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Abstract 

Is response time predictive of choice? An experimental study of 
threshold strategies* 
 
This paper investigates the usefulness of non-choice data, namely response times, 
as a predictor of threshold behavior in a simple global game experiment. Our re-
sults indicate that the signal associated to the highest or second highest response 
time at the beginning of the experiment are both unbiased estimates of the 
threshold employed by subjects at the end of the experiment. This predictive abil-
ity is lost when we move to the third or higher response times. Moreover, the re-
sponse time predictions are better predictors of observed behavior than the equi-
librium predictions of the game. They are also robust, in the sense that they char-
acterize behavior in an “out-of-treatment” exercise where we use the strategy 
method to elicit thresholds. This paper is the first to point out the predictive pow-
er of response times in a strategic situation. 
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1 Introduction

In recent years there has been a lively debate, inspired by Gul and Pesendorfer (2008), about the
usefulness of non-choice data in economics. The argument is that non-choice data is not relevant
for economics, since it is not equipped to answer the type of questions that we, as economists, are
most concerned with. Rather, they endorse a revealed preference approach where only choice data
is needed. Others have taken exception to this characterization (see Caplin and Schotter, 2008 and
a series of papers by Rubinstein, 2006, 2007, 2008 and 2013, to be discussed later). In this paper
we present a study where not only is non-choice data useful, but actually superior in its ability to
predict behavior to equilibrium theory. More precisely, we use Response Time (RT) data to predict
observed thresholds in a global games experiment.

Global games are binary action games with incomplete information where payo¤s are determined
by a state variable that is not known to agents. Instead, agents observe noisy private signals about
the state variable and payo¤s are determined in such a way that they �nd it optimal to take
one action for realizations of their signal above some critical threshold, and another action for
realizations below it. We de�ne a subject�s RT as the time that expires between when the subject
�rst observes his signal and when he makes his binary choice. We can think of this as a subject�s
contemplation time. Our results suggest that the signals associated with the highest or second
highest RT at the beginning of the experiment are each equivalent and unbiased predictors of
observed thresholds at the end of the experiment. In addition, they out perform the equilibrium
prediction. This property is lost if one moves to the third or higher response times.

This paper is by no means the �rst to use response times in economics.1 For example, starting in
2006 and using a unique web site (http://gametheory.tau.ac.il), where a huge number of responses
can be registered to play any listed game or decision problem, Ariel Rubinstein has been an early
and persuasive advocate of the use of RTs. For example, Rubinstein (2007) suggests that not all
strategic choices are equivalent in the sense that some are �intuitive�and respond to some salient
features of the games being played, some are �cognitive�and require more serious thought, while
others are �reasonless�and appear random. What is interesting is that these di¤erences can be seen
in the RTs of the subjects with more cognitive choices taking more time to decide. In other words,
those choices which by inspection of the game appear to be more sophisticated, when chosen, are
the same choices that are associated with longer decision times.

In Rubinstein (2008) RTs are used to separate subjects into fast and slow types and look to see
how their decisions correlate across di¤erent decision problems. Again, the information provided
by RTs is valuable in understanding the types of decisions makers distributed throughout the
population. Finally, in Rubinstein (2013) RTs are used to evaluate when a mistake has been made
in a particualr decision problem with the signature that mistakes involve lower RTs. Again, these
results present evidence about the decision process that is hard to obtain by only observing choice
data.

Other papers in the economics literature that use RT are Piovesan and Wengstrom (2009),
who �nd a relationship between egoistic choice and RT in a dictator game where higher RTs are
correlated to fairer outcomes, and Wilcox (1993), who measures RT as a proxy for decision cost in
the laboratory to study the relationship between decision cost and incentives in environments with
di¤erent levels of risk.

Our study di¤ers from these papers since we study RT in order to make point predictions of
choices, as opposed to correlating RTs to observed choices. In a similar spirit to our study, Chabris
et al (2009) study the allocation of time in individual decision making to elicit time preferences

1See Spiliopoulos and Ortmann (2014) for a discussion on the usefulnessof RTs in experimental economics.
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and �nd an inverse relationship between average RT and the di¤erence in expected value between
the payo¤s associated to each of the possible choices. They �nd support to the optimization theory
of Gabaix and Laibson (2005) and Gabaix et al (2006) which predicts that agents will allocate
more time to choices between options of similar expected utility than to choices between options of
dissimilar utilities. However, Chabris et al (2009) do not use RTs to make point predictions about
choices.

Another advocate of the use of response times to study choice is Antonio Rangel and those
working in the Rangel Lab at Caltech. In these studies, the focus of RTs is as an output of the
Drift Di¤usion Model (DDM), a model that has a long history in the neuroscience literature (see
Ratcli¤, 1978, and Ratcli¤ and McKoon, 2008). For example, in a recent paper Clithero and Rangel
(2013) compare the predictions of a DDM that combines RT and choice data to the predictions
of a logistic model of individual decision making and �nd support for the DDM approach. This
paper is similar in spirit to our paper, but di¤ers in two main respects. One is that the task in
Clithero and Rangel (2013) is an individual decision task (choosing between two food alternatives),
while our paper studies a strategic environment. Second, Clithero and Rangel (2013) use RTs in
combination with choice data to make predictions of future choices, while we use only observations
related to RT to make our predictions.

In this paper, we show that the signals associated to the highest or second highest RT at the
beginning of the experiment are each unbiased predictors of the observed thresholds at the end of
the experiment. Moreover, we show that using RTs in this way is a better predictor of observed
choices than the theoretical equilibrium. Hence, we reverse the usual way in which RTs have been
studied by viewing them as indicators of internal brain processes that make point predictions about
future choices.

We use our RT results to characterize two types of subjects whom we call Intuitionists (or
Discoverers) and Learners. Intuitionists seem to have an intuition about the use of a threshold
strategy and its value from the beginning of the experiment (maybe after reading the instructions),
but this intuition cannot be explicitly articulated and must be discovered. However, because they
are acting as if their behavior was governed by this unique threshold, these subjects can be expected
to act consistently with it from the �rst round of the experiment on. When they �rst observe a
signal close to their threshold, they spend a longer contemplation time, since thinking about the
signal received makes them aware of their threshold. This elongated RT is the one that best predicts
their eventual threshold.2

On the other hand, Learners act as if they understand the structure of the game, and maybe
even the bene�ts of a threshold strategy, but do not know the appropriate threshold to use. They
learn their threshold through experience in the game and trial and error. As a result, Learners
are more prone to make mistakes in initial rounds, in the sense that in early rounds they violate
the dictates of their eventual future threshold. Once they converge on a threshold, however, their
behavior becomes indistinguishable from that of Intuitionists.

For Learners, their highest or second highest RT is also predictive of their eventual threshold,
however, unlike Intuitionists, they are not discovering what they already knew intuitively, but rather
may actually be performing calculations to determine if their current signal is their best threshold.
In this sense, Learners and Intuitionists might be exhibiting long RT for di¤erent reasons. However,
the choice-based thresholds that these two di¤erent types of subjects exhibit in the second half of
the experiment are indistinguishable from one another. This illustrates the usefulness of RTs to

2To make this more concrete, the elongated contemplation time for what we call Intuitionists is not unlike the
realization experienced when one is asked who directed a movie that one has seen many times, but whose name
simply can�t be recalled. Names suggested are easy to reject since one actually knows the person�s name, and hence
will not make a mistake when hearing the wrong name suggested.
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understand the process of choice.
To support our �ndings, we present an �out-of-treatment�exercise where we analyze the results

of a second experimental treatment where subjects play a global game but we use the strategy
method and explicitly ask subjects to report thresholds to be able to observe their evolution over
time. We �nd support for our characterization of Intuitionists and Learners by classifying 80% of
the subjects in either one of these two groups.

After presenting our results we explore the predictions in terms of RT of three alternative
models for our experiment: the Drift Di¤usion Model of Ratcli¤ (1978) and Ratcli¤ and McKoon
(2008), the Directed Cognition Model of Gabaix and Laibson (2005) and Gabaix et al (2006), and
the predictions in terms of RT that would emerge from the canonical global games model that we
present in section 2. We �nd mixed support for these models.

The paper is structured as follows. In section 2 we present the model of global games used in
the experiment. The experimental design is explained in section 3 and our results are presented in
section 4. We discuss three alternative models in section 5 and section 6 concludes.

2 The global game

As introduced by Carlsson and van Damme (1993), a global game is a coordination game with
incomplete information where payo¤s depend on an unknown parameter �, which we call the state
of the world, and on the actions of other players. Global games have been applied to a variety of
economic situations such as currency crises, investment decisions, or political revolts.3

In this game there are two agents in the economy who have to decide whether to take action
A or action B. Action B is a safe action and yields a payo¤ of zero in all states of the world.
Action A is a risky action and taking this action has a cost of T . The payo¤ from choosing action
A depends on the state of the world, �; and on the actions of the other player. In particular, we
can distinguish three di¤erent regions for the state � that will determine how (and if) the action
of the other player a¤ects individual payo¤s:4

� If � � �, then action B dominates action A, regardless of the action of the other player:

� � � A B
A �T;�T �T; 0
B 0;�T 0; 0

� If � 2 (�; �), we are in the �coordination region�where action A yields a payo¤ of �� T only
if both players coordinate on this action. When only one of the players takes action A, his
payo¤ is �T :

� 2
�
�; �
�

A B
A � � T; � � T �T; 0
B 0;�T 0; 0

3See Morris and Shin (2003) for an overview on global games.
4 In general, � and � are set in such a way that we can di¤erentiate two dominance regions for � (one for � � �

and one for � � �) and an intermediate region (for � 2
�
�; �
�
) which, in the presence of complete information, would

exhibit multiple equilibria. Notice that in this intermediate region the optimality of taking action A heavily depends
on the expectation that agents have about � with respect to T . In order to make the game non-trivial, T is assumed
to be strictly smaller than �.
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� If � � �, action A dominates action B, irrespective of the other player�s action:

� � � > T A B
A � � T; � � T � � T; 0
B 0; � � T 0; 0

In this game, however, players cannot observe the true value of �, instead they receive noisy pri-
vate signals about it. In particular, they know that � is randomly drawn from a normal distribution
with mean �� and standard deviation of ��, i.e.,

� � N
�
��; �

2
�

�
Once � is realized, independent signals are privately drawn for each player according to a normal

distribution with mean � and standard deviation �:

xi � N(�; �2)

Given that players do not observe � directly, once they observe their signal they base their
decision to take action A or B on the expectations about � and about the likely action of the other
player. In particular, once they observe their signal players update their beliefs about � and make
inferences about the probability of � being in either of these three regions. If they believe that �
might be in the intermediate region then players have to form an expectation of the likely action
of the other player, since in this region players need to coordinate in action A in order for action
A to yield a high payo¤.

As �rst proven by Carlsson and van Damme (1993), in these type of games the information
structure leads players to use a monotonic decision rule in which they take action B for low realiza-
tions of their signals, and they take action A for high realizations of their signals. This e¤ectively
means that agents use a threshold strategy such that they take action A if their signal is higher
than a certain cuto¤, x� (�), and they take action B if their signal is lower than x� (�). Formally,
this decision rule can be written as:

a(xi;�) =

�
A if xi � x� (�)
B if xi < x� (�)

The threshold x� (�) is de�ned as the value of the signal for which an agent is indi¤erent between
taking action A or B.5 This means that when an agent observes signal x� (�), the expected payo¤
of taking action A is equal to the expected payo¤ of taking action B, which is zero in this case.
Formally, if we assume that agents use threshold strategies in equilibrium, x� (�) is the unique
solution to the following equation:6

E
�
� j xi; xj � x�; � 2 (�; ��)

�
� Pr(xj � x� j xi; � 2 (�; ��))� Pr

�
� 2 (�; ��)jxi

�
+E

�
� j xi; � 2 [��;1]

�
� Pr(� 2 [��;1]jxi)� T = 0 (1)

5Note that the value of the threshold depends on the precision of the signal, which in the case of a normally
distributed signal is equal to the inverse of its variance. In this case, the precision of the private signals is equal to
��2.

6A unique solution to equation (1) is ensured as long as the private signals are precise enough with respect to the
prior, i.e. when �

��
< K, where �� is the standard deviation of the prior about � and K is a constant that depends

on the parameters of the model. This is a standard condition in the global games literature and it is met for the
parameters used in the experiment (for a detailed discussion about the conditions for uniqueness see Theorem 1 in
Szkup and Trevino, 2014).
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We can see in equation 1 how expected payo¤s depend on the value of � and on the action
of the other player. Recall that action A yields a payo¤ of � � T under two conditions. Either
� � ��, or � 2

�
�; �
�
and the other player also takes action A. The �rst condition is captured by the

second term of equation 1 which simply corresponds to the conditional expectation of � times the
probability of � being in this region. The second condition is captured by the �rst term of equation
1, which corresponds to the expected value of � times the probability of coordinating with the other
player (i.e. the probability that the other agent observes a signal xj � x� (�), which leads him to
takes action A as well), times the probability of being in the intermediate region (�; ��), everything
conditional of the private signal xi. Taking action A always has a cost of T , irrespective of the
value of �, so we subtract it in equation 1. Finally we equate the expected value of taking action A
to zero, which is the payo¤ of taking action B, to �nd the value of the threshold that equalizes the
expected value of both actions. Note that, by de�nition, when an agent observes a signal that has
exactly the same value as the threshold he does not have any strict preference over actions. This
e¤ectively means that for these signals agents are not sure about which action would yield a higher
payo¤ in expectation.

In the RT analysis that follows we do not assume that the threshold used by subjects is the
equilibrium threshold predicted by the theory. Since subjects do not necessarily use the equilibrium
threshold they might have mistaken beliefs that make them indi¤erent between actions. Therefore,
when we talk about high RTs being related to indi¤erence between their binary choices, we do not
necessarily refer to the theoretical equilibrium indi¤erence portrayed in equation 1.

2.1 Parameters used in the experiment

The global games model presented above is governed by a set of parameters� =
�
��; ��; (�; �); T; �

	
.

For the experiment, the parameters chosen are the following:

� = f50; 50; (0; 100); 18; 1g

In particular:

� The fundamental � is randomly drawn from a normal distribution with mean 50 and standard
deviation of 50.

� The coordination region is for values of � 2 (�; ��) = (0; 100).

� The cost of choosing action A is T = 18.

� The standard deviation of the private signals is � = 1.

3 Experimental design

We present the results of an experiment to analyze the role that RT has on predicting choices in
global games. The experiment was conducted at the Center for Experimental Social Science at
New York University during 2011 using the usual computerized recruiting procedures. The data
generated by these experiments is a subset of the much larger data set generated by Szkup and
Trevino (2014), whose emphasis was on the strategic play of the subjects and not on their RTs.
The experiment was programed in z-Tree (Fishbacher, 2007).

All subjects were undergraduate students from New York University. Our experimental design
is closely related to the work of Heinemann et al (2004), who test the predictions of the global
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games model of Morris and Shin (1998) and �nd clear support in the data for the use of threshold
strategies. However, Heinemann et al (2004) do not analyze RTs.

In each session subjects play the game for 50 independent rounds. Our treatments vary accord-
ing to the type of action choice (direct choice vs strategy method). In the treatment with direct
choice of action subjects observe signals and then choose actions (as portrayed by the model in
section 2), while in the strategy method treatment we elicit thresholds in every period before the
subjects observe their signal in order to study the explicit evolution of thresholds over time.

Overall, we present the results of three sessions where we had a total of 58 participants. Table
1 summarizes our experimental design.

Treatment # Sessions # Subjects
Direct action choice (DA) 2 38
Strategy method (SM) 1 20

Table 1: Experimental design

Subjects were randomly matched in pairs at the beginning of each session and stayed with the
same partner for all rounds. Each session lasted approximately 60 minutes and subjects earned on
average $20.

The state � is randomly drawn at the beginning of each round according to a normal distribution
with mean 50 and standard deviation of 50. Once � is drawn, one private signal is independently
drawn for each subject from a normal distribution whose mean corresponds to the chosen value
of � and with a standard deviation of 1. In order to minimize the noise in RT observations, at
the beginning of each round, subjects have to click on a button to observe the signal that was
generated for them, and then they have to choose an action, for the treatments with direct action
choice.7 The time between when the button was clicked to observe a signal and the moment when
the choice was made is our measure of RT. For the strategy method treatment, before observing a
signal, subjects have to report the threshold above which they would be willing to take action A
and below which they would be willing to take action B.

After each round, each subject observed his own private signal, his choice of action, the real-
ization of �, how many people in his pair chose A, whether the outcome was favorable to A, and
his individual payo¤ for the round.

The computer randomly selected �ve of the rounds played and subjects were paid the average
of the payo¤s obtained in those rounds, using the exchange rate of 3 tokens per 1 US dollar.

4 Experimental results

We �rst present the analysis of the treatment with direct action choice to establish the results based
on RT estimations and characterize subjects�behavior. We perform the data analysis by studying
RT in the �rst 25 rounds, when subjects are getting acquainted with the game and deciding on
a strategy, to predict observed thresholds in the last 25 rounds, once subjects have, presumably,
converged to a stable behavior. We use our choice-based results of the last 25 rounds as the objective
choice measures against which we compare our predictions based on RT.

We then move on to the results of the strategy method treatment to evaluate the robustness of
our earlier characterizations by performing some out of treatment estimations.

7Having a subject click on a button gives more certainty in terms of when a subject actually �rst sees the signal,
reducing the noise for cases when they might be day dreaming.
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4.1 Choice based estimations

Just as in Heinemann et al (2004) we �nd that over 90% of our subjects use threshold strategies
during the last 25 rounds of the experiment.8 We say that a subject�s behavior is consistent with
the use of threshold strategies if the subject uses either perfect or almost perfect thresholds. A
perfect threshold is characterized by taking action B for low values of the signal and action A for
high values of the signal, with exactly one switching point. This e¤ectively means that the set
of signals for which a subject takes action A and the set of signals for which he takes action B
are disjoint. This type of behavior is illustrated in panel (a) of Figure 1, which has the signals a
subject receives on the horizontal axis and a binary value (0 for action B, 1 for action A) on the
vertical axis. For almost-perfect thresholds, we allow these two sets to overlap for at most three
observations. This means that subjects take action B for low signal values and action A for high
signal values, but these two sets can intersect for at most three observations. Such behavior is
portrayed in panel (b) of Figure 1 where we �t a logistic function to the observed last-25 round
data of a speci�c subject.

0
1

A
C

TI
O

N

­100 ­50 0 50 100 150
SIGNAL

0
1

A
C

TI
O

N

­100 0 100 200
SIGNAL

(a) Perfect threshold (b) A lmost p erfect threshold

Figure 1: Examples of perfect and almost perfect thresholds

We observe the use of threshold strategies in 94.7% of our subjects in the DA treatment over
the last 25 rounds of the experiment.9 Once we have identi�ed the subjects who use threshold
strategies, we estimate the threshold for each subject by taking the average between the highest
value of the signal for which a subject chooses action B and the lowest value of the signal for
which he chooses action A in the last 25 rounds. This number approximates the value of the signal
for which a subject switches from taking one action to taking the other action, which is how we
de�ne a threshold.10 We �nd a mean estimated threshold of the group to be 26.53 with a standard
deviation of 18.64.11

4.2 Response time estimations

We show in this section that during the �rst 25 rounds of the experiment, if we consider for each
individual the signal for which he has the highest or second highest RT, then, on average, either

8 In fact, most subjects follow threshold strategies since the �rst 25 rounds. However, we analyze behavior in the
last 25 rounds to determine the threshold at which subjects converge, and use the RT observations of the �rst 25
rounds to make predictions of these observed last-25 rounds thresholds.

9 In particular, 78.9% of the subjects exhibit perfect thresholds and 15.8% exhibit almost perfect thresholds.
10For a complete characterization of choice-based measures for thresholds in a global game see Heinemann et al

(2004) and Szkup and Trevino (2014).
11Notice that on average, subjects do not seem to follow the equilibrium threshold predicted by the theory, which

corresponds to 35.31. However, the purpose of this study is not to establish optimality of thresholds with respect to
the theory, but to predict observed thresholds with RT.
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of those signals is an unbiased predictor of the threshold that this subject employs in the last 25
rounds of the experiment. In other words, we use RTs in the �rst 25 rounds to predict the observed
thresholds in the last 25 periods, once behavior has stabilized. We discard the �rst round because
there is in general a lot of noise in the RT data (e.g. subjects are getting acquainted with the
interface).

To make our case, we look at the di¤erence between the signals associated with a subject�s
highest and second highest RT and that subject�s eventual, last-25-round, threshold. If either of
these signals are predictive of last 25-round thresholds, we would expect to see these di¤erences
distributed, perhaps normally, around zero.12 The frequency distribution of these di¤erences, for
the highest, second highest, and third highest RTs, together with their CDFs, are portrayed in
Figure 2 and summary statistics are presented in Table 2. As we can see, neither the mean nor
the median of the distributions of di¤erences between estimated thresholds and signals associated
to the highest and second highest RT are statistically di¤erent from zero. For this reason, we will
refer to the signals associated to the highest or second highest RTs as unbiased estimators of the
observed thresholds in the sample. Moreover, these two distributions are not statistically di¤erent
from each other using a Kolmogorov-Smirnov test (p value of 0.825). However, this is no longer the
case for the signals associated to the third highest RT. Both the mean and median of the di¤erences
between estimated thresholds and the signals associated to the third highest RT are di¤erent from
zero to the 1% level of signi�cance, and the distribution of these di¤erences is statistically di¤erent
from the distribution of di¤erences corresponding to the highest and second highest RT to the 1%
level of signi�cance, using a Kolmogorov-Smirnov test.

12Note that we do not expect to observe these di¤erences to be exactly zero because individual thresholds are
estimated numbers and the probability of getting a signal realization exactly equal to this number in the �rst 25
rounds is very small.
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Figure 2: Histogram and CDF of the di¤erence between individual thresholds and signals associated
to the highest and second highest RT, DA treatment

Mean Median Standard deviation
(H0: x = 0) (H0: x = 0)

Highest RT -4.01 3.17 43.83
p value 0.293 0.388
2nd highest RT -4.19 -1.54 47.78
p value 0.301 0.572
3nd highest RT 20.92** 14.19** 55.67
p value 0.012 0.021

Table 2: Summary statistics of the di¤erence between individual thresholds and signals correspond-
ing to highest and second highest RT, DA treatment

To further investigate how robust our results are with respect to the predictions based on RT,
we look also at the signals corresponding to the fourth highest RT, �fth highest RT, and so on,

9



and the distribution of di¤erences between these signals and the subjects�last 25 round thresholds.
Figure 3 illustrates how the signals associated to the RTs after the �rst or second highest, are
biased predictors of future choices, since the mean di¤erence of the signals associated with these
higher response times and the last-25 rounds estimated thresholds are all signi�cantly di¤erent from
zero.13

The graph in Figure 3 presents the mean of the distribution of di¤erences between estimated
thresholds and signals corresponding to the highest RT, second highest RT, third highest RT, fourth
highest RT, up to the 24th highest RT, in the �rst 25 rounds of the experiment. In the horizontal
axis we have the rank of the RT, starting from the highest at the origin to the 24th highest RT
at the right end of the axis. On the vertical axis we have the mean di¤erence between the signals
corresponding to the nth highest RT and the observed thresholds, across subjects. Two dashed
lines indicate con�dence intervals (mean di¤erences �2 standard errors).

Figure 3: Mean di¤erences between signals associated to RTs and thresholds, DA treatment

As we can see from Figure 3, only the highest and second highest RT are good predictors of
future thresholds since only in those cases the mean di¤erence between the signal corresponding to
each of these RT and the eventual thresholds is not statistically di¤erent from zero. This suggests
that the accuracy of RTs as predictors of observed thresholds drops dramatically when we move
from the second longest to the third longest RT, and so on. Notice as well that the mean RT for
the highest RT observations is 12.98 seconds and it is 8.35 seconds for the second highest RT, while
the remaining RTs quickly decline and eventually converge to 2 seconds. Figure 4 below shows
the mean RT for the highest RT, second highest RT, third highest RT, and so on, with lines for
standard errors. Despite the fact that the mean RT for the third highest RT is close to that of the
second highest RT (6.7 seconds vs 8.35 seconds) , they are di¤erent to the 5% level of signi�cance
(p value of 0.027).

Having established that the signals related to either the highest or the second highest RT
are unbiased predictors of observed thresholds, the next step is to compare this measure based
on RTs to the equilibrium predictions. Table 3 shows the mean and median di¤erence between
the equilibrium prediction (a threshold of 35.31) and the observed thresholds. As we can see,
both the mean and the median di¤erence are statistically di¤erent from zero to the 1% level of
signi�cance. Recall from Table 2 that the signals associated to the highest and second highest RT

13The mean of the distribution of di¤erences is statistically di¤erent from zero to the 1% level of signi�cance for
all cases after the 2nd highest RT, except for the following: for the 3rd, 6th, and 7th highest RT the mean is di¤erent
from zero to the 5% level of signi�cance, and for the 4th highest RT the mean is di¤erent from zero to the 10% level
of signi�cance.
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Figure 4: Mean RTs, DA treatment

are unbiased predictors of future thresholds, since both the mean and the median of the di¤erences
between these signals and observed thresholds are not statistically di¤erent from zero to the 1%
level of signi�cance. Moreover, the mean and median di¤erence between observed thresholds and
equilibrium predictions are statistically di¤erent from the mean and median di¤erences between
observed thresholds and signals associated to the highest and second highest RT.14 Therefore, we
can conclude that, on average, the signals associated to either the highest or the second highest RT
are better predictors of observed thresholds than the theoretical equilibrium prediction.

Mean Median Standard deviation
(H0: x = 0) (H0: x = 0)

Di¤erence wrt equilibrium 8.79*** 13.86*** 18.89
p value 0.004 0.0002

Table 3: Summary statistics of the di¤erence between individual thresholds and equilibrium pre-
dictions, DA treatment

5 Subject types

With these results in hand, we now investigate if our RT estimators can give us more information
about the way in which subjects make their decisions. To aid us in this endeavor, we de�ne the
�Best Predicting Response Time�(BPRT) for each subject by looking at the signals associated with
the highest and second highest RTs (the unbiased predictors of future thresholds), and selecting,
for each individual, the signal that is closest to that subject�s estimated threshold. Hence, for some
subjects the BPRT will be associated to the signal with the highest RT, while for others it might be
the signal with the second highest RT. This selection will facilitate the characterization of subjects
into two di¤erent types.

Before presenting the two di¤erent types of subjects, we look in more detail at the BPRT
observations. If the BPRT is meaningful to subjects, then we would expect their contemplation time
to be di¤erent before and after they exhibit the BPRT. More precisely, we would expect subjects
to spend less time thinking when they receive signals after their BPRT, since experiencing their

14Medians are di¤erent to the 1% level of signi�cance, using a rank sum test. Means are di¤erent to the 5% level
of signi�cance, using a t-test.
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BPRT should make them feel more con�dent about what actions they should attach to each future
signal, and hence they should spend less time thinking. Table 4 contains the mean and median RT
corresponding to the BPRT observations, observations before the BPRT, and observations after
the BPRT. As is shown in this table, the mean and median RTs are lower after subjects have
experienced their BPRT and this di¤erence is signi�cant at the 1% level. More precisely, note
that when subjects receive the signal associated to their BPRT, they spend, on average, 10.10
seconds thinking about it, while for signals received before their BPRT they spend 3.97 seconds,
and after the BPRT they spend only 2.88 seconds, on average. Therefore, we interpret the high
contemplation time of the BPRT as re�ecting the fact that, given the signal observed, it is not
obvious what action to take, thus they need to think harder.

Mean Median St. dev.
RT exactly at BPRT 10.10 8.17 5.96
RT from t 2

�
2; tBPRTi

�
3.97 2.95 3.08

RT from t > tBPRTi 2.88 2.49 1.64

Table 4: Summary statistics of distributions of RT before, after, and at BPRT, DA treatment

The results presented so far give us an indication that subjects behave di¤erently pre and post
BPRT, which implies that their extended thinking at the BPRT imparts some knowledge. Our
presumption is that at this point they gain some certainty about the value of their threshold and
thus know what their behavior rule should be, so that after this discovery their RT is less sensitive
to the signal they observe.

We now make use of the BPRT to characterize the reasoning that leads subjects to think longer
at their BPRT by distinguishing between two di¤erent types of people which we call Intuitionists
and Learners. We describe Intuitionists as subjects who act consistently with having an intuition
about their threshold from the beginning of the experiment. These subjects act as if they know
what their threshold should be, but maybe they can�t fully articulate it. Once they observe a signal
close enough to their eventual threshold, however, they act as if they realize that this is indeed
the value that they had in mind but were unable to articulate. On the other hand, Learners are
subjects who might understand what threshold behavior is, but who must learn from experience
what their personal threshold should be.15

This distinction between Intuitionists and Learners should be observable in the RT data since.16

While Intuitionists can be expected to ignore signals far from their implicit threshold and think
hard when they observe a signal close to it for the �rst time, Learners may receive a signal close to
their eventual threshold and ignore it, since they are learning about what their threshold should
be and may not recognize a signal close to it when it �rst arrives.

We use this observational di¤erence to categorize our subjects. We classify a subject as an
Intuitionist if the �rst time he observes a signal close to his eventual threshold, that signal becomes
his BPRT, while a Learner may experience several such signals in early periods and some signals
even closer to his eventual threshold without those signals becoming his BPRT. The idea here

15Since Intuitionists settle on the use of a threshold strategy faster than those subjects we categorize as Learners,
one might be tempted to classify our subjects as �fast� and �slow� learners. This would be misleading, however,
since those subjects we call Intuitionists are not really learning how to play the game during the di¤erent rounds of
the experiment. Instead, they seem to discover early on what their strategy should be.
16Our use of term Intuitionist di¤ers from Rubinstein�s (2007) since for Rubinstein intuitionists tend to have lower

response times to a given problem while in our paper there is no particular di¤erence between the �rst or second
longest response times for Intuitionists and Learners. What we �nd is that Intuitionists discover their threshold in
earlier rounds than learners, but this is not the same as response times.
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is simple. Say that an Intuitionist, with an implicit threshold of 25, observes a signal of -4 or
+89. Since those signals are far away from the Intuitionist�s implicit threshold, he pays them scant
attention. Now say he gets a signal of 22. Since this is very close to his threshold, it captures his
attention and he spends a considerably longer time responding. Say this observation becomes the
Intuitionist�s BPRT. For Intuitionists we should not expect to see another signal received earlier
which was actually closer to the subject�s threshold before his BPRT. This would not be the case
for Learners, however, since there may have been previous signals even closer to their threshold
before exhibiting their BPRT that they did not respond to. In other words, because of learning,
Learners may not recognize their eventual threshold when it �rst appears.

In summary, we classify subjects as Intuitionists if they do not observe a signal closer to their
threshold before they observe the signal associated to their BPRT, and we classify them as Learners
if they observe at least one signal closer to their eventual threshold before they exhibit their BPRT.

This distinction between Intuitionists and Learners should manifest itself in the individual
behavior of our subjects and the data they generate. More precisely, we expect certain di¤erences
in the behavior of subjects we classify as Learners and Intuitionists. First, because Learners �nd
the value of their threshold with experience while Intuitionists implicitly know it, we would expect
Intuitionists to experience their BPRT in earlier periods than Learners (Learners need more time
to learn, given identical signal distributions). Second, by a similar argument (i.e. that Learners
have to learn what their threshold is while, implicitly, Intuitionists know it from the outset), we
would expect that Intuitionists would behave in a manner consistent with their ultimate last 25
round thresholds from the very beginning of the experiment. In other words, since, by de�nition,
Intuitionists have a better understanding about what their threshold is while Learners need to learn
it, if we estimate two di¤erent thresholds for each Intuitionist and Learner, one for the �rst and one
for the last 25 periods, and then calculated the di¤erence between these estimated thresholds, we
would expect to see a much smaller di¤erence between these estimated thresholds for Intuitionists
than for Learners. This would imply that the thresholds of Intuitionists are more stable over time
than the thresholds of Learners.

We now explore each of these di¤erences between Intuitionists and Learners in detail.
Figure 5 illustrates the �rst point, which plots, for each group, the distribution of periods cor-

responding to the BPRT, and Table 5, which presents the mean and median of these distributions.
Just as we expected, on average Intuitionists realize their BPRT in earlier periods than Learners.
In particular, Table 5 indicates that while the average Intuitionist experienced his BPRT around
period 7, it took Learners on average until period 15 to do so. The medians exhibit an even stronger
di¤erence with half of the Intuitionist experiencing their BPRT by period 3 or 4, while half of the
Learners took until period 16 to do so. Both the means and the medians are statistically di¤erent
at the 1% level. Finally, as we see in Figure 5 the two distributions of BPRTs appear considerably
di¤erent with the Intuitionists distribution exhibiting far more of a right skew and a mass on lower
periods. In particular, these two distributions are statistically di¤erent to the 1% level using a
Kolmogorov-Smirnov test.

Mean Median St. dev.
Learners 14.89 16 5.32
Intuitionists 7.44 3.5 6.5

Table 5: Summary statistics of BPRT periods, by group

Because Intuitionists are expected to behave according to their eventual last-25 round thresholds
from the beginning of the experiment, while Learners are not, we might expect the thresholds used
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Figure 5: Distribution of BPRT periods, by group, DA treatment

by Intuitionists to be relatively stable across the �rst and last 25 rounds, while the thresholds
used by Learners may change due to learning. Hence, if we were to compare individual thresholds
estimated in the �rst 25 rounds to the thresholds estimated in the last 25 rounds then, as mentioned
above, the thresholds of Intuitionists should be more stable across the �rst and last 25 rounds than
the thresholds of Learners. In Figure 6 we plot, for each subject, the di¤erences (in absolute value)
between their own estimated threshold in the last 25 rounds and the threshold we estimate for them
in the �rst 25 rounds. Each bar corresponds to one subject, black bars correspond to Intuitionists
and grey bars to Learners. Within each group the bars are displayed in ascending order of the
absolute value di¤erence. Table 6 reports, for each group, the mean di¤erence of �rst and last
25-round thresholds (in absolute value) and the standard deviation of the distribution of these
di¤erences. We can observe smaller variations between thresholds, on average, for Intuitionists.
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Figure 6: Di¤erences of individual thresholds (in absolute value) from �rst 25 and last 25 rounds,
by group and in ascending order, DA treatment

Mean Median St. dev.
Learners 17.95 10.83 17.71
Intuitionists 7.76 4.07 8.07

Table 6: Summary statistics of di¤erences in individual thresholds from �rst 25 and last 25 rounds,
by group, DA treatment

As is clear from Figure 6, there is far less variability in the individual estimated thresholds
of Intuitionists than there is among Learners. For example, the mean di¤erence between �rst-25
and last-25 round thresholds (in absolute value) for Learners is 17.95, while for Intuitionists it is
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only 7.76, and these means are di¤erent to the 5% level using a t-test. A Wilcoxon test rejects the
hypothesis that the sample of threshold di¤erences in absolute value came from the same population
at the 5% level. Moreover, the variances of these two distributions are di¤erent to the 1% level.
This clearly implies that Intuitionists seem to have a clearer sense of what their threshold is in the
earlier rounds of the experiment when compared to Learners, thus exhibiting more stable thresholds
over time.

It is important to note, however, that in the last 25 rounds the subject behavior across types is
indistinguishable from one another, since they all use thresholds and the mean estimated thresholds
for each group are not statistically di¤erent from each other. However, by studying RTs in the �rst
rounds of the experiment we are able to distinguish how the di¤erent types of subjects come to
realize their thresholds. Table 9 in the appendix presents summary statistics about their observed
threshold behavior in the last 25 rounds.

5.1 Out-of-treatment predictions

In this section of the paper we ask �rst a hypothetical question which we then answer using data
from our SM treatment. The question is simple: If we performed a treatment where, instead of
giving subjects a signal and then asking them to choose an action, we asked them before each period
to state a threshold or cuto¤ level for realized signals above which A would be chosen but below
which B would be chosen, would we be able, from observing their reported thresholds, to classify
subjects as Learners and Intuitionists? In other words, we are asking if we can observe Intuitionist
and Learner behavior in an out-of-treatment exercise. To answer this question we make use of
the data from our SM treatment, where subjects play the same game as before but where, instead
of observing signals and choosing actions directly, we use the strategy method to ask subjects to
report their threshold.

If our characterization of types is correct, then we should observe a group of subjects who
report very stable thresholds from the initial rounds of the experiment, which would correspond to
Intuitionists and another group, the Learners, whose period to period thresholds should exhibit far
more variability in early rounds due to experimentation, and then stabilize. Our results indicate
that by looking at the evolution of reported thresholds throughout the 50 rounds of the experiment
we can categorize 80% of the subjects in this treatment in either of these groups. To perform
this characterization we look at subjects who show some stability in reported thresholds in the
last 25 rounds, to ensure convergence of behavior, and measure the standard deviation of their
individual reported thresholds in the �rst 25 rounds. The data gives us a very straight forward
distinction between the subjects that we can potentially categorize as Learners and Intuitionists,
in the sense that there is a group of subjects that exhibit low individual standard deviations of
reported thresholds in the �rst 25 rounds (0 to 4.26) and a group of subjects with very large
standard deviations (9.95 to 25.54). To give a better idea for how Intuitionists and Learners di¤er,
consider Figure 7 which o¤ers an example of the evolution of reported thresholds for one subject
categorized as Intuitionist (left panel) and one as Learner (right panel). Figures 8 and 9 in the
appendix plots these graphs for all subjects categorized in either of these groups.

As we can see, the panel on the left o¤ers a perfect picture of what our archetypal Intuitionist
should look like in the SM Treatment. Previously we characterized Intuitionists as subjects who
have a good idea of what their threshold should be but cannot explicitly verbalize it. In the
DA treatment, subjects observe signals and implicitly set a threshold, whereas in this treatment
(SM) they are forced to report it. This implies a di¤erent psychological process when establishing
an action rule, which forces Intuitionists to explicitly verbalize their threshold. In line with our
original description, Intuitionists act consistently with their threshold from the beginning of the
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Figure 7: Examples of evolution of thresholds in SM treatment, by group

experiment. Learners, on the other hand, are de�ned as subjects who are not quite sure what
the right threshold should be and thus experiment in the initial rounds (see right panel in Figure
7). For the SM treatment this would imply that Learners set many di¤erent thresholds in the
initial periods, and then converge to a threshold. To support this claim, in Table 7 we present
summary statistics for the individual period-to-period changes in reported thresholds in the �rst
25 rounds, by groups, and we �nd that the mean period-to-period change in reported thresholds
for Intuitionists is 0.80, while for Learners it is 12.30, with standard deviations of 2.51 and 16.36,
respectively. Means, medians, and standard deviations are signi�cantly di¤erent at the 1% level.
As a result, it seems clear that for one group of subjects (whom we label as Intuitionists) there is
very little variability in the thresholds they set in early rounds while in another (whom we label
Learners) there is quite a bit of variation. This is in line with our categorization of subjects into
these two groups.

Mean Median St. dev. N
Learners 12.30 6 16.36 7
Intuitionists 0.80 0 2.51 9

Table 7: Summary statistics of di¤erences in individual reported thresholds in the �rst 25 rounds
in the SM treatment, by group

Consistent with our previous results in the DA treatment, as we can see from Figures 8 and 9
in the appendix, if we only looked at the last 25 rounds, both groups of subjects exhibit very stable
thresholds, making them indistinguishable.

6 Discussion: Alternative Models

In this section we present three alternative models that could potentially make predictions for our
data by relating high RTs to choices between two alternatives that have similar valuations to the
decision maker. We investigate the predictions of these three models for our experiment and �nd
some, but limited, support for them for the aggregate data (pooled across subjects), and mixed
evidence for individual behavior, which is what we aim at understanding. More precisely, we will
demonstrate that each of the models we describe below makes an identical qualitative prediction,
which is that RTs should be decreasing in the distance between the signal that a subject receives
and his threshold. Put di¤erently, individual RTs should be a concave function of the signals
received by a subject, with a maximum for signals that coincide with the observed threshold. It is
this prediction at the individual level that fails in our data.

The �rst model is the Drift Di¤usion Model (DDM; Ratcli¤, 1978, Ratcli¤ and McKoon, 2008),
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which is a widely used model in psychology and neuroscience that studies the way in which the brain
compares values to make binary choices. One of the key outputs of this model is the RT of subjects
in these tasks. This model assumes that decisions are made by a noisy process that accumulates
information over time from a starting point toward one of the two responses (or boundaries), and
a response is chosen once one of these boundaries is reached [16]. The rate of accumulation of the
information is assumed to be determined by the quality of information extracted by a stimulus.
Ratcli¤ and McKoon (2008), for example, use a motion discrimination task where the stimulus is
composed by a set of dots in a circle and, in each round, a proportion of the dots moves coherently
either to the left or to the right, and the rest of the dots move in a random direction. The task for
subjects is to decide in which direction the coherent dots move. When varying the proportion of
dots that move coherently, they �nd that higher RTs are associated to higher levels of di¢ culty (i.e.
low coherence) and to an almost equal probability of choosing the right and the wrong direction.
On the other hand, when a high proportion of the dots move coherently, subjects make the right
choice more often and they exhibit lower RTs. What this e¤ectively means is that higher RTs arise
as decisions become harder for subjects because they cannot clearly assess what is the right choice,
given the information presented to them. So for Ratcli¤ and McKoon (2008) a stimulus that is
more coherent is one that gives subjects a better idea of what choice to make.

Mapping the DDM to our experiment is not as straight forward a task as one might think,
since there are some di¤erences between our experiment and the typical DDM experiment. One
clear di¤erence is that the DDM studies individual decision making, while our experiment involves
strategic interaction. Another important di¤erence is that in a typical DDM experiment subjects
are faced with an environment where each trial in the experiment is independent from the last, so
there is no carry over between trials. This is true in the original Ratcli¤ (1978) experiments as well
as the more recent papers emanating from the Rangel lab (e.g. Milosavljevic et al, 2010, Krajbich
and Rangel, 2011, Clithero and Rangel, 2013), where choices are made in a value-choice context.
In our experiment, quite the opposite is true, since we present subjects with a learning task (they
need to learn the best threshold to use), which involves arriving at the right set of expectations
about the true state, but also about their opponent and his strategy. Information from previous
trials is essential in this task and hence the trials are not independent from one another. A valid
application of the DDM model to our context would therefore need to be a dynamic model where,
based on previous experience, a subject updates the starting value of the DDM process. Such a
model is beyond the scope of this paper. Finally, another important di¤erence between our study
and DDM studies is that we use RT to study individual learning processes, i.e. we study how each
subject learns to set a threshold as he moves across rounds receiving di¤erent signals. In DDM
experiments RT observations are typically aggregated across subjects, so the results re�ect the
aggregate behavior of the sample used in these experiments and not the individual process that
leads each subject to behave in a certain way.

However, the DDM can, in a limited way, be used to think about the task facing subjects that
we describe as Intuitionists. Consistent with our view of Intuitionists, the DDM can predict RTs
in situations where, for example, subjects have to assess whether a certain number is higher than a
�xed reference number (the Intuitionists�implicit threshold). According to the model for memory
retrieval (Ratcli¤, 1978), subjects might have a hard time remembering a reference number, and
if they receive a stimulus in the form of another number and have to decide whether this stimulus
is higher than the reference number, the DDM predicts higher RTs for numbers that are closer to
the reference number, since they require subjects to make a higher e¤ort when assessing its value
with respect to the reference (i.e. for very high or very low numbers it is �easier� to decide that
they are higher or lower than the reference number). In our context, we think of Intuitionists as
subjects who hold a threshold in their head which they try to retrieve once they are presented with
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a signal in a given round. Using the DDM language, a more coherent signal could be an extreme
value, either very high or very low, and very far from the subject�s threshold, which should imply
an easy choice for subjects and hence a low RT. Likewise, a less coherent signal would be one for
which subjects cannot easily assess which action to take (in our case, because it is close to their
eventual threshold), and this would be associated to a higher RT.

Bearing this in mind, the DDM would predict that subjects in our experiment should exhibit
longer RTs as they receive signals closer to their personal thresholds and that RTs should decrease
as signals get further away from their personal thresholds. In this sense, we should expect the
relationship between signals and RTs to be concave with a maximum at the observed threshold for
each subject.

A similar prediction arises from the model of Gabaix and Laibson (2005) and Gabaix et al (2006),
that is tested in the experiment of Chabris et al (2009). These papers propose an optimization
theory called the Directed Cognition Model (DCM), which is based on dynamic programming and
assumes that agents have limited cognitive resources. When time is a scarce resource, the DCM
predicts that agents will allocate more decision time to choices between options of similar expected
utility than to choices between options of dissimilar utilities. Just as the DDM, the DCM would
predict, in the context of our paper, an inverse relationship between RT and the distance between
signals and thresholds.

It is important to point out, however, that the DDM and DCM are designed to analyze individual
decision problems, and not games.

The third model that we present here is an interpretation, in terms of RT, of the canonical
global games model, as presented in Section 2. From Equation 1 note that, by de�nition, when
an agent observes a signal that has exactly the same value as the threshold, he does not have any
strict preference over actions. This e¤ectively means that for these signals agents are not sure about
which action would yield a higher expected payo¤. Interpreting this condition in terms of RT, a
subject should exhibit a higher RT when confronted with signals that are closer to the threshold
that he will eventually choose than when observing signals that are far from this threshold. This
model, as the other two theories, would predict a concave RT function for each subject, with a
maximum at the threshold chosen by them.

Each of the models described above predicts that our RT data should be consistent with two
stylized facts. First, we should �nd a negative and signi�cant relationship between RT and the dis-
tance between signals and future individual thresholds (Stylized Fact 1). We explore this prediction
by performing a random e¤ects OLS regression for the data, pooled across subjects, that has RT as
the dependent variable and, as the independent variable, the di¤erence (in absolute value) between
the signal associated to each RT and the individual threshold that each subject converges to in
the last 25 rounds. Second, since the RT function is predicted to be concave, we should be able
to �t, for each subject separately, a concave function where on the horizontal axis we would have
the value of the signal observed (positive or negative), and on the vertical axis the RT associated
to that signal. In addition, we would expect that the maximum of this concave function should
correspond to the threshold that each subject converges to in the last 25 rounds (Stylized Fact 2).

Bearing our caveats in mind about the applicability of the DCM and DDM models to our data,
we test the predictions of Stylized Facts 1 and 2 above. In the DDM and the DCM models these
stylized facts should describe behavior in all rounds of the experiment, while in our analysis, once
the BPRT is reached, a subject should stop contemplating each signal and simply choose A or B,
depending upon whether it is above or below the threshold they have discovered. This is expected
to be true whether the subject is classi�ed as a Learner or an Intuitionist. In either case, the
choice is expected to be made quickly and independently of the signal since, after the BPRT, the
threshold is known and no more thinking is needed. Hence, if we �nd that there is a negative
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relationship between RT and the distance between signals and thresholds only holds for periods up
to the BPRT and not beyond, then this would only show partial evidence for the DDM and DCM
and be consistent with our RT observations.

In order to investigate whether Stylized Fact 1 is true or not, we run a series of OLS random
e¤ects regressions, reported in Table 8. In Speci�cation 1 we have RT as the dependent variable and
the di¤erence (in absolute value) between the signal and the threshold as the independent variable.
We observe a negative and signi�cant relationship between these two variables, just as hypothesized
by the DDM and DCM. In Speci�cation 2 we add a variable for the round in which each decision
takes place because we know that, on average, RTs decrease as we move across rounds, and �nd
that the previously established relationship still holds, which again supports the DDM and DCM
models.

The results in Speci�cations 1 and 2 support Stylized Fact 1 (signi�cance for the variable j signal
- threshold j), and thus for the predictions of the DDM and DCM. Note that these regressions are
run on data generated by all of our subjects, i.e., both Learners and Intuitionists. The fact that we
get signi�cant results, therefore, is notable since we do not necessarily posit that the relationship will
hold for Learners. To separate our conjecture from the DDM and the DCM we run Speci�cations
3 and 4 where we include two more independent variables. One is a dummy that takes the value
of 1 for periods up to the BPRT (D(BPRT) in the table), and zero for the remaining periods, and
the other variable is an interacted term that multiplies this dummy to the absolute value di¤erence
between the observed signal and the individual threshold. When we introduce this control for the
periods before and after the BPRT, we �nd that the in�uence of the signal (or its distance from
the threshold) is signi�cant only for the periods up to the one corresponding to the BPRT, but not
after, which supports of our conjectured behavior. In other words, subjects seem to exhibit periods
of active consideration only up to their BPRT period, where they behave as if they discovered their
optimal threshold and not beyond. Therefore, we �nd only partial evidence for the DDM and DCM
predictions, and we �nd that our RT observations are meaningful in terms of these predictions.

1 2 3 4
j signal - threshold j -0.011*** -0.006*** -0.004 -0.005

(0.003) (0.002) (0.004) (0.004)
j signal - threshold j�D(BPRT) -0.015*** -0.016***

(0.006) (0.006)
D(BPRT) 2.399*** 1.801***

(0.349) (0.387)
Period -0.078*** -0.064***

(0.005) (0.018)
Constant 4.366*** 5.733*** 3.364*** 4.517***

(0.21) (0.21) (0.259) (0.42)
Clustered (by sub ject) standard errors in parentheses

* sign i�cant at 10% ; ** sign i�cant at 5% ; *** sign i�cant at 1%

Table 8: RT as a function of the distance between signals observed and individual thresholds

Stylized Fact 2 posits that, when we disaggregate the data, the graph of RTs for each individual
will be concave in their signal, with a maximum at their last-25-round observed threshold. To
explore this prediction, we present Figure 10 in the appendix, where we plot the graphs for each
subject (be they a Learner of Intuitionist) �tting a quadratic function between signals and RTs.
Due to the regression results presented in Table 8, since the hypothesized relationship between RT
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and the distance between signals and thresholds is signi�cant only until the period corresponding
to the BPRT, we take, for each subject, the observations up to the BPRT period in the plots shown
in Figure 10. Each plot has on the horizontal axis the value of the signal (positive or negative) and
on the vertical axis the RT associated to each signal. Dots correspond to individual observations
and the vertical line illustrates the value of the threshold estimated for each subject in the last 25
rounds. From this �gure, note that when we disaggregate the data and look at individual behavior,
it is not that clear whether or not we see an overall concave relationship between RT and distance
between signals and thresholds, across subjects. Even though we might see this type of relationship
for a small proportion of subjects, we cannot generalize this observation. This again fails to support
the DDM and DCM predictions.

To take a further step in investigating this prediction, in Figure 11 in the appendix we show
these plots only for Intuitionist subjects, since, as explained above, their behavior should be more
consistent with the predictions of the DDM. Looking at these plots, notice that, even if there is a
higher proportion of subjects that exhibit what looks like a concave relationship between signals
and RTs, we still cannot fully con�rm the predictions of these alternative theories in our data.

7 Conclusion

In this paper we have attempted to gain insights into the thought process of subjects engaged in
global games using the response times of their decisions. Quite remarkably, we have found that by
looking at the highest or second highest response time exhibited by subjects in the early rounds of
the experiment we can predict fairly accurately the eventual threshold they use in future rounds.
In other words, we �nd that the signals associated to the highest or second highest RT are unbiased
predictors of future choices. This result is rather striking since response times are used not only as
a way to gain qualitative insights into how di¤erent choices are represented in the decision making
process, but rather as a tool to predict future choices. We know of few papers that attempt to do
this.

In addition, we have presented evidence that these high response times represent di¤erent
thought processes for di¤erent types of subjects. Based on the best predictor among the two
highest response times, we classify subjects as Intuitionists and Learners and di¤erentiate their
behavior in the initial rounds of the experiment. However, if one were to only look at choice data
these two groups would be indistinguishable in terms of the thresholds they eventually set. In this
sense, studying response times gives us an additional insight into the thought process that leads to
setting a strategy in a global game.

We have also presented evidence in support of our distinction between Intuitionists and Learners
by running a treatment where subjects must choose a threshold before observing their private signal
using the strategy method. We observe behavior consistent with these two di¤erent groups in this
new treatment, which illustrates that our categorization of subjects into types might be meaningful.

Finally, we look at the predictions of alternative models of cognition in the context of our paper
and �nd mixed evidence about their predictions when analyzing behavior at the individual level.

In short, our paper provides an interesting insight into the usefulness of response times in the
explanation of choice in global games.
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8 Appendix

Learners Intuitionists
N 18 18
Mean threshold 27.14 25.91
Median threshold 22.39 15.08
Standard dev. 22.51 21.02

Table 9: Summary statistics of estimated thresholds in the last 25 rounds, by groups, DH treatment
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Figure 8: Evolution of reported thresholds for intuitionists, SM treatment
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Figure 9: Evolution of reported thresholds for learners, SM treatment
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Figure 10: Quadratic �t of RT as a function of the signal value, by subject, DA treatment

24



­5
0

5
10

15
co

ns
id

er
at

io
n

­50 0 50 100 150

­2
0

2
4

6
8

co
ns

id
er

at
io

n

­50 0 50 100 150

0
5

10
15

co
ns

id
er

at
io

n

­50 0 50 100 150

0
5

10
15

20
co

ns
id

er
at

io
n

­50 0 50 100 150

2
4

6
8

10
co

ns
id

er
at

io
n

­50 0 50 100 150

0
5

10
15

co
ns

id
er

at
io

n

­50 0 50 100 150

0
5

10
15

20
co

ns
id

er
at

io
n

­50 0 50 100 150

0
5

10
15

co
ns

id
er

at
io

n

­50 0 50 100 150

0
5

10
15

co
ns

id
er

at
io

n

­50 0 50 100 150

0
10

20
30

40
50

co
ns

id
er

at
io

n

­50 0 50 100 150

0
5

10
15

co
ns

id
er

at
io

n

­50 0 50 100 150

0
5

10
15

20
co

ns
id

er
at

io
n

­50 0 50 100 150

0
5

10
15

20
co

ns
id

er
at

io
n

­50 0 50 100 150

2
3

4
5

6
7

co
ns

id
er

at
io

n

­50 0 50 100 150

1
2

3
4

5
6

co
ns

id
er

at
io

n

­50 0 50 100 150

0
10

20
30

40
co

ns
id

er
at

io
n

­50 0 50 100 150

0
10

20
30

40
co

ns
id

er
at

io
n

­50 0 50 100 150

Figure 11: Quadratic �t of RT as a function of the signal value for Intuitionists, by subject, DA
treatment
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