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Abstract

Modelling covariance structures is known to suffer from the curse of dimensionality. In
order to avoid this problem for forecasting, the authors propose a new factor multivari-
ate stochastic volatility (fMSV) model for realized covariance measures that accom-
modates asymmetry and long memory. Using the basic structure of the fMSV model,
the authors extend the dynamic correlation MSV model, the conditional/stochastic
Wishart autoregressive models, the matrix-exponential MSV model, and the Cholesky
MSV model. Empirical results for 7 financial asset returns for US stock returns indi-
cate that the new fMSV models outperform existing dynamic conditional correlation
models for forecasting future covariances. Among the new fMSV models, the Cholesky
MSV model with long memory and asymmetry shows stable and better forecasting per-
formance for one-day, five-day and ten-day horizons in the periods before, during and
after the global financial crisis..

Keywords: Dimension reduction; Factor Model; Multivariate Stochastic Volatility; Leverage
Effects; Long Memory; Realized Volatility.

JEL classifications: C32, C53, C58, G17
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1 Introduction

Modeling and forecasting covariance matrices of financial asset returns has been attracting inter-

ests especially for obtaining optimal portfolio of assets. Two major issues are to guarantee the

positive definiteness of covariance matrices, and to reduce the number of parameters which grows

with the order of squares of the number of assets. There are three classes in the fields, namely the

multivariate autoregressive conditional heteroskedasticity (ARCH) class, the multivariate stochas-

tic volatility (MSV) models, and the models of realized covariance matrix.

Regarding the multivariate ARCH family, the dynamic conditional correlation (DCC) model

of Engle (2002) is most popular, and its variants are still developed in the literature. Engle (2002)

suggested a structure for time-varying correlation matrices, working with a univariate ARCH

class model for each conditional variance. As the estimation of the conditional variance model

is conducted separately, it concentrates on the estimation of the dynamic correlations. By its

structure, the DCC model reduces the number of parameters. Also with simple restrictions, Engle

(2002) showed that it can guarantee the positive definiteness of the correlation matrix. Apart

from the DCC model, it is worth noting the diagonal ARCH model of Ding and Engle (2001), as

it enables us to estimate the model based on the estimates of unconditional covariance matrix,

which can be obtained by the average of the outer-products of mean-subtracted return vectors. The

approach is known as the ‘variance targeting’, and it largely decreases the number of parameters

for estimating in a single step. See the survey papers of McAleer (2005), Bauwens, Laurent,

and Rombouts (2006) and Silvennoinen and Teräsvirta (2009) for the models of univariate and

multivariate ARCH family.

In the class of the MSV models, volatilities (variances) of stock return vector are assumed

to be unobservable. Harvey, Ruiz and Shephard (1990) suggested basic MSV models with the
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constant correlation matrix. As the volatilities are latent variables, it is hard to obtain the

likelihood function analytically, and hence there are several techniques for estimating SV models,

including the Markov chain Monte Carlo method for Jacquire, Polson and Rossi (1994) and Chib,

Nardari and Shephard (2006), the efficient method of moments of Gallant and Tauchen (1996),

and the Monte Carlo likelihood method proposed by Durbin and Koopman (1997), Sandmann

and Koopman (1998) and Asai and McAleer (2006). See the survey papers for Asai, McAleer and

Yu (2006) and Chib, Omori and Asai (2009) for alternative MSV models.

Recent developments on estimating realized co-volatility (covariance) measure of asset returns

enable us to obtain consistent estimators for the unobservable volatility and co-volatilities, which

can be used for estimating univariate/multivariate conditional/stochastic volatility models. In uni-

variate SV case, Barndorff-Nielsen and Shephard (2002) and Bollerslev and Zhou (2002) suggested

to use realized volatilities for estimating SV models, as the realized volatility can be considered

as the true volatility with the microstructure noise. See Gourieroux Jasiak, and Sufana (2009),

Chiriac and Voev (2011), Bauer and Vorkink (2011), Tao et al. (2011) and Golosnoy, Gribisch,

and Liesenfeld (2012) for such applications in multivariate context.

As in Engle (2002) and Asai and McAleer (2009a), working with dynamic correlations is

useful for simplifying structures of multivariate volatility models. An alternative approach for

approximating the dynamic covariance structures is to use factors as in the papers of Diebold

and Nerlove (1989), Harvey, Ruiz, and Shephard (1994), Vrontos, Dellaportas and Politis (2003),

Chib, Nardari, and Shephard (2006) and Philipov and Glickman (2006a) and Lanne and Saikkonen

(2007).

Long memory and asymmetric effects are important features for analysis on financial time

series. Regarding the long memory, Ray and Tsay (2000) introduced long range dependence into
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the volatility factor model by Harvey, Ruiz, and Shephard (1994), although these papers assume

the constant correlation matrix. Without any factor specifications, Chiriac and Voev (2011)

suggested a long memory model, using the Cholesky decomposition of realized covariance matrices.

Our factor models will involve long memory in time-varying covariances/correlations. It is worth

noting that the heterogeneous autoregressive (HAR) model of Corsi (2009) and its variants are

often used for approximating longer memory processes than the first order autoregressive term.

See Corsi and Renò (2010), Martens, van Dijk, and de Pooter (2009), Bollerslev, Sizova, and

Tauchen (2011), Chiriac and Voev (2011) and Golosnoy, Gribisch, and Liesenfeld (2012). We will

also consider such HAR terms.

Turing to asymmetric effects, there are several papers that developed the approaches to incor-

porate negative correlation between stock returns and future volatility in the multivariate volatility

models. Kroner and Ng (1998) and Kawakatsu (2006) suggested asymmetric multivariate GARCH

models, while Cappiello, Engle and Sheppard (2006), Asai (2013) and Asai and So (2014) pro-

posed asymmetric dynamic correlation models. For MSV models, Chan, Kohn, and Kirby (2006)

and Asai and McAleer (2006, 2009b), Chib, Omori and Asai (2009), So and Choi (2009), Ishihara

and Omori (2012), Ishihara, Omori and Asai (2013) incorporated asymmetric effects. However,

there have been still no previous works on the multivariate volatility models which accommodate

all of factor specifications, dynamic correlations, and asymmetric effects. The current paper will

fulfill the gap.

In this paper, we will consider alternative factor MSV (fMSV) models with long memory

and asymmetric effects, using realized volatilities and co-volatilities. Starting from a conventional

factor model, we derive an alternative representation which decomposes the covariance matrix into

the matrices of common factors and idiosyncratic errors orthogonally. Based on the decomposition,
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we consider several specifications of the factor covariance matrix based on the dynamic correlation

model of Asai and McAleer (2009a), the conditional autoregressive Wishart model of Golosnoy,

Gribisch, and Liesenfeld (2012), the Wishart autoregressive model of Gourieroux, Jasiak and

Sufana (2009), the matrix-exponential MSV model of Ishihara, Omori and Asai (2013), and the

Cholesky MSV model of Chiriac and Voev (2011). We should note that Chiriac and Voev (2011)

and Golosnoy, Gribisch, and Liesenfeld (2012) used the HAR term, and Chiriac and Voev (2011)

considered a long memory model for their specification. In addition to these works, we extend all

models by incorporating asymmetric effects and long memory (or HAR terms).

The remainder of the paper is organized as follows. Section 2 derives a new representation of

the fMSV model, and discusses the specifications of asymmetric effects and long memory. Section

2 also shows the estimation procedure to obtain consistent estimators of common factors and their

covariance matrices, based on the alternative form. Section 3 suggests alternative specifications

for the fMSV models, and Section 4 gives an empirical example for seven stocks traded at the

New York Stock Exchange.

In the following, for any positive definite matrix X and real number α, we define Xα by the

spectral decomposition. For example, X1/2X1/2 = X.

2 Asymmetry and Long Memory for Factor MSV Models

2.1 Factor Multivariate SV Models

Let yt be m × 1 vector of asset returns at time t. Consider the factor model

yt = Bf t + ut, (1)

where f t is a k×1 vector of common factors, B is the m×k matrix of factor loading, and ut is the

vector of idiosyncratic errors, which are uncorrelated with f t. We can write E(ut|f�,�t−1) = 0
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and V ar(ut|f�,�t−1) = Σu, where �t is the information set up to time t. We assume that the

vector of common factors has the multivariate SV as

f t = (Ω†
t)

1/2εt, εt ∼ IIDk(0, Ik), (2)

where Ω†
t is the k × k positive definite matrix. Hence, Ω†

t = Var(f t|Ω†
t). Conditional on Ω†

t , the

m × m covariance matrix of yt is given by

Σt = BΩ†
tB

′ + Σu. (3)

We will call the model (1)-(3) as the ‘factor MSV’ (fMSV) model.

For various fMSV models, Pitt and Shephard (1999), Liesenfeld and Richard (2003), and

Chib, Nardari and Shephard (2006) among others restricted the factor loading matrix B such

that bij = 0 for (i < j, i ≤ k) and bii = 1 (i ≤ k) for identification purpose. We consider an

alternative specification.

There is no loss in generality in assuming B in (1) satisfying the condition B′B = Ik. Then

there exists an m × (m − k) matrix A for which A′B = O and A′A = Im−k. In other words,

S = [B A] is an m × m orthogonal matrix, and S′S = SS′ = Im. Then we have an alternative

representation of the fMSV model as

yt = Bϕt + Aζt, (4)

Σt = BΩtB
′ + AΣζζA

′, (5)

where ϕt = f t + B′ut, ζt = A′ut, Ωt = Ω†
t + B′ΣuB and Σζζ = A′ΣuA. We should note that

E

[(
ϕt

ζt

)∣∣∣∣Ωt

]
=

(
0
0

)
, V ar

[(
ϕt

ζt

)∣∣∣∣Ωt

]
=

(
Ωt Σϕζ

Σζϕ Σζζ

)
,

where Σϕζ = B′ΣuA. Since A′B = O, the equations (4) and (5) can be considered as the

‘orthogonal decomposition’ of the fMSV model (1)-(3).
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There are two merits in using the orthogonal decomposition. The first one is that we can

define leverage effect from return vector to future volatilities and co-volatilities by considering a

relationship between ϕt and future values of Ωt. We will consider the asymmetric effects in the

next subsection. The second merit is that we can obtain consistent estimators of ϕt and Ωt by the

approach which will be explained late. For these reasons, we will consider modeling, estimation

and forecasting of {Ωt} rather than {Ω†
t} for the purpose of forecasting future values of {Σt}.

2.2 Asymmetric Effects on Factor Covariance

We specify asymmetric effects from the current returns, yt, to the one-step-ahead volatilities and

co-volatilities, Σt+1, via the covariance of the common factors, Ωt+1. For this purpose, we work

with k-vector,

zt = (B′ΣtB)−1/2(B′yt) = Ω−1/2
t ϕt = (Ω†

t + B′ΣuB)−1/2(f t + B′ut). (6)

By definition, we have E(zt|Ωt) = 0 and Var(zt|Ωt) = Ik, and thus E(zt|Ωt) = 0 and V (zt|Ωt) =

Ik.

The two popular approaches for introducing asymmetry for volatility dynamics are employing

threshold function, as in the GJR model of Glosten, Jagannathan and Runkle (1992), and working

with an absolute value function, as in the specification of Nelson (1991). Kroner and Ng (1998)

developed a multivariate extension of the GJR model, while Kawakatsu (2006) suggested an

extension for the EGARCH model. Unlike these approaches, we consider the second order Hermit

polynomial for the error term. Hansen, Huang and Shek (2012) suggested this approach for a

univariate model. In this case, we have

λit = λ1izit + λ2i

(
z2
it − E(z2

it)
)
. (7)

Noting that E(z2
it) = 1, we also have E(λit) = 0, V ar(λit) = λ2

1i + 2λ2
2i and E[zitλit] = λ1i, as

8



we assume that each element of zt has zero mean and unite variance. Hence, if λ1i is negative,

the model describes the leverage effect. On the other hand, λ2i is expected to be positive, as

in the conventional GARCH families. We will use the vector specification, λt = (λ1t, . . . , λkt)′,

especially when we consider asymmetric effects on the diagonal elements of Ωt+1.

Now we suggest the following multivariate extension of the above approach:

Λt = Λ1 ◦
(
ztι

′
k + ιkz

′
t

)
+ Λ2 ◦

(
ztz

′
t − E(ztz

′
t)

)
. (8)

Noting that E(ztz
′
t) = Ik, it is straightforward to show that E(Λt) = O and that each element

has finite variance. For the leverage effects, λii,1 < 0 and λii,2 > 0. For the purpose of considering

a positive semi-definite matrix of the multivariate asymmetric effects, we modify (8) as

Λ†
t = Λ† ◦ (zt − γ)(zt − γ)′ (9)

where γ is k-vector of parameters with γi > 0, and Λ† is a k dimensional positive (semi-)definite

matrix.

We may accommodate the asymmetric effects to the fMSV models, by introducing the error

vector, λt, the error matrix, Λt and/or the positive semi-definite matrix, Λ†
t . We will develop the

new fMSV models in Section 3.

We can examine news impacts from an asset return to its future volatility, following the works

of Engle and Ng (1993), Yu (2005), Asai and McAleer (2009b), Caporin and McAleer (2011) and

Chen and Ghysels (2010). Engle and Ng (1993) developed the news impact curve (NIC), which

is a useful tool for measuring the effects of news on the conditional variances. They showed,

graphically, the asymmetric reactions of the conditional variances to positive and negative shocks

of equal magnitude for the GJR model of Glosten et al. (1992) and the EGARCH model of

Nelson (1991). Regarding multivariate conditional volatility models, Caporin and McAleer (2011)
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developed news impact surfaces specifically for their dynamic asymmetric multivariate GARCH.

In the framework of univariate SV models, Yu (2005) developed the news impact function for

evaluating the effects of news on the log-volatilities as an adaptation of the NIC. Asai and McAleer

(2009b) extended it to apply volatilities and log-volatilities for MSV with leverage models. When

realized volatility is available, we can estimate the NIC using the MIDAS (mixed data sampling)

regressions, as suggested by Chen and Ghysels (2010).

Since we accommodate factors which reduce the number of parameters, we need to check

whether or not the fMSV model with asymmetric effects can approximate true NICs. We may

define the news impact surface for the fMSV model as

ΣNIS
t (y) = E

(
Σt|yt−1 = y,Ωt−1 = Ω̄,Ωt−2 = Ω̄, . . .

)

= B
{
E

(
Ωt|yt−1 = y,Ωt−1 = Ω̄,Ωt−2 = Ω̄, . . .

)}
B′ + AΣζζA

′

where y is an m-vector and Ω̄ = E(Ωt). By definition, we can examine news impact from one

asset return not only to its own future volatility byt also to future volatilities of remaining assets.

We will give illustrative examples in empirical analysis.

2.3 Long Memory for Covariance structure

For long-range dependences in financial volatility, Baillie, Bollerslev and Mikkelsen (1996) devel-

oped the fractionally-integrated GARCH model, while Bollerslev and Mikkelsen (1996) suggested

the fractionally-integrated EGARCH model. In addition to GARCH specifications, Breidt et al.

(1998), Harvey (1998), Pérez and Ruiz (2001), So (2002) and So and Kwok (2006) studied a

long-memory stochastic volatility model.

Let L be the lag operator. For any k-dimensional symmetric matrix process X t, we define a
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k-dimensional matrix D(L) as

D(L) =

⎛
⎜⎜⎜⎝

(1 − L)d11 (1 − L)d12 · · · (1 − L)d1k

(1 − L)d21 (1 − L)d22 · · · (1 − L)d2k

...
...

. . .
...

(1 − L)dk1 (1 − L)dk2 · · · (1 − L)dkk

⎞
⎟⎟⎟⎠ , (10)

where dij = dji and 0 ≤ dij ≤ 1, in order to describe the fractional difference of Xt as D(L) ◦Xt.

We do not consider negative values of dij, as the empirical evidences of the fractional integration

are found in the positive region in financial time series. For any process of k-vector xt, we also

define a k-dimensional diagonal matrix Dk(L) as

Dk(L) = diag((1 − L)dv
1 , . . . , (1 − L)dv

k), (11)

where 0 ≤ dv
i ≤ 1, so that Dk(L)xt is the fractional difference of xt. We can separately estimate

the order of the fractional difference, di,j and/or dv
i , via the multivariate Gaussian semiparametric

estimation suggested by Shimotsu (2007), which is considered as a multivariate extension of the

local Whittle (LW) estimator of Shimotsu and Phillips (2006).

Recent papers including Andersen, Bollerslev and Meddahi (2011), Bollerslev, Sizova and

Tauchen (2011), Bollerslev and Todorov (2011), Chiriac and Voev (2011) work with the hetero-

geneous autoregressive (HAR) model of Corsi (2009) and its variants in order to describe longer-

range dependence than that of AR(1) models. Following Corsi (2009), define h days average of

past values of X t and xt as

Xt−1,t−h =
1
h

(Xt−1 + · · · + Xt−h), xt−1,t−h =
1
h

(xt−1 + · · · + xt−h), (12)

respectively. In addition to daily effect, Xt−1, we can consider weekly and monthly effects as

Xt−1,t−5 and Xt−1,t−22, respectively.
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2.4 Estimation of Factor Covariance

Consider a consistent estimator of Σt, which is a realized covariance matrix, and we denote it as

Σ̂t. By using the sequence of realized covariance matrix, Tao et al. (2011) developed a technique

to estimate the factor covariance matrix, Ωt. We will shortly explain the approach. Define

Σ̄ =
1
T

T∑
t=1

Σt, C =
1
T

T∑
t=1

(
Σt − Σ̄

)2
.

Recalling that A′B = O, we obtain A′Σt = A′Σu from equation (3). Hence, we obtain that

A′Σt = A′Σ̄ and

A′CA =
1
T

T∑
t=1

(
A′Σt − A′Σ̄

) (
ΣtA − Σ̄A

)
= O

From this result, we can consider A as the m − k orthonormal eigenvectors of C, corresponding

to the (m − k)-fold eigenvalue 0. The remaining k orthonormal eigenvectors of C, corresponding

to the k nonzero eigenvalues, can be taken as the columns of the factor matrix B.

Regarding the consistent estimator, Σ̂t, let

¯̂Σ =
1
T

T∑
t=1

Σ̂t, C̄ =
1
T

T∑
t=1

(
Σ̂t − ¯̂Σ

)2
. (13)

Then we obtain the estimator B̂ using the k orthonormal eigenvectors of Ĉ, corresponding to

the k largest eigenvalues, as its columns. Consequently, we obtain the estimated factor and its

estimated covariance matrix as

ϕ̂t = B̂
′
ŷt, Ω̂t = B̂

′
Σ̂tB̂, t = 1, . . . , T,

respectively. We can also estimate Σζζ by Σ̂ζζ = Â
′ ¯̂ΣÂ. Tao et al. (2011) showed the consis-

tency of B̂ and Ω̂t for fixed k, under several kinds of realized covariance matrices developed by

Barndorff-Nielsen et al. (2008, 2011), Christensen, Kinnebrock, and Podolskij (2010), Griffin and
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Oomen (2011), Hautsch, Kyj, and Oomen (2012), Wong and Zou (2010) and Zhang (2011). It is

straightforward to show the consistency of ϕ̂t and Σ̂ζζ by applying the framework of Tao et al.

(2011).

Once we obtained the estimates of the common factors, ϕ̂t, and covariance matrix of common

factors, Ω̂t, we can estimate alternative models for the covariance matrix of the common factors.

3 Specifications of Factor Covariance

We will extend five kinds of models for the covariance matrix, in order to accommodating asym-

metry and long memory on the factor covariance matrix, Ωt.

3.1 Dynamic Correlation fMSV Models

As in Engle (2002), we start from the decomposition of the covariance matrix,

Ωt = V
1/2
t P tV

1/2
t , (14)

where V t is the diagonal matrix of volatilities of the vector of common factors, defined by V t =

diag(v1t, . . . , vkt), and P t is its correlation matrix. By definition, we can write V t = (Ik ◦

Ωt), where ‘◦’ denotes the Hadamard (element-by-element) product. As in Engle (2002), we

consider a positive definite matrix, Qt, in order to describe the correlation dynamics with P t =

Q
∗−1/2
t QtQ

∗−1/2
t , where Q∗

t = (Ik ◦Qt). Following most of the works on MSV models, we consider

the vector of log-volatilities, ht = (h1t, . . . , hkt)′ = (log v1t, . . . , log vkt)′, rather than volatilities

themselves.

We use the dynamic correlation MSV (DC MSV) model of Asai and McAleer (2009a), in order
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to specify the process of (Qt,ht) as

Q−1
t ∼ W (Rt, δ), Rt =

1
δ

(
Q−1

t−1

)α
2 R̄

(
Q−1

t−1

)α
2 , (15)

ht = μ + Φ1{ht−1 − μ} + ηt, ηt ∼ N(0,Ση), (16)

where δ (δ > k − 1) and α (|α| < 1) are scalars, R̄ and Ση are k dimensional positive definite

matrices, μ is k-vector of parameters, Φ1 is k dimensional diagonal matrix defined by Φ =

diag(φ1, . . . , φk), and W (S, p) denotes the Wishart distribution with the scale matrix S and the

degrees-of-freedom parameter p. Here, we define (P−1
t )α/2 by the spectral decomposition. We

impose restrictions that the diagonal elements of R̄ are ones, and that Qt = V̄ RtV̄ , where

V̄ = E(V t).

Now we introduce the following general model for Qt, accommodating asymmetry and long

memory.

Q−1
t ∼ W (Rt, δ),

Rt =
1
δ

(
P−1

t−1,t−22

)αm
2

(
P−1

t−1,t−5

)αw
2 (

P−1
t−1

)αd
2 (17)

× [wR̄ + (1 − w)Λ†
t−1]

(
P−1

t−1

)αd
2

(
P−1

t−1,t−5

)αw
2

(
P−1

t−1,t−22

)αm
2

,

where αd, αw and αm are scalar parameters, w (0 < w ≤ 1) is a scalar weight parameter, P t−1,t−5

and P t−1,t−22 are weekly and monthly averages defined by (12), and Λt is the positive semi-definite

matrix defined by equation (9) such that the (i,j)th elements of Λ† is 1
(1+γi)(1+γj ) . While P t−1,t−5

and P t−1,t−22 produce longer memory than the single P t−1, Λt yields asymmetric effects on the

correlation dynamics.

Regarding the vector of log-volatilities, ht, a general model is given by

Φ(L)Dk(L){ht − μ} = λt−1 + ηt, (18)
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where Dk(L) is the fractional difference operator defined by equation (11), λt is vector of asym-

metric function defined by equation (7). We set Φ(L) = Ik −Φ1L. The competing heterogeneous

VAR specification is given by

ht = Φd{ht−1 − μ} + Φw{ht−1,t−5 − μ} + Φm{ht−1,t−22 − μ} + λt−1 + ηt, (19)

where Φd, Φw and Φm are diagonal matrices.

It is convenient to have acronyms for the various fMSV-DC models: (i) fMSV-DC means

the basic model defined by equations (14)-(16); (ii) fMSV-DC-cAvA stands for the fMSV-DC

model with asymmetric effects on correlation and volatility dynamics, defined by equations (14),

(17) and (18) such that αw = αm = 0 and Dk(L) = Ik; (iii) fMSV-DC-cHvL represents the

fMSV-DC model with heterogeneous-time effects on correlation dynamics and with long-memory

in volatility, defined by equations (14), (17) and (18) such that w = 1, Λ†
t = O and λt = O; (iv)

fMSV-DC-cHvH is the fMSV-DC model with heterogeneous-time effects on correlation and

volatility dynamics, defined by equations (14), (17) and (19) such that w = 1, Λ†
t = O and λt =

O; (v) fMSV-DC-cAHvAL means the fMSV-DC model with asymmetric and heterogeneous-

time effects on correlation dynamics and with asymmetric effects and long-memory in volatility

dynamics, defined by equations (14), (17) and (18); (vi) fMSV-DC-cAHvAH stands for the

fMSV-DC model with asymmetric and heterogeneous-time effects on correlation and volatility

dynamics, defined by equations (14), (17) and (19).

We can estimate the fMSV-DC model (14), (17) and (18) (or (19)) using the likelihood function

based on the Wishart distribution, when Ωt is available. As noted in previous section, we can

estimate long memory parameter dv
i separately. In order to reduce the number of parameters in

estimation, we may estimate the diagonal elements of V̄ by the diagonal elements of the average

of Ω̂t.
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3.2 Wishart Disturbance Models for fMSV

Philipov and Glickman (2006a,b), Golosnoy, Gribisch and Liesenfeld (2012) and Asai and So

(2013) assume that the covariance matrix follows a Wishart distribution (or an inverse Wishart

distribution) with parameters that depend on the past covariance matrix. For the case of Wishart

distribution, we can introduce a disturbance matrix for the covariance matrix of ϕt as

Ωt = H
1/2
t ΞtH

1/2
t , Ξt ∼ W ((1/ν)Ik, ν), (20)

where H t is a k dimensional positive definite matrix, determined by the information up to t−1. By

the property of the Wishart distribution, E(Ξt) = Ik and thus E(Ωt|�t−1,�ϕ
t−1) = H t, where �ϕ

t−1

consists of {(ϕt−1,Ωt−1), (ϕt−2,Ωt−2), . . . }. By definition, we also have Ωt|Ht ∼ W ((1/ν)H t, ν).

Analogous to the BEKK model of Engle and Kroner (1995) and the diagonal MGARCH model

of Ding and Engle (2001), we consider the following two specifications

H t = W + G′Ωt−1G + K ′H t−1K, (21)

H t = (ιι′ − G∗ − K∗) ◦ Ω∗ + G∗ ◦ Ωt−1 + K∗ ◦ H t−1, (22)

where W and Ω∗ are k dimensional positive definite matrices of parameters, G and K are k × k

matrices, ι is a k-vector of ones, and F ∗ and G∗ are k dimensional positive (semi-)definite matrices.

By putting E(Ωt) = E(Ht) in equation (22), we have Ω∗ = E(Ωt), which is the unconditional

expectation of Ωt. The equations (21) and (22) have the same parsimonious specification, which

is obtained by setting G = diag(g), K = diag(k) and W = (ιι′−gg′−kg′)◦Ω∗ in equation (21),

namely,

H t = (ιι′ − gg′ − kk′) ◦ Ω∗ + (gg′) ◦Ωt−1 + (kk′) ◦ H t−1, (23)

where g and k are k-vector of parameters.
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We will work with the Wishart disturbance model (20) and (23) in our analysis. We will

call the model as the ‘conditional autoregressive Wishart fMSV’ (fMSV-CAW) model, following

Golosnoy, Gribisch and Liesenfeld (2012).

The general specification for the fMSV-CAW model is given by equation (20) and

Ht = (ιι′ − gdg
′
d − gwg′

w − gmg′
m − kk′) ◦ Ω∗ + (kk′) ◦ H t−1

+ (gdg
′
d) ◦ Ωt−1 + (gwg′

w) ◦ Ωt−1,t−5 + (gmg′
m) ◦Ωt−1,t−22 + Λ†

t−1 − Λ̄†
, (24)

where Ωt−1,t−5 and Ωt−1,t−22 are weekly and monthly averages defined by (12), Λ†
t is asymmetric

matrix function defined by (9), Ωt−1,t−5, Λ̄† = E(Λ†
t) = Λ† ◦ (Ik + γγ′) and Λ† = λ†λ†′ with

k-vector λ†.

The acronyms for the various fMSV-CAW models is as follows: (i) fMSV-CAW means the

basic fMSV-CAW model, defined by equations (20) and (23); (ii) fMSV-CAW-A means the

fMSV-CAW model with asymmetric effects, defined by equations (20) and (24) such that gw =

gm = 0; (iii) fMSV-CAW-H means the fMSV-CAW model with heterogeneous-time effects,

defined by equations (20) and (24) such that Λ†
t = Λ̄† = O and k = 0; (iv) fMSV-CAW-

AH means the fMSV-CAW model with asymmetric and heterogeneous-time effects, defined by

equations (20) and (24) with k = 0.

When Ωt is available, we can estimate these models by minimizing the log-likelihood function

based on the Wishart distribution.

3.3 Wishart Autoregressive fMSV Models

Gourieroux, Jasiak and Sufana (2009) employed non-central Wishart distribution to define autore-

gressive property of a process of covariance matrices. They defined the model by the conditional
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moment generating function, which is

E[exp(tr{ΥΩt})|Ωt−1] =
exp(tr{GΥ(Ik − 2Ω∗Υ)−1G′Ωt−1})

[det(Ik − 2Ω∗Υ)ν/2
, (25)

where G, W and ν are the same as in equations (20) and (21), and Υ is a k×k symmetric matrix

which satisfies ||W 1/2ΥW 1/2|| < 1. By Proposition 2 of Gourieroux, Jasiak and Sufana (2009),

we can write

Ωt = νW + G′Ωt−1G + N t, (26)

where N t is a heteroskedastic error term with conditional mean zero. The conditional mean of

Ωt in (26) is similar to the specification in (21), but the approach of introducing error term is

different.

As argued in Laurent, Rombouts, and Violante (2012) variance targeting estimation is useful

when forecasting conditional covariance matrices. In this case, we may replace νW with Ω∗ −

G′Ω∗G, where Ω∗ = E(Ωt).

The general specification of the fMSV-WAR model is given by

Ωt = (ιι′ − gdg
′
d − gwg′

w − gmg′
m − kk′) ◦Ω∗ + Λ†

t−1 − Λ̄†

+ (gdg
′
d) ◦ Ωt−1 + (gwg′

w) ◦ Ωt−1,t−5 + (gmg′
m) ◦ Ωt−1,t−22 + Nt, (27)

where parameters are the same as fMSV-CAW models. Note that the fMSV-WAR models has no

past conditional covariance matrix unlike the fMSV-CAW, by construction. The acronyms for the

various fMSV-WAR models is as follows: (i) fMSV-WAR means the basic fMSV-WAR model,

defined by equation (26); (ii) fMSV-WAR-A means the fMSV-WAR model with asymmetric

effects, defined by equation (27) such that gw = gm = 0; (iii) fMSV-WAR-H means the fMSV-

WAR model with heterogeneous-time effects, defined by equation (27) such that Λ†
t = Λ̄† = O;
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(iv) fMSV-WAR-AH means the fMSV-WAR model with asymmetric and heterogeneous-time

effects, defined by equation (27).

Rather than conducting ML estimation via non-central Wishart distribution, Gourieroux,

Jasiak and Sufana (2009) suggest to estimate via method of moments with first two moments. We

will follow the latter approach.

3.4 Matrix-Exponential fMSV Models

Chiu, Leonard and Tsui (1996) suggested to use matrix-exponential transformation in order to

guarantee the positive definiteness of covariance matrix, and Kawakatsu (2006) developed matrix-

exponential GARCH models. Recently, Asai, McAleer and Yu (2006) and Ishihara, Omori and

Asai (2012) proposed matrix-exponential SV models, while Bauer and Vorkink (2011) applied the

matrix-exponential transformation for modeling realized covariances.

For any square matrix X, the matrix-exponential transformation is defined by Exp(X) =

∑∞
i=0(1/i!)Xi with X0 = I. The same result is obtained by working with the spectral decom-

position, as we have Exp(X) by replacing the eigenvalues by their exponential transformation.

Note that Exp(X) is positive definite, whenever X is symmetric. In the same manner, Log(Y )

is defined by its spectral decomposition of a positive definite matrix, Y , with replacement of the

logarithmic transformation of eigenvalues.

Following Ishihara, Omori and Asai (2012), we consider the following matrix-exponential fMSV

(ME-fMSV) model.

Ωt = Exp(Θt), (28)

Θt = M + Ψ1 ◦ {Θt−1 − M} + Et, (29)

where ξt = vech(Et) ∼ N(0,Σξ), Θt are k×k symmetric matrices, M and Ψ1 is the k dimensional
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symmetric matrix of parameters, Et are k dimensional symmetric matrix of disturbance, and Σξ

is the k(k + 1)/2 dimensional positive definite matrix.

The matrix-exponential fMSV model with asymmetry and long-memory is given by equation

(28) and

Ψ(L) ◦ D(L) ◦ {Θt − M} = Λt−1 + Et, (30)

where Ψ(L) = ιι′ − Ψ1L, the asymmetric error matrix Λt is defined by (8), and the matrix of

fractional difference operator D(L) is defined by (11). Instead of long-memory, we can incorporate

heterogeneous-time effect into the fMSV model as,

Θt = M + Ψd ◦ {Θt−1 − M} + Ψw ◦ {Θt−1,t−5 − M} + Ψm ◦ {Θt−1,t−22 − M} + Λt−1 + Et,
(31)

where Ψd, Ψw and Ψm is the k dimensional symmetric matrix of parameters. The acronyms for

the various fMSV-EXP models is as follows: (i) fMSV-EXP means the basic fMSV-EXP model,

defined by equation (29); (ii) fMSV-EXP-A means the fMSV-EXP model with asymmetric

effects, defined by equation (30) such that D(L) = ιι′; (iii) fMSV-EXP-L means the fMSV-EXP

model with long memory, defined by equation (30) such that Λ1 = Λ̄2 = O; (iv) fMSV-EXP-

AL means the fMSV-EXP model with asymmetry and long memory, defined by equation (30);

(v) fMSV-EXP-H means the fMSV-EXP model with heterogeneous-time effects, defined by

equation (31) such that Λ1 = Λ̄2 = O; (vi) fMSV-EXP-AH means the fMSV-EXP model with

asymmetric and heterogeneous-time effects, defined by equation (31).

When Ωt is available, we can calculate Θt = Log(Ωt) in order to conduct the OLS estimation

for each equation. As noted in previous section, we can estimate long memory parameter dij

separately.
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3.5 Cholesky fMSV Models

Chiriac and Voev (2011) applied the Cholesky decomposition for modeling realized covariances.

For the covariance matrix of ϕt, we consider the Cholesky decomposition of Ωt as

Ωt = LtL
′
t, (32)

where Lt are lower triangular matrices. Define at = vech(Lt). Then we can consider VAR model

for at as,

at = μc + Φc{at−1 − μc} + ξt (33)

where μc is the k(k+1)/2 vector of parameters, Φc is the k(k+1)/2 dimensional diagonal matrix,

and ξt is the k(k + 1)/2 vector of error terms.

Analogous to the fMSV-EXP models, we can develop fMSV-CH, fMSV-CH-A,fMSV-CH-

L, fMSV-CH-AL, fMSV-CH-H, and fMSV-CH-AH models. When Ωt is available, we can

calculate at.in order to conduct the OLS estimation for each equation. As noted in previous

section, we can estimate long memory parameter dij separately.

4 Empirical Analysis

4.1 Data and Preliminary Analysis

We examine forecasting performances of five classes of fMSV models using daily realized covariance

matrices for seven stocks traded at the New York Stock Exchange: Alcoa Inc. (AA), American

Express (AXP), Bank of America (BAC), du Pont de Nemours and Company (DD), General

Electric (GE), International Business Machines (IBM), and Coca-Cola Company (KO). Based

on the vector of returns for the m = 7 stocks computed for 1-min interval of trading day at t

between 9:30a.m. and 4:00 p.m., we calculated daily realized volatilities and co-volatilities by
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the averaging approach of Wang and Zou (2010) using 5-min averages with adjustments. Note

that the method of Wang and Zou (2010) is robust to microstructure noise, and we can use the

estimator for estimating factor covariances as proposed by Tao et al. (2011). As suggested by

Bickel and Levina (2008a,b), Johnstone and Lu (2009) and Wang and Zou (2010), we impose some

sparsity structure on the estimator in order to guarantee the consistency. For this purpose these

authors work with threshold which means retaining its elements whose absolute values exceed a

given value and replacing others by zero. For convenience, we find the threshold for co-volatilities

on each day t, so that the estimated covariance matrix is positive definite. We also calculated

the corresponding open-close returns for seven assets. The vector of returns and its covariance

matrix estimator are denoted by yt and Σ̂t, respectively. The sample period starts at February 20,

1997, and ends on October 4, 2012, covering 3900 observations. Table 1 presents the descriptive

statistics of the returns, volatilities and co-volatilities. The empirical distribution of the returns is

heavily skewed to the left and is highly leptokurtic. Regarding volatilities and co-volatilities, they

are skewed to the right except for co-volatilities for (AXP-KO) and (BAC-DD), with evidences

of heavy-tails for all series. It should be noted that extremely large values for volatilities are

observed during the IT bubble in the US.

We will use latter 1500 observations for forecasting analysis later in this section. Figure 1

shows the estimated volatilities for the period of forecasting. Figure 1 indicates that volatilities

are high in the period of turbulence caused by the GFC. Figure 2 presents some of estimated

correlation dynamics. We chose ten series which have stronger correlations than remaining eleven

series. Because of the threshold explained above, correlation coefficients often take zero when

they are close to zero. An interesting feature is that the correlation dynamics of (AA-BAC),

(AXP-BAC), (GE-BAC), (IBM-BAC) fluctuate around zero just after the bankruptcy of Lehman
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Brothers, then they show stronger correlation on average. One year after the bankruptcy of

Lehman Brothers, these four series shows week correlations around zero. On the contrary, other

6 correlation processes show strong connection for the whole period for forecasting.

As a preliminary analysis with former T = 2400 observations, Table 2 gives the contribution

rates of eigenvalues of Ĉ, defined by equation (13). As reported in Sugiyama and Tong (1976)

and Sheena (2013), the estimator of contribution rates are suffered from bias in finite sample,

and hence Table 2 also gives the modified estimator of Sheena (2013). In this case, there are no

major differences in these two estimators of contribution rates. The cumulative percentage of the

eigenvalues up to the first 4 components is 89 percent, while it is 95% for the 5 components. For

this reason, we will employ 4 and 5 factors in our empirical analysis.

We also estimated the news impact surface based on the estimates from the fMSV-CAW-A

model, using the former periods from 1997 to 2006. Figure 3 gives NICs the NIC from yi,t to σ
1/2
j,t+1

for i, j = AA, AXP, BAC, after removing the effects from other assets. For convenience, the news

impact is scaled by the mean of realized volatility for each series. While the NIC from each asset

to its own future volatility shows asymmetric effects, the news impacts for other volatilities are

negligible. Regarding BAC, the positive relation between current return and future volatility

reflects the rapid growth for the years from 2000 to 2006.

4.2 Benchmark Models

For the benchmark models, we employ two kinds of dynamic conditional correlation (DCC) models;

one is the asymmetric DCC (ADCC) model suggested by Cappiello, Engle and Sheppard (2006),

while the other is the fractionally integrated matrix-exponential DCC (FIEDCC) model of Asai

and So (2014). While ADCC model is popular and it captures the asymmetric effects in dynamic

correlations, the FIEDCC model accommodates the long-memory and asymmetry in the dynamic
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correlation process.

We consider the conventional specification of dynamic correlation model as

yt = mt + ut, E(ut|�t−1) = 0, V ar(ut|�t−1) = Σt = V
1/2
t P tV

1/2
t ,

V t = diag(vt), P t = Q∗−1/2
t

Q
t
Q∗−1/2

t
, Q∗

t
= (Ik ◦ Q

t
),

(34)

where mt = E(yt|�t−1) are the conditional mean of yt, vt = (v1t, . . . , vmt)
′ are the vector of

conditional volatilities, and Q
t

are m dimensional positive definite matrices which determine the

process of conditional correlations. We also use the standardization defined by zt = V
−1/2
t (yt −

mt), which produces E(ztz
′
t|�t−1) = P t. We may simply assume that mt = 0.

Our ADCC model is given by equation (34) and

Q
t

= (P̄ − aP̄ − bP̄ − gN̄ ) + a(zt−1z
′
t−1) + g(z−

t−1z
−′
t−1) + bQ

t−1
,

vt = ω + δ ◦ ut−1 ◦ ut−1 + η ◦ vt−1 + ξ ◦ u−
t−1 ◦ u−

t−1,

(35)

where ω, δ, η and ξ are vectors of parameters, a, b and g are scalar parameters, z−
t = (z−1t, . . . , z−mt)

′,

z−it = zitI(zit < 0), I(·) is an indicator function which takes the value of 1 if the argument is true

and 0 otherwise, P̄ = E(ztz
′
t) and N̄ = E(z−

t z−′
t ). We work with the GJR model for the volatility

process due to its status as one of popular asymmetric models in the ARCH family. As proposed

by Cappiello, Engle and Sheppard (2006), we replace P̄ and N̄ by the sample covariance matrices.

The second model is the FIEDCC model given by equation (34) and

(1 − αL)(1 − L)dc
(LogQ

t
− M ) = λ1(zt−1ι

′
m + ιmz′

t−1) + λ2(zt−1z
′
t−1 − P̄ ),

(1 − φ
i
L)(1 − L)dv

i (log vit − κi) = λ1izi,t−1 + λ2i(z2
i,t−1 − 1),

(36)

where dc and dv
i are scalar parameters of fractional difference, α and φ

i
are AR(1) coefficients,

λ1i, λ2i, λ1 and λ2 are scalar parameters for error terms which accommodate asymmetric effects,

M = E(LogQ
t
), κi = E(log vit). As suggested by Asai and So (2014), we specify M = Log(P̄ )

and replace P̄ by the sample covariance matrix.

We employ these two DCC models as the benchmarks for the empirical analysis.
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4.3 Results

We set T = 2400 for estimating alternative forecasting models, focusing on predict horizons of

h = {1, 5, 10} days. We denote the h-step ahead forecast of Σt as Σ̂
f
t+h. We re-estimate every

model fixing sample size as T = 2400, and obtain new forecasts based on updated parameters.

In our forecasting analysis, we use three out-of-sample windows, taking account for the effects of

the Global Financial Crisis (GFC). The first window covers the period from September 8, 2006

to September 12, 2008. The second period starts from the bankruptcy of Lehman Brothers, i.e.

September 15, 2008, and ends on September 24, 2010. The third window covers the period from

September 27, 2010 to October 4, 2012. We will call these three windows as periods ‘before

GFC’ (B-GFC), ‘during GFC’ (D-GFC) and ’after GFC’ (A-GFC), respectively. The size of each

window is 500.

We use Σ̂t+h as a proxy for the unobservable Σt+h, and define forecast error matrix as

Et+h = Σ̂t+h − Σ̂
f
t+h,

where Σ̂
f
t+h is the h-step-ahead forecast of Σt. Following Chiriac and Voev (2011) and Golosnoy,

Gribisch, and Liesenfeld (2012), we compare the seven models’ out-of-sample forecast root-mean-

squared error (RMSE) based on the Frobenius norm of the forecast error, which is defined by

FNh =
1
Th

∑
t

||Et+h|| =
1
Th

∑
t

⎡
⎣∑

i,j

e2
ij,t+h

⎤
⎦

1/2

, (37)

where Th is the number of forecast periods. Especially, T1 = 500, T5 = 496 and T10 = 491.

Table 3 shows the results for forecasting performances. For 5- and 10-step-ahead forecasts,

the statistic is standardized by adjusting by the number of steps to make the results comparable.

Among the benchmark DCC models, the FIEDCC model always performs better than the ADCC

model. However, all the factor MSV models performs better than the FIEDCC model.
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Before examining the results of out-of-sample forecasts, we compare the results of in-sample

forecasts for T = 2400 observations, presented by Table 3. For the 4 factor MSV models, the

DC-cAH-vAL, DC-cAH-vAH, EXP, EX-A, EXP-H and EXP-AH have smaller RMSE than the

other models. Regarding the 5 factor models, the DC-cAH-vAL, DC-cAH-vAH, EXP-L, EX-AL,

EXP-H and EXP-AH perform better than the other models. The WAR type and CAW type

models give relatively larger RMSEs.

Regarding the out-of-sample forecasts, Table 3 implies three general results. First of all, the

results obviously depend on the time periods, ‘before’, ‘during’ and ‘after’ the GFC, rather than

the length of forecasting horizons. Compare to the RMSEs before the GFC, those for the period

during the GFC is about 1.2 times, while those for the period after GFC is less than the half.

The sizes of volatilities in Figure 1 support the results. Secondly, Table 3 indicate that there are

no major differences between 4 and 5 factor models, showing the success of approximating via

factors. Thirdly, accommodating asymmetric effects generally improves the RMSE of 1-day-ahead

forecasts. We may improve the results by introducing asymmetric effects for heterogeneous time

horizons, as in Chen and Ghysels (2010) and Asai (2013).

The best forecasting model depends on the time period and forecasting horizons. However,

the CH-L and CH-AL models have relatively small RMSEs for all cases, supporting the results

of Chiriac and Voev (2011). Although the simple WAR and WAR-A shows the best performance

during the GFC, the CH-L and CH-AL models competitive results. In addition to these models,

the DC-cAH-vAL, EXP-L and EXP-AL models often give the competitive results. We should

note the similarity of the structure of CAW-type and WAR-type models, and differences of the

forecasting performances brought by the differences of estimation procedures. Minimizing the

difference of first moment in WAR-type models has an advantage on the above FNh.
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5 Conclusion

In this paper, we developed an approach for modeling asymmetry and long memory on the factor

MSV (fMSV) model, using its alternative representation. Based on the approach, we extended

DC, CAW, WAR, matrix-exponential MSV and Cholesky MSV model for specifying the covari-

ance matrix of common factors. In forecasting application with seven stocks traded at the New

York Stock Exchange, we show that the new fMSV models performs than the asymmetric DCC

and fractionally-integrated matrix-exponential DCC models. Among the new fMSV models, the

Cholesky fMSV model with long memory and asymmetry is the best model, since it has smallest

RMSEs (or competitive results), and since it is robust to forecasting horizons and the periods

before, during and after the GFC.

Our new factor approach for asymmetric effects and long memory opens to many interesting

research directions. We may include not only daily asymmetric effects but also weekly and monthly

effects, as in Chen and Ghysels (2010) and Asai (2013). We neglected the jumps and the impact

of macroeconomic variables on future volatility and co-volatility. For these issues, we need to wait

further researches on co-jumps and parsimonious specifications for macroeconomic variables.
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Table 1: Descriptive Statistics for the Returns, Realized Volatilities and Co-Volatilities

Stock Mean Min Max Std.Dev. Skew. Kurt.
Returns

AA −0.1290 −70.939 13.737 2.8079 −8.0234 200.61
AXP 0.0270 −107.15 14.458 2.8477 −13.455 511.57
BAC −0.0871 −67.659 20.080 2.9418 −3.3396 82.829
DD −0.0201 −67.922 10.052 2.1055 −8.5250 277.95
GE 0.0145 −71.076 14.125 2.2669 −14.702 453.93
IBM −0.0376 −66.247 11.748 2.0435 −8.6308 283.87
KO 0.0288 −11.158 9.9392 1.4375 −0.0529 8.6970

Volatilities
AA 6.1297 0.0561 3797.4 74.397 41.868 1920.3

AXP 6.4466 0.0610 9624.3 153.43 62.408 3912.4
BAC 5.7171 0.0813 2847.6 47.653 54.040 3206.1
DD 3.7965 0.0118 3101.2 52.793 53.705 3056.3
GE 3.1839 0.0612 2713.5 46.938 51.792 2882.3
IBM 3.4917 0.0857 2680.2 43.241 60.159 3720.5
KO 1.7498 0.0174 605.39 9.9454 56.786 3438.9

Co-volatilities
AA-AXP 1.4739 −59.937 137.88 4.3539 11.621 299.80
AA-BAC 1.0984 −42.190 84.610 3.7854 7.6459 112.70
AA-DD 0.4821 −30.114 26.276 1.2324 0.5513 159.21
AA-GE 0.8989 −3.6298 76.053 2.2981 14.243 350.98
AA-IBM 1.3141 −2.8196 125.46 3.5966 15.833 435.35
AA-KO 0.3413 −11.475 16.942 0.9482 4.9720 82.635

AXP-BAC 1.6783 −14.746 81.759 5.1727 7.6358 81.302
AXP-DD 0.5802 −27.327 59.436 1.7817 11.081 356.76
AXP-GE 1.0623 −11.736 44.476 2.1931 7.5522 99.438
AXP-IBM 1.5056 −34.963 99.649 3.6069 9.8920 193.75
AXP-KO 0.4554 −134.08 19.622 2.5052 −38.759 2114.3
BAC-DD 0.5001 −65.812 19.828 1.7622 −10.627 532.2
BAC-GE 0.8557 −15.578 50.629 2.1967 7.9632 117.02
BAC-IBM 1.3033 −7.1569 96.732 4.4039 10.500 157.94
BAC-KO 0.4435 −7.9434 15.860 1.1695 5.4442 57.057
DD-GE 0.5024 −5.2749 107.63 2.0553 37.012 1878.1
DD-IBM 0.569 −7.0968 21.231 1.3087 5.5390 58.218
DD-KO 0.4330 −7.0070 18.929 1.0510 6.1137 74.406
GE-IBM 1.0140 −9.3817 45.273 1.9967 8.4410 128.99
GE-KO 0.4258 −8.6030 16.380 1.0004 5.6546 62.400
IBM-KO 0.5188 −24.579 18.491 1.2088 2.7633 96.704

Note: The number of observations for each series is 3900.
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Table 2: Estimated Contribution Rates of Eigenvalues of C

Component 1 2 3 4 5 6 7
Estimates 0.6182 0.1440 0.0737 0.0578 0.0550 0.0486 0.0027
Modified Estimates 0.6172 0.1438 0.0737 0.0578 0.0550 0.0486 0.0027
Note: We use the approach of Sheena (2013) to calculate modified estimators of contribution
rates.
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Table 3: RMSE based on the Frobenius Norm of the Forecasting Error

1 day-ahead forecasts 5 day-ahead forecasts 10 day-ahead forecasts
Model In-sample B-GFC D-GFC A-GFC B-GFC D-GFC A-GFC B-GFC D-GFC A-GFC
Benchmark Models
ADCC 4.8929 4.3007 7.6422 1.9062 4.6859 8.1614 1.9238 5.5587 8.8414 1.9448
FIEDCC 3.2042 4.1386 7.0064 1.8731 4.1002 7.0117 1.8130 4.1183 7.0344 1.8407
4 factor MSV models
DC 2.6840 3.7689 4.6917 1.6633 3.8142 4.6945 1.6663 3.8375 5.3801 1.7341
DC-cAvA 2.3775 3.7639 4.6666 1.6883 3.8098 4.7293 1.7175 3.8167 5.3996 1.7179
DC-cHvL 2.3811 3.7885 5.0152 1.6520 3.7927 5.0165 1.6701 3.8534 5.3890 1.6851
DC-
cAHvAL 2.1983 3.7669 4.8222 1.6270 3.7877 4.9981 1.6526 3.8530 5.0022 1.6714
DC-cHvH 2.2003 3.8116 5.5722 1.7002 3.8145 5.5874 1.7005 3.8798 5.6707 1.7211
DC-
cAHvAH 2.1992 3.8125 5.4812 1.6989 3.8127 5.5289 1.7014 3.8769 5.7067 1.7192

CAW 2.9872 3.8961 5.2071 1.6806 4.1996 5.7201 2.3647 4.3954 5.8522 1.8367
CAW-A 2.8897 3.8953 5.1027 1.6814 4.7276 5.3257 2.2683 4.2358 5.8350 1.8182
CAW-H 2.9988 3.9266 6.3134 1.7590 4.4863 5.8106 2.6220 4.7860 5.9327 1.9341
CAW-AH 2.9929 3.9322 5.4074 1.7491 4.7581 5.7743 2.9160 4.8078 5.9797 1.9687

WAR 2.5504 3.9842 4.5689 1.6137 4.0532 4.6287 1.6348 4.0757 4.7149 1.6592
WAR-A 2.5502 3.9846 4.5642 1.6135 4.0532 4.6287 1.6348 4.0757 4.7149 1.6592
WAR-H 2.6141 3.9816 4.7387 1.6233 4.0110 4.7422 1.6461 4.0415 4.7971 1.6721
WAR-AH 2.5872 3.9923 4.6689 1.6190 4.0128 4.7147 1.6402 4.0386 4.7813 1.6651

EXP 2.1941 3.7901 5.0084 1.6602 3.7902 5.0091 1.6729 3.8561 5.1876 1.6766
EXP-A 2.1934 3.7695 4.8280 1.6283 3.7898 4.9905 1.6614 3.8561 4.9973 1.6783
EXP-L 2.3703 3.7524 4.6113 1.6209 3.7849 4.6815 1.6374 3.8170 5.0710 1.6813
EXP-AL 2.3619 3.7517 4.6164 1.6178 3.7837 4.6749 1.6306 3.8153 5.0612 1.6793
EXP-H 2.1948 3.7988 5.3729 1.6896 3.8031 5.3900 1.6897 3.8681 5.4781 1.7092
EXP-AH 2.1939 3.8003 5.2919 1.6882 3.8020 5.3356 1.6909 3.8666 5.4945 1.7073

CH 2.2600 3.7792 5.1872 1.6528 3.7798 5.2019 1.6671 3.8444 5.3421 1.6762
CH-A 2.2600 3.7572 5.0136 1.6175 3.7797 5.1831 1.6539 3.8445 5.1935 1.6685
CH-L 2.2509 3.7346 4.6633 1.5987 3.7357 4.6931 1.6073 3.8031 5.1612 1.6676
CH-AL 2.2511 3.7342 4.6603 1.6008 3.7375 4.6811 1.6110 3.8027 5.1620 1.6693
CH-H 2.2188 3.7745 5.5917 1.6848 3.7824 5.6133 1.6898 3.8465 5.6146 1.6988
CH-AH 2.2187 3.7763 5.5588 1.6851 3.7819 5.5610 1.6910 3.8459 5.6117 1.6993
Note: ‘B-GFC’, ‘D-GFC’ and ‘A-GFC’ stand for ‘Before GFC’, ‘During GFC’ and ‘After GFC’. For 5- and
10-step-ahead forecasts, the statistic is standardized by adjusting by the number of steps to make the results
comparable.
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Table 3: (Cont.) RMSE based on the Frobenius Norm of the Forecasting Error

1 day-ahead forecasts 5 day-ahead forecasts 10 day-ahead forecasts
Model In-sample B-GFC D-GFC A-GFC B-GFC D-GFC A-GFC B-GFC D-GFC A-GFC
5 factor MSV models
DC 2.7771 3.8026 4.7625 1.7066 3.8402 4.7732 1.7164 3.8825 5.5601 1.7618
DC-cAhA 2.3503 3.8421 5.6042 1.7177 3.8645 4.8898 1.7494 4.0052 4.8928 1.7658
DC-cHvL 2.3612 3.8072 5.0369 1.6962 3.8083 5.0616 1.7182 3.8873 5.3640 1.7195
DC-
cAHvAL 2.1398 3.7692 4.7689 1.6571 3.7977 4.9782 1.6874 3.8727 4.9836 1.7101
DC-cHvH 2.1373 3.8318 5.8305 1.7365 3.8467 5.8734 1.7450 3.9266 5.8824 1.7699
DC-
cAHvAH 2.1302 3.8261 5.7057 1.7301 3.8319 5.7299 1.7310 3.9031 5.8989 1.7552

CAW 2.9490 3.8642 5.0261 1.9058 4.8888 5.7741 2.3074 4.1089 6.6824 1.8398
CAW-A 2.8732 3.8570 5.1365 1.9800 4.9455 5.8053 2.3311 4.1978 6.8520 1.8746
CAW-H 2.9997 4.0525 6.0349 1.7682 4.4054 5.9182 2.1278 4.4738 6.9780 1.9182
CAW-AH 2.9477 3.9112 5.8848 1.6662 5.2221 5.9633 2.7807 4.4332 6.6572 1.9439

WAR 2.5489 3.9447 4.5536 1.6042 3.9610 4.6183 1.6248 4.0326 4.7043 1.6488
WAR-A 2.5485 3.9440 4.5532 1.6040 3.9610 4.6183 1.6248 4.0326 4.7043 1.6488
WAR-H 2.6169 3.9431 4.7547 1.6163 3.9516 4.7762 1.6381 4.0106 4.7993 1.6632
WAR-AH 2.6185 3.9436 4.7580 1.6172 3.9519 4.7818 1.6387 4.0111 4.8013 1.6638

EXP 2.3227 3.7363 4.6218 1.6317 3.7829 4.6975 1.6472 3.7990 5.1123 1.6933
EXP-A 2.3120 3.7340 4.6220 1.6288 3.7813 4.6895 1.6419 3.7946 5.0959 1.6916
EXP-L 2.1247 3.7925 4.9899 1.6714 3.7959 5.0278 1.6881 3.8592 5.2902 1.6901
EXP-AL 2.1238 3.7695 4.8031 1.6402 3.7928 4.9795 1.6727 3.8600 5.0198 1.6900
EXP-H 2.1183 3.8017 5.4224 1.7080 3.8046 5.4385 1.7083 3.8683 5.5351 1.7266
EXP-AH 2.1174 3.8036 5.3638 1.7077 3.8038 5.3999 1.7099 3.8675 5.5578 1.7262

CH 2.2674 3.7916 5.1831 1.6827 3.7972 5.2093 1.6963 3.8572 5.4507 1.6999
CH-A 2.2672 3.7645 4.9832 1.6470 3.7916 5.1817 1.6837 3.8575 5.2085 1.6977
CH-L 2.1957 3.6927 4.6856 1.6130 3.7383 4.7124 1.6223 3.7594 5.2709 1.6831
CH-AL 2.1957 3.6921 4.6854 1.6109 3.7369 4.7165 1.6188 3.7583 5.2683 1.6824
CH-H 2.1438 3.7827 5.6585 1.7020 3.7829 5.6718 1.7056 3.8438 5.6985 1.7164
CH-AH 2.1439 3.7820 5.6414 1.7026 3.7844 5.6429 1.7061 3.8430 5.7004 1.7172
Note: ‘B-GFC’, ‘D-GFC’ and ‘A-GFC’ stand for ‘Before GFC’, ‘During GFC’ and ‘After GFC’. For 5- and
10-step-ahead forecasts, the statistic is standardized by adjusting by the number of steps to make the results
comparable.
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Figure 1: Time Series Plots of Realized Volatilities
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Note: The periods covers September 8, 2006 to October 4, 2012, giving 1,500 observations.
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Figure 2: Time Series Plots of Realized Correlations
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Note: The periods covers September 8, 2006 to October 4, 2012, giving 1,500 observations.
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Figure 3: News Impact Curves from Returns to Future Volatilities

-0.2 0 0.2
-10

0

10

y
AA,t

 σ
1/
2
A
A
,t+
1

-0.2 0 0.2
-10

0

10

y
AXP,t

 σ
1/
2
A
A
,t+
1

-0.2 0 0.2
-10

0

10

y
BAC,t

 σ
1/
2
A
A
,t+
1

-0.2 0 0.2
-0.04
-0.02

0
0.02
0.04

y
AA,t

 σ
1/
2
A
X
P
,t+
1

-0.2 0 0.2
-0.04
-0.02

0
0.02
0.04

y
AXP,t

 σ
1/
2
A
X
P
,t+
1

-0.2 0 0.2
-0.04
-0.02

0
0.02
0.04

y
BAC,t

 σ
1/
2
A
X
P
,t+
1

-0.2 0 0.2
-5

0

5

10

y
AA,t

 σ
1/
2
B
A
C
,t+
1

-0.2 0 0.2
-5

0

5

10

y
AXP,t

 σ
1/
2
B
A
C
,t+
1

-0.2 0 0.2
-5

0

5

10

y
BAC,t

 σ
1/
2
B
A
C
,t+
1

Note: Figure shows the news impact curves from yi,t to σ
1/2
j,t+1 (i, j = AA, AXP, BAC).
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