6 6.4 7.2 7.2
2s-LR2T (0|2) , d = 1 4.2 5.1 5.8 6.7 6.3 7.0 7.1
LR3T (1|2) , d = b = 1 1.4 2.1 3.0 4.0 4.7 5.5 6.3
LR3T (1|3) , d = b = 1 1.5 2.2 3.1 4.5 4.6 5.7 6.2
LR3T (1|3) , d = 1 17.7 20.6 22.6 18.8 14.9 11.5 8.2

200 2s-LR2T (0|1) , d = 1 4.3 5.0 5.7 5.5 4.9 4.8 4.6
2s-LR2T (0|2) , d = 1 4.2 4.8 5.2 5.3 4.8 4.8 4.5
LR3T (1|2) , d = b = 1 2.1 3.2 4.4 5.4 5.4 5.4 5.1
LR3T (1|3) , d = b = 1 2.2 3.3 4.4 5.1 5.5 5.5 5.3
LR3T (1|3) , d = 1 36.7 41.8 38.5 29.4 18.5 10.4 6.3

400 2s-LR2T (0|1) , d = 1 4.7 4.6 4.4 4.5 4.1 4.0 3.9
2s-LR2T (0|2) , d = 1 4.5 4.5 4.4 4.3 3.6 3.6 3.9
LR3T (1|2) , d = b = 1 2.0 4.4 5.1 5.3 5.2 5.2 5.2
LR3T (1|3) , d = b = 1 2.0 4.5 5.0 5.4 5.2 5.2 5.4
LR3T (1|3) , d = 1 57.9 67.3 55.8 36.8 17.0 8.3 5.7

Percentage of rejections by two step trace LR2T (0|2) and maximum eigenvalue test LR2T (0|1), B =

[0.5, 1] , Johansen’s trace LR3T (1|3) and maximum eigenvalue LR3T (1|2) tests with d = b = 1 and

trace test LR3T (1|3) of Johansen and Nielsen (2012) under the null hypothesis of cointegration rank

r = 1 in a p = 3 dimensional system with d = 1, k = 1, a = 0.5. Nominal size 5%.
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Table 3. Size simulation k = 1, a = 0.8.

T Test b

0.4 0.51 0.60 0.70 0.80 0.90 0.99
50 2s-LR2T (0|1) , d = 1 10.2 10.1 10.9 10.6 11.6 11.0 11.5

2s-LR2T (0|2) , d = 1 10.8 10.1 10.9 10.9 11.7 11.4 12.0
LR3T (1|2) , d = b = 1 3.1 2.9 2.7 3.0 3.3 3.4 4.1
LR3T (1|3) , d = b = 1 3.7 3.3 3.2 3.7 3.8 4.1 4.9
LR3T (1|3) , d = 1 33.6 32.9 31.5 27.0 22.6 20.6 18.4

100 2s-LR2T (0|1) , d = 1 5.1 5.5 6.2 6.6 6.9 7.9 7.8
2s-LR2T (0|2) , d = 1 5.3 5.5 6.4 6.9 7.0 7.7 7.4
LR3T (1|2) , d = b = 1 1.2 1.3 1.5 2.1 2.6 3.6 5.0
LR3T (1|3) , d = b = 1 1.6 1.5 1.9 2.4 2.9 4.0 5.3
LR3T (1|3) , d = 1 51.1 49.5 49.0 45.9 43.3 38.9 25.8

200 2s-LR2T (0|1) , d = 1 3.7 4.2 4.7 5.4 5.7 5.4 5.7
2s-LR2T (0|2) , d = 1 3.6 4.2 4.5 5.2 5.7 5.4 5.7
LR3T (1|2) , d = b = 1 0.8 1.1 1.8 2.6 4.2 5.3 5.8
LR3T (1|3) , d = b = 1 1.0 1.4 1.9 2.9 4.7 5.4 6.0
LR3T (1|3) , d = 1 83.2 83.1 83.9 82.9 79.3 53.4 29.8

400 2s-LR2T (0|1) , d = 1 3.7 4.0 4.6 5.0 4.4 4.5 4.3
2s-LR2T (0|2) , d = 1 3.7 3.8 4.6 4.5 4.3 4.5 4.5
LR3T (1|2) , d = b = 1 1.2 2.0 3.5 4.8 5.2 5.8 5.8
LR3T (1|3) , d = b = 1 1.3 2.2 3.7 5.0 5.3 5.8 5.9
LR3T (1|3) , d = 1 99.3 99.3 99.5 99.3 90.7 52.4 25.6

Percentage of rejections by two step trace LR2T (0|2) and maximum eigenvalue test LR2T (0|1), B =

[0.5, 1] , Johansen’s trace LR3T (1|3) and maximum eigenvalue LR3T (1|2) tests with d = b = 1 and

trace test LR3T (1|3) of Johansen and Nielsen (2012) under the null hypothesis of cointegration rank

r = 1 in a p = 3 dimensional system with d = 1, k = 1, a = 0.8. Nominal size 5%.
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Table 4. Power simulation k = 0.
T b1 Test b

0.40 0.51 0.60 0.70 0.80 0.90 0.99
50 b 2s-LR2T (0|1) , d = 1 16.5 45.5 72.8 91.8 98.4 99.8 100

2s-LR2T (0|2) , d = 1 15.2 43.0 70.1 90.1 97.9 99.7 99.9
LR3T (1|2) , d = b = 1 16.2 43.3 71.3 93.1 99.5 100 100
LR3T (1|3) , d = b = 1 15.8 42.9 70.7 93.0 99.3 100 100
LR3T (1|3) , d = 1 43.0 76.7 92.8 98.1 99.8 100 100

0.20 2s-LR2T (0|1) , d = 1 3.7 6.4 7.5 8.4 9.4 9.6 9.3
2s-LR2T (0|2) , d = 1 3.7 5.8 7.2 7.8 8.4 8.9 9.0
LR3T (1|2) , d = b = 1 4.4 7.7 9.2 10.4 11.5 12.1 11.9
LR3T (1|3) , d = b = 1 4.7 7.3 9.4 10.1 11.1 12.2 12.0
LR3T (1|3) , d = 1 17.3 22.6 23.8 20.1 17.5 15.2 12.6

0.51 2s-LR2T (0|1) , d = 1 26.9 45.5 58.0 65.9 70.4 72.3 72.8
2s-LR2T (0|2) , d = 1 25.6 43.0 54.9 62.6 68.2 69.9 70.0
LR3T (1|2) , d = b = 1 26.4 43.3 55.2 64.4 68.4 69.9 70.0
LR3T (1|3) , d = b = 1 25.7 42.9 54.7 63.5 67.8 69.4 69.5
LR3T (1|3) , d = 1 57.2 76.7 84.0 83.8 81.1 77.5 73.3

0.90 2s-LR2T (0|1) , d = 1 41.2 68.2 86.2 95.7 99.2 99.8 99.9
2s-LR2T (0|2) , d = 1 39.1 66.4 84.1 95.0 98.7 99.7 99.9
LR3T (1|2) , d = b = 1 42.9 69.3 87.1 97.3 99.8 100 100
LR3T (1|3) , d = b = 1 42.7 69.0 86.9 97.3 99.7 100 100
LR3T (1|3) , d = 1 68.0 89.8 97.1 99.3 99.9 100 100

100 b 2s-LR2T (0|1) , d = 1 72.7 97.7 98.8 100 100 100 100
2s-LR2T (0|2) , d = 1 20.9 96.9 98.8 100 100 100 100
LR3T (1|2) , d = b = 1 50.2 88.1 98.8 100 100 100 100
LR3T (1|3) , d = b = 1 49.3 88.3 98.9 100 100 100 100
LR3T (1|3) , d = 1 91.0 99.7 100 100 100 100 100

0.20 2s-LR2T (0|1) , d = 1 16.5 19.3 20.4 21.4 21.9 22.0 21.3
2s-LR2T (0|2) , d = 1 15.4 18.2 19.3 20.0 20.3 20.5 20.2
LR3T (1|2) , d = b = 1 13.2 17.2 19.3 19.8 20.3 20.8 19.9
LR3T (1|3) , d = b = 1 13.1 16.5 19.1 19.6 20.0 20.3 19.4
LR3T (1|3) , d = 1 36.8 41.4 40.8 35.8 30.1 25.5 20.6

0.51 2s-LR2T (0|1) , d = 1 84.5 97.7 99.0 99.5 99.6 99.5 100
2s-LR2T (0|2) , d = 1 82.0 96.9 98.8 99.2 99.4 99.4 100
LR3T (1|2) , d = b = 1 67.2 88.1 94.0 95.4 95.6 95.7 100
LR3T (1|3) , d = b = 1 66.9 88.3 94.2 95.4 95.9 95.7 100
LR3T (1|3) , d = 1 95.7 99.7 99.9 99.8 99.5 99.0 100

0.90 2s-LR2T (0|1) , d = 1 86.6 99.0 99.7 100 100 100 100
2s-LR2T (0|2) , d = 1 84.9 98.7 99.7 100 100 100 100
LR3T (1|2) , d = b = 1 75.1 95.8 99.6 100 100 100 100
LR3T (1|3) , d = b = 1 74.8 95.9 99.7 100 100 100 100
LR3T (1|3) , d = 1 93.0 99.7 100 100 100 100 100

Percentage of rejections by two step trace LR2T (0|2) and maximum eigenvalue test LR2T (0|1), B =

[0.5, 1] , Johansen’s trace LR3T (1|3) and maximum eigenvalue LR3T (1|2) tests with d = b = 1 and

trace test LR3T (1|3) of Johansen and Nielsen (2012) under the alternative hypothesis of cointegration

rank r = 2 in p = 3 dimensional system with d = 1, k = 0 and 2nd cointegrating relationship with

the memory b1 = b, 0.20 , 0.51 or 0.9. Nominal size 5%.
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Table 5. Power simulation k = 1, a = 0.5.
T b1 Test b

0.40 0.51 0.60 0.70 0.80 0.90 0.99
50 b 2s-LR2T (0|1) , d = 1 9.0 9.4 13.4 19.4 29.2 41.9 52.8

2s-LR2T (0|2) , d = 1 9.1 9.8 13.7 20.2 29.3 42.2 52.2
LR3T (1|2) , d = b = 1 2.8 2.3 4.0 7.9 15.1 28.2 44.5
LR3T (1|3) , d = b = 1 3.1 2.7 4.5 8.9 16.5 29.2 45.0
LR3T (1|3) , d = 1 24.2 15.4 19.7 23.3 27.1 35.7 45.2

0.20 2s-LR2T (0|1) , d = 1 5.1 6.6 8.2 8.3 9.8 10.9 11.2
2s-LR2T (0|2) , d = 1 4.8 6.9 8.1 8.6 9.7 10.8 11.0
LR3T (1|2) , d = b = 1 1.3 1.4 1.8 2.3 3.3 3.9 4.5
LR3T (1|3) , d = b = 1 1.5 1.6 2.0 2.7 3.3 4.2 4.9
LR3T (1|3) , d = 1 17.9 11.5 12.1 10.1 8.4 7.6 6.4

0.51 2s-LR2T (0|1) , d = 1 5.1 9.4 11.3 12.8 15.3 17.4 17.6
2s-LR2T (0|2) , d = 1 4.8 9.8 11.6 13.4 15.5 17.7 17.1
LR3T (1|2) , d = b = 1 1.3 2.3 2.9 4.0 5.5 7.3 9.1
LR3T (1|3) , d = b = 1 1.5 2.7 3.3 4.9 5.9 8.4 9.7
LR3T (1|3) , d = 1 17.9 15.4 16.5 15.2 12.7 12.3 10.8

0.90 2s-LR2T (0|1) , d = 1 22.21 18.5 23.1 28.2 35.1 41.4 45.3
2s-LR2T (0|2) , d = 1 21.11 19.0 23.6 29.1 35.9 41.6 45.5
LR3T (1|2) , d = b = 1 16.0 7.7 10.5 14.7 20.4 28.2 34.6
LR3T (1|3) , d = b = 1 16.2 8.3 11.4 16.1 21.6 29.1 35.9
LR3T (1|3) , d = 1 39.5 27.7 32.6 33.8 33.9 35.7 36.5

100 b 2s-LR2T (0|1) , d = 1 9.0 18.5 33.5 55.6 78.4 92.2 96.5
2s-LR2T (0|2) , d = 1 9.1 18.6 32.6 53.8 76.5 90.9 95.7
LR3T (1|2) , d = b = 1 2.8 8.2 20.1 44.5 74.6 94.8 99.3
LR3T (1|3) , d = b = 1 3.1 8.9 20.8 43.7 73.8 93.6 99.1
LR3T (1|3) , d = 1 24.2 37.2 53.1 68.9 85.2 95.6 99.1

0.20 2s-LR2T (0|1) , d = 1 5.1 6.0 7.6 8.6 9.7 10.2 9.6
2s-LR2T (0|2) , d = 1 5.0 6.1 7.3 8.4 9.6 10.1 9.3
LR3T (1|2) , d = b = 1 3.4 4.1 4.8 5.7 6.3 6.7 6.2
LR3T (1|3) , d = b = 1 3.6 4.0 4.6 5.7 6.3 6.8 6.1
LR3T (1|3) , d = 1 17.8 31.4 21.9 19.7 15.3 12.9 9.4

0.51 2s-LR2T (0|1) , d = 1 12.5 18.5 24.4 29.6 32.6 34.5 33.4
2s-LR2T (0|2) , d = 1 12.9 18.6 24.1 29.6 31.9 33.6 32.6
LR3T (1|2) , d = b = 1 4.9 8.2 13.3 18.5 23.8 28.8 29.1
LR3T (1|3) , d = b = 1 5.4 8.7 13.7 19.1 23.8 28.6 28.9
LR3T (1|3) , d = 1 29.3 37.2 43.4 42.6 39.1 37.0 31.0

0.90 2s-LR2T (0|1) , d = 1 22.2 37.2 53.9 70.9 85.2 92.2 93.9
2s-LR2T (0|2) , d = 1 22.1 36.8 52.3 69.3 83.8 90.9 93.0
LR3T (1|2) , d = b = 1 16.0 28.4 44.6 66.7 84.6 94.8 97.2
LR3T (1|3) , d = b = 1 16.2 29.3 44.6 65.5 83.8 93.6 96.6
LR3T (1|3) , d = 1 39.5 56.8 72.2 83.9 91.4 95.6 96.6

Percentage of rejections by two step trace LR2T (0|2) and maximum eigenvalue test LR2T (0|1), B =

[0.5, 1] , Johansen’s trace LR3T (1|3) and maximum eigenvalue LR3T (1|2) tests with d = b = 1 and

trace test LR3T (1|3) of Johansen and Nielsen (2012) under the alternative hypothesis of cointegration

rank r = 2 in p = 3 dimensional system with d = 1, k = 1, a = 0.5, and 2nd cointegrating relationship

with the memory b1 = b, 0.20 , 0.51 or 0.9. Nominal size 5%.
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Table 6. Power simulation k = 1, a = 0.8.
T b1 Test b

0.40 0.51 0.60 0.70 0.80 0.90 0.99
50 b 2s-LR2T (0|1) , d = 1 3.2 6.2 6.2 7.3 8.7 12.4 14.5

2s-LR2T (0|2) , d = 1 3.3 6.6 6.4 7.8 9.3 13.2 15.4
LR3T (1|2) , d = b = 1 3.0 1.6 1.4 1.7 2.2 3.5 5.3
LR3T (1|3) , d = b = 1 3.0 1.8 1.8 2.2 2.8 4.9 7.0
LR3T (1|3) , d = 1 32.9 19.4 17.5 12.3 12.5 13.1 13.4

0.20 2s-LR2T (0|1) , d = 1 3.3 8.2 8.0 8.7 8.9 10.1 9.3
2s-LR2T (0|2) , d = 1 3.5 8.5 8.15 9.1 9.4 10.1 9.6
LR3T (1|2) , d = b = 1 0.7 1.7 1.9 2.1 2.0 2.6 2.9
LR3T (1|3) , d = b = 1 1.0 2.1 2.3 2.5 2.6 3.2 3.4
LR3T (1|3) , d = 1 32.1 24.1 23.0 19.0 15.6 5.0 13.0

0.51 2s-LR2T (0|1) , d = 1 6.5 6.2 6.4 7.2 7.5 7.8 8.3
2s-LR2T (0|2) , d = 1 6.6 6.6 6.9 7.3 7.8 8.4 8.7
LR3T (1|2) , d = b = 1 1.5 1.6 1.4 1.6 1.8 1.9 2.2
LR3T (1|3) , d = b = 1 1.9 1.8 1.8 2.0 2.0 2.3 2.7
LR3T (1|3) , d = 1 19.5 19.4 17.8 14.5 11.1 10.9 9.5

0.90 2s-LR2T (0|1) , d = 1 7.3 8.0 7.9 8.8 9.9 12.0 12.7
2s-LR2T (0|2) , d = 1 7.6 8.3 8.6 9.1 10.3 12.7 13.7
LR3T (1|2) , d = b = 1 2.0 2.1 2.1 2.2 2.7 3.5 4.1
LR3T (1|3) , d = b = 1 2.4 2.5 2.6 2.8 3.7 4.9 5.4
LR3T (1|3) , d = 1 21.8 21.9 20.0 16.8 14.0 13.1 12.1

100 b 2s-LR2T (0|1) , d = 1 3.2 3.3 5.2 7.4 14.1 25.6 42.9
2s-LR2T (0|2) , d = 1 3.2 3.6 5.5 8.1 14.9 26.2 40.8
LR3T (1|2) , d = b = 1 0.7 3.2 4.3 5.6 7.5 9.4 12.0
LR3T (1|3) , d = b = 1 1.0 3.2 4.4 5.9 7.5 9.4 11.9
LR3T (1|3) , d = 1 32.9 32.6 33.6 31.9 32.9 34.0 38.8

0.20 2s-LR2T (0|1) , d = 1 3.8 3.7 4.5 4.9 5.4 5.7 6.2
2s-LR2T (0|2) , d = 1 3.9 3.6 4.7 4.8 5.5 5.4 6.1
LR3T (1|2) , d = b = 1 0.9 1.0 1.1 1.5 1.8 5.0 5.0
LR3T (1|3) , d = b = 1 1.0 1.1 1.4 2.0 2.1 4.7 4.9
LR3T (1|3) , d = 1 39.2 38.4 38.4 34.8 31.3 30.6 20.4

0.51 2s-LR2T (0|1) , d = 1 3.3 3.3 4.4 5.1 5.9 7.2 8.1
2s-LR2T (0|2) , d = 1 3.5 3.6 4.5 5.4 6.5 7.5 8.1
LR3T (1|2) , d = b = 1 0.7 3,2 1.0 1.4 1.9 3.1 4.2
LR3T (1|3) , d = b = 1 1.0 3.2 1.4 1.9 2.6 3.7 5.0
LR3T (1|3) , d = 1 32.1 32.6 32.7 29.1 25.8 25.5 17.9

0.90 2s-LR2T (0|1) , d = 1 6.7 8.2 10.1 13.8 19.4 25.6 31.7
2s-LR2T (0|2) , d = 1 7.0 8.3 10.7 14.3 19.6 26.1 31.6
LR3T (1|2) , d = b = 1 2.6 3.1 3.9 5.6 9.3 15.4 21.2
LR3T (1|3) , d = b = 1 3.2 3.7 5.2 7.4 11.2 17.5 22.8
LR3T (1|3) , d = 1 41.6 42.6 41.9 39.3 36.9 34.0 31.1

Percentage of rejections by two step trace LR2T (0|2) and maximum eigenvalue test LR2T (0|1),

B = [0.5, 1] , Johansen’s trace LR3T (1|3) and maximum eigenvalue LR3T (1|2) tests with d = b = 1

and trace test LR3T (1|3) of Johansen and Nielsen (2012) under the alternative hypothesis of cointe-

gration rank r = 2 in p = 3 dimensional system with d = 1, k = 1, a = 0.8, and 2nd cointegrating

relationship with the memory b1 = b, 0.20 , 0.51 or 0.9. Nominal size 5%.
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The simulated power is reported in Tables 4-6 for T = 50 and 100. When k = 0, see

Table 4, all procedures have very good power for all sample sizes T and all true values of b,

b1, except b1 = 0.20, which is very diffi cult to detect when T = 50. The power of all tests is

increasing with sample size T, b and b1, two step method doing marginally better for small b

and/or b1, while Johansen tests do better when T = 50 and b1 ≥ 0.9, since this case is closer

to the unit root model assumed by these tests. When k = 1 all procedures are much less

powerful than for k = 0, especially for the larger value of the autoregressive coeffi cient a and

small b, see Tables 5 and 6. However still power increases with sample size T , b and b1 for all

methods. Two step procedures are noticeably more powerful than Johansen tests except of

the cases close to b = b1 = 1 in sample T = 100. The LR test of Johansen and Nielsen (2012)

has largest power among all in many parameter combinations, but it is not relevant as this

test does not keep the size in this experiment. To sum up, two step rank tests have a similar

behavior to the one-step LR test when d = b ≈ 1, however they seem to be more powerful

when b and/or b1 are small, being able to exploit the differences between b and b1 or (b, b1)

and d, which are fixed in Johansen (1998) and Johansen and Nielsen (2012) methodologies.

6 Analysis of the term structure of the interest rates

To illustrate the empirical relevance of the described methodology we reconsider the analysis

of the term structure of the interest rates by Iacone (2009). There has been a lot of interest

in this issue in the current literature, see for example Chen and Hurvich (2003) and Nielsen

(2010).

As argued in Iacone (2009), a good model of the term structure of the interest rates is

needed to measure the effects of the monetary policy and to price financial assets. It is an

important tool for policy evaluation since the Federal Reserve operates in just one market,

the one with contracts with very short maturity. Therefore, it is necessary to model the

conduction of the monetary policy impulses to the rates of contracts with longer maturities.

Modeling the interactions across rates is also important for the economic agents to forecast

the effects of future monetary policy decisions on the price of financial assets. Soderlind

and Svensson (1997) have discussed a practical example of how to extract the market’s

expectations on future policy rates from a given term structure, and how to use them to

price financial instruments.

Cointegration has an appealing feature in the analysis of the term structure, because

it makes possible to distinguish the high persistence of shocks to interest rates from the

much lower persistence of shocks to the spreads. Standard cointegration in the context of

modeling a vector of US dollar interest rates has been considered by Hall, Anderson and

Granger (1992), Engsted and Tangaard (1994), Dominguez and Novales (2000).
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However it has been argued that the unit root model for the interest rates is often

incompatible with monetary and finance theories, because it may imply a unit root model

for the expected inflation rate as well. This is the case, for example, if the real interest

rate is constant in the long run, or if the central bank sets the interest rate using a linear

reaction function like the ones described by Taylor (1993) or by Svensson (1997). Such a

strong persistence is hardly acceptable, because it implies that the central bank does not

stabilize inflation.

We can allow for fractional cointegration instead. It permits to combine high persistence

with mean reversion in the long run, and it maintains the possibility of the presence of a

common stochastic terms in multivariate processes. Fractional integration may be motivated

as the result of occasional breaks in an otherwise weakly autocorrelated process. This in-

terpretation seems particularly appealing when modeling the interest rates because changes

to the discount rate are infrequent. Granger and Hyoung (2004) have shown that fractional

integration and occasional breaks may in practice be indistinguishable and, following also a

comment by Diebold and Inoue (2001), adopting fractional integration in a model may result

in good forecasts.

We analyze the behavior of the US dollar interest rates with maturities of 1, 3 and

6 months (the London InterBank Offered Rate LIBOR) over the period 01/1963-04/2006.

The data come from DataStream with identification codes being respectively USI60LDC,

USI60LDD, USI60LDE. LIBOR is not affected by any regulation imposed by the central

bank, and thus it is a typical measure of the cost of funds in US dollars. For this data

set Iacone (2009) has found evidence that the three considered series share the same order

of integration with estimated d̂ = 0.88. The test of Robinson and Yajima (2002) and local

Whittle procedure of Robinson (1995) have been used to obtain this result. Iacone (2009) has

also concluded the fractional cointegration with rank r = 2 in this system using procedures

in Phillips and Ouliaris (1988) and Robinson and Yajima (2002).

However the integration order of the cointegrating residuals of two relations found by Ia-

cone (2009) differ significantly, and the transmission of impulses is slower the longer distance

(in maturity) from the market where the Federal Reserve is directly present, so a model that

allows different b’s would be appropriate for this example. Łasak (2008) has analyzed three

bivariate systems and has not imposed the assumption that both cointegration relationships

share the same memory. The methodology developed in this paper enables us to test the

rank directly in the 3-variate system (1) without imposing such assumption, as we pursue.

We consider the basic version of the model presented in Section 3, as it seems to be a

right choice looking at PACF of the processes. We have tested the existence of the breaks in

levels of considered series using the test of Sibbertsen and Kruse (2009) and it has indicated

no breaks in the series. All the tests considered in Section 5 have been computed and all
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confirm that this system is cointegrated with rank 2. The values of the test statistics when

testing rank r = 1 are presented in Table 7.

Table 7. Rank tests statistics under H0 : r = 1, d = d̂ = 0.88

LR test 2-step Johansen J-N

max lambda 19.04 53.8 -
trace 19.04 54.5 30.7

In Table 8 we provide the 5% critical values for two step tests when d = 0.88 and

B = [0.5, 0.88], compared to those when d = 1 and B = [0.5, 1] . The critical values for

d < 1 are smaller than those for d = 1, and in general, using the latter for situations when

d < 1 would lead to a conservative inference. In any case, the tests statistics in Table 7 are

significant at the 5% level even using the conservative critical values for d = 1.

Table 8. 5% Critical values of rank tests under H0 : r = 1, p = 3.

LR test 2-step
(B= [0.5,1])

2-step
(B= [0.5,0.88])

Johansen J-N

max lambda 11.72 11.02 11.23 -
trace 12.84 12.13 12.32 10.95

We also estimate the cointegration vectors on the basis of all considered models, including

the VECM with d = b = 1 and the FVECM (1) with d = d̂ = 0.88 imposed, which is justified

by Corollary 2. The first cointegration relationship is common to all procedures, but the

second one can be different. When we focus on the two-step procedure proposed in Section

3, the estimate of the second cointegrating relationship β1 is found according to the formula

β̂1 = β′⊥β
∗
1, where β

∗
1 comes directly from solving the eigenvalue problem (2) constructed on

the basis of the transformed model (16). It turns out that the outcomes of all the procedures

imply the same cointegrating space spanned by

β̂
norm

=

 1 1

−0.98 0

0 −0.96

 .
The cointegrating parameters are very close to −1, so the spreads can be computed as

s
(j)
t = i

(j)
t −i

(1)
t , j = 3, 6. Iacone (2009) has estimated the orders of integration of these spreads

using Local Whittle estimator of Robinson (1995) to be s(j)t ∼ I(dj − bj), s(3)t ∼ I (0.34) and

s
(6)
t ∼ I (0.47) and rejected the hypothesis that these orders are the same. Therefore the rank
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estimation methodology developed in this paper is suitable for this example, as it takes into

account the possibility that the persistence of the cointegration relationships differ. However

when we estimated the FVECM using ML our results do not confirm that the spreads are

persistent.

Table 9. Estimates of b and b1, d = d̂ = 0.88.

1st step (b̂) 2nd step (b̂1) J-N

b̂ 0.81 0.88 0.83

Looking at the estimates of the order of cointegration b in Table 9 we might conclude that

the spreads seem to behave as I(0) processes, so the evidence supporting the Expectation

Hypothesis can be found in the multivariate case if the analysis does not restrict all the

cointegration relationships to share the same memory.

7 Conclusions

In this paper we have proposed a new procedure, based on sequential two-step LR tests, to

establish the cointegration rank in a fractional system. The main novelty is that it allows

the cointegrating relationships under the alternative to have different memory compared to

the null ones. It only needs a small modification of the model estimated in the second step.

The asymptotic distributions of the test statistics are the same as for the no-cointegration

testing, so the set of simulations required to approximate the critical values is reduced, which

can be seen as an advantage for empirical work. We have investigated the performance of

our procedure in finite samples and have compared it with the LR trace test of Johansen

and Nielsen (2012) and with Johansen’s LR trace and maximum eigenvalue tests. We have

found that our tests control size and have an advantage in terms of power to detect extra

cointegrating relationships in situations when the memories of the cointegration relations

differ or are relatively small.
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Appendix

Proof of Theorem 1. We demonstrate first that replacing β⊥ by β̂⊥ makes no difference

asymptotically in the two step LR test statistics. LR tests statistics depend on properly

normalized sample moments of dependent and independent variables in the regression model

(16), cf. (2) . The result follows from Theorem 1 in Łasak (2010), after controlling for the

projection on
(
∆b
+ − 1

)
u1t as in Lemma 10.3 in Johansen (1995), using the representation

(14) for the dependent variable V0t = β′⊥∆Xt.

Set V1t−1 (b1) =
(

1−∆−b1+

)
V0t, recalling the definition of V̂1t−1 (b1) and using the true

β⊥. First, we want to show that

T−b1
T∑
t=1

V̂1t−1 (b1) V̂
′
0t − T−b1

T∑
t=1

V1t−1 (b1)V
′
0t →p 0

uniformly for b1 ∈ B if β̂⊥ − β⊥ = Op
(
T−b

)
. The difference on the left hand side is

T−b1
T∑
t=1

{
V̂1t−1 (b1)− V1t−1 (b1)

}
V ′0t + T−b1

T∑
t=1

V̂1t−1 (b1)
(
V̂0t − V0t

)′
. (23)

The first term in (23) is equal to

(
β̂
′
⊥ − β′⊥

)
T−b1

T∑
t=1

(
1−∆−b1+

)
∆XtV

′
0t = op (1) ,

uniformly in b1 ∈ B because β̂⊥−β⊥ = Op
(
T−b

)
, b > 0.5, and T−b1

∑T
t=1

(
1−∆−b1+

)
∆XtV

′
0t =

Op
(
T 1/2−ε

)
uniformly in b1, b1 > 0.5, for some ε > 0 from (104) in Lemma A.9 in Johansen

and Nielsen (2012).

The second term on the right hand side of (23) is

T−b1
T∑
t=1

V̂1t−1 (b1) ∆X ′t

(
β̂⊥ − β⊥

)
= Op

(
T−b

)
T−b1

T∑
t=1

V̂1t−1 (b1) ∆Xt,

and this is Op
(
T−b

)
Op
(
T 1/2−ε

)
= op (1) , uniformly in b1 with b > 0.5, ε > 0, using again

Lemma A.9 in Johansen and Nielsen (2012).
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Using the same ideas it can be shown that

T−2b1
T∑
t=1

V̂1t−1 (b1) V̂
′
1t−1 (b1)− T−2b1

T∑
t=1

V1t−1 (b1)V
′
1t−1 (b1)→p 0

uniformly for b1 ∈ B and

T−1
T∑
t=1

V̂0tV̂
′
0t − T−1

T∑
t=1

V0tV
′
0t →p 0,

exploiting (103) and (102), respectively, in Lemma A.9 in Johansen and Nielsen (2012), so

that the estimation of β⊥ in the first step has no impact on the asymptotic distribution of

the test statistics.

We next show that replacing
(
∆b
+ − 1

)
u1t by

(
∆b̂
+ − 1

)
û1t =

(
1−∆−b̂+

)
β̂
′
∆Xt in (16)

is also negligible asymptotically under (12). For that, it is enough to consider the differences

T−b1
T∑
t=1

V1t−1 (b1)
(

∆b
+ − 1

)
u′1t − T−b1

T∑
t=1

V1t−1 (b1)
(

∆b̂
+ − 1

)
û′1t (24)

T−b1
T∑
t=1

ut

(
∆b
+ − 1

)
u′1t − T−b1

T∑
t=1

ut

(
∆b̂
+ − 1

)
û′1t, (25)

since other terms appearing in the projections of V1t−1 (b1) and V0t on
(

∆b̂
+ − 1

)
û1t could

be dealt with in the same way. We can decompose (24) in

T−b1
T∑
t=1

V1t−1 (b1)
(

∆b
+ −∆b̂

+

)
û′1t + T−b1

T∑
t=1

V1t−1 (b1)
(

∆b̂
+ − 1

)
∆X ′t

{
β − β̂

}
. (26)

The first term in (26) can be shown to be op (1) uniformly in b1 as in Robinson and Hualde

(2003, Proposition 9), expanding
(

∆b
+ −∆b̂

+

)
u1t =

(
1−∆b̂−b

+

)
∆b
+u1t around b − b̂ = 0,

with b− b̂ = Op
(
T−1/2

)
and noting that the terms in the expansion behave as the derivatives

of ∆b
+u1t with respect to b, cf. (104) in Lemma A.9 in Johansen and Nielsen (2012), whose

sample moments are Op
(
T 1/2−ε

)
uniformly in b1, ε > 0. The second term in (26) is op (1)

using a similar argument for
(

∆b̂
+ − 1

)
∆Xt, being approximately an I (−b) asymptotically

stationary process, and the superconsistency of β̂. Finally, the analysis of (25) being op (1)

is simpler because it does not depend on b1 and ut is i.i.d.

Then to show the validity of the correction introduced in regression (16), it is only

necessary to observe that the vector ut is just a rotation of the vector εt, so all previous

approximations and bounds can be used similarly. �
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Proof of Corollary 2. We have to additionally show that terms like

T−b1
T∑
t=1

V1t−1
(
b1, d̂

)
V ′0t

(
d̂
)
− T−b1

T∑
t=1

V1t−1 (b1, d)V ′0t (d)

are op (1) uniformly for b1 ∈ B if d̂− d = Op
(
T−1/2

)
. This follows from a similar analysis as

that of the first term in (26), writing this difference as

T−b1
T∑
t=1

V1t−1
(
b1, d̂

){
V ′0t

(
d̂
)
− V ′0t (d)

}
+ T−b1

T∑
t=1

{
V1t−1

(
b1, d̂

)
− V1t−1 (b1, d)

}
V ′0t (d)

and using a Taylor expansion of 1−∆d̂−d
+ around d̂−d = 0 in V ′0t

(
d̂
)
−V ′0t (d) =

(
1−∆d̂−d

+

)
∆dβ′⊥Xt

and V1t−1
(
b1, d̂

)
− V1t−1 (b1, d) = (1 −∆−b1+ )

(
1−∆d̂−d

+

)
∆dβ′⊥Xt, and then using uniform

bounds for the corresponding sample moments on (derivatives of) fractionally integrated

processes. �

Proof of Theorem 3. The proof follows the lines of the proof of Theorem 1, since the

additional lags ∆Xt−j , j = 1, . . . , k in regression (20) pose no additional problem compared

to the projection of V̂0t and V̂1t−1 (b1) on
(

∆b̂
+ − 1

)
û1t, because the former are observed and

I (0) . �
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