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1. Introduction 

Wage heterogeneity is an intrinsic feature of the labour market that cannot be exclusively 

related to worker characteristics such as education, race, gender and labour market experience, 

among others. Until recently, all observational data on the labour market have been comprised 

of individual surveys, household surveys or population censuses, making it impossible to link 

firms’ characteristics to any specific worker. Recently, the advent of linked employer-employee 

panel datasets has made it possible to investigate the role of firms in individual wage variation 

and to account for the role of unobservables. The development of suitable econometric methods 

that take advantage of these new data structures was initiated in the seminal paper of Abowd et 

al. (1999, 2002), who presented an iterative algorithm leading to the exact solution for the least 

squares estimation of the model with two high-dimensional fixed effects. New approaches to the 

estimation of wage equations with two high-dimensional fixed effects can also be found in the 

studies by Andrews et al. (2008, 2012), Corneliseen, (2008) and Torres et al. (2012). What none 

of these previous methods takes into account, however, is that in many instances, wages are 

censored because most of these new longitudinal databases come from administrative earnings 

reports1. The wage information provided by a typical administrative register is based on the 

employer’s social security contributions, which are often top- or bottom-coded for employees 

whose wages are above or below certain limits, respectively2. Thus, it is not possible to observe 

the true wages of these employees. In this context, if the censored wage is used as the dependent 

variable, the ordinary least squares method yields inconsistent estimates. In particular, a typical 

concern raised by these studies is the correlation between individual and firm time-invariant 

effects. However, given the way in which these time-invariant firm and individual effects are 

computed, this correlation will most likely be misreported when wages are censored. Although 

several methods have been developed in the relevant literature to address censoring problems3, 

none of them has been used to estimate models with two high-dimensional fixed effects. 
 

In this paper, we propose an estimation method that enables the estimation of models with high- 

dimensional fixed effects after controlling for censoring. This new estimator is an easily 

implementable least squares estimation method that is based on an iterative algorithm with 

intuitive theoretical properties and good large sample properties as shown in a Monte Carlo 

                                                 
1 Examples of this type of data include the Declarations Annuelles de Salaires (DAS) for France, the Longitudinal 
Working Life Sample (Muestra Continua de Vidas Laborales) for Spain, Quadros de Pessoal for Portugal, Austrian 
Social Security Data (ASSD) and the Beschaftigtenstatistik for Germany. 
2 This contribution limit is defined by the government and is renewed every year. 
3 The most popular censored estimator is the standard Tobit regression model (Tobin, 1956). An alternative that is 
attributable to Powell (1986) is known as “Trimmed least squares” and is based on censoring the dependent variable 
in such a way as to restore the symmetry of its distribution. Some other papers in the literature treat the censoring 
difficulty as a missing data problem using multiple imputation techniques developed by Rubin (1996).  
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study. We refer to this estimation procedure as Fill-in Iterated Least Squares (FILS). This 

censoring adjustment procedure has two main advantages. Firstly, it is much faster and easier to 

implement than Tobit. Secondly, and more importantly, it is able to provide an answer even in 

complex settings when no strategy is available, such as censoring models with high-dimensional 

fixed effects. In the estimation of these models, Tobit may be unfeasible due to the large scale 

of the problem. 
 

This paper also contributes to the empirical literature on wage dispersion by providing the first 

decomposition of wages for Spain that is fully adjusted for censoring and takes into account 

both firm and individual effects. For this purpose, we apply our FILS estimator. Given these 

consistent estimates, we can further investigate the importance of firms in explaining wage 

differences across individuals in the Spanish economy. We use actual matched employer-

employee data from the Spanish Longitudinal Working Live Sample (LWLS) in which wages 

are censored. The period under analysis runs from 1996 to 2012, and we focus on a sample of 

full-time workers.  

Our findings show that the analysis of wage determination can be misleading when wages are 

censored. Firstly, some parameter estimates associated with job qualifications or educational 

attainment levels are notably biased. Secondly, the role of firm wage policies in wage dispersion 

is overestimated by more than ten percentage points, while the role of time-invariant individual 

characteristics is underestimated by fifteen percentage points. Hence, controlling for censored 

wages appears to reinforce the idea that when explaining individual wage dispersion, what 

workers “are” is more important than what workers “do”.  Thirdly, it turns out that our 

adjustment for censored wages raises the coefficient of correlation between individual and firm 

time-invariant effects from -9% to -1.2% in a context where top- and bottom-coded wages 

represent only approximately 19% and 3% of the observations, respectively. 
 

The rest of the paper is organised as follows. The next section describes the method proposed 

for a simple econometric model in a wage equation context. Under this scenario, Section 3 

summarises the theoretical properties of the algorithm. The Monte Carlo results of the 

simulation exercises are presented in Section 4. Section 5 extends the method to a panel data 

context in which both worker- and firm-fixed effects may be present. An illustration using real 

Spanish data are presented in Section 6. The final section concludes with a summary of our 

findings. 
 
 

2. The algorithm: Fill-in iterated least squares 

 
We begin by considering the following econometric model, 
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   iiy                                                                  (1)                               

where 
iy  is the log wage of individual i, i = 1,…, N and i  is the stochastic error term, which 

follows a normal distribution ) ,0(~ 2 Ni . The simplicity of this model enables the 

derivation of easily interpretable analytical expressions. The set of parameters to be estimated 

is denoted by  , which is the  12  vector )´ ,(  . Generally, wages could be top- and 

bottom-coded, which means that 
iy  is the latent variable, but instead, iy  is observed. Denote 

with Tc
 and Bc  top- and bottom-coding, respectively. Then,  
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Unlike Tobit, FILS constitutes an alternative way of estimating ̂  consistently where the 

underlying idea is very simple and intuitive. Ideally, if we could observe the true wage, we 

would merely use the conventional OLS regression of the true wage onto a constant. 

Unfortunately, the observed wage is censored, which implies the inconsistency of the OLS 

estimator if iy  is used as the dependent variable. The proposed algorithm works as follows. 

First, we need to construct an initial simulated wage )0(~
iy that works well as a proxy for the 
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way: it must be equal to the observed wage whenever the true wage is observed and will be 

filled by random numbers from a truncated normal distribution whenever the observed wage 

is equal to the coding. An OLS regression is run in which the simulated dependent variable 

and the estimators are saved. This is performed iteratively as a sequence of least squares 

regressions until the estimators converge to the true values of the parameters. In each iteration 

k, the estimated parameters change, as does the simulated wage distribution, which converges 

further towards the true wage distribution as the iterations proceed. 
  

We now formalise the approach. We require an initial vector of the estimated parameters 
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As shown in the next section, we could have followed any other criterion for establishing the 

starting values because it makes no difference in terms of convergence. A crucial assumption 

when deriving the algorithm is the normality of the errors, which allows us to use the properties 

of the truncated normal distribution. To make this point clear, equation (1) can be written 

alternatively as follows, ii uy    where 1) ,0(~ Nui . Given iy , )0(̂ and a vector of 

uniform random numbers Ui (which varies at each iteration), we can start the iterative process. 

The three possible ranges for the observed wage are taken into account when constructing the 

simulated wage, )0(~
iy : 
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where    is the cdf of a standard normal distribution. 

  

(b) If TiB cyc   we observe the true values, and therefore,  iii yyy )0(~  
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Once )0(~
iy  has been constructed, a new set of parameters )´ˆ ,ˆ(ˆ )1()1()1(   can be estimated 

using the simulated wage as the dependent variable. If )0()1( ˆˆ   , then the iteration can be 

stopped. If not, we simulate )1(~
iy  given )1(̂ and U, estimate )2(̂ and compare )2(̂ with )1(̂ . 

The stopping rule for convergence is to iterate until )1()( ˆˆ  kk  , where k is the number of 

iterations. 
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The consistency of FILS is guaranteed, as shown in the next section. Note also that FILS is 

easier to implement than Tobit because it requires only a series of least squares estimations. As 

shown below, in practice, this algorithm can result in enormous savings in computing time. 

 

3. Properties of FILS 
 

In this section, we discuss the theoretical properties of FILS. We start with the numerical 

convergence of the algorithm, after which we establish the moment conditions, provide the 

proof of consistency, and derive a robust formula for the standard errors. For the sake of 

analytical simplicity, the simple econometric model from the previous section is used for the 

particular case in which we have only right censoring, denoted by c. The properties derived 

also apply to the general case of both-side coding and to more general models. 

 
3.1. Numerical convergence 
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Denote by S the number of simulations of the algorithm undertaken. Starting with the estimator 

of the intercept and taking the average across simulations, we can write,  

 

 







  

  



cyi

S

s

ks
i

kk

cyi
i

N

i

S

s

ks
i

k

ii

uyS
SN

y
SN , 1

),()()(

,1 1

),()1( ˆˆ
1~1

ˆ   

                                  
 











cyi

S

s

ks
i

kk

cyi
i

ii

u
SNN

N
y

N , 1

),()()(1

,

11
ˆˆ

1   

 

                                                 
4 The analogy principle for choosing an estimator is to turn the population object into its sample counterpart. See 
Goldberger (1968) for a detailed theoretical description. 
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where N1 =  cyi i , # , 
N

N1  is the relative frequency of censored observations and ),( ks
iu  

follows a standard normal distribution with a truncation point 
)(

)(

ˆ

ˆ
k

kc


 . When the number of 

observations tends to infinity, by the law of large numbers,  

 

 








 
  


 )(

)(
)()(

1

),(

ˆ

ˆ
|

1
lim

k

k
k

i
k

iS

S

s

ks
i

c
uuEu

S
p




 

 

To find this limiting distribution, we need to derive 






 


)(

)(
)()(

ˆ

ˆ
|

k

k
k

i
k

i

c
uuE




. To that end, the 

following fact regarding the normal distribution is needed: if 1) ,0(~ Nz , then for any 

constant h,    
   h
h

h
hzzE 





1

| , where )(  is the probability density function of 

the standard normal distribution, )( is the cumulative distribution function and )( is the 

inverse Mill’s ratio. Applying this property to our particular case, 








 









 









 








 


)(

)(

)(

)(

)(

)(

)(

)(
)()(

ˆ

ˆ

ˆ

ˆ
1

ˆ

ˆ

ˆ

ˆ
|

k

k

k

k

k

k

k

k
k

i
k

i

c

c

c

c
uuE













 

Finally, substituting into the equation for )1(ˆ k yields, 
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Following the same argument as before, when the number of simulations tends to infinity, by 

the law of large numbers,  
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Given the aforementioned information, a final expression for )1(2ˆ k  is obtained,  
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Now, take the expressions already derived for )1(ˆ k and )1(2ˆ k together to obtain the 

bivariate function   GG kk )()( ˆ,ˆ   
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As a simple test for determining whether the algorithm is likely to converge, note that it will 

converge if the above mapping is a contraction5. As stated by the contraction-mapping theorem, 

if the function determining a given iteration is contractive, then there exists a fixed point. A 

sufficient condition for the function to be contractive can be stated as follows: if the eigenvalues 

of the Jacobian of G are less than one in absolute value for all )(ˆ k and )(ˆ k , then it follows that 

G is a contraction map and a fixed point therefore exists. The Jacobian is computed next.  

 

                                                 
5 A contraction f defined in a metric space (M, d) as an operator such that   Myxyxdyfxfd  ,  ),,()(),(  
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This transformation is especially appealing if the starting values are located in a part of the 

parameter space for which the function using the traditional parameterisation is convex6. The 

simulation results reported in the next section confirm that the parameterised function is 

contractive because convergence occurs most of the time.  

 
3.2. Consistency 
 

 
The system of two GMM conditions can be easily derived when the number of iterations tends 

to infinity 
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and taking limits when N tends to infinity    
N

p ˆlim  where, 

 
         AcyPycyE iii  1  
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





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
c

A  and  z1  is the indicator of event z happening.  

We have a just-identified system: two moment conditions and two parameters to estimate.  
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The Identification Assumption reads as follows,  

 
  
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0,; iyE
 

 

                                                 
6This same parameterisation can also be used to show that for the Tobit model, there is a unique 
maximum to the likelihood function for given values. 
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FILS provides consistent estimates of the parameters. This follows from the previous 

identification assumption and from taking   as known7. The proof is given in the Appendix. 

 
3.3. Standard errors 

 
From the moment conditions of the just-identified system described above and applying 

standard GMM theory, the asymptotic variance-covariance matrix of the estimator can be easily 

obtained. Let  'ˆ,ˆ    be the consistent estimator of the true parameter values   and let,  
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To obtain the whole expression for  , we construct the matrix: 
 

                                                 
7 A sufficient condition for consistency is the numerical convergence of the algorithm, which is already 
discussed. Thus, given convergence, the identification assumption might not be needed. 
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It can be shown that the FILS method’s standard errors are actually larger than those of Tobit, 

which are simply computed as the inverse of the Hessian of the log-likelihood function. The 

next section compares the two sets of standard errors through a simulation exercise from a 

non- analytical perspective. 

 
4. Simulation experiment 

 

Having established the limiting behaviour of the FILS estimator, it is useful to proceed by 

considering the degree to which these large sample results apply to finite sample sizes. First, 

in an attempt to validate the convergence of the algorithm to the true values of the parameters, 

we run an experiment using the model from the previous sections. The sample size is set to N 

= 1000. A range for both ̂  and c is established, in particular,  10 ,10ˆ  ,  5 ,01.0ˆ   

and  10 ,10c . Our experience confirms that the algorithm converges overwhelmingly. We 

test for this in two ways. First, we check that given a certain population, the algorithm 

converges to the same fixed value irrespective of the initial conditions. Second, the Jacobian is 

computed numerically for all possible combinations of ̂  and c in the ranges already defined, 

and the corresponding eigenvalues are calculated for each of those possible combinations.  

Figure 1 depicts the eigenvalues of the Jacobian where each point corresponds to a different 

combination of ̂ , ̂  and c. If the application is contractive, both eigenvalues should be lower 

than one in terms of absolute value. This happens for 99.93% of the combinations. There is a 

very small region in which one of the eigenvalues appears to be greater than another in terms of 

absolute value. It coincides with a combination of the parameters such that̂ , ̂  and c are all 

very close to zero. 
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[Insert Figure 1] 

The second objective of the experiment is to compute the magnitude of bias caused by FILS̂  in 

the estimation of   and to determine the efficiency of FILS̂  compared to Tobit̂ . To that end, we 

carry out a Monte Carlo simulation. We choose a population distribution that depends on the 

bidimensional vector )´ ,(    and use different assumptions for sample size, N and the 

degree of censoring c. We set the values of )´2 ,1( . We next draw a random sample of size 

N from this distribution and generate the artificial *
iy . Finally, we establish different values for c 

to generate the truncated variable iy . 

We compute the estimate of   by FILS using the first random sample and the counterpart 

estimated by a Tobit regression. These first estimators are saved. Then, a new random sample is 

drawn and another pair of estimates of   is computed. The process is repeated for several 

simulations, say S. Let )(ˆ s
FILS  and )(ˆ s

Tobit  be the estimates of   of FILS and Tobit, respectively, 

which are based on the sth simulation. Given that  Sss
Tobit

s
FILS  ..., 2, ,1:ˆ ,ˆ )()(  , we can compute 

the sample mean and sample variance over Monte Carlo simulations to estimate  ̂E  and 

 ̂Var , respectively.  

Table 1 reports the results for different sample sizes and degrees of censoring. For this 

experiment, 1000 simulations were run. 

[Insert Table 1] 

Several conclusions can be drawn from the above table. The bias of the estimation provided by 

FILS is not significantly greater than that provided by Tobit. The convergence of the algorithm 

appears to be quite fast, and the estimation improves with the size of the sample. Another 

unsurprising feature of the results is the loss in efficiency of FILS relative to Tobit, as reflected 

in the higher standard errors of the former. Of course, as the proportion of censoring decreases, 

so does the efficiency loss; in fact, in the limit where the level of censoring tends to zero, the 

relative efficiency tends to one, as both estimators reduce to the classic least squares estimators. 

To provide visual evidence of the asymptotic normality of the FILS estimator, Figure 2 plots the 

kernel density estimates for the distributions of FILS̂  and FILS̂  for the first design and N = 

5000. 

[Insert Figure 2] 
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Finally, we use the "sandwich" formula derived in the previous section to find how well the 

Monte Carlo standard deviations of FILS̂  approximate the computed asymptotic standard errors. 

Table 2 reports both sets of standard errors for different censoring levels and N = 5000.  

[Insert Table 2] 

As can be observed in the table, the lower the level of censoring, the better the standard errors of 

FILS across Monte Carlo simulations approximate the asymptotic standard errors.   

 

5. Applications to panel data models 
 

By using the simple econometric model from previous sections, we have been able to compare 

the estimation results implied by FILS and Tobit, but in more general settings, Tobit can be 

computationally complex or worse still, unfeasible, such as in wage equations with fixed effects 

when the individual unit of interest is too large. This largeness of scale requires the inclusion of 

a large set of dummies in the Tobit regression, which could make the estimation unfeasible. The 

approach proposed here for estimating censored models can be generalised in a number of ways. 

In this section, we present two applications where the feasibility of the algorithm is guaranteed, 

even when Tobit might be impossible to implement. 

 
5.1. Model with worker-fixed effects only 
 

In studies of wage determination, it is well known that not only the observed characteristics of 

workers but also their time-invariant unobserved heterogeneity are crucial to explaining 

individual wages. Thus, consider the following panel data model: 
 

ititiit xy   '            (2) 

 

where 
ity  is the log wage of individual i  in period t , itx  is a vector of K time-varying 

exogenous covariates regarding the characteristics of individual i, i  is the unobserved worker 

effect and it  is the stochastic error term, which is assumed to be normally distributed8, 

 2 ,0~ σNit . True wages are right-censored, so the observed wage is ity  where  itit yy  if  

cyit 
  and cyit   elsewhere. Equation (2) can be rewritten in matrix notation,  

 

  XDy              (3) 

                                                 
8 The use and properties of the algorithm could be extended to errors that are not normally distributed.  
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where y  is the  1NT  vector of wages, D is the  NNT   matrix of indicators for 

individual Ni ,....,1 , X is the  KNT   matrix of observable time-varying characteristics 

and   is the vector of error components, which is assumed to be  NTIN 2 ,0~   where NTI  

is the identity matrix of size  NTNT  . The parameters of equation (3) to be estimated are: 

 , the  1N   vector of individual effects;  , the  1K  vector of the coefficient on time-

varying personal characteristics; and finally, the error variance 2 . 

We next list the steps followed to generate the data based on the model described by equation 

(3), show how FILS is applied in this context and finally describe how the Monte Carlo 

simulation study was carried out. 

 
1. Data-generating process 

 
Step 1 (a). Constructing balanced panel data9: Draw a sample of N = 1000 individuals. These 

are observed at the baseline for T = 10 periods. (A second design will increase the number of 

periods to T = 20). 

Step 2 (a). Constructing the true wage, 
ity : Each component of equation (2) needs to be 

created. 

i :   The  1N vector of worker-fixed effects is set to be a vector of 

uniformrandom numbers over the interval [0, 2] with a subsequent mean of 1 

and variance of 1/3.  
 
itx : We create a single time-varying regressor (K = 1) to represent an individual’s 

age. At 1t , the initial age is represented as a  1N vector of uniform 

random integers over [18,55]. At 2t , a vector of ones is added to the initial 

age, and so on up to Tt  . The coefficient of the regressor, , interpreted as 

returns to age, is set to 0.02. 

it : A  1NT  vector of normally distributed random numbers is drawn with mean 

0 and standard deviation 2 . 
 

                                                 
9 By “balanced panel data” we refer to a sample in which consecutive observations of individual units are 
available and the number of time periods is identical from unit to unit. The simulation exercise could be 
easily extended to account for unbalanced panels. 
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Step 3 (a). Constructing the censored wage, ity : Setting a value c for the top such that 25% of 

the observations are censored.   

 
2. Application of FILS 

 
Step 1 (a). Estimation strategy for each iteration: There is a debate in the literature regarding 

whether i  should be treated as a fixed effect or a random effect. In particular, it will be a 

random effect when it is treated as a random variable and a fixed effect when it is treated as a 

parameter to be estimated for each observation i, which means that arbitrary correlation between 

i  and itx  is allowed10. In our estimation strategy, i  is treated as a fixed effect because age is 

likely to be correlated with the unobserved components taken to represent skills. 

Step 2 (a). Initial set of estimators: We run a fixed-effect regression of y  on age to obtain 

 )0()0( ˆ,ˆ FEFE  . Using the least squares first-order conditions, i̂  can be shown to be 

)0()0( ˆ ˆ FEiii xy   , and therefore, )0(ˆFE  is the  1N vector of )0(ˆ i for i =1,…, N. We obtain 

the initial  12N  vector  ')0()0()'0()0( ˆ,ˆ,ˆˆ
FEFEFEFE   . 

 

Step 3 (a). Simulation of the wage )0(~y : Given 
)0(ˆ

FE  and a vector of uniform random numbers, 

we simulate )0(~y , which will be the new dependent variable to be used in the iterative process. 

Once again, a fixed-effects regression of )0(~y is run  on age and the worker-fixed effects are 

recovered as before. This gives the new set of estimated parameters  ')1()1()'1()1( ˆ,ˆ,ˆˆ
FEFEFEFE   . 

 

Step 4 (a). Checking convergence: Compare 
)1(ˆ

FE  and 
)0(ˆ

FE . If they are close enough, stop 

iterating. If not, go back to step 3.  

 
3. Monte Carlo simulation:  

 
We repeat the process already described for S = 100 number of simulations. At each simulation, 

we save the FILS vector of estimators, which is equal to 
)(ˆ k

FE , where k is the number of 

iterations it took for the algorithm to converge. For the sake of comparability, Tobit estimators 

                                                 
10 A fixed-effects analysis has a drawback if time-constant explanatory variables are to be included 
because there is no way to disentangle the effects of such time-invariant observables from the unobserved 
heterogeneity, which is also constant over time. 
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are also implemented and saved in each simulation. Finally, the mean and the standard deviation 

of both the FILS and Tobit estimators across Monte Carlo simulations are computed. The results 

are shown in Table 3 for the baseline case of T = 10 and for the alternative design with T = 20.  
 

[Insert Table 3] 

A very interesting feature can be observed in the table. The gains made by FILS relative to 

Tobit in terms of computing time are striking. A look at the benchmark case (T = 10) reveals 

that it takes nearly one minute for FILS to carry out the Monte Carlo simulation, while Tobit 

takes over six hours. This is because the implementation of Tobit requires the inclusion of the N 

= 1000 individual dummies in the regression. It can also be observed that the loss of efficiency 

of FILS relative to Tobit is still present. However, the biases in the estimation of   and   of 

using FILS are smaller relative to Tobit. 

 
At this point, a question of crucial importance arises: Are the worker-fixed effects estimated 

accurately? There is an important difference between i̂  and  FEFE  ˆ,ˆ : It is known that 

 FEFE  ˆ,ˆ  are consistent with fixed T as N tends to infinity, but this is not the case for i̂ . 

Unfortunately, when the time series dimension T is smaller than the cross-sectional dimension 

N, those estimates can be severely biased. This is the so-called incidental parameter problem. 

The evidence in Table 3 (throughout the first row) reflects this phenomenon: notice that the 

larger the value of T, the more accurate the estimation of the mean of i̂  across cross-sectional 

units. 

 

5.2. Model with worker-and firm-fixed effects  

A good understanding of wage determination requires an in-depth examination not only of the 

characteristics of the workers but also of the particular features of the firms that employ them. It 

has been argued that unobserved heterogeneity at both the worker and firm level plays a crucial 

role in determining wages. In close consideration of this literature, we consider a panel data 

model, 
 

itittijiit xy   '),(                    (4) 

 
where 

ity ,  itx , i  and it  are defined as in the model given by equation (2), and the new 

term ),( tij  is the unobserved firm effect for a firm employing worker i at time t. Equation (4) 

can be written in matrix notation,  
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  XFDy              (5) 

 
where y , D, X and   are the same matrices defined by equation (3) and F is the  JNT   

matrix of indicators for the firm effect for a firm employing worker i at time t. The parameters 

of equation (5) to be estimated are  , the  1NT  vector of individual effects;  , the  1J  

vector of firm effects;  , the  1K  vector of the coefficient on the time-varying personal 

characteristics; and the error variance 2 . 

 
Remarks on Identification: An essential question at this point is whether the parameters of the 

model are identified or not. The between-firm mobility of workers is crucial for the 

identification of the statistical model; otherwise, it is not possible to identify the fixed effects 

i  and ),( tij  separately. This means that ),( tij  must vary over time for some cross-sectional 

units, that is, there may be people who never change firms, but there must be a fraction of 

movers in the sample of workers. 

Remarks on Estimation: The usual computational methods for the least squares estimation of 

the parameter vector  '',','   are not feasible because the normal equations for least squares 

estimations are very large when the model includes more than one level of fixed effects. To 

solve this problem, AKM (1999, 2002) obtain the least squares solution by means of a within-

groups regression of equation (4) including dummies for the employer firms. Unfortunately, the 

computational complexity of the estimation prevents censoring problems from being properly 

addressed because this methodology does not work in the presence of such problems, as 

discussed above.  

Two different simulation experiments are presented next to show that the use of the algorithm 

developed in this paper provides a solution to the censoring problem even when faced with 

complex models such as the one presented here. In the first experiment, the parameters are 

arbitrarily set, whereas the second uses a more sophisticated calibration procedure. 

  

5.2.1. Experiment 1: Arbitrary values for the parameters  

In this experiment, the values of the parameters are set arbitrarily. Because the model described 

by equation (5) differs from the one described by equation (3) only in the inclusion of the new 

term F , we only need to add a few comments to the description provided earlier of the steps 

involved in generating the data, applying FILS in this context, and running the Monte Carlo 

simulation. Furthermore, in this setting, it is also important to discuss how workers should be 

assigned to firms when simulating the data. 
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1. Data-generating process 

Step 1 (b). In addition to step 1 (a), here we need to construct the sample of firms: in particular, 

a sample of J = 20 firms is drawn.  

Step 2 (b). Constructing the true wage, 
ity : In addition to the terms created in step 2 (a), it is 

necessary to create the new term ),( tij . 

 

),( tij : The  1J  vector of firm-fixed effects is set to be a vector of uniform random 

numbers over the interval [0, 2] with a mean of 1 and variance of 1/3 – similar 

to the vector of worker-fixed effects. Note that the value for the fixed effect of 

a particular firm j is time-invariant and identical for all workers employed by 

that firm. 
 

Step 3 (b). Constructing the censored wage, ity : Setting a value c for the top, such that 25% of 

the observations are censored, as performed previously.   

 
2. How are workers assigned to firms?  
 

We assume that the correlation between worker and firm effects is high and positive. This 

matching is created as follows: at time t = 1, workers with high  s are assigned to firms with 

high  s and vice versa. From period t = 2 onwards, this process is subject to an assignment 

noise  2,0~ Nvit  and hence, the assignment variable is iti v  instead of i . It is 

important to note that the variance of itv  uniquely determines the mobility index. An easy way 

to understand this point is to imagine the extreme case in which 0 ; because there is no 

noise in the assignment process and both  s and  s are time-invariant, an individual starts 

working for a given firm and stays with that firm forever. Hence, 0  is associated with zero 

mobility and no identification can be made of the two fixed effects separately. Different values 

for   are considered. Benchmark: 1.0 . 

 
3. Application of FILS 
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Step 1 (b). Estimation strategy for each iteration: We follow the methodology of Abowd et al. 

(1999) (henceforth, AKM) to estimate this type of model, which is to run a within-groups 

regression of equation (4) including dummies for the employer firms11.  
 

Step 2 (b). Initial set of estimators: We perform a within-groups regression of y  onto age and 

the firm dummies, and we obtain  )'0(
),(

)0()0( ˆ,ˆ,ˆ AKMtijAKMAKM  . i̂  can be shown to be 

)0(
),(

)0( ˆ ˆˆ AKMiAKMtijii xy   . This results in the initial  12 JN  vector of estimated 

parameters,  ')'0(
),(

)0()0()'0()0( ˆ,ˆ,ˆ,ˆˆ
AKMtijAKMAKMAKMAKM   . 

 

Step 3 (b). Simulation of the wage )0(~y : Given 
)0(ˆ

AKM  and a vector of uniform random 

numbers, we obtain a simulation of )0(~y , which is the new dependent variable to be used in the 

iterative process. Once again, we run a within-groups regression of )0(~y onto age including the 

firm dummies and recover the worker-fixed effects as before. Thus, we obtain 

 ')'1(
),(

)1()1()'1()1( ˆ,ˆ,ˆ,ˆˆ
AKMtijAKMAKMAKMAKM    

 

Step 4 (b). Checking convergence: Compare 
)1(ˆ

AKM  and 
)0(ˆ

AKM . If they are close enough, stop 

iterating. If not, go back to step 3.  

Monte Carlo simulation: We use S = 100 simulation replications.  
 

Table 4 reports the mean and standard deviation of both the FILS and Tobit estimators across 

Monte Carlo simulations for the two different values of T.  
 

[Insert Table 4] 

One main conclusion can be extracted: Regardless of which estimation method is chosen, the 

fixed effects estimates are more biased and less accurate than ̂  and ̂ . The cause of this is not 

intrinsically related to our algorithm but rather to the incidental parameter phenomenon already 

mentioned and to the degree of mobility present in the sample. 

The benchmark results presented in Table 4 use 1.0 , which implies a mobility index of 

approximately 50%, where this index is defined as the total percentage of worker mobility 

across firms over the whole time interval. Alternative results using different values for   are 

presented in Table 1.A in the Appendix. There is an important conclusion to be drawn from 

                                                 
11 A multicollinearity problem arises when the firm dummies are included in the regressions. To overcome this 
technical difficulty, we perturb the firm dummies by adding to each one a uniform random number with variance 
0.0001. 



20 
 

these comparative statistics: the lower the value of  , and hence the less mobility there is in the 

sample, the less accurate the fixed effects estimates will be, as seen by the increase in the 

standard deviation from 1.0  to 025.0 . The reason is simple: as mobility decreases, the 

more difficult it becomes to separate worker effects from firm effects. 

A curious finding regarding computing time can be observed in Table 4. Although the 

differences between FILS and Tobit are still striking, the reason why the Tobit takes so much 

longer is obviously is due to the inclusion of worker-specific dummies (see Table 3), of which 

there are 1000, versus only 20 firm dummies. Lastly, the estimated correlation between i̂  

and ),(
ˆ

tij is affected by a strong downward bias, which rapidly diminishes as T increases. 

In relation to this evidence, we also find it important to analyse how FILS behaves 

asymptotically, so it becomes necessary to extend the sample size12. We therefore set N = 5000 

and run the simulation for different combinations of T and J. Table 5 presents the results of 

these estimations.  

[Insert Table 5] 

We observe that consistency is still guaranteed for any combination of sample sizes. The most 

notable differences are found in the standard deviations. If we compare the first column of Table 

5 with the third column of Table 4 (which differs only in the number of workers), we can 

observe that the estimation with larger N presents lower standard deviations both for the fixed 

effects and also for the remaining estimated parameters. It is interesting to note that the 

efficiency of the estimation of the fixed effects diminishes considerably as the number of firms 

increases, as shown in the second column of Table 5. Moreover, the percentage of worker 

mobility across firms over the whole time interval reaches 83%, as can be expected considering 

that the probability of mobility increases with the number of firms.  
 

The last additional finding to be drawn from the data in the last two columns discussed above is 

the improved efficiency of the estimators for all the parameters, especially those of the fixed 

effects, as the time horizon increases.  

 

5.2.2. Experiment 2: Calibration of the parameters to AKM 
 

In the previous experiment, the data-generating process involved the use of arbitrary fixed 

parameter values. For a more realistic experiment, this time, the parameter values are calibrated 

                                                 
12 The limitation of increasing the sample sizes in this way is that the comparison with Tobit becomes 
almost impossible. In some cases, it would require weeks of computing time and, in the most ambitious 
cases, it proves unfeasible. 
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based on the data given in Tables IV-VI in the seminal paper by Abowd et al. (1999, 2002). 

Instead of describing all of the details and steps followed above, we now merely discuss the 

changes with respect to the previous experiment. 

Both types of fixed effects are set to follow a normal distribution with zero mean and 

45.0   . Age is used as a proxy for experience, one of the time-varying explanatory 

variables used in the original paper, which found a coefficient of 0.04 for the returns to 

experience. Therefore, we set 04.0 . The variance of the error term is calibrated to match 

the difference between the variance of log wages and the estimated variance of the observed 

components. Thus, we set 5.0 . Lastly, they had a 10-year panel, so we set T = 10. 

In assigning workers to firms, the previous experiment assumed positive assortative matching. 

However, in studying France and the US, first Abowd et al. (1999) and later Abowd et al. 

(2004) found that the estimated correlation between the estimated worker and firm effects is 

negative or even zero. They show that this lack of positive assortative matching is not explained 

by estimation biases due to a lack of mobility in the data. Furthermore, they examine the pattern 

of inter-firm movements between all samples of individuals and find that 40.6% of the 

individuals in the sample change employer at least once.  

To calibrate the characteristics of the mobility found by Abowd et al. (1999), it is more 

convenient to assign workers to firms by random rather than assortative matching. Random 

matching works as follows: at t = 1, workers are assigned to a firm randomly. From t = 2 

onwards, there is a constant probability of moving denoted by p. Each individual is hit by a 

shock represented by a random number between 0 and 1. If the number is greater than p, the 

individual moves to another firm. If it is lower than p, the worker remains at the current firm. 

We set p = 0.15 constant for all i and t to match the mobility index of 40.6%. Table 6 

summarises the results of this simulation experiment. Column (2) shows the Monte Carlo results 

of applying the algorithm, column (3) reports the estimation results of following the AKM 

methodology in spite of censoring, and the last column shows the original estimation by Abowd 

et al. (1999) with no censoring13. 
 

[Insert Table 6] 

 
By comparing columns (3) and (4) of Table 6, it can be concluded that using AKM in the 

presence of censoring provides biased estimators of the parameters, whereas AKM with no 

censoring is consistent, as expected. The main difference in the results of the FILS estimator, 
                                                 
13 In order to implement this procedure with our simulated data, for column (3), we conduct a within-groups analysis 
including dummies for the firms using censored wages, and for column (4), we do the same using the true wage as the 
dependent variable. 
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given in column (2) of Tables 4 and 6, lies in the accuracy of the estimation of worker- and 

firm-fixed effects and their correlation values. In particular, the accuracy of the estimates is 

much higher in the calibration experiment that relies on the random matching of workers and 

firms (column (2) of Table 6). The efficiency is much closer to that found in the simulations 

with larger sample sizes shown in Table 5. 

 

6. An Illustration for real data from Spain 
 

Next, we carry out an empirical exercise using real data on the Spanish economy. The source of 

data used for this illustration is the Muestra Continua de Vidas Laborales or Longitudinal 

Working Lives Sample (LWLS), a large-scale employer-employee matched database drawn 

from the Spanish Social Security administrative register. The LWLS is compiled annually and 

consists of a sample of over one million individuals, making up a representative sample of the 

population related to the Spanish Social Security system - either as employees or as unemployed 

receiving unemployment benefits - in each reference year. This paper uses all available waves 

of the LWLS (from 2005 to 2012)14. This longitudinal linked dataset contains observations 

about individuals and their employers linked through a working history including information 

about the jobs held by each individual with each employer. This dataset is based on mandatory 

reports to the employer about the gross earnings of each employee subject to  payroll taxes. 

Because it is compulsory, it does not suffer from the non-response problems that often plague 

household and firm surveys. Hence, the LWLS reproduces the complete labour market histories 

of the individuals, where each observation corresponds to a unique employee-contract-firm 

combination. In particular, this database provides highly detailed information about workers, 

including monthly wages, Social Security contribution groups, the type of contract and several 

characteristics of the hiring firms, such as size, age, ownership, location and sector of activity15. 

Individual characteristics such as age, gender, level of education, province and nationality are 

also present in the database.  

The final estimation sample is obtained through the following selection process. We restrict the 

analysis to full-time workers in regular employment aged 18 to 60 years over the period 1996-

2012. From this database, we build monthly panel data where the unit of analysis is each 

worker-month combination. Using this selection criterion, the initial sample includes 

44,676,551 observations for 619,613 individuals. On this initial database, we need to impose 

                                                 
14 The initial simple is composed of workers having had any link with social security as a contributor, as a recipient 
of unemployment benefits or as a pensioner on at least one day in the period 2005-2012. 
15 Nevertheless, firm characteristics are accurately measured only for the period 2005-2012. 
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additional sample restrictions (see Abowd et al. (2002) or Andrews (2004) for a detailed 

explanation of these identification conditions).  

Firstly, as stated above, inter-firm mobility is critical to this type of analysis because firm 

effects are identified by the number of movers in each firm. The estimated correlation between 

firms and individual effects is biased downwards when there are few movers in the data (i.e  

limited mobility bias16). We restrict the analysis to firms with a minimum of five different 

observed employees17 to reduce the limited mobility bias in our application. Secondly, we need 

to identify connected groups of workers and firms because firm-fixed effects are only identified 

for each connected group. Once all of the connected groups are identified, we keep only the 

largest group18. Hence, the sample used for the estimation contains all workers who have ever 

worked for any of the firms in that group and all of the firms that have employed them. The 

selected connected group accounts for 91.7% of observations. Once these sample restrictions are 

applied, our final database comprises 11,401,929 observations with 494,210 individuals19 and 

68,119 firms (see Table 7). In this dataset, job movers represent 41.01% of the individuals, and 

their average number of firm movements is 2.71. Finally, 25.30% of the observations involve 

establishments with five different observed employees and 16.61% with six different observed 

employees.  

[Insert Table 7] 

 
6.1 Model Estimation 

The idea is to measure the importance of Spanish firms in the determination of individual wages 

looking at the contribution of firms to overall wage variance. Hence, we propose to estimate a 

wage equation similar to equation (4): 

ittijitjiiit xxy  
2),(211 ''          (6) 

 

                                                 
16 Andrews et al. (2008) supply a formula that establishes this proposition in a simple, stylized dataset. Ultimately, 
the size of the bias is an empirical issue and should be computed for every application of employer–employee 
matched data. 
17 This sample selection criterion has mainly affected firm size characteristics.  
18 It is not possible to identify all of the coefficients for the fixed effects. Abowd et al. (2002) showed that one needs 
to impose one restriction on the coefficients for each mobility group with two fixed effects. Alternatively, the analysis 
could exploit all of the connected groups by making a normalisation within each group. However, as the worker and 
firm effects are measured relative to G different normalisations in the fixed-effect model, a comparison of worker and 
firm effects across the connected groups in the labor market is impossible. It turns out that the largest identified group 
contains the vast majority of observations, so the loss incurred by ignoring the remaining groups is arguably 
negligible. 
19 The average number of observations per employee is 39.6. 
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where there are N workers i =1,.,.N,; J firms j=1,.,.J; and Ti
20 months t=1,..,Ti. The endogenous 

variable yit
* represents real wages in logarithms; itx1  is a vector of observable time-varying 

worker covariates, and ),(2 tijx  is a vector of observable time-varying firm covariates. The terms 

jii    and  are time-invariant individual and firm heterogeneities that could be correlated not 

only with each other but also with itx1  and ),(2 tijx . It is common to assume that jii    and  are 

correlated with observed variables from the same side of the market. This means that random 

effects methods are biased and inconsistent, and thus that two-way fixed-effects methods are 

needed to consistently estimate the parameters of interest. To circumvent the estimation of N 

worker effects and J firm effects, Abowd et al. (2004) noted that explicitly including firm 

heterogeneity dummies but sweeping out the worker heterogeneity algebraically gives exactly 

the same solution as the Least Squared Dummy Variable estimator. However, when faced with 

censoring problems (i.e., a Tobit model), it is not possible to apply this solution because the 

estimated model needs to be linear. The advantage of the algorithm proposed in this paper is 

that it simultaneously allows the application of the solution proposed by Abowd et al. (2004) 

and an adjustment for censoring. 

In our particular empirical exercise, we take one step further and use the new estimation 

methods proposed by Carneiro et al. (2008) and later extended by Guimaraes et al. (2009). The 

advantage of their estimation methods is that they enable the estimation of wage equations even 

when both the dimensions of J and N are in the order of hundreds of thousands. The explicit 

introduction of dummy variables is not an option in this case because the number of units either 

of firms or of individuals is too large21.  
 

Summing up, to estimate our wage equation, while simultaneously dealing with two high-

dimensional fixed effects and adjusting for censoring, we proceed in two stages. In the first 

stage, we estimate our wage equation using the observed censored wage as our endogenous 

variable and obtain the coefficient estimates for the individual and firm effects using the 

partitioned iterative algorithm mentioned above22. To speed up this algorithm, we sweep out the 

individual effects by subtracting the individual’s group means from all the variables. Then, 

                                                 
20 Both workers and firms are assumed to enter and exit the panel, which means that we have an unbalanced panel 
with Ti observations per worker. 
21 They showed that with a full Gauss-Seidel iterative algorithm, it is possible to obtain least squares solutions for 
linear regression models with two or more high-dimensional fixed effects, imposing minimal memory constraints. 
This procedure is computationally intensive but converges steadily albeit slowly. 
22 This algorithm produces stable but slow iteration depending on the correlation of the parameters (Smyth, 1996). 
However, it does not require the explicit calculation of the inverse of the X’X matrix.  
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using these initial estimates, we correct the observed censored wage using the FILS algorithm. 

These two steps are repeated iteratively until convergence of the parameters is reached23.   
  

6.1.1 Person Effects 

In this framework, the worker-fixed effects include both the worker’s unobserved and observed 

but time-invariant characteristics. Similarly, the firm effects include both unobserved and 

observed time-invariant firm characteristics. The next stage, therefore, is to decompose these 

two estimated effects into their respective observed and unobserved components using 

regression techniques. This decomposition can help to clarify the sources of the biases incurred 

when censored wages are not properly considered in the analysis. In our empirical exercise, we 

provide a decomposition only of person effects because firms’ time-invariant characteristics 

could not be accurately observed for the chosen period of analysis24. The person effect covers 

both the effects of observable time-invariant personal characteristics and unobserved personal 

heterogeneity. We can decompose these two components of the pure person effect as, 

 iii                                                           (7) 

where i  is the unobservable personal heterogeneity, i  is a vector of time-invariant personal 

characteristics and   is a vector of the effects associated with time-invariant personal 

characteristics. An important feature of the decomposition of equation (7) is that an estimation 

of the person effects can proceed without a direct estimation of  (see Abowd et al., 2006). 

 
6.2 Construction of main variables 

The dataset contains information on monthly earnings, which are censored at the upper and 

lower social security contribution limits. We can estimate our wage equation controlling for 

censoring, given that the censoring point is known25. The monthly wage is deflated using the 

consumer price index for each period. This is the dependent variable for the analysis (in 

logarithms). Table 8 presents the main descriptive statistics. The proportion of censored 

observations in the initial sample is approximately 18.9% (right-censored) and 3.2% (left-

censored). Controlling for censoring in this context is important because the share of censored 

wages is unequally distributed across individuals, as can be observed in Table 8.  

                                                 
23 The convergence criteria are defined in terms of parameters of interest and the sum of squared residuals. In the 
Gauss-Siegel iterative algorithm, the convergence is defined in terms of coefficients of the firm effects as well as the 
error term.  
24 The dataset includes information on the firms, such as their sector of activity or size, for the period 2005-2012. 
25 The upper and lower social security contribution limits are fixed by the government each year.  
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[Insert Table 8] 

According to equation (6), there are four components that explain wage variability: the observed 

time-varying characteristics of workers, the observed time-varying characteristics of firms, the 

observed time-varying characteristics of the economy, worker heterogeneity or worker-fixed 

effects, firm heterogeneity or firm-fixed effects, and an error component assumed to follow the 

conventional assumptions. There has been much debate on whether variables that control for job 

characteristics, industry or occupation ought to be included in the specification. We keep our 

analysis as simple as possible and follow the approach found in Abowd et al. (1999, 2004) and 

adopted in various recent papers, such as Lalive et al. (2009). In these papers, the wage equation 

specification uses variables related with individual human capital characteristics as covariates. 

We decided to adhere to this simple approach to offer a general idea of the biases incurred when 

censoring issues are ignored26.  

We include in the wage equation the following time-varying covariates: age, tenure, labour 

market experience, previous unemployment duration (all in logs), the type of contract 

(permanent contract), job qualifications (high skill job), the regional unemployment rate and the 

national GDP growth rate. We define previous work experience as the number of accumulated 

months actually worked since the employee’s first employment experience. Tenure reflects the 

number of months the worker has stayed with the same firm despite possible spells of 

unemployment between two consecutive jobs at the same firm. Labour market experience and 

tenure are modelled as second-degree polynomials27. We introduce the duration of previous 

unemployment as a proxy to control for the type of job mobility. Our analysis implicitly 

assumes strict exogeneity. This implies that workers’ mobility decisions, conditional on 

covariates, are independent of it .  

 

6.3 Results 
 

This section reports the estimation results of the wage equation. We should inform the reader 

that we estimated the same wage equation for alternative sample schemes to assess the 

generality of the results. As Andrews et al. (2008, 2012) stated, the estimation results notably 

depend on sample characteristics, such as the period of analysis, the sample size of the firms and 

                                                 
26 Unfortunately, the Spanish data do not include firm accounting data. Thus, we are unable to control for variables 
such as capital, value added per worker, etc. 
27 We also estimated the model with polynomials of higher orders, and the results did not change – they are available 
upon request.  
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the degree of inter-firm mobility. For instance, the estimation was also run for subsamples 

composed of firms with at least two and firms with at least ten observed employees. In both 

cases, the results resemble those presented in this section. Hence, for the sake of conciseness, 

we chose to omit those results and mention them only when significant differences appear. The 

results are reported in Table 9 and are displayed for two alternative estimators depending on 

whether wages are corrected for censoring (FILS) or not28.  

[Insert Table 9] 

Observe that the R2 is considerably higher than it is in standard wage regressions. Worker- and 

firm-fixed effects, together with worker, firm and aggregate covariates, explain more than 95% 

of the variability in real wages. The coefficient estimates of the regressors and those of the 

variance of the error component are reasonable. All estimated coefficients are of the expected 

sign and statistically significant at the 1% level. This is remarkable taking into account that the 

standard errors of the estimation with the algorithm are higher than the corresponding ones in 

the Tobit estimation. The estimates show that both human capital accumulation and mobility 

seem to be important determinants of observed wage growth over the workers’ careers. Wages 

are increasing with age, tenure and experience and permanent and high-skill jobs are better than 

the rest. There is a wage penalty for workers with spells of unemployment. Finally, the higher 

(lower) the regional unemployment rate (GDP), the lower the wage rate. 

However, coefficient estimates differ between the two alternative models presented. More 

specifically, when censored wages are not corrected, the wage penalty for spells of 

unemployment is overestimated whereas the wage returns for high-skill jobs are 

underestimated. For instance, while our FILS estimator finds that high-skill jobs command 

approximately 17% higher monthly wages than other types of jobs, this return drops to 13% 

when wages are not corrected for censoring. The wage penalty due to unemployment is 

estimated to be 8.6% for the not corrected model whereas it increases to 9.4 with the FILS. The 

differences in the coefficient estimates for labor market experience and tenure are also 

important (Figures 4 and 5).    

[Insert Figure 4] 

 

[Insert Figure 5] 

 

                                                 
28 Given the sample characteristics, we cannot offer results for the Tobit estimator.  
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Next, we focus on the estimated correlation between individual and firm time-invariant 

characteristics because this term has traditionally been used to test for the hypothesis of positive 

assortative matching. It is important to check for positive assortative matching because of its 

implications for equity and efficiency in the labour market. Firstly, under positive assortative 

matching, workers with higher skills will earn higher wages not only because of their higher 

innate productivity but also because they tend to be employed in better firms. This means that 

wage inequality will be higher than the underlying inequality in worker abilities. Secondly, 

positive assortative matching may be evidence of complementarities in production29 between 

worker ability and firm productivity. This implies that if workers and firms are optimally 

matched, total output is higher than it would be under random matching, for example. As a 

consequence, job search frictions would have negative output effects and policies to prevent 

search frictions would be important. 

Table 9 also shows that the correlation coefficient between time-invariant individual and fixed 

effects is sensitive to censoring issues. This correlation coefficient increases from -9% to -1.2% 

when censoring is accounted for, which is a non-negligible difference given the amount of 

censored observations in the data. Nonetheless, a 600% movement in the correlation represents 

a sizable bias. Hence, the relationship between firms’ compensation policies –proxied by the 

firm-fixed effects, and the quality of their workforces –proxied by the employee-fixed effect—is 

shown to be close to zero in Spain30. Abowd et al. (2004) reported correlations of −0.24 for 

French data and 0.02 for data fromWashington State, whereas Goux and Maurin (1999), using 

different French data, found a correlation ranging from −0.32 to 0.01 depending on the time 

period that was chosen. Gruetter and Lalive (2004) reported a correlation of −0.27 for Austrian 

data. All of these are weaker than Barth and Dale-Olsen’s (2003) correlations of between −0.47 

and −0.55 for Norwegian data. In other words, when focusing on unobserved components, low 

wage workers tend to work in high wage firms, and vice versa. This seems counterintuitive in 

the light of theories of assortative matching. Andrews et al for German data obtain that their 

preferred estimate of the correlation of −0.066. 

6.3.1 Wage Variance Decomposition: the importance of firms in wage determination 

Once we have the estimated results, we can further decompose the variance of wages in relation 

to the covariates defined in our wage equation. This exercise enables us to assess the role of 

                                                 
29 Structural labor market search models advise extreme caution when interpreting this correlation as evidence of 
complementarities in the production function.  
30 When we estimate the model using firms with ten observed employees, the estimated correlation turns out to be 
positive. This last result is in line with those presented by Andrews et al (2012), as this second sample with larger 
inter-firm mobility better enabled us to identify the role of firms in individual wage determination. 
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firms in wage setting via the contribution of firms to overall wage variance. From equation (6), 

we know that total wage variance  )( 
ityVar  can be decomposed into a firm (time-varying and 

time-invariant) component and into an individual (time-varying and time-invariant) component. 

In particular, we propose to decompose wage variance into the following components: (i) the 

covariance of wages with time-varying individual covariates; (ii) the covariance of wages with 

time-varying firm covariates (i.e., the firm’s wage policy), (iii) the covariance of wages with the 

time-invariant individual term; (iv) the covariance of wages with the time-invariant firm term; 

and (v) the covariance of wages with the transitory component of wages. In equation form, this 

reads as follows:  
 

' '
1 1 2 2 ( )  ( , )  ( , )  ( , )  ( , )  ( , )it it it it i it ji it jit it itVar y Cov y x Cov y Cov y Cov y x Cov y                  (8) 

 

Equation (8) shows that firms can play an important role in wage determination for two reasons. 

The first is that firms might generate strong wage differentials if motivated to pay different 

wages to observationally equivalent workers. This is mainly measured by the firm-specific 

component. The second is that firms can also amplify the effect by attracting more productive 

workers with steeper wage-tenure profiles. This second argument can be tested by measuring 

the relative variances of the tenure and other job characteristic components of the firm’s 

contribution. Table 10 reports the wage variance decomposition from our estimated model. The 

second column presents the variance decomposition when the FILS estimator is used to account 

for censoring, and the first displays the corresponding decomposition when censoring is 

ignored.  

[Insert Table 10] 

In general, we observe that the contribution of firms’ wage policies to the individual wage 

structure is lower than that of individual effects. More importantly, the results also indicate that 

failing to adjust for censoring could mislead research on the respective roles of firms and 

workers in explaining wage dispersion by overestimating the role of firms. This error results 

primarily from the overestimation of firm time-invariant effects31. With FILS, we obtain that 

firm and worker characteristics explain approximately 31% and 63% of the observed wage 

dispersion, respectively, whereas with the traditional approach, these figures increase to 42% for 

firm effects and decrease to 39% for individual effects. Hence, we obtain that controlling for 

                                                 
31 Andrews et al. (2004) pointed that if the estimates of the worker and firm dummy variables are estimated with 
error, it is possible that the estimated correlation between them is biased downwards. It is not immediately obvious 
why this is so, but an overestimate of a worker effect leads to, on average, an underestimate of a firm effect. 
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censored wages reinforces the idea that when explaining individual wage dispersion, what 

workers are is more important than what workers do. This result is line with previous empirical 

literature such as Woodcock (2008),  Bagger et al. (2010), le Maire and Scheuer (2011) and 

Sørensen and Vejlin (2012). They also find that firm effects are much less important than 

individual effects in explaining wage dispersion. 

Hence, the total contribution of firms to wage variance is approximately 31%, of which only 

eight percentage points correspond to firm policies concerning the remuneration of tenure (a 

proxy for accumulated specific human capital skills), contract type or qualification (proxies for 

general human capital skills). The rest of the firm contribution consists of time-invariant firm 

effects (23%). The total contribution of individual effects amounts to 64%. Again, time-varying 

observable characteristics play a secondary role. For instance, work experience and age account 

for only 8.7% and 5.5%, respectively. The contribution of individual time-invariant effects 

amounts to 49%. Finally, unobserved time-varying characteristics account for 4.94% of the 

variance.  

- Decomposition of Individual Fixed Effects 

Finally, this section investigates the decomposition of the individual fixed effects into an 

observed part and an unobserved part. Table 11 reports the estimation results for the worker-

fixed effects regressions for the model with censored wages (first column) and for the FILS 

estimator (second column). The estimated fixed effects are regressed on gender and education, 

and we allow for heterogeneous effects of education by gender.  
 

[Insert Table 11] 

In general, the parameter estimates are similar except for the case of male employees with 

high educational attainment levels. In this case, the model that ignores wage censoring predicts 

that workers with high educational attainment levels earn less than lower-educated workers, 

whereas our FILS estimator predicts the opposite. These differences reflect the biases incurred 

when omitting adjustments for censoring. In general, our estimates show that there is an 

increasing premium associated with educational attainment. Notice that these results are pure 

effects in the sense that they were obtained by estimating the dependent variable (the worker-

fixed effect) in a regression controlling simultaneously for worker and firm time-varying 

characteristics and firm heterogeneity.  

[Insert Table 12] 

An orthogonal decomposition of the worker effect into time-invariant observed 

characteristics (gender and education dummies) and an unobserved effect shows that the 



31 
 

unobserved part is the most important, although 9% of the wage variation is due to observed 

differences, i.e., gender and education (see Table 12). Woodcock (2008) and Sørensen and 

Vejlin (2012) also find that observable differences are able to explain only a small part of wage 

variation. 

 

7. Conclusions 
 

The relatively recent availability of employer-employee matched longitudinal datasets of 

considerable length has added a new dimension to the analysis of worker wage dispersion 

because it allows the simultaneous identification of worker and firm heterogeneity. 

Nevertheless, although there has been an intense improvement in the estimation of wage 

equations with two high-dimensional fixed effects, none of the new methods considers the 

possibility that wages might be censored.  

This paper discusses the estimation of general censoring models using an iterative algorithm 

based on a series of least squares regressions. The results of a Monte Carlo simulation designed 

to assess the practical performance of the procedure reveal negligible biases in the estimators 

and substantially greater variances than the Tobit estimates. Although it is less efficient, the 

algorithm enables huge time savings, and numerical experiments confirm that it is surprisingly 

fast and stable. The standard errors of FILS across Monte Carlo simulations provide a good 

approximation of the asymptotic standard errors. Thus, the proposed algorithm constitutes a 

powerful econometric tool for future research in this area. 
 
In an attempt to increase the external validity of the procedure developed in this paper, we test it 

empirically using real data on the Spanish economy. Due to the nature of the dataset used to 

apply the algorithm, an initial assessment can be obtained of the importance of Spanish firms in 

wage setting while controlling for wage censoring. Our findings indicate that firms play a less 

important role than workers in explaining wage variance: person-specific effects account for  

49% of the cross-employee wage variance, while firm-specific effects only account for 

approximately 22%. We also find evidence of misreporting issues when the model estimator 

does not control for censoring. The time-invariant person-specific and firm-specific effects are 

the most seriously misreported, but the problem also affects other person-specific parameters 

and job characteristics, such as required skills and education. For the time-invariant firm- and 

person-specific effects, we find that the role of firms in wage determination might be 

overestimated, whereas the opposite might be true for the role of person-specific time-invariant 

characteristics. 
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On the whole, the results indicate that the relationship between Spanish firms’ wage policies 

and the quality of the selected workforce is close to zero and that factors other than wage 

policies undoubtedly intervene in explaining the distribution of high-wage workers across firms.  
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Figures 
 
 

Figure 1. Eigenvalues of the Jacobian 

 
                  Note: 99.93 % of the combinations of parameters are depicted. 

 
 
 

Figure 2. Kernel density estimates for FILS̂  and FILSσ̂  (N = 5000) 
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Figure 4: Effect of tenure on monthly wages 

 
 

Figure 5: Effect of labor market experience on monthly wages 
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Tables 
 

Table 1. Monte Carlo simulation: FILS vs Tobit
 N = 1000 N = 5000 
 FILS Tobit FILS Tobit 
Design 1 2) ,1() ,(   Censoring = 50% 
  Mean     
  ̂  1.0024 1.0019 1.0018 1.0012 
    2.0068 2.0025 2.0025 2.007 
  Std Deviation     
  ̂  0.1246 0.0790 0.0543 0.0367 
    0.1683 0.0952 0.0662 0.0418 

Design 2 2) ,1() ,(   Censoring = 25% 
  Mean     
  ̂  0.9948 0.9968 1.0013 1.0015 
    1.9977 1.9996 2.0016 2.0007 
  Std Deviation     
  ̂   0.0786 0.0723 0.0324 0.0298 
     0.0911 0.0867 0.0414 0.0348 

 
 

Table 2. Comparison of std errors of )´ ,(    

Censoring FILS Asymptotic 
0% (0.0279, 0.0193) (0.0281, 0.0193) 
25% (0.0339, 0.0337) (0.0296, 0.0268) 
50% (0.0494, 0.0633) (0.0350, 0.0319) 
75% (0.1110, 0.1223) (0.0460, 0.0377) 

 
 
 
 

Table 3. Simulation with worker dummies: FILS vs Tobit 
 T = 10 T = 20 

     %25 ,1000 ,2 0.02, ,1,,  CensoringNi   

 FILS Tobit FILS Tobit 
Mean     

  
i

iN
̂1

 0.8660 1.0645 1.0283 1.0521 

  ̂  0.0220 0.0176 0.0193 0.0198 

    2.0025 1.8911 1.9897 1.9451 
Std Deviation     

  
i

iN
̂1

 0.3123 0.3631 0.1266 0.0822 

  ̂  0.0077 0.0071 0.0028 0.0013 

    0.0667 0.0230 0.0228 0.0118 
Computing Time 58 seconds 396 min 2.03 min 512 min 
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Table 4. Simulation with worker and firm dummies: FILS vs Tobit 

 T = 10 T = 20 

    1.0  ,%25 ,1000 ,2 0.02, 1, ,1,,, ),(   CensoringNtiji  

 FILS Tobit FILS Tobit 
Mean     

  
i

iN
̂1

 1.0694 0.8064 1.0607 0.9891 

  
j

tijJ ),(
ˆ1   0.9119 0.8297 0.9005 0.9699 

   ),(
ˆ,ˆ tijiCorr   0.5217 0.5656 0.6858 0.7135 

  ̂  0.0203 0.0215 0.0203 0.0206 

    1.9633 1.8938 1.9867 1.9478 
Std Deviation     

  
i

iN
̂1

 0.4548 0.3791 0.1528 0.1268 

  
j

tijJ ),(
ˆ1   0.3114 0.2423 0.1471 0.1515 

   ),(
ˆ,ˆ tijiCorr   0.0648 0.0421 0.0474 0.0370 

  ̂  0.0078 0.0068 0.0022 0.0017 

    0.0882 0.0173 0.0256 0.0145 
Computing Time 3.30 min 512 min 6.25 min 590 min 

 
 

Table 5. FILS Simulation (S = 100) with worker and firm dummies for 
different combinations of sample sizes: (N, J, T) 

 T = 20 T = 50 
 J = 20 J = 100 J = 20 J = 100 
Mean     

  
i

iN
̂1

 1.0389 1.0820 1.0192 1.0041 

  
j

tijJ ),(
ˆ1   0.9663 0.9741 0.9587 0.9402 

   ),(
ˆ,ˆ tijiCorr   0.7387 0.7267 0.8303 0.8432 

  ̂  0.0195 0.0193 0.0193 0.0191 

    1.9697 1.9528 1.9504 1.9452 
Std Deviation     

  
i

iN
̂1

 0.1401 0.4261 0.0883 0.2417 

  
j

tijJ ),(
ˆ1   0.1140 0.4314 0.0874 0.2432 

   ),(
ˆ,ˆ tijiCorr   0.0193 0.0217 0.0087 0.0095 

  ̂  0.0013 0.0011 0.0002 0.0003 

    0.0075 0.0101 0.0068 0.0044 
Mobility index (%) 58.35 83.40 67.03 91.55 
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Note:     1.0  ,%25, 5000  , 2 0.02, 1, ,1,,, ),(   CensoringN tiji  
 
 

Table 6. Simulation with data calibrated from AKM 

    10  ,15.0 ,1000 ,0.5 0.4, 0, ,0,,, ),(  TpNtiji   

 FILS AKM with cens AKM original 
Mean    

  
i

iN
̂1

 0.0007 0.0031 0.0012 

  
j

tijJ ),(
ˆ1   0.1029 0.2990 0.1029 

   ),(
ˆ,ˆ tijiCorr   -0.1272 -0.3342 -0.0967 

  ̂  0.0397 0.0299 0.0402 

    0.4920 0.4308 0.5001 
Std Deviation    

  
i

iN
̂1

 0.0274 0.0226 0.0259 

  
j

tijJ ),(
ˆ1   0.0180 0.0206 0.0204 

   ),(
ˆ,ˆ tijiCorr   0.0232 0.0312 0.0217 

  ̂  0.0007 0.0004 0.0004 

    0.0037 0.0028 0.0023 
Censoring 25% 25% 0% 

 
 

Table 7. Main Sample Characteristics 

    

Nº of Individuals 494210   
Nº of Firms 68119   
Nº of Time Periods (months) 32    
Total Nº of Observations 11401.929   
% of Movers 41.01%   
Average Firms Per Workers (movers) 2.71   
Nº of workers per firm 11.34   
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Table 8. Main descriptive statistics of the sample for different censoring levels 

  Uncensored Left-Censored Right-Censored 

Real Wage (Euros) 931 414 1813 
Age (years) 36.7 29.6 42.5 
Effective Labor Market 
Experience (Months) 

93.68 61.64 131.8 

Men 62.89% 45.14% 77.6% 
Bachelor Degree 7.64% 6.5% 24.45% 
Tenure (Months) 45.31 15.36 100.75 
Unemployment Duration 
(months) 

2.14 7.50 2.21 

Permanent Contract 58.99% 16.31% 90.21% 
Firm Size (employees) 364 112 561 
Sector: Services 44.64% 61.5% 53.45% 
N % 77.8% 3.19% 18.95% 

 
  

Table 9. Model Estimation Results: FILS vs Censoring ignored 
 Censoring:ignored FILS 
 Coefficient Std Error Coefficient Std Error 
Age (log) 0.4715*** 0.0015 0.5427*** 0.0010 
Labour Experience (log) 0.0283*** 0.0003 0.0144*** 0.0002 
Labour Experience squared 0.0041*** 0.0001 0.0085*** 0.0002 
Unemployment Duration (log) -0.0086*** 0.0000 -0.0094*** 0.0000 
Tenure (log) 0.0116*** 0.0001 0.0074*** 0.0001 
Tenure squared -0.0008*** 0.0000 0.00001*** 0.0000 
Permanent Contract 0.0708*** 0.0001 0.0632*** 0.0001 
High Skill Job 0.1348*** 0.0002 0.1693*** 0.0002 
Regional Unemployment Rate  -0.0001*** 0.0000 -0.00002*** 0.0000 
National GDP  0.0070*** 0.0000 0.0042*** 0.0000 
Constant 4.9237*** 0.0024 4.7104*** 0.0003 
Mean( ) -0.0011  -0.0303  

Mean( ) -0.0869  -0.0987  

 jiiCorr  ˆ,ˆ  -9.0%  -1.2%  

 R2 91.87%  95.06%  

Note: *** p < 0.01. 
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Table 10.  Individual Wage Variance Decomposition  
Contribution of  Censoring:ignored FILS 
Firms      
TV (x2jit) 10.99% 8.38% 

Tenure 0.83% 0.65% 
Permanent Contract 3.14% 1.83% 
High skill Job 7.01% 5.89% 

Fixed (βij) 31.48% 22.88% 
Workers     
TV (x1it) 17.92% 14.49% 

Age 11.17% 8.72% 
Experience 6.50% 5.59% 
Unemployment Duration 0.25% 0.18% 

Fixed (i) 31.49% 49.31% 
Agg. Vbles. 0.21% 0.19% 
Error Term 8.14% 4.94% 
Total 100% 100% 

 
 

Table 11. Regression of individual effects: Dep Var: Individual Fixed Effects 
 Censoring:ignored FILS 

 Coefficient Std Error Coefficient 
Std 

Error 
Male 0.0743*** 0.002 0.1493*** 0.004 
Educational Attainment Levels      
  Elementary  0.0458*** 0.002 0.0879*** 0.003 
  High School Degree 0.1616*** 0.002 0.2818*** 0.003 
  College or Bachelor’s degree 0.3188*** 0.002 0.5138*** 0.003 
Interactions     
  Male*Elementary 0.0205*** 0.002 0.0104*** 0.003 
  Male*High School -0.0089*** 0.002 -0.0088* 0.005 
  Male*College -0.0509*** 0.002 -0.0242*** 0.005 
Constant -0.1647*** 0.001 -0.3279*** 0.002 
R2 0.1269  0.0889  

Note: *** p < 0.01.  

 
 
 

Table 12. Variance Decomposition of the individual effects (of the Different Components of the 
Individual Wage) 

 Censoring:ignored FILS 
Gender 0.81% 0.92% 
Education 13.04% 8.23% 
Gender*Education -1.15% -0.53% 
Error Term 87.31% 91.11% 
Total 100% 100% 
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Appendix 

 
A. Consistency 

 
(a)    )( iyE  Given the identification assumption and taking   as known, the first 

moment condition can be written as follows, 
 

    

 




















 


c

uuEcyycyE iiiii |11  

Since ii uy   , then  cyuE
c

uuE iiii 



 

 ||



 

 
At the same time, an indicator function can be rewritten as a probability mass,  

       cyuEcyPcyyEcyP iiiiii |)(|)(  

 
Taking into account that    cyuE ii |    cyyE ii | , the following 

condition emerges: 

       cyyEcyPcyyEcyP iiiiii |)(|)(  

 
It follows directly that: 

     )(|)(|)( iiiiiii yEcyyEcyPcyyEcyP    

q.e.d.  

 

(b) 222 )()()(  iii yEyEyVar  

 
By the same reasoning, the second moment condition can be written as 
 

          222222 |2|11   AuuEAuuEcyycyE iiiiiii  

 

Since iii uuy  22222  , then 

     cyuEcyyEcyuE iiiiii  |2|| 2222   

 
Substituting this into the previous expression and using the law of iterated 
expectations yields the following: 
 

       
     2

22222

|2|2

||









cyuEcyuE

cyyEcyPcyyEcyP

iiii

iiiiii
 

It follows directly that 
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    222222 )()(|)(|)(   iiiiiiii yEyEcyyEcyPcyyEcyP  

   q.e.d. 

 
B. Simulation - Comparative statistics: different mobility indexes 

 
Table 1.A Monte Carlo Simulation of FILS for different values of   

 025.0  Benchmark: 1.0  35.0  
Mean    

  
i

iN
̂1

 1.0641 1.0607 1.0601 

  
j

tijJ ),(
ˆ1   0.7308 0.9005 0.8013 

   ),(
ˆ,ˆ tijiCorr   0.4102 0.6858 0.4465 

  ̂  0.0191 0.0203 0.0195 

    1.9709 1.9867 1.9714 
Std Deviation    

  
i

iN
̂1

 0.5296 0.1528 0.1821 

  
j

tijJ ),(
ˆ1   0.5292 0.1471 0.1756 

   ),(
ˆ,ˆ tijiCorr   0.2256 0.0474 0.0291 

  ̂  0.0034 0.0024 0.0022 

    0.0258 0.0256 0.0187 
Mobility index 25% 50% 75% 

Note: we consider here N = 1000, J = 20, T = 20 and a censoring rate of 25%. 
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