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ABSTRACT 
 

Recent studies have found a large earnings premium to attending a more selective college, but 
the mechanisms underlying this premium have received little attention and remain unclear. In 
order to shed light on this question, I develop a multidimensional signaling model relying on 
college grades and selectivity that rationalizes students’ choices of effort and firms’ wage-setting 
behavior. The model is then used to produce predictions of how the interaction of the signals 
should be related to wages, namely that the return on college GPA should fall the more selective 
the institution attended. Using five data sets that span the early 1960s through the late 2000s, I 
show that the data support the predictions of the signaling model, with support growing stronger 
over time as college sorting by ability has increased. The findings imply that return to college 
selectivity depends on GPA, something previously not recognized in the literature, and they can 
rationalize why employers learn more quickly about college graduates’ productivity than less 
educated workers’. 
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1 Introduction

Recently, there has been a sizable interest in the return to attending a more selective or prestigious

college. Several studies have tried to identify empirically the private returns to going to a selective

school, with most finding that attending a more prestigious school does indeed have a causal,

positive impact on lifetime earnings. However, there has been little attention as to why. Given

that annual U.S. higher education expenditures are over $460 billion, but per-student expenditures

increase dramatically with college selectivity, understanding why students who attend selective

colleges earn more over their lifetimes has dramatic implications for how those dollars are optimally

allocated (Hoxby 2009; Snyder and Dillow 2011, table 29). The goal of this paper is to propose a

specific mechanism for the college selectivity premium—a model of signaling—that can rationalize

observed behavior.

Several factors make signaling in particular a compelling explanation for the premium. First,

the relatively few studies that have attempted to measure student learning in college have found

little difference across types of colleges once pre-college characteristics are controlled for (Pascarella

and Terenzini 2005; Arum and Roksa 2011). While it is not clear how the “learning” measured

in these studies relates to productivity on the job, this evidence suggests colleges may boost the

wages of their graduates in ways other than through value added. Second, the growing literature on

how employers learn about worker productivity has emphasized that this process is not immediate

but occurs over time, with employers often attempting to learn about an applicant’s latent ability

through measures that are immediately observable, such as education or race. In this context, as

the share of the labor force that are college graduates has risen, it seems reasonable that firms would

sort workers not just through quantity of education but through perceived measures of quality of

education, as well. Finally, and related, human resources and cognitive psychology surveys have

documented that recruiters looking to hire new college graduates not only actively screen applicants

by college attended and grade point average, but that these measures positively correlate with on-

the-job performance (McKinney and Miles 2009). Together, these findings point to the importance

of examining how college selectivity and college grades are jointly determined and how employers

use these measures in wage setting.
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This paper makes two substantive contributions toward understanding the college selectivity

premium. First, it develops a novel, multidimensional signaling model of ability between college

graduate workers and prospective employers. In equilibrium, the utility-maximizing behavior of

these agents leads to a specific—and empirically testable—relationship between the two dimensions

of the signal, college selectivity and grade point average (GPA), and starting wages. While the full

model is elaborate, the crux is intuitive. Students sort into different colleges by ability, which

means that college selectivity is a valuable signal of ability to employers. If graduating from a more

selective school sends a more precise signal of ability than graduating from a less selective school,

the marginal informational benefit of an additional signal, such as GPA, is reduced. When it comes

to wage setting, we would expect the relative weight that firms place on the GPA signal to be lower

at more selective colleges. Consequently, the change in log wages with respect to a change in GPA

should be smaller when selectivity is higher. Furthermore, the ability sorting across college types

also implies that the selectivity premium should fall as GPA rises. The intuition here is that high-

GPA students benefit less from attending a selective school because they have demonstrated their

ability through their GPA; but for a lower-GPA student at a selective college, firms will discount

the noisier signal and place more weight on the college type.

Second, the paper empirically tests the implications of the model. Employing five nationally

representative data sets that span five decades, I consistently find strong support for the predictions

of the signaling model. The return on GPA is lower at selective colleges and falls as the threshold

of selectivity rises. The selectivity premium is highest for those with lower GPAs and declines as

GPA rises. Moreover, both of these phenomena have become more pronounced over time as ability

sorting across colleges has increased.

The paper proceeds as follows. In the next section, I review some of the recent literature on

the returns to college selectivity and employers learning about workers. Sections 3 and 4 develop,

characterize solutions, and derive predictions for a multidimensional signaling model in the context

of college graduate workers whose productivity firms cannot perfectly observe. Section 5 describes

the data sets and empirical methodology that are used to explore and test the implications of the

model, while Section 6 presents the results of these tests. Section 7 concludes.
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2 College Selectivity Returns and Employer Learning

The earliest studies attempting to measure the return to college selectivity or quality in the U.S.

context date to the early 1970s and are primarily based on a nonrepresentative sample of skilled

(male) World War II military veterans (Wales 1973; Psacharopoulos 1974). Conditioning on ob-

servables (including measures of cognitive ability), these early papers find a sizable wage premium

in midcareer among respondents who attended colleges in the top fifth of the quality distribution.

While Wales discusses several possible explanations for the premium, the data do not allow him to

identify which explanations drive the results. More recent work has taken advantage of more rep-

resentative data and advances in identification methods. Brewer, Eide, and Ehrenberg (1999) and

Hoxby (2001) attempt to correct for selection on unobservables using nationally representative data,

and find a selectivity premium that appears to have grown over time. Black and Smith (2006) use

NLSY79 data and several approaches for identification, with their preferred GMM method yield-

ing a selectivity premium that is smaller than the earlier studies, but still statistically significant.

Perhaps the most credible identification comes from Hoekstra (2009), who employs regression dis-

continuity designs based on a test cutoff for admission to a (specific) selective college. He finds a

larger premium than in previous work. Dale and Krueger (2002) are unusual in employing a data

set only of students at selective colleges and controlling for the schools to which an individual was

accepted; perhaps as a result, theirs is the only paper to find no wage premium from attending a

more selective college.

Each of these papers tacitly assumes a world of perfect information in which productivity

is directly known by employers, and the objective is to isolate the return to college quality from

the return to latent individual ability. However, there is a growing body of work that suggests

productivity is not immediately known but must be learned over time. This employer learning

literature was begun by Farber and Gibbons (1996) and applied in the (quantity of) education

context by Lange and Topel (2006), Lange (2007), and Arcidiacono, Bayer, and Hizmo (2010).

These latter papers conclude that employers learn about the underlying productivity of workers

relatively rapidly, especially in the case of college graduates. However, their findings suggest it is

possible that, by examining earnings several years if not decades after graduation, the return-to-
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college-quality studies conflate the initial premium with revelation of ability or productivity over

time.

The existing theoretical work on the returns to college quality makes similar assumptions of

perfect information. In particular, several papers argue that the concomitant increases in ability

sorting and school resources experienced by higher-ability students can be explained by positive

complementarities in student ability and resources in human capital acquisition (Rothschild and

White 1995; Epple, Romano, and Sieg 2006; Courant, Resch, and Sallee 2008). The basic line of

thinking in these models is that the learning of high-ability students is enhanced when they are

around other high-ability students and resources (better faculty, libraries, etc.), and firms observe

this greater human capital acquisition and pay the students for it. There has been little empirical

evaluation of this class of hypotheses, however, as credible identification is elusive.

More recently, there is a single paper to my knowledge that investigates a signaling mechanism

empirically. Lang and Siniver (2011) examine the return to attending the more selective of two

universities in Israel that have courses taught by common faculty and that share resources. Using

a regression discontinuity design, they find a significant premium to attending the more selective

institution and, given the common faculty and other resources, argue that the result is consistent

with a quality signal framework. However, they acknowledge that they cannot fully control for the

possibility of peer effects, and it is unclear whether their results generalize to the U.S. context,

which has a far greater number of institutions of higher education. Thus, there is ample room for

further work in exploring signaling in the college selectivity context.1

3 A Multidimensional Signaling Model of Latent Ability

Consider the labor market between firms and new college graduates they wish to employ. In the

United States, this labor market is large, with over 1.7 million graduates annually, approximately

75 percent of whom are working full-time one year after graduation (Snyder and Dillow 2011, tables

283 and 404). The market is also well-developed and competitive, as evidenced by the popularity

of career fairs at colleges and geographical mobility of recent graduates (Malamud and Wozniak

1For an empirical investigation of signaling in the quantity of education context, see Bedard (2001).
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2008). Below, I lay out a model that illustrates how signaling can affect the interactions of these

college graduates and firms.

In order to focus on the behavior of students, I assume that firms are homogeneous. Prospec-

tive workers (i.e., students), on the other hand, vary in their ability, η ∼ N(0, 1), and this trait

affects the worker’s productivity to firms.2 While students can observe their own ability, the firms

cannot. Instead, in the spirit of Spence (1973), the firms observe imperfect signals of ability that are

chosen by the students. These signals, for example, might appear on a potential worker’s résumé,

be transmitted during a job interview, or appear in the form of references or letters of recommenda-

tion. While there may be many such signals, two of note are the undergraduate grade point average

(GPA), and the prestige, reputation, or selectivity (SEL) of the degree-granting college. Because

most new college graduates have limited prior working experience, both of these measures tend to

feature prominently in their résumés, which often serve as the first set of information observed by

firms when hiring new workers.3

Employers care about these signals because they can be used to form expectations about a

worker’s productivity. Using this information set, the firm offers a wage to the worker based on

its beliefs. From the perspective of a student, increasing the value of these signals is costly—and

more costly for those of lower ability—but doing so makes the individual look more productive to

prospective employers, and thus can increase the anticipated wage offer. The behaviors of these

agents are described more formally below.

3.1 Firm’s Problem

Let the production function of a new worker i at time t be given by

ln yit = ait + ρtηit + εit, (1)

2Ability as used here need not be thought of purely as cognitive ability, but a combination of cognitive and noncognitive
abilities mapped to a single dimension. Heckman, Stixrud, and Urzua (2006) show in their Table S3 that measures
of cognitive and noncognitive ability are positively correlated.

3McKinney and Miles (2009) review several studies that validate the use of these signals by recruiters at col-
leges. Indeed, college career office Web sites highlight the importance of these two pieces of information by sug-
gesting they feature most prominently on the résumé (http://www.careercenter.umich.edu/students/resume/
sectionexplanations.html). This is consistent with most hiring comprising a multistage process, with the first
stage consisting of an initial screening of the résumé.
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where ln y is the natural logarithm of output. The individual-specific intercept ait represents

characteristics about worker i other than ability that affect productivity (e.g., through type of job),

that may vary over time due to changes in technology or discrimination, and that are observable

to both the firm and the econometrician. These characteristics include features such as the major

or field of study at college, race, and sex. The scaling factor ρt is a positive parameter that

measures how closely ability, ηit, is related to productivity and may also vary over time as the

importance of skill (or ability) in production changes. Finally, εit is a normally distributed random

disturbance term that is meant to capture other individual characteristics independent of ability

that influence productivity (e.g., luck, random match quality) that are observable to the firm but

not the econometrician.

The objective of the firm is to set a wage policy in order to maximize expected profits from

a new college graduate worker. Competition among firms, however, ensures that profits are zero in

expectation, and so

wit(GPAit, SELit) = ait + ρtE[ηit | GPAit, SELit] + εit, (2)

where wit represents log wages. The firm’s wage schedule depends on how it forms an expectation

of a worker’s ability given both the GPA and selectivity signals, and this will be a function of

optimal student behavior.

3.2 Student’s Problem

The student faces a two-stage problem. In the first stage, which occurs during high school, she is

concerned with the type, or selectivity, of college she will attend. (As the labor market of interest

is new college graduate workers, the effective student population includes only those who graduate

from college and then enter the workforce.) For simplicity, suppose there are two types of colleges,

indexed by j and denoted selective (j = 1) and less selective (j = 0), respectively. While admission

to the less selective type is guaranteed, entrance to selective schools is competitive and requires

effort, e1 ∈ [0,∞), from the student.

Let P (e1) equal the probability of getting into college type j = 1 given effort level e1. The
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function P (·) is described by

P (e1) =


ε if e1 < ẽ1

f(e1); f ′(e1) > 0, f ′′(e1) < 0, lime1→∞ f(e1) = 1 if e1 ≥ ẽ1.

(3)

For effort levels below some threshold ẽ1, the probability of admittance into the selective tier of

colleges is fixed at ε, which is assumed to be close to zero.4 Only for effort levels above ẽ1 does

the likelihood of admittance begin to increase, and in a concave fashion. The probability function

thus allows for non-smooth returns to effort, as might be the case under certain admit/reject rules

at selective colleges (Toor 2001).

Effort, which here can be thought of as the time and energy put into studying during high

school, is costly. However, students find exerting a given amount of effort less costly the greater is

their ability. The cost of high school effort is given by

C1(e1) =
α2

η + α1
e1 +

α3

2(η + α1)
e2

1, (4)

where α1, α2, and α3 are each positive constants.5

In the second stage, the student has observed the admission outcome and knows what type

of college she will attend.6 At the chosen college type, she must again decide how hard to work,

e2 ∈ [0,∞), but this time the outcome of interest is her grade point average (GPA), a summary

measure of academic performance. GPA is an affine function of effort, but there is a random noise

additive component as well. This error term is independent of effort (and ability) and may reflect

personality matches between the student and the professor, arbitrary grading, or simple luck. Thus,

GPA(e2) = γ1 + γ2e2 + ν; ν ∼ N(0, σ2
ν), (5)

where γ1 and γ2 are positive constants. In writing the GPA-effort relationship this way I have made

4The ε term is a simplification meant to capture students who may gain entry to selective schools through non-
academically competitive means, such as legacies and scholarship athletes.

5The value of α1 is such that η + α1 > 0 for all but a trivially small range of η.
6In equilibrium, there is a wage premium from attending the selective type, and students’ beliefs behave accordingly.
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two assumptions. First, GPA is related linearly to effort. This is problematic in the sense that GPA

is typically measured on a bounded 4-point scale and equation (5) allows for an unbounded GPA.

However, as long as optimal effort levels are in a suitably restricted range, the unboundedness issue

should not be a major concern.7 Second, the GPA function is independent of college type. It turns

out the qualitative implications of the model are not affected by this restriction (see Appendix B),

and so I proceed for now under (5).

The effort cost function in this stage is similar to that in the first stage:

C2(e2) =
δ2

2(η + δ1)
e2

2, (6)

where δ1 and δ2 are each positive constants.8

Combining both stages, the student’s objective can be written

Maxe1,e2 Ui = w (SEL(e1), GPA(e2))− C1(e1; η)− C2(e2; η), (7)

where w is the log wage earned conditional on GPA and SEL, an indicator variable for whether

j = 1, and the η subscripts in the cost functions reflect their dependence on a student’s ability.9

3.3 Solution Characteristics

The student’s problem can be solved with backward induction, beginning with the second stage.

At the chosen school type j, the first-order condition implies

e∗2j =
(η + δ1)γ2

δ2
· ∂w(·)
∂GPA

∣∣∣
SEL=j

. (8)

The student equates the marginal cost of exerting effort with the marginal benefit of higher wages

resulting from a higher grade point average. The student’s belief of how the wage offer changes

7Related is that the boundedness of GPA implies ν is not strictly independent of effort. Empirically, this seems to be
trivial, however, with approximately 1 percent of individuals recording the maximum 4.0 GPA. As such, I treat this
issue as ignorable.

8The value of δ1 is such that η + δ1 > 0 for all but a trivially small range of η.
9Equation (7) assumes students are risk neutral. In Appendix C, I briefly sketch how behavior changes when agents
are risk-averse.
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with GPA, and how this relationship may differ by college selectivity, is key to determining optimal

effort. If the belief is that wage changes linearly with GPA, then ∂w(·)
∂GPA

∣∣∣
SEL=j

is a constant (which

may differ for j = {0, 1}), and optimal effort rises linearly with a student’s ability.10 This leads to

the common-sense prediction that, within a school type, average GPA should be higher among the

higher-ability students.

Substitution of optimal effort into equation (5) yields:

GPAij
(
e∗2j(ηi)

)
= γ1 +

(
(ηi + δ1)γ2

2

δ2
· ∂w(·)
∂GPA

∣∣∣
SEL=j

)
+ ν, or (9)

GPAij
(
e∗2j(ηi)

)
= γ1 +

(
(ηi + δ1)γ2

2kj
δ2

)
+ ν,

under the assumption that ∂w(·)
∂GPA

∣∣∣
SEL=j

is a constant kj . (I discuss the empirical validity of this

assumption, as well as the linearity of GPA in ability, in Appendix C.)

Returning to the first stage, although the GPA function is unrelated to college type, there

may be complementarity between the two stages if k0 6= k1. Suppose, for example, that k0 > k1.

Then an individual with ability ηi will expend more effort in the second stage at a less selective

college than at a selective one, and earn a higher expected GPA. The situation would be reversed if

k1 > k0. Acknowledging this possible complementarity, the first-order condition for the first stage

is

(w(E[GPAj=1,η], SELj=1)− w(E[GPAj=0,η], SELj=0)) · dP
de∗1
≤ dC1

de∗1
, or (10)

e∗1 =


0 if α2

η+α1
+ α3ẽ1

η+α1
> f ′(ẽ1) (w(E[GPAj=1,η], SELj=1)− w(E[GPAj=0,η], SELj=0))

e∗1

∣∣∣ α2
η+α1

+
α3e∗1
η+α1

= f ′(e∗1) (w(E[GPAj=1,η], SELj=1)− w(E[GPAj=0,η], SELj=0)) , else.

Because the transition to a different selectivity college is possibly associated with a change in

expected GPA, the return to moving from a less selective to more selective institution is not simply

the partial derivative (technically, discrete change) of log wages with respect to selectivity but must

include the expected change in GPA as well. In the first-order condition, this return is expressed

10Optimal effort e∗2 is rising in η as long as ∂w(·)
∂GPA

> 0, although the relationship will cease to be linear if ∂w(·)
∂GPA

is not
a constant.
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as the discrete change in the wage as both arguments change, and it is multiplied by the change

in probability of admission that comes with increased effort. For a (unique) interior solution to

exist, this probability-weighted return must be at least equal to the marginal cost of effort at the

threshold ẽ1, where the likelihood of admission begins to rise.

The solution can perhaps best be explained graphically, as in Figure 1. For the sake of

exposition, the figure plots marginal cost and benefit curves for three ability types: high (ηH),

medium (ηM ), and low (ηL). Equation (4) implies that that marginal cost of effort has both the

slope and intercept decreasing in ability. The marginal benefit curves (dashed) capture the expected

return to moving from a less to more selective institution, weighted by the change in admission

probability from increased effort. For effort levels less than ẽ1, there is no change in admission

probability from increasing effort, and so the marginal benefit curve has a value of zero. For higher

effort levels, the concavity of f(·), the probability of admission to the selective tier, ensures that the

marginal benefit curves are downward sloping. It remains, though, to characterize the net return

from moving from a less selective to a more selective college.

Notably, for a fixed ability level, the expected return from switching selectivity levels is a

constant, since the expected GPA arguments in the wage equation are themselves constants by

second stage optimization. However, across ability levels, this expected return will vary. Since

the difference in expected GPA between selectivity tiers is larger the higher is ability,11 higher-

ability types experience a larger change in the net return from the GPA component when switching

selectivity tiers. If k1 < k0, higher-ability types enjoy a smaller expected wage gain when moving

to the more selective tier. This effectively lowers the slope of the marginal benefit curve, as shown

in Figure 1. (If, instead, k1 = k0, the marginal benefit curves would be identical across ability, and

if k1 > k0, the slope of the marginal benefit curve would become steeper as ability rises.)

Three things bear mentioning. First, students below some ability threshold (denoted η̃ and

implicitly defined by equation (10)) do not find it worthwhile to expend any effort in the first stage.

(This characterization is shown for ηL in the figure.) Only a trivial fraction of these students (ε

of them) will be admitted and attend the selective tier of colleges. Second, for students above

11E[GPAj=1,η] − E[GPAj=0,η] =
(
γ22 (δ1+η)

δ2

)
(k1 − k0).
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Figure 1: Student’s First Stage SolutionFigure 1:  Student’s First Stage Solution 

e1 

Cost/Benefit MC(ηL) 

MC(ηH) 

EMB(ηH) 

 

e1*(ηH) e1*(ηL) = 0 

MC(ηM) 

EMB(ηL) 

EMB(ηM) 

e1*(ηM) 

this threshold, optimal effort is rising in ability under relatively weak conditions.12 Third, the

threshold η̃ is rising in ẽ. (Appendix A provides proofs.) The first two features together imply that

the likelihood of gaining admission (and attending) selective schools is rising in ability. The third

feature implies, sensibly, that when more effort is required to increase the probability of gaining

admittance to selective schools, only increasingly higher-ability students will find it worthwhile to

do so.

4 Firm Expectations of Student Ability and Predictions

4.1 Moment Expectations

For a given η̃ the features described above lead to the following propositions:

Proposition 1: Mean ability is higher at more selective schools.

12Marginal cost must decline in ability faster than does the wage premium from the endogenous reduction in expected
GPA.

11



Proposition 2: A higher ability threshold, η̃, leads to a larger difference in mean ability
between more and less selective schools.13

Proposition 3: A higher ability threshold, η̃, leads to a lower variance in ability at more
selective schools.

Proposition 4: Variance in ability is lower at more selective schools when η̃ > 0.

Proofs: Appendix A.2.

Intuitively, because students who attempt selective entry are of higher average ability than those

who do not, selective colleges will have higher-ability students on average. Furthermore, raising

the ability threshold for applying must amplify the average ability gap, as the applicant pool for

selective colleges will shrink proportionately more than the less selective pool will grow.

It also follows that the variance of ability, conditional on the student having graduated from

the selective tier, is falling in η̃. This occurs nearly mechanically; a higher minimum threshold

reduces the fraction of the student population who find it worthwhile to exert effort in the first

stage, and so the conditional variance falls as a result. More generally, it is not necessarily the case

that the variance of ability at the selective tier is smaller than at the less selective tier for all values

of η̃. When η̃ > 0 this will necessarily be true, as less than half the ability distribution “applies” to

the selective schools and not all of them will get in. When η̃ < 0, whether the conditional variance

is smaller at the selective tier will depend on the shape of f(·), which will affect the skewness of

ability distributions across school types. However, in the data used in this study, far fewer than

half of the eventual college graduates reported applying to the selective tier, so it seems reasonable

that η̃ > 0 and the variance of ability is smaller at the selective tier.

How do firms incorporate both selectivity and GPA into their expectations? Recall that an

optimizing student’s GPA is linear in η plus a normally distributed, independent error term. If

η is normally distributed, conditional on selectivity, then GPA, as the sum of two independent

normal random variables, is normally distributed as well, and GPA and η are jointly distributed

as bivariate normal. As documented by Aigner and Cain (1977), among others, this would imply

13This assumes the factors that brought about the change in η̃ were exogenous; see Hoxby (2009) and Section 4.3 below
for evidence to this effect.
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that the conditional expectation of ability given selectivity and GPA is of the form

E[ηi | GPAij , SELij ] = E[ηi | SEL] +
Cov(η,GPAj)

σ2
GPAj

(
GPAij − µGPAj

)
. (11)

The conditional expectation of ability given both selectivity and GPA is linear in GPA, with both

the slope and intercept varying by selectivity tier.14

It follows from equation (2) that log wages at a given time (t subscript suppressed) are given

by

wij(GPAij , SELij) = ai + ρ

(
ψj +

(γ2
2δ
−1
2 kj)σ

2
ηj

(γ4
2δ
−2
2 k2

j )σ
2
ηj + σ2

ν

GPAij

)
+ εi, (12)

where ψj is a function of the structural parameters that depends on j, and σ2
ηj is the variance in

ability for college type j.15 The return to GPA on log wages is thus

∂wij
∂GPAij

=
ργ2

2δ
−1
2 kjσ

2
ηj

γ4
2δ
−2
2 k2

jσ
2
ηj + σ2

ν

. (13)

It was assumed earlier that, according to students’ beliefs,
∂wij

∂GPAij
= kj . In the context of (13), a

Nash equilibrium in which beliefs are accurate means that the following should hold:

∂wij
∂GPAij

=
ργ2

2δ
−1
2 kjσ

2
ηj

γ4
2δ
−2
2 k2

jσ
2
ηj + σ2

ν

≡ h(kj) = kj . (14)

Since h(·) is continuous in kj , is plausibly bounded on a closed interval, and maps to its own domain

by assumption, kj exists by Brouwer’s fixed point theorem.16

14Of course, bivariate normality is unlikely to hold exactly, as the necessary sorting by ability would occur only under
a specific f(·). Yet this assumption may not be a poor one. If the distribution of η is reasonably close to normal at
both selectivity tiers, then GPA at each tier should be approximately normal as well. In Appendix Figures 1 through
4 and Appendix C, I show that this assumption holds up quite well empirically.

15ψj ≡ µηj

(
1 −

ζjσ
2
ηj

ζjσ2
ηj

+σ2
ν

)
− (γ1ζ

− 1
2

j + γ2)

(
ζjσ

2
ηj

ζjσ2
ηj

+σ2
ν

)
, with ζj ≡ γ4

2k
2
j δ

−2
2 .

16Uniqueness is another matter. The careful reader will note that the trivial solution kj = 0 satisfies (14). However, it
can be shown that for values of σ2

ηj that accord with the empirical sample moments (Table 1) and plausible, bounded

values of σ2
ν (Appendix C.3), (14) produces unique, strictly positive values.
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4.2 Cross-sectional Predictions

How does k1 relate to k0? Since σ2
η1 < σ2

η0 , by (14) k1 6= k0. Yet, the same equation makes

it possible, for certain parameter values, for either k1 > k0 or k1 < k0. It turns out, however,

that any possible equilibrium with k1 > k0 cannot be supported as a (perfect Bayesian) Nash

equilibrium. Suppose k1 > k0, such that the return on GPA is higher at selective colleges. Then

firms must believe that, on average, the increase in ability from a one-point rise in GPA is higher

at selective colleges than at less selective colleges. But it has already been shown that the variance

in ability is smaller at selective colleges. (Indeed, this is verified empirically in Table 1.) With a

smaller variance in ability, but a fixed GPA range, it is not rational to believe that a unit change

in GPA corresponds to a larger increase in ability at selective colleges. Therefore, k1 > k0 is not a

valid equilibrium.17 Thus the only surviving equilibrium has k1 < k0. This leads to the following

prediction:

PREDICTION 1: The return on GPA should be higher at less selective schools than at more

selective schools.

Moreover, if the threshold η̃ is increased, the resulting variance in ability at selective schools, σ2
η1 ,

will be smaller. As σ2
ν and other parameters remain unchanged, however, the strength of the GPA

signal at selective schools will decline further, and thus so will k1 relative to k0.18 Thus, there exists

the next prediction.

PREDICTION 2: As the selectivity threshold becomes more restrictive (η̃ increases), the differ-

ence in the GPA returns between less selective and more selective schools should increase.

By taking equation (12) and differencing between selective and less selective colleges and then

taking the derivative with respect to GPA, one can show that the selectivity premium is a linear

function of GPA with slope k1 − k0. Since it has been argued that k1 < k0, there is another

17For k1 to be greater than k0, the necessary condition is that the ratio of the ability-GPA covariance to the variance
of GPA is larger at more selective schools (see equation (11)). This is strongly rejected in every data set. It can also
be shown using equation (14) that kj falls when σ2

ηj does.
18See Appendix C.3, “Bounding the variance of ν” for an exercise that relates the magnitudes of σ2

GPA1
and σ2

ν .
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prediction:

PREDICTION 3: The selectivity premium is falling in GPA whenever k1 < k0.

4.3 Trend Predictions

In addition to generating these predictions in a cross-section, the model can also be used to in-

vestigate the integration of the college market over the past 40 years that has been thoroughly

documented by Hoxby (2009). In effect, reductions in communication, transportation, and infor-

mation costs have nationalized (or even globalized) the college market in a way that has allowed

selective colleges to become more discriminating about which students they accept. In the context

of the model, the measure of the student population has increased faster than the supply of slots

at selective colleges. For the market to clear, the “price” of admission also needs to have risen,

or, put differently, the minimum first-stage effort threshold, ẽ, has increased.19 But, as was shown

earlier, a rise in ẽ leads to a higher η̃, and this in turn yields a higher conditional expectation and

lower conditional variance of ability at selective schools.

Taking the derivative of (13) with respect to σ2
η1 yields

∂2wi1
∂GPAi1∂σ2

η1

=
ργ2

2δ
−1
2 kjσ

2
ν[

γ4
2δ
−2
2 k2

jσ
2
η1 + σ2

ν

]2 > 0. (15)

Since σ2
η1 should be falling, this implies that the return on GPA at more selective colleges should

decline as ability sorting increases.

Additionally, Murnane Willett, and Levy (1995) and Heckman and Vytlacil (2001), among

others, have documented a rising return to skill or ability since the 1980s. In the context of the

model, this corresponds to a rise in ρt, the association between ability and productivity. While

equation (14) clearly shows that the return on GPA is rising in ρ, it should be noted that the

effect is more pronounced the larger is kj . It follows that the return on GPA should have increased

19Bound, Hershbein, and Long (2009) discuss these changes in more detail and provide extensive evidence that measures
of high school effort have increased greatly among those who attend and apply to selective colleges. They also show
that in the absence of this increased effort, the probability of admission to selective colleges would have fallen over
time.
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faster at less selective schools than at more selective schools. Combining the changes in σ2
η1 and ρ

produces the final prediction:

PREDICTION 4: The difference in the return on GPA at less selective and more selective schools

should grow larger over time.

5 Data and Empirical Strategy

5.1 Data

To test the implications derived above, I use three panel surveys of students conducted by the Na-

tional Center for Education Statistics: the National Longitudinal Study of the High School Class

of 1972 (NLS72), the High School and Beyond (HSB), and the National Education Longitudinal

Study (NELS). These data are supplemented by two additional data sets: Project Talent (PT) and

the National Longitudinal Survey of Youth, 1997 (NLSY97). Each of these nationally representa-

tive data sets tracks students beginning in secondary school, following them through postsecondary

education and the transition into the workforce. They contain detailed information on postsec-

ondary schools attended, degrees earned, course grades, and job characteristics. They also contain

the results of an aptitude test battery administered to the students during adolescence, typically

the senior year of high school; this score can be used as a measure of ability.20 Importantly, the

restricted-access versions of these data sets, used in this paper, allow the identification of all post-

secondary institutions attended and, for the NCES data, have complete postsecondary transcript

data for students who reported attending a postsecondary institution. Each survey is similar in

scope and types of questions asked but covers cohorts roughly 10 years apart—college graduates

in the mid 1960s (PT), late 1970s (NLS72), late 1980s (HSB), late 1990s (NELS), and mid-to-late

2000s (NLSY97). They thus facilitate analyses for pooled cohorts that span 40 years and longitu-

dinal analyses across cohorts.21 The data appendix discusses the sampling frame of these surveys

in more detail.

20As these were low-stakes tests, the ability measure picks up both non-cognitive as well as cognitive abilities.
21I have also performed cross-sectional analysis separately for each cohort. Point estimates are qualitatively similar to

those reported in this paper, although they are less precise.
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As the focus of analysis is new college graduate workers, in each data set the sample is re-

stricted to individuals who earned their bachelor’s degrees at U.S. institutions within six years of

high school graduation and began a job after earning their bachelor’s degree.22 Furthermore, at

the time of beginning their post-college graduation job, they must have earned no additional (grad-

uate) degree, not have been enrolled in school, been working for pay with real (year 2005) hourly

earnings between 5 and 100 dollars, and have been neither self-employed nor in the military. Last,

college GPA and the bachelor-degree-granting institution must be identifiable for the respondent.23

Appendix Table 1 contains more detailed information on how the restrictions affect the sample size

for each data set.

Empirical analysis of the theoretical model described in Sections 3 and 4 rests on a practical

measure of college selectivity. The primary measure of college selectivity used in this paper is

drawn from the competitiveness index from Barron’s Profile of American Colleges (1984, 1992).

Each year, Barron’s classifies nearly all four-year colleges and universities in the country into six

categories according to their admissions selectivity. The criteria used to classify colleges includes

median ACT or SAT scores for the most recent freshman class, minimum grade point averages and

high school class rank required for admission, and the acceptance rate for applicants to the most

recent freshman class. Using an electronic data set of the Barron’s rankings for the years 1972,

1982, 1992, and 2004 that was created by Bastedo and Jaquette (2009), I create three different

binary indicators for college selectivity for each of the five data sets. The first of these indicator

variables is coded as 1 if the college is ranked in Barron’s top three categories and 0 otherwise

(Tier I); the second is coded as 1 if the college is ranked in Barron’s top two categories and 0

otherwise (Tier II); and the third is coded as 1 if the college is ranked in Barron’s top category

and 0 otherwise (Tier III). Note that these three tiers are nested; Figure 2 provides examples of

colleges in each selectivity tier. The 1972 rankings are used for Project Talent and NLS72 (or 1974

when 1972 rankings are unavailable), the 1982 rankings for HSB, the 1992 rankings for NELS, and

22For students who transfer colleges, the bachelor degree-granting institution is used. Gill and Leigh (2003) find no
wage differences among bachelor degree recipients who began at two- or four-year colleges.

23College GPA is generally taken directly from transcripts and from self-reports when not transcripts were not available.
See the data appendix for details.
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the 2004 rankings for NLSY97.24

Figure 2: Examples of Colleges in Selectivity Structure

Less Selective

Tier I

Tier II

VA Tech, Penn State, BYU, Goucher

Alabama A&M Appalachian State

Tier III
Harvard
Amherst

Michigan, Berkeley, Emory

Central MI U Florida Atlantic U

Some summary statistics of the estimation samples from each data set can be found in Table

1. A detailed description of these variables is found in the data appendix. In each data set, average

log wages of the post-graduation job typically rise with the selectivity of the institution attended,

with this gradient getting steeper over time. Average grades also consistently rise with selectivity,

but by much less than does either proxy for ability (SAT/ACT percentile or senior test score), which

is consistent with k1 < k0. Additionally, not only is the variance in either ability measure falling

as selectivity rises, but, consistent with the predictions of the model and the empirical argument

of Hoxby (2009), this becomes more pronounced over time.

24The rankings tend to be fairly consistent over time. The data appendix describes an alternative college selectivity
measure that does not vary over time, and results using this measure are discussed later as a robustness check.
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Table 1: Summary Statistics of Selected Variables

Panel A: Pooled
Variable Mean SD Mean SD Mean SD Mean SD
GPA 2.966 0.509 3.051 0.505 3.134 0.485 3.232 0.437
Barron's  Tier I: 0.305 0.460 1.000 0.000 1.000 0.000 1.000 0.000
Barron's Tier II: 0.105 0.307 0.344 0.475 1.000 0.000 1.000 0.000
Barron's  Tier III: 0.031 0.174 0.103 0.304 0.299 0.458 1.000 0.000
Female 0.574 0.495 0.550 0.498 0.522 0.501 0.515 0.501
Black 0.055 0.228 0.034 0.183 0.040 0.195 0.061 0.240
Other race 0.054 0.226 0.067 0.250 0.074 0.262 0.087 0.282
Real wage ($2005) 14.48 7.204 15.58 8.360 16.40 9.810 17.20 11.010
Full-time 0.856 0.351 0.842 0.364 0.810 0.392 0.785 0.412
SAT/ACT percentile 55.6 25.3 68.0 21.5 76.4 19.0 84.2 15.6
Senior test score 0.731 0.762 1.080 0.662 1.277 0.609 1.464 0.601

Observations

Panel B: 
Project Talent
Variable Mean SD Mean SD Mean SD Mean SD
GPA 2.624 0.480 2.640 0.514 2.628 0.467 2.565 0.273
Barron's  Tier I: 0.247 0.431 1.000 0.000 1.000 0.000 1.000 0.000
Barron's Tier II: 0.047 0.213 0.192 0.394 1.000 0.000 1.000 0.000
Barron's  Tier III: 0.004 0.065 0.017 0.131 0.090 0.288 1.000 0.000
Female 0.591 0.492 0.606 0.489 0.517 0.502 0.300 0.481
Black 0.014 0.116 0.004 0.066 0.000 0.000 0.000 0.000
Other race 0.011 0.103 0.008 0.089 0.000 0.000 0.000 0.000
Real wage ($2005) 13.88 4.454 14.78 4.412 14.60 3.828 13.69 4.290
Full-time 0.924 0.265 0.930 0.255 0.911 0.286 0.715 0.260
SAT/ACT percentile — — — — — — — —
Senior test score 0.629 0.758 1.142 0.584 1.195 0.666 1.698 0.260

Observations

Panel C: NLS72
Variable Mean SD Mean SD Mean SD Mean SD
GPA 2.955 0.478 2.981 0.502 3.012 0.525 3.043 0.503
Barron's  Tier I: 0.209 0.407 1.000 0.000 1.000 0.000 1.000 0.000
Barron's Tier II: 0.053 0.224 0.254 0.435 1.000 0.000 1.000 0.000
Barron's  Tier III: 0.009 0.094 0.043 0.203 0.170 0.377 1.000 0.000
Female 0.515 0.500 0.476 0.500 0.476 0.501 0.459 0.510
Black 0.064 0.244 0.050 0.219 0.058 0.235 0.124 0.337
Other race 0.046 0.210 0.065 0.247 0.045 0.208 0.000 0.000
Real wage ($2005) 14.42 6.857 14.71 6.776 14.94 5.779 15.15 7.219
Full-time 0.879 0.327 0.878 0.328 0.928 0.260 0.843 0.373
SAT/ACT percentile 53.9 26.2 67.6 22.4 75.9 21.9 83.2 20.0
Senior test score 0.740 0.751 1.067 0.667 1.366 0.621 1.498 0.559

Observations 2803 554 138 22

2025 490 122 11

All Tier I Tier II Tier III

Table 1: Summary Statistics of Selected Variables

All Tier I Tier II Tier III

All Tier I Tier II Tier III

8637 2404 815 231
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Summary Statistics of Selected Variables, cont’d

Panel D: HSB
Variable Mean SD Mean SD Mean SD Mean SD
GPA 2.955 0.471 2.973 0.441 3.040 0.440 3.148 0.414
Barron's  Tier I: 0.254 0.436 1.000 0.000 1.000 0.000 1.000 0.000
Barron's Tier II: 0.105 0.306 0.411 0.493 1.000 0.000 1.000 0.000
Barron's  Tier III: 0.029 0.169 0.115 0.320 0.280 0.451 1.000 0.000
Female 0.575 0.495 0.559 0.497 0.580 0.496 0.414 0.500
Black 0.066 0.248 0.041 0.199 0.056 0.231 0.125 0.336
Other race 0.054 0.225 0.056 0.230 0.045 0.209 0.031 0.175
Real wage ($2005) 12.33 7.579 13.49 9.800 14.85 12.211 14.08 4.749
Full-time 0.826 0.379 0.802 0.399 0.741 0.441 0.814 0.395
SAT/ACT percentile — — — — — — — —
Senior test score 0.732 0.802 1.145 0.652 1.330 0.538 1.709 0.504

Observations

Panel E: NELS
Variable Mean SD Mean SD Mean SD Mean SD
GPA 2.994 0.472 3.036 0.462 3.076 0.468 3.093 0.480
Barron's  Tier I: 0.336 0.472 1.000 0.000 1.000 0.000 1.000 0.000
Barron's Tier II: 0.134 0.341 0.398 0.490 1.000 0.000 1.000 0.000
Barron's  Tier III: 0.044 0.206 0.132 0.339 0.332 0.472 1.000 0.000
Female 0.576 0.494 0.515 0.500 0.463 0.499 0.490 0.502
Black 0.062 0.241 0.033 0.180 0.039 0.193 0.065 0.247
Other race 0.093 0.290 0.131 0.338 0.155 0.362 0.118 0.325
Real wage ($2005) 17.99 8.178 20.29 9.741 22.23 12.298 24.91 16.674
Full-time 0.934 0.248 0.945 0.228 0.934 0.248 0.951 0.216
SAT/ACT percentile 54.8 24.4 68.2 20.6 77.2 18.4 86.5 12.6
Senior test score 0.758 0.727 1.047 0.652 1.279 0.536 1.543 0.373

Observations

Panel F: NLSY97
Variable Mean SD Mean SD Mean SD Mean SD
GPA 3.313 0.392 3.351 0.361 3.397 0.344 3.422 0.308
Barron's  Tier I: 0.483 0.500 1.000 0.000 1.000 0.000 1.000 0.000
Barron's Tier II: 0.189 0.392 0.391 0.489 1.000 0.000 1.000 0.000
Barron's  Tier III: 0.071 0.258 0.148 0.355 0.378 0.487 1.000 0.000
Female 0.613 0.487 0.575 0.495 0.547 0.499 0.594 0.495
Black 0.072 0.258 0.041 0.197 0.036 0.186 0.028 0.164
Other race 0.068 0.252 0.059 0.236 0.060 0.237 0.106 0.308
Real wage ($2005) 13.74 7.128 14.15 7.399 13.90 5.736 14.04 5.006
Full-time 0.710 0.454 0.728 0.445 0.699 0.460 0.662 0.477
SAT/ACT percentile 58.6 24.9 68.2 21.6 75.9 18.3 82.2 16.9
Senior test score 0.810 0.758 1.044 0.709 1.253 0.660 1.308 0.732

Observations

Tier III

829 379 147 56

1078 264 98 33

Notes: Statistics shown  are weighted using sampling weights provided in the data. GPA is measured on a four point scale (0 to 4). Senior test 
scores follow a standard normal distribution (among high school seniors) within each dataset. The number of observations for SAT/ACT 
percentile and Senior test score are less than that shown, as not all sample individuals had these measures (SAT/ACT percentile unavailable in 
PT and HSB). See Data Appendix for variable construction.

All Tier I Tier II Tier III

1902 717 310 109

All Tier I Tier II

Table 1: Summary Statistics of Selected Variables, cont'd

All Tier I Tier II Tier III

Note: Statistics shown are weighted using sampling weights provided in the data. GPA is measured on a

4-point scale (0 to 4). Senior test scores follow a standard normal distribution (among high school seniors)

within each data set. The number of observations for SAT/ACT percentile and Senior test score are less

than that shown, as not all sample individuals had these measures (SAT/ACT percentile unavailable in PT

and HSB). See data appendix for variable construction.
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5.2 Methodology

In order to test Predictions 1–3, I estimate the following reduced-form of equation (12) separately

for each selectivity tier threshold using the pooled data:

wid = θ0 + θ1Sid + θ2GPAid(1− Sid) + θ3GPAid(Sid) +
∑
d

λdDd +
∑
d

λXDdXid + εid, (16)

where wid is the logarithm of the hourly wage of worker i from data set d, GPA is the college

grade point average, S is an indicator that takes the value of 1 if the individual graduated from

a selective college and 0 if she did not, Dd is a dummy for each data set, and Xid is a vector of

dummies for sex, race, and college major. The interaction between Dd and Xid allow the effect of

sex, race, and college major to vary across each data set and capture the ait term in equation (1).25

Because graduates of the same college presumably had access to similar resources in searching for

their post-graduate jobs (e.g., the same career office on campus), the idiosyncratic error εid may be

correlated among these students; variance estimation thus allows for this arbitrary within-college

correlation.

Except for the addition of the GPA variables, equation (16) appears similar to many of the

estimating equations used in the literature on the return to college quality. The parameter θ2

represents the (approximate) percent increase in wages resulting from a one-point increase in GPA

at a less selective college, and θ3 represents the same at a selective college. According to Prediction

1, θ2 > θ3. Moreover, as the threshold for selectivity grows higher, Prediction 2 posits that the

difference between θ2 and θ3 should be larger. In practice, this means that we would expect θ̂2− θ̂3

to be larger when estimated for Tier II than for Tier I (and similarly for Tier III than for Tier II).

The return to selectivity in equation (16) can vary by GPA, something that earlier work

in the return to college quality did not allow. Specifically, the return to selectivity is given by

θ1 − (θ2 − θ3)GPA. Prediction 3 implies that, since θ2 − θ3 > 0, the return to selectivity falls as

GPA rises, but that it should remain weakly positive at the maximum GPA.

25For consistency across data sets, race is coded as white, black, or other; and college major consists of 11 categories:
humanities, social sciences, psychology, life sciences, physical sciences and mathematics, engineering, education,
business, arts, health, and other.
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Furthermore, Prediction 4 argued that increasing ability-sorting across colleges and returns

to skill should intensify the first three predictions. To test this hypothesis, I divide the data into an

“early” period consisting of the data sets from the 1960s and 1970s and a “late” period consisting

of the data from the 1980s, 1990s, and 2000s. (This division accords with the findings of growing

returns to skill that began in the 1980s and also balances sample sizes.) I then estimate

wid =θ0 + θ11Sid + θ12SidLateid + θ21GPAid(1− Sid) + θ22GPAid(1− Sid)Lateid (17)

+ θ31GPAidSid + θ32GPAidSidLateid +
∑
d

λdDd +
∑
d

λXDdXid + εid,

where Lateid equals 1 if the individual is from the HSB, NELS, or NLSY97 data sets, and 0

otherwise. In this equation, θ21 gives the return on GPA at less selective schools in the early

period, θ21 + θ22 gives the return on GPA at less selective schools in the late period, θ31 gives the

return on GPA at more selective schools in the early period, and θ31+θ32 gives the return on GPA at

more selective schools in the late period. The return to selectivity is given by θ11− (θ21− θ31)GPA

in the early period, and by θ11 +θ12−((θ21 + θ22)− (θ31 + θ32))GPA in the late period. Prediction

4 asserts that θ22 > θ32, which implies that the return on GPA has grown faster at less selective

schools and that the return on selectivity, while higher on average, has declined more rapidly with

GPA.

6 Estimation Results

6.1 Pooled Model

Table 2 presents the results from estimating equation (16) on the pooled data. Columns 1–3 use

selectivity tier I, II, and III, respectively, on the entire eligible sample, while columns 4–6 repeat

the analysis on the full-time worker sample. At less selective colleges, the return on GPA is highly

significant at about 9 percent for the whole sample, regardless of the selectivity threshold. However,

these returns are uniformly smaller at selective colleges, and for tier II and tier III colleges, the

returns are statistically indistinguishable from zero. Of course, the standard errors tend to be much

larger for the selective college GPA estimates, especially at the higher tiers, because the effective
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sample sizes are so much smaller. Consequently, the null hypothesis that the returns on GPA

are the same across selectivities cannot be rejected at conventional levels in columns 1 through 3.

Nonetheless, the point estimates are fairly close to 0 for selective colleges in columns 2 and 3.

Table 2: Log Hourly Wages on GPA by Selectivity

(1) (2) (3) (4) (5) (6)
Selectivity Tier Tier I Tier II Tier III Tier I Tier II Tier III

Sel. Dummy @ GPA=3.0 0.075*** 0.097*** 0.145*** 0.060*** 0.069*** 0.128***
[0.015] [0.025] [0.039] [0.014] [0.022] [0.037]

GPA, less-selective 0.093*** 0.093*** 0.089*** 0.113*** 0.107*** 0.103***
[0.014] [0.013] [0.013] [0.014] [0.013] [0.012]

GPA, selective 0.069*** 0.023 0.011 0.071*** 0.035 0.016
[0.023] [0.047] [0.069] [0.021] [0.035] [0.077]

p-val for diff 0.326 0.144 0.261 0.079 0.045 0.263

Full-time only? No No No Yes Yes Yes

Observations 8637 8637 8637 7580 7580 7580
Adjusted R-squared 0.238 0.236 0.235 0.262 0.260 0.259

Controls for sex, race, and
college major?

Yes Yes Yes Yes Yes Yes

Note: Estimates shown are for OLS regressions using sampling weights and data pooled across all data

sets. The dependent variable in each column is the real log hourly wage. Standard errors (in brackets) are

robust to heteroskedasticity and allow for arbitrary correlation of the error term within college. Asterisks

indicate statistical significance (* p<0.10, ** p<0.05, *** p<0.01).

For the full-time sample, the patterns are remarkably similar. Less selective college graduates

earn a GPA return of 10 to 11 percent, but graduates from selective colleges do not enjoy the same

benefit from a higher GPA. A graduate of a tier I (or higher) school earns only 0.073 log points per

point increase in GPA, and this return is statistically less than that at non-tier-I schools at the 10

percent level. The GPA returns fall monotonically as the selectivity threshold increases to tier II

and tier III. The return at tier II is one-third the size of less selective schools’, and the difference

is statistically significant at 5 percent. The tier III gap is even more dramatic, although it is not

as precisely estimated.

The pattern of these coefficients and the magnitude of their differences are striking. Fur-

thermore, these results are reasonably robust to the specific definition of selectivity. Panel A of
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Appendix Table 2, for example, repeats Table 2 using an alternative measure of selectivity sug-

gested by Black and Smith (2006) that is based on college inputs. The table shows similar, if

noisier, patterns. The data therefore confirm Predictions 1 and 2.26

Figure 3: Selectivity premium, by GPA (Tier II, full-time workers)
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The selectivity return is statistically significantly different (at 5 percent) for any two GPA values for the 1960s-2000s  
sample and the 1980s-2000s sample, but not the 1960s-1970s sample. 
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Note: Line markers indicate pointwise statistical significance against a null of 0 at the 5 percent

level. The selectivity return is statistically significantly different (at 5 percent) for any two GPA

values for the 1960s–2000s sample and the 1980s–2000s sample, but not the 1960s–1970s sample.

Although Table 2 shows that the selectivity premium estimate is positive and statistically

significant at the mean GPA of 3.0, the return on selectivity implied by equation (16) is best shown

graphically. Figure 3 plots the selectivity return (in log points) against GPA for full-time workers

using the tier II definition (column 5 of Table 2), although using the sample of all workers or other

selectivity thresholds does not appreciably change the picture. Since θ̂2 > θ̂3, the selectivity return

slopes downward. Looking at the pooled 1960s–2000s sample, students with a GPA of 2.0, around

26I have also estimated variants of (16) that interact selectivity with the controls for sex, race, and major. These
interaction coefficients typically are small and statistically insignificant for sex and race, although the returns to
social sciences, physical sciences, and engineering (relative to humanities) are larger at selective schools. Allowing
these interactions, however, has minimal effect on the GPA estimates presented above.
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the 5th percentile of the pooled sample, earn 0.14 log points more at their first job if they graduated

from a selective college, and the marker at this point indicates that this premium is statistically

significant at the 5 percent level. The premium is reduced to about 7 percent at the sample mean

GPA of 2.97, and although it remains positive for the rest of the GPA distribution, it ceases to

be statistically different from zero at GPAs above 3.2. Perhaps more important, one can reject

that the selectivity premium is the same for any two different GPA points; thus, the 0.14 log point

premium at a GPA of 2.0 is not only different from the 0.07 log point premium at a GPA of 3.0,

it is also different from the premium of 0.13 at a GPA of 2.2.27 This confirms Prediction 3 and

provides further support for the signaling model.

6.2 The Model Over Time

Both the rising return to ability and increased ability sorting at colleges should serve to widen

the gap in GPA returns between selective and less selective colleges (equation (15)). This is tested

formally in Table 3, which is similar to Table 2 but provides estimates separately for the 1960s–1970s

and 1980s–2000s periods.

Panel A shows that in the early period, graduates of less selective colleges earned a statistically

significant return on GPA of between 5 and 7 percent. Their counterparts at selective colleges earned

a much lower premium: at tier I colleges, the return is marginally significant at 3–4 percent; at

the more selective tier II and tier III colleges, the point estimates are essentially zero. However,

these gaps are small enough in magnitude (and the selective college GPA coefficients are too noisily

measured) that a null of no difference between the groups cannot be rejected.

Switching to panel B and the late period, the coefficient estimates for graduates of less

selective schools are about 0.13 for the whole sample and 0.14– 0.15 for full-time workers. At

tier I colleges, the GPA return, while statistically significant, is about half this size. For the full

sample, the gap in the GPA return widens from 0.018 in the early period to 0.059 in the late period,

roughly tripling, though the latter difference just fails statistical significance. For full-time workers,

however, the gap rises from 0.030 to 0.071 and is significant at the 10 percent level.

27The linearity of GPA results in all Wald statistics of selectivity differences across GPA having the same value.
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Table 3: Log Hourly Wages on GPA by Selectivity and Time Period

Panel A: Pooled, early (1) (2) (3) (4) (5) (6)
Selectivity Tier Tier I Tier II Tier III Tier I Tier II Tier III

Sel. Dummy @ GPA=3.0 0.046*** 0.021 -0.026 0.046*** 0.021 0.044
[0.020 [0.025] [0.048] [0.016] [0.025] [0.047]

GPA, less-selective 0.051*** 0.050*** 0.048*** 0.068*** 0.064*** 0.061***
[0.016] [0.015] [0.015] [0.015] [0.014] [0.014]

GPA, selective 0.033 0.004 -0.030 0.038* 0.002 -0.001
[0.023] [0.036] [0.127] [0.020] [0.042] [0.147]

p-val for diff 0.489 0.236 0.542 0.195 0.155 0.676

Panel B: Pooled, late (1) (2) (3) (4) (5) (6)
Selectivity Tier Tier I Tier II Tier III Tier I Tier II Tier III

Sel. Dummy @ GPA=3.0 0.094*** 0.129*** 0.173*** 0.071*** 0.088*** 0.142***
[0.021] [0.034] [0.048] [0.020] [0.029] [0.044]

GPA, less-selective 0.135*** 0.132*** 0.122*** 0.154*** 0.146*** 0.136***
[0.022] [0.019] [0.020] [0.023] [0.020] [0.019]

GPA, selective 0.076** -0.004 -0.015 0.083** 0.027 0.006
[0.036] [0.067] [0.075] [0.033] [0.044] [0.086]

p-val for diff 0.152 0.048 0.075 0.073 0.012 0.135

p-val for diff-in-diff 0.419 0.235 0.666 0.372 0.323 0.673

Full-time only? No No No Yes Yes Yes

Observations 8637 8637 8637 7580 7580 7580
Adjusted R-squared 0.240 0.239 0.237 0.264 0.262 0.261

Controls for sex, race, and
college major?

Yes Yes Yes Yes Yes Yes

Note: Estimates shown are for OLS regressions using sampling weights. The dependent variable in each

column is the real log hourly wage. Panel A shows results from the 1960s and 1970s and Panel B from

the 1980s, 1990s, and 2000s. Standard errors (in brackets) are robust to heteroskedasticity and allow for

arbitrary correlation of the error term within college. Asterisks indicate statistical significance (* p<0.10,

** p<0.05, *** p<0.01).

At tier II and III schools, the growth in the gap is more pronounced, largely because the

return on GPA at these selective schools did not change at all. Among all workers, the tier II gap

grows from 0.046 to a statistically significant 0.136, and the tier III gap increases from 0.078 to

0.137. For full-time workers, these gaps jump from 0.062 to 0.119 and 0.062 to 0.130. Only the

last of these, owing to the small sample size of tier III grads, fails to be statistically significant.28

28The GPA estimates for less selective colleges are lower when the selectivity threshold is higher because the less
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Moreover, these results are robust to using the alternative quality index definition of selectivity, as

shown in Appendix Table 2, panels B and C.

When one attempts to measure whether the growth in the GPA return gaps is statistically

significant, this difference-in-difference, while of a nontrivial magnitude, comes up short. Despite

this growth averaging (across selectivity tiers) about 0.06 log points, greater than the GPA returns

at less selectives in the early period, the estimates at selective schools are too noisily measured for

a double difference to have sufficient precision for these data. While a null of no growth in the gap

cannot technically be rejected, the size of the point estimates is suggestive.

Returning to Figure 3 and the selectivity premium by GPA, we find that not only has the

selectivity premium risen throughout the GPA range between the 1960s–1970s and 1980s–2000s

periods, but, as a consequence of θ̂22 being larger than θ̂32, the premium’s decline with GPA has

become more pronounced. The selectivity premium at a GPA of 2.0 increased from 0.083 log points

in the early period to 0.207 log points in the late period, for a gain of 0.124. At a GPA of 3.0, closer

to the mean, the selectivity premium rose from a statistically insignificant 2 percent to 9 percent.

While this growth is considerable, it is much smaller than the gain at a 2.0 GPA, and growth in the

selectivity premium at higher levels of GPA is smaller still and generally not statistically significant.

Furthermore, while one can easily reject that the selectivity premium does not vary with GPA in

the later period, this hypothesis cannot be rejected in the early period, where both the level and

slope are smaller.

These results support Prediction 4, that the GPA return gap between more and less selective

schools has widened over time and, consequently, that the selectivity premium has become more

dependent on GPA. Moreover, the specific mechanisms underlying the prediction are supported.

The GPA return at less selective schools has unambiguously risen as ρ has increased. The GPA

return at more selective colleges has barely changed over time: not only is the effect of ρ on these

GPA returns weaker than at less selective colleges, but the shrinking ability variance would have

served to reduce the GPA return (equation 14). On net, then, it is perhaps not surprising that the

selective group includes the tier I colleges that are not tier II (columns 2 and 5) or the tier II colleges that are not tier
III (columns 3 and 6). If the tier III selective college estimate in panel B is compared with the less selective estimate
from column 4, the two are statistically different at 10 percent.
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GPA return has changed so little at selective colleges.

7 Conclusion

This paper formalizes and tests a model of ability signaling to explain the return to college quality

that has been documented in the literature. Notably, it is the first work to both theoretically

rationalize and empirically test a specific mechanism for this return. Based on data that span

five decades of students, the empirical results are consistent with the signaling model. Not only is

the return on GPA smaller at selective schools than at less prestigious institutions, the return on

selectivity itself declines as GPA, and average ability, rise.

Of course, that the patterns observed in the data are consistent with signaling cannot con-

clusively rule out alternative explanations, including variants of the human capital model. More

specifically, while I have assumed a production function where the signals of GPA and selectivity

provide information about the unknown ability parameter η, the production function could include

a value-added component, f(ηi, SELi, GPAi(e)), where f(·) represents the productive value added

by graduating from college, and may depend on the individual’s initial ability, the selectivity or

prestige of the college attended, and the effort exerted (as passed through the GPA function). While

existing data do not allow the examination of this productive value added, it is interesting that in

their survey of learning during college, Arum and Roksa (2011) do not find significant differences

in the correlations of GPA with learning (as measured by the Collegiate Learning Assessment) by

school selectivity. Their finding, along with the varying “return” to GPA by college selectivity

found in this paper, imply restrictions on any generalized value-added model that seeks to explain

the college selectivity premium.

None of this is meant to imply that institutions of higher education should be thought of

primarily as signaling devices for students. Indeed, nothing in the model or the empirical results

is inconsistent with college-going providing human capital to students. Rather, the intent of this

paper is to show that signaling provides a compelling alternative mechanism underlying the college

selectivity premium.

Moreover, the signaling model is appealing in that it can aid in understanding other stylized
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facts in the literature. For example, Bound, Hershbein, and Long (2009) document the increase

in competitive behavior among high school students trying to get admitted into selective colleges,

while Babcock and Marks (2011) show that study and class time among college students have

declined sharply over the past 40 years. The rising return to selectivity partially brought about by

increased ability sorting may help explain this apparent shift in effort from college (second stage)

to high school (first stage). Because the greater degree of sorting leads to less variance in ability at

selective schools and makes GPA a noisier signal there, students have less incentive to work as hard

as they did previously. As the top students increasingly attend the selective colleges, the average

aptitude at less selective colleges falls, and thus so does the average effort. We would therefore

expect study time to decline across the selectivity spectrum, as Babcock and Marks (2010) find.

Finally, the model also suggests why employers appear to learn about the productivity of college

graduate workers much faster than that of high school graduate workers (Arciadocono, Bayer, and

Hizmo 2010): the signals that college graduates can send to employers are more revelatory of ability

than those from high school graduates, so there is less to to be learned.29 Human capital models

that seek to explain the selective college premium should also reconcile these stylized facts in order

to be persuasive.

It is also worth emphasizing that the evidence in favor of signaling is not at odds with

the findings of (ability-adjusted) returns to college selectivity in midcareer. Although employer-

learning papers typically assume that the the role of the signal generally diminishes over time as

the underlying characteristic that firms care about is revealed through experience (Altonji and

Pierret 2001, Lange 2007, Arciadocono et al. 2010), this need not be true in the presence of job

frictions where the initial signal can affect the productivity profile. In fact, Heisz and Oreopoulos

(2006) find empirical support for this exact type of labor friction using data on Canadian college

graduates and the types of training they receive as a function of their initial job placements. In

turn, Bose and Lang (2011) provide a microtheoretical foundation for this friction as firms try to

match specific tasks to the workers they think are best able to handle them; as the initial task

assignments are based on what the firms observe ex ante about the workers, the signals play a

29I present evidence of this phenomenon in Appendix D.
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role in further training and the chance of promotion. In the presence of career ladders, first jobs

matter because they open doors; as a consequence, a medium-ability student who graduated from

a selective college can have better career opportunities than a high-ability student who graduated

from a less selective college.

More generally, the two-dimensional signaling framework presented here is relevant to settings

other than the new college graduate labor market. For example, it could also be applied to an

experienced labor market where a worker sends signals of her productivity both through the last

company she worked for (the “selectivity” indicator) and her list of accomplishments while she

worked there (the “GPA” measure). The general idea in this context is that a prospective employer

can better infer the worker’s innate productivity from where she has worked than it can from a

series of bullet points playing up her contributions. This context is also attractive because it ties

directly into the one described in this paper through a career ladder mechanism, magnifying the

incentives faced as far back as high school (if not farther) for the forward-looking student.
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Appendices

Appendix A: Proofs

Section 3

Claim: Below η̃, students exert no effort in first stage.

Proof: Follows immediately from first-order conditions in (10) and definition of η̃:

α2

η̃ + α1
+

α3ẽ1

η̃ + α1
= f ′(ẽ1) (w(E[GPAj=1,η̃], SELj=1)− w(E[GPAj=0,η̃], SELj=0)) . �

Claim: Above η̃, e∗1 is rising in η if marginal cost falls in ability faster than does expected marginal

benefit.

Proof: Totally differentiating (10) yields:(
−α2 − α3e

∗
1

(η + α1)2

)
dη +

(
α3

η + α1

)
de∗1 = f ′′(e∗1) · w(·) · de∗1 + f ′(e∗1)

∂w(·)
∂η

.

Rearranging and evaluating ∂w(·)
∂η :

[
−α2 − α3e

∗
1

(η + α1)2
− f ′(e∗1)(k2

1 − k2
0)
γ2

2

δ2

]
dη =

[
−α3

η + α1
+ f ′′(e∗1) · w(·)

]
de∗1, or

de∗1
dη

=

−α2−α3e∗1
(η+α1)2

− f ′(e∗1)(k2
1 − k2

0)
γ22
δ2

−α3
η+α1

+ f ′′(e∗1) · w(·)
.

The denominator is strictly negative. The numerator will be negative (and the quotient positive)

if and only if −f ′(e∗1)(k2
1 − k2

0)
γ22
δ2
<

α2+α3e∗1
(η+α1)2

. Note that the second term is strictly positive and

−f ′(e∗1) is negative. If k1 ≥ k0, the quotient will always be positive. If k1 < k0, the condition binds,

with the left-hand side of the inequality representing the slope of expected marginal benefit and

the right-hand side the slope of marginal cost. �

Claim: η̃ is rising in ẽ.

Proof: This follows from the previous claim by replacing e∗1 with ẽ and η with η̃. However, as

w(·) is a function of η and not η̃, ∂w(·)
∂η̃ = 0. The quotient is thus unambiguously positive. �

Section 4

Proposition 1: E[η | j = 1]− E[η | j = 0] > 0.
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Proof: A firm’s expectation of the ability of a student who graduated from a selective college is:

E[η | j = 1] =

∫ ∞
−∞

ηP (e1(η))φ(η)dη

∣∣∣∣ j = 1

=
εΦ(η̃)

εΦ(η̃) +
∫∞
η̃ f(e∗1(η))φ(η)dη

∫ η̃
−∞ ηφ(η)dη∫ η̃
−∞ φ(η)dη

+

∫∞
η̃ f(e∗1(η))φ(η)dη

εΦ(η̃) +
∫∞
η̃ f(e∗1(η))φ(η)dη

∫∞
η̃ ηf(e∗1(η))φ(η)dη∫∞
η̃ f(e∗1(η))φ(η)dη

=
−εφ(η̃) +

∫∞
η̃ ηf(e∗1(η))φ(η)dη

εΦ(η̃) +
∫∞
η̃ f(e∗1(η))φ(η)dη

,

where φ(·) and Φ(·) are the standard normal density and cumulative distribution functions, respec-

tively. Similarly, the firm’s expectation of ability if the student had graduated from a less selective

college is:

E[η | j = 0] =

∫ ∞
−∞

ηP (e1(η))φ(η)dη

∣∣∣∣ j = 0

=
(1− ε)Φ(η̃)

(1− ε)Φ(η̃) +
∫∞
η̃ [1− f(e∗1(η))]φ(η)dη

∫ η̃
−∞ η(1− ε)φ(η)dη∫ η̃

−∞ φ(η)dη

+

∫∞
η̃ [1− f(e∗1(η))]φ(η)dη

(1− ε)Φ(η̃) +
∫∞
η̃ [1− f(e∗1(η))]φ(η)dη

∫∞
η̃ η[1− f(e∗1(η))]φ(η)dη∫∞
η̃ [1− f(e∗1(η))]φ(η)dη

=
−(1− ε)2φ(η̃)− φ(η̃)−

∫∞
η̃ ηf(e∗1(η))φ(η)dη

(1− ε)Φ(η̃) + 1− Φ(η̃)−
∫∞
η̃ f(e∗1(η))φ(η)dη

=
−(1− ε)2φ(η̃)− φ(η̃)−

∫∞
η̃ ηf(e∗1(η))φ(η)dη

1− [εΦ(η̃) +
∫∞
η̃ f(e∗1(η))φ(η)dη]

.

The difference in expected ability from attending a more versus less selective college can be ex-

pressed as:

E[η1]− E[η0] =
−εφ(η̃) +

∫∞
η̃ ηf(e∗1(η))φ(η)dη

εΦ(η̃) +
∫∞
η̃ f(e∗1(η))φ(η)dη

+
(1− ε)2φ(η̃) + φ(η̃) +

∫∞
η̃ ηf(e∗1(η))φ(η)dη

1− [εΦ(η̃) +
∫∞
η̃ f(e∗1(η))φ(η)dη]

.

Note that both denominators are positive by construction and that
∫∞
η̃ ηf(e∗1(η))φ(η)dη > 0, since

f(·) is increasing in its argument. Thus every term in both numerators is positive, except for

−εφ(η̃); however, it was assumed that ε is close to zero. It therefore follows that E[η1]−E[η0] > 0.

�

Proposition 2: ∂(E[η | j=1]−E[η | j=0])
∂η̃ > 0.
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Proof: For ε→ 0, we have:

E[η1]− E[η0] ≈
∫∞
η̃ ηf(e∗1(η))φ(η)dη∫∞
η̃ f(e∗1(η))φ(η)dη

+
2φ(η̃) +

∫∞
η̃ ηf(e∗1(η))φ(η)dη

1−
∫∞
η̃ f(e∗1(η))φ(η)dη

.

An application of Leibnitz’s rule shows that:

∂ (E[η1]− E[η0])

∂η̃
=
f(e∗1(η̃))φ(η̃)

[∫∞
η̃ ηf(e∗1(η))φ(η)dη − η̃

∫∞
η̃ f(e∗1(η))φ(η)dη

]
[∫∞
η̃ f(e∗1(η))φ(η)dη

]2

−
2η̃φ(η̃)

(
1−

∫∞
η̃ f(e∗1(η))φ(η)dη

)
+ η̃f(e∗1(η̃))φ(η̃)(1− 2φ(η̃))[

1−
∫∞
η̃ f(e∗1(η))φ(η)dη

]2 .

The first term is unambiguously positive. Suppose η̃ < 0. Then the second term is unambiguously

negative, and the whole expression is positive. If η̃ = 0, then the second term equals zero, and the

whole expression is again positive. If η̃ > 0. �

Proposition 3:
∂V (ηj=1)

∂η̃ < 0.

Proof: For a standard normally distributed random variable η and constant η̃, V (η|η > η̃) =

1 −
[

φ(η̃)
1−Φ(η̃)

]2
+ η̃

[
φ(η̃)

1−Φ(η̃)

]
. V (ηj=1) is actually k · V (ηf(η)|η > η̃), where k is a positive constant

that adjusts for the renormalization of the distribution of ηf(η) on the interval from η̃ to infinity.

Since k is a constant and f(η) is a positive-valued increasing function, the derivative of V (η|η > η̃)

will have the same sign as the derivative of k · V (ηf(η)|η > η̃). It thus suffices to show that the

derivative of the first variance is negative. But this is true trivially. As η̃ → −∞, the variance

approaches that of a standard normal, 1; as η̃ → ∞, the variance collapses to 0. Symmetry and

single-peakedness of the normal distribution imply that the variance must fall monotonically. �

Proposition 4: V (ηj=1) < V (ηj=0) if η̃ > 0.

Proof: First note that, because f(·) is increasing and maps between 0 and 1, it follows that

V (ηj=1) = V [ηf(e∗1(η))|η > η̃] < V [η|η > η̃] = 1 −
[

φ(η̃)
1−Φ(η̃)

]2
+ η̃

[
φ(η̃)

1−Φ(η̃)

]
. Next, because some

individuals with η > η̃ do not get admitted to the selective college and instead attend the less

selective college, V (ηj=0) = V [[η(1 − f(e∗1(η)))|η > η̃] + [η|η < η̃]] > V [η|η < η̃] = 1 −
[
φ(η̃)
Φ(η̃)

]2
−
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η̃
[
φ(η̃)
Φ(η̃)

]
. It thus suffices to show that:

1−
[

φ(η̃)

1− Φ(η̃)

]2

+ η̃

[
φ(η̃)

1− Φ(η̃)

]
< 1−

[
φ(η̃)

Φ(η̃)

]2

− η̃
[
φ(η̃)

Φ(η̃)

]
, or[

φ(η̃)

1− Φ(η̃)
− η̃

2

]2

−
[
φ(η̃)

Φ(η̃)
+
η̃

2

]2

> 0.

When η̃ = 0, symmetry implies that the first term in brackets is equal to the second terms in

brackets, and thus the whole expression is equal to 0.

Note, using L’Hôpital’s rule, that the first term in brackets approaches 0 as η̃ → −∞ and

is monotonically increasing; likewise, the second term in brackets approaches 0 as η̃ → ∞ and is

monotonically decreasing. �

Appendix B: Relaxing functional form on the GPA-effort function

In Section 3, the relationship between effort and GPA, given by equation (5), assumed the same

linear function for all college tiers. If the relationship does vary across selectivity type, it is not

clear how, à priori. For example, it could be argued that classes are more difficult at more selective

schools, which could imply a lower γ1 at these schools if more effort is required to obtain the same

expected grade. On the other hand, it has also been argued that grade inflation is more prevalent

at selective schools (Kuh and Hu 1999), which could suggest a higher γ1 and lower γ2.

Here I allow the linear relationship to vary by college tier and sketch how the solution char-

acteristics change from the canonical setup. Suppose that the GPA function is now

GPAj(e2) = γ1j + γ2je2 + ν,

where the j subscript indicates that the coefficients are specific to college type. Because there exists

a well-defined maximum GPA in the data (4.0), the functions should converge as effort increases,

leaving two cases of interest.

Case 1: γ11 > γ10 ; γ21 < γ20, or there is a higher intercept but smaller slope at the more selective

tier. This case could correspond with greater grade inflation/compression at selective schools, as

the return on effort to GPA is diminished. As indicated by equation (8), the lower slope implies a

contraction of effort across the ability distribution at selective schools. On the other hand, ∂w
∂GPA

may rise, since for a fixed change in expected GPA, there is now a larger variation in ability.30 Thus

the difference in effort distribution from the original setup is uncertain, but higher-ability students

still exert more effort at each school type. Functionally, this should lead to a smaller difference in

the returns to GPA at the different tiers relative to the homogeneous case.

30In the absence of the error term ν, grade inflation/compression can make grades more important to employers, since
average ability levels vary more across grades. This effect will be mitigated, however, the larger is the variance of ν.
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Case 2: γ11 < γ10 ; γ21 > γ20, or there is a lower intercept but steeper slope at the more selective

tier. This case could correspond with harder classes (or smarter peers) at selective schools, with

more effort required to achieve the same expected grade as at less selective schools. As indicated by

equation (8), the steeper slope implies an increase of effort across the ability distribution at selective

schools. On the other hand, ∂w
∂GPA may fall, since for a fixed change in expected GPA, there is now

a smaller variation in ability. Thus the difference in effort distribution from the original setup is

again uncertain, but higher-ability students still exert more effort at each school type. Functionally,

this should lead to a larger difference in the returns to GPA at the different tiers relative to the

homogeneous case.

Appendix C: Empirical Support for Model Assumptions

C.1: Linearity of GPA in effort and ability

The model in Section 3 makes a strong functional form assumption that expected GPA is linear in

effort (equation (5)). With the additional assumption of normally distributed ability, optimization

implies that (1) average GPA is a linear function of ability and (2) average wages are a linear

function of GPA. (Both of these slopes can, and generally will, vary across selectivity tiers.) This

appendix section provides empirical support for these assumptions using both graphs and statistical

tests.

To demonstrate the validity of (1), Appendix Figures 5 and 6 present nonparametric estimates

of GPA on the normalized senior test score for less selective colleges and for selectivity tier II.31 Each

figure has six panels: one that pools all cohorts, and one for each cohort separately. The relationship

in the first panel of Appendix Figure 5, which pools all the data from less selective colleges, shows

a distinct linear pattern between ability and GPA. The only appearance of strong curvature occurs

at the endpoints of the ability distribution, where there are few observations and large standard

errors, as shown by the shaded 95 percent confidence bands. The other panels of the figure show this

pattern holds across each data set individually except for Project Talent in the 1960s, which shows

a slight convex shape. Notably, this is the sole data set for which only categorical self-reported

GPA is available, and aggregation effects may overly influence the nonparametric estimates. For

selectivity tier II in Appendix Figure 6, the relationships are noisy, but it is easy to see that a

straight line lies within each panel’s confidence band. Furthermore, higher-order global polynomial

specifications (beyond linear) are rejected empirically. Taken together, there seems little evidence

from these graphs to call into question the assumption of linearity of GPA in ability.

While it follows from this assumption that average wages should be linear in GPA, I test

this, too. I modify equations (16) and (17) to allow for selectivity-specific quadratics or cubics in

31The specific procedure is a local linear regression using an Epanechnikov kernel with the bandwidth that minimizes
integrated squared error. Nonparametric estimate for the other selectivity tiers are not shown for brevity but are
available on request.

38



GPA. Wald tests are then performed on the higher-order polynomial terms against a null of zero;

a rejection would suggest that wages are not, in fact, linear in GPA. Appendix Table 3 shows the

F-statistics and p-values from these Wald tests. Panel A presents pooled data, while panels B and

C perform tests separately for the “early” and “late” periods.

Panel A shows that while nonlinearity does not seem to present among the sample of all

workers (columns 1 through 3), there is some evidence in favor of a quadratic specification among

full-time workers who graduated from less selective colleges. Specifically, the Wald tests in columns

4 and 5 can reject the null at 10 percent, though not at 5 percent. The quadratic pattern suggested

by the data is convex, such that the return on GPA is rising in GPA. Tracing out the estimates,

the return on GPA at less selective colleges exceeds the return at more selective colleges once GPA

reaches 2.6, about half a standard deviation below the mean. Thus, even allowing this nonlinearity

would not alter the conclusion that GPA returns are larger at less selective colleges.

Panels B and C show that the nonlinear GPA returns are driven entirely by the early period

and actually prefer a cubic specification. (Interestingly, it is in Project Talent in the early period

where evidence of a nonlinear GPA-ability relationship was found.) Tracing out the estimates in

this case reveals that GPA returns are higher at less selective colleges except at the highest portion

of the GPA distribution (GPA ≥ 3.5), which is relatively sparse in the early period. Therefore, this

does not seem a major threat to the model assumptions, either. In sum, the linearity assumptions

are empirically plausible.

C.2: Empirical densities of GPA and ability

Appendix Figures 1 and 2 show kernel density estimates of GPA across selectivity tiers for each of

the five data sets used in the paper.32 At less selective institutions, in each time period, the esti-

mated densities appear approximately normal upon visual inspection, with a single peak, minimal

skewness, and only slight truncation at the upper bound of 4. While the densities at the selective

tiers are not quite as well behaved, this is somewhat expected due to their much smaller sample

sizes. Still, even these densities tend to be unimodal and reasonably symmetric, the more so the

larger the number of observations used to construct them.

Appendix Figures 3 and 4 show similar kernel density estimates of the senior test score

measure of student ability. (I have rescaled this ability measure to have a mean of 0 and variance

of 1 among the full estimation sample to better reflect the model.) As expected, dispersion in

ability falls sharply as selectivity rises, and this is even more prevalent in the more recent periods,

except for the NLSY97, which uses a different testing scheme (see data appendix). These densities,

moreover, also exhibit an approximately normal distribution, even more so than the GPA densities

in most cases. They are all single-peaked, show little excess kurtosis, and exhibit relatively little

skewness. (The NELS densities do have slightly more pronounced left skewness, but this is at

32Bandwidth is chosen according to the Sheather-Jones plug-in method with the Epanechnikov kernel.
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least partially an artifact of the testing instrument, which exhibited a greater degree of upper-level

censoring than in earlier periods.33)

Nonetheless, I simulated data to resemble these empirical distributions in order to examine

whether the implications of bivariate normality shown in equation (11) are robust to departures

from exact normality. The resulting biases in the slope and intercept terms were minimal, on the

order of 2 percent, and the true parameters could not be statistically rejected. While it would be

a stretch to expect the densities of GPA and ability to be precisely normal in the data, treating

them as approximately normal does not seem unreasonable.

C.3: Bounding the variance of ν

A minimum bound of the variance of ν can be estimated by using equation (9) with limits on

GPA of 1 to 4. (This assumes a minimum graduation GPA threshold of 1). Then the expression(
(ηi+δ1)γ22kj

δ2

)
is effectively bounded between 0 and 3. With η ∼ N(0, 1), fewer than 1 out of 10,000

observations will take on an (absolute) value greater than 4, so with δ1 = 4, the expression ηi + δ1

is approximately bounded between 0 and 8. This implies that
γ22kj
δ2

has an effective upper bound of

0.375. The variance of GPA as given by (9) is

V (GPAij) =
γ4

2k
2
j

δ2
2

σ2
ηj + σ2

ν ,

and, in the data, this variance is approximately 0.256 at less selective schools and 0.235 at tier II

schools. If
γ22kj
δ2

= 0.375, then
γ42k

2
j

δ22
= 0.1406. Thus, even assuming that the variance in ability

conditional on selectivity (σ2
ηj ) is as large as the unconditional variance (σ2

η) of 1, the deterministic

component of GPA can account for at most 0.1406∗1
0.235 , or about three-fifths, of the overall variance,

leaving at least two-fifths due to the noise term, ν. In practice, however, the fraction of variance

in GPA due to the stochastic component is probably higher. For example, the observed empirical

support of GPA seems to have a lower bound closer to 1.5 than 1.0, and there appears to be

relatively minor censoring at a GPA of 4 (see Appendix Figures 1 and 2); together, these suggest

that
γ22kj
δ2

has an upper bound less than 0.375 and perhaps closer to 0.25. The fraction of variance

due to ν would then be on the order of 70 percent. Additionally, if σ2
ηj < 1, the relevance of ν rises

further. The importance of the random component in explaining the variance of GPA is therefore

likely substantial.

C.4: A comment on risk-averse agents

The model assumes that students are risk neutral, but if they are uniformly risk averse, qualitatively

nothing changes except effort distributions (by ability) will be compressed. Intuitively, this occurs

33This censoring does not result from the sample restriction used in this paper but is rather symptomatic of all
respondents with this metric in the NELS.

40



because higher wages—and thus effort—exhibit diminishing marginal returns to utility. If risk

aversion is positively correlated with ability, outcomes become ambiguous: college sorting by ability

is mitigated by risk aversion in the first stage, and the GPA-ability correlation is mitigated in the

second stage at less selective colleges. (Greater mixing by ability at selective colleges due to varying

risk aversion makes the GPA return there ambiguous). This would generally bias against finding a

selectivity premium or differences in GPA return by selectivity. On the other hand, if risk aversion

is negatively correlated with ability, then outcomes are qualitatively as in the risk neutral case:

sorting by ability is strengthened in the first stage, and effort distribution widens in the second

stage but is ability-rank preserving.

C.5: A comment on worker sorting across firms

The model assumes that all firms are homogeneous and distinguish workers by paying them different

amounts based on their signals of productivity. More realistically, firms are heterogeneous and are

willing to hire only workers whose expected productivity is within some band, with variations in

pay of new workers quite small within a given firm (controlling for job type). Put differently, a

higher value of a signal does not raise a worker’s pay at some fixed firm; rather, it qualifies the

worker to get hired at a different company that hires higher-ability workers at a higher wage. While

this distinction is worth mentioning, as the treatment is imprecise in this regard, it is not important

for empirical analysis. As long as workers can costlessly sort across firms, then the implications

continue to hold, and firm heterogeneity of this sort is unimportant.

C.6: A comment on GPA differences between men and women

Finally, it is well documented that there are substantial differences in GPA between men and women

(Pascarella and Terenzini 2005), and this is empirically true in each of the data sets used in this

study, with women averaging a 0.1 to 0.2 point advantage over men. Moreover, this advantage

is roughly constant throughout the distribution except in the extreme tails. In the context of the

model, this would be consistent with women and men having different intercepts but the same slope

in equation 5, which would not affect their optimization. Employers presumably build this into

their expectations of productivity, and this can be controlled empirically by using dummies for sex

in the regressions. Of course, this assumes the same ability distribution for men and women, and

this seems reasonable using senior year ability scores (although not SAT/ACTs, which are known

to exhibit differences by sex).

Appendix D: Signaling and Employer Learning

The signaling model in this paper can also help explain why employers appear to learn about the

productivity of college graduate workers much faster than that of high school graduate workers.
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Arcidiacono et al. (2008), for example, show that while ability (AFQT) is only weakly correlated

with log wages among recent high school graduates, with this correlation growing with worker expe-

rience, the ability-wage correlation among college graduates shows up immediately, with negligible

growth over the career. In the context of ability signaling, this is precisely the result one would

expect to find if the signals that college graduates can send are more revelatory of ability than

those from high school graduates. Curiously, the authors’ attempt to demonstrate this supposition

is relegated to a brief section in an appendix, where they regress AFQT on college entrance scores

and college major and find a high R2 (0.57 to 0.73). However, these regressions do not actually

show that college graduates can better signal their ability to employers: as mentioned earlier, it

is not at all clear that college entrance scores are visible to potential employers, and there is no

attempt to compare signals with those of high school graduates.

I undertake such an exercise here. Specifically, using a regression similar to (16), I calculate

how well the signals of college selectivity and GPA (along with college major, race and sex) can

predict the standardized measure of aptitude in the pooled data. For comparison, I construct a

sample of (exact) high school graduates who take wage jobs within a year of high school graduation

and aren’t self-employed or in the military. While college selectivity does not have a direct analogue

at the high school level, high school GPA replaces college GPA as the relevant signal in this

sample. Because other characteristics of the high school record may serve as signals, I include some

specifications that also include quartile indicators for each of sports, leadership, and prior work

experience, and the number of semesters (and their square) taken in each academic, business, and

vocational subject.34

As the interest is in the variance of the prediction error, the relevant statistic is 1
n

∑
σ̂2, the

mean squared error (or average variance of the residuals), and not R2, which normalizes by the

variance in ability. Appendix Table D.1 shows the calculated mean squared error of the prediction,

as well as the total variance of ability, for both the high school graduate and college graduate

samples.35 The MSE is substantially lower (about 30 percent less) among the college sample

(column 1) than among the high school sample (column 2), and this difference is similar in size

in both the early and late periods (panels B and C). Even with the additional potential high

school signals (column 3), the MSE is larger for the high school graduates than for the college

graduates. Furthermore, these additional signals seem to have less marginal predictive power in

the late period relative to the early period, particularly among full-time workers (columns 5 and 6).

These relative prediction errors help illustrate why employer learning is more rapid among college

graduate workers than high school graduate workers: the initial signals available can more precisely

pinpoint the worker’s ability, so there is less to be revealed through experience.

34See the data appendix for details on the construction of these measures.
35In the college regressions, the partial correlation of GPA on ability is always lower, and often statistically significantly

so, at selective colleges than at less selective colleges, consistent with equation (11).
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Appendix Table D.1: Prediction Errors on Ability for College and High School

Panel A: Pooled, All (1) (2) (3) (4) (5) (6)
Education Group Coll HS HS Coll HS HS

MSE 0.433 0.625 0.525 0.434 0.630 0.528

mean(ability) 0.721 -0.397 -0.397 0.724 -0.429 -0.429
var(ability) 0.579 0.821 0.821 0.574 0.789 0.789

Full-time only? No No No Yes Yes Yes

Panel B: Pooled, early (1) (2) (3) (4) (5) (6)
Education Group Coll HS HS Coll HS HS

MSE 0.431 0.624 0.505 0.435 0.608 0.496

mean(ability) 0.703 -0.465 -0.465 0.706 -0.461 -0.461
var(ability) 0.561 0.754 0.754 0.557 0.726 0.726

Panel C: Pooled, late (1) (2) (3) (4) (5) (6)
Education Group Coll HS HS Coll HS HS

MSE 0.431 0.617 0.524 0.433 0.638 0.534

mean(ability) 0.743 -0.332 -0.332 0.747 -0.390 -0.390
var(ability) 0.600 0.877 0.877 0.594 0.865 0.865

Full-time only? No No No Yes Yes Yes

Notes: Estimates shown are mean squared errors (MSE) and mean absolute errors (MAE)  from OLS regressions of ability on 
signals using sampling weights. All samples are restricted to those who are working with wages. All regressions include 
controls for sex and race. Selectivity signals for college group also include college major, college GPA, selectivity dummy, and 
interactions of the selectivity dummy with college GPA. The selectivity thresholds are based on Tier II thresholds; using Tier I or 
Tier III thresholds produces similar results. High school signals include high school GPA and other controls as shown. Panel A 
shows results for all cohorts together; Panel B from the 1960s and 1970s; and Panel C from the 1980s, 1990s, and 2000s. 

Yes
Controls for course-taking, 
sports, leadership, and 
work

 — No Yes  — No

Table 4: Prediction Errors on Ability for College and High School
(Dependent variable is normalized ability measure)

Controls for course-taking, 
sports, leadership, and 
work

— No Yes — No Yes

Note: Estimates shown are mean squared errors (MSE) from OLS regressions of normalized ability on signals

using sampling weights. All samples are restricted to those who are working with wages. All regressions

include controls for sex and race. Selectivity signals for college group also include college major, college GPA,

selectivity dummy, and interactions of the selectivity dummy with college GPA. The selectivity thresholds

are based on Tier II thresholds; using Tier I or Tier III thresholds produces similar results. High school

signals include high school GPA and other controls as shown. Panel A shows results for all cohorts together;

Panel B from the 1960s and 1970s; and Panel C from the 1980s, 1990s, and 2000s.

Data Appendix

The National Center of Education Statistics (NCES) has conducted four nationally representative,

large-scale, longitudinal surveys of secondary students since 1972. Each of these surveys origi-

nally sampled between 12,000 and 25,000 students in a given grade cohort, with follow-up survey

waves over the next several years. Designed to shed light on the secondary school to postsecondary
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school and school-to-work transitions, the surveys ask questions about demographic background,

school experiences, education and work expectations, and labor market outcomes. Additionally,

each survey cohort was administered a cognitive test battery. In most cases, the data variables are

directly comparable across the four different surveys. Central to the analysis presented here, the

restricted-access versions of these data sets allow the identification of all postsecondary institutions

attended and have complete postsecondary transcript data for most students who reported attend-

ing a postsecondary institution. Because the most recent of these four surveys is too new to have

data on respondents’ transitions after college graduation, I use the first three surveys, described

below.

I supplement the NCES data with two additional, nationally-representative data sets that

allow analysis of the new college graduate labor market in the 1960s—Project Talent—and the

2000s—the National Longitudinal Survey of Youth, 1997. These surveys cover much of the same

sets of questions as do the NCES surveys, including specific colleges attended and cognitive test

batteries. While self-reported cumulative GPA is available in these latter data sets, transcript data,

unfortunately, are not.

NLS72

The National Longitudinal Study of the High School Class of 1972 queried approximately 17,000

high school seniors in the spring of 1972, with follow-up waves in 1973, 1974, 1976, 1979, and

1986.36 I focus on respondents from the 1976 and 1979 waves, by which time most respondents

have completed their undergraduate postsecondary education.

HSB

The High School and Beyond survey consists of two cohorts: sophomores in 1980 and seniors in

1980 (approximately 14,000 students of each). Each cohort had follow-ups in 1982, 1984, and 1986;

the sophomore cohort alone had an additional follow-up in 1992. Because the 1992 follow-up is

several years after the sophomore cohort was on track to graduate from college (1986), I use the

senior cohort and focus on the 1986 wave.

NELS

The National Educational Longitudinal Survey began following nearly 25,000 8th graders in 1988,

with follow-ups in 1990, 1992, 1994, and 2000. As these students were on track to graduate high

school in 1992 and college in 1996 (under normal progression), I focus on respondents in the 2000

wave.

Project Talent

36As in all of the NCES surveys here, new individuals were often added in some of the later waves.
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Project Talent surveyed approximately 100,000 each of 9th, 10th, 11th, and 12th graders in 1960,

with follow-ups 1, 5, and 11 years after anticipated high school graduation.37 I use the recently

available ICPSR 1-in-4 sample of the senior cohort, as the other cohorts do not have the required

job timing information necessary for analysis, and focus on the 5-year follow-up.

NLSY97

The National Longitudinal Survey of Youth, 1997 surveyed 8,984 12 to 17 year-olds beginning in

1997, with annual follow-ups. By 2009, the last data year available, respondents are aged 25 through

29. I use the geocoded version, available with application from the Bureau of Labor Statistics, and

information from all available waves.

Sample Restrictions and Variable Construction

Because the five data sets differ in the timing of their follow-up interviews, care was taken to make

them as consistent as possible. In each survey, the estimation sample was restricted to individuals

who had earned their bachelors degree at U.S. institutions within 6 years of high school graduation,

and at the time of observation had earned no additional (graduate) degree, were not currently

enrolled in school, were working for pay with real (year 2005) hourly earnings between 5 and 100

dollars, and were neither self-employed nor in the military. After imposing these conditions, the

final sample size consists of 2,803 individuals for NLS72; 1,078 individuals for HSB; 1,902 individuals

for NELS; 2,025 in Project Talent; and 829 in NLSY97. Appendix Table 1 contains more detailed

information on how the restrictions affect the sample size for each data set.

College Information

College major, GPA, date of graduation, and college itself are taken from the institution from which

the respondent graduated. When available, these measures come directly from the post-secondary

transcript (90.5 percent of cases in the NLS72, 55.0 percent of cases in the HSB, and 94.9 percent in

the NELS); otherwise, they are taken from self-reported information in the survey.38 For students

who attended more than one post-secondary institution before earning a bachelor’s degree, GPA is

based on courses taken at the degree-granting school.

While detailed college major is provided in the data, I collapse these into 11 categories that are

consistent across data sets: humanities, social sciences, psychology, life sciences, physical sciences

and mathematics, engineering, education, business, arts, health, and other.

37Based on normal progression. Respondents were followed regardless of actual high school graduation.
38The much lower transcript data rate in the HSB is due to post-secondary transcripts being collected earlier in that

survey (in 1984, four years after high school) relative to the others. Consequently, students who earned their degrees
more than four years after high school graduation do not have complete transcript data.
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When transcript data are available, GPA is calculated as the credit-weighted average of all

course grades (on the standard 4-point scale) earned at the institution of graduation up to the

date of degree receipt. Courses that do not receive grades (e.g., pass/fail, audits, drops, and

withdrawals) are ignored in the GPA calculation. When transcript data are unavailable, self-

reported GPA is used. (For observations with both measures available, the correlation between

the two is 0.84 for NLS72, 0.87 for HSB, and 0.75 for NELS.). In the NLS72 and HSB, GPA

is self-reported categorically (A, A-/B+, B, B-/C+, etc.) for all postsecondary courses to date

(not just at the degree-granting institution). Project Talent also uses a categorical scale, although

it is finer than NLS72 and HSB (A, A-, B+, B, etc.). These categories are converted to a 4-

point numeric scale. NELS and NLSY97 ask respondents to report cumulative GPA as a numeric

variable; NELS converts these self-reports to a 4-point scale internally, while NLSY97 provides the

institution-specific grading scale; in this latter case, I performed the 4-point conversion manually.

College selectivity indicators are matched to the degree-granting college of each sample re-

spondent using either the FICE code (NLS72, HSB, and Project Talent) or UNITID code (NELS

and NLSY97) of the institution.

Alternative Selectivity Measures

While the Barron’s rankings constitute the preferred selectivity metric due to their construction

from attributes based entirely on students, as another measure of college selectivity I adopt the

strategy of a quality index advocated by Black and Smith (2006). The quality index is created by

applying factor analysis on five characteristics of each college: the faculty-student ratio, the rejection

rate of applicants, the freshman retention rate, mean SAT/ACT score of entering freshmen, and

mean faculty salaries. The factor analysis produces weights, or factor loadings, for each of these

characteristics under the assumption they are each composites of some latent underlying “factors.”

Calling the first and most important of these factors “quality,” the factor loadings allow construction

of a quality index, a linear combination of the characteristics that accounts for their correlation.

Using data on colleges from 1991 provided by Smith, I create the quality index for each college

that has sufficient data and then compute percentiles.39 Again, three different binary indicators

for selectivity are calculated. The first of these is coded 1 if the quality index percentile is at or

above 80, and 0 otherwise (QI I); the second is coded 1 if the percentile is at or above 90, and

0 otherwise (QI II), and the third is coded 1 if the percentile is at or above 95, and 0 otherwise

(QI III).40 Of the 10 highest ranked colleges by the quality index, all 10 are considered to be in

39Data for each characteristic from before 1991 are not readily available for many colleges, which prevents it from being
the preferred quality measure. However, as student characteristics evolve slowly (Black and Smith 2006), using 1991
data should still be a reasonable proxy for earlier cohorts.

40As in the Barron’s rankings, colleges without sufficient data to calculate a quality index are usually less selective
ones. A virtue of using a binary measure for selectivity rather than a continuous one is that more colleges (and thus
respondents) can be analyzed, and estimates can be compared across different selectivity measures without worrying
about sample composition effects arising from the inability to cardinally rank every school.

46



Barron’s highest category in 1992, nine are in the highest category in 1982, and eight are in the

highest category in 1972. (The top 10 not in Barron’s highest category 1982 or 1972 are ranked

in the second-highest category.) More generally, the quality index approach is less discriminating

between selectivity levels than is the Barron’s system, but the effect is minor. Complete summary

statistics using the quality index are available on request.

Ability Measures

For each data set, I construct two measures of cognitive ability: SAT/ACT percentile and (high

school) senior year test score. The SAT/ACT percentile is calculated from the SAT or ACT

score of the respondent as follows. For students with SAT scores, their verbal and math scores

were adjusted to the recentered scale using the College Board’s concordance table41, summed, and

then converted to a percentile score using the 2005–2006 year distribution, also from the College

Board.42 For students with ACT scores (and without SAT scores), composite scores were converted

to SAT equivalent scores using concordance table jointly developed by the College Board and the

ACT43 and then converted into percentiles as above. (Similar results are produced if ACT scores

are converted directly into percentiles using the ACT score distribution.) SAT and ACT scores

have relatively high item nonresponse, in part because not all valid sample respondents took either

exam, and they are unavailable for the HSB sample, as they were not collected for the senior cohort.

However, because the scores are mapped to a fixed distribution, this measure is comparable across

time.

For each of the NCES data sets and Project Talent, the senior year test score is based on an

aptitude test battery administered to students during their senior year of high school (and thus is

available only for students who were surveyed during that wave.) The test batteries are similar but

not identical across survey waves and are intended to measure reading comprehension, vocabulary,

and mathematical knowledge. Scores are normalized to have a (population) mean of 0 and standard

deviation of 1 among high school seniors within each cohort.

For NLSY97, I use the internally constructed ASVAB percentile score. About 80 percent of

respondents completed the Armed Services Vocational Aptitude Battery, a 12-component test, in

1997. Based on four of these components—word knowledge, paragraph comprehension, mathemat-

ical knowledge, and arithmetic reasoning—NLSY staff computed percentile scores within three-

month age groups. While not representative of high school seniors, these scores represent age-

adjusted norms within cohorts.

While the senior year test and ASVAB scores are not strictly comparable across time, unlike

college entrance exams, they are low-stake tests, the results for which had no direct impact on

41http://professionals.collegeboard.com/data-reports-research/sat/equivalence-tables/sat-score
42http://www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2005/02_v&m_composite_

percentile_ranks_0506.pdf
43http://professionals.collegeboard.com/profdownload/act-sat-concordance-tables.pdf
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student outcomes. As such, the results reasonably capture both cognitive and noncognitive aptitude

(motivation, perseverance, etc.), which is more directly in line with the theoretical ability measure.

Job Information

Job information was taken from the first job that began after the respondent graduated with a

bachelor’s degree except in NELS, where it was taken from the current job held at the year 2000

interview (the only postgraduation job information available.)

In NLS72, earnings data are provided at the weekly level, and hourly earnings are constructed

by dividing weekly earnings at the first postgraduation job by the number of hours worked in an

average week at that job. In HSB, there are data for the number of hours usually worked per

week, the frequency at which one gets paid, and the rate of pay at this frequency. A majority of

sample individuals report being paid annually (about 55 percent), but hourly, weekly, biweekly,

and monthly are also options. In order to construct a comparable rate of pay variable, I transform

the earnings variables into an hourly figure. The transformation is the identity function for hourly

workers and is the rate of pay divided by the product of usual hours worked per week and the

number of weeks in the frequency unit (with 4.3 weeks per month and 52 weeks per year). In

NELS and Project Talent, the hourly rate of pay is constructed in a similar fashion as in HSB. For

NLSY97, there is an internally constructed hourly wage variable already available. Hourly earnings

in each data set are deflated to year 2005 dollars using the Personal Consumption Expenditures

Deflator, and then logged.

High School Characteristics

High school GPA is taken from categorical student responses for each data set except for NELS,

where it is constructed (within the data set) using high school transcript data. High school GPA is

converted to a 4-point scale in a manner analogous to undergraduate GPA. Each data set has stu-

dents report the number of semesters (or Carnegie units) of each academic subject taken (English,

math, science, social science, and foreign language) during high school, and these are standardized

to be in semester units. I also constructed (separately by data set) indices for participation in high

school sports, leadership activities, and work experience based on student responses to a similar set

of questions available in each data set except for NLSY97. From these indices, I generate dummies

for being in each quartile, or separate dummies if the quartile measures cannot be made.

Job information for high school graduates was constructed from the same set of questions used

for college graduates except that the relevant sample wave was the immediate one after scheduled

high school graduation.
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Appendix Table 2: Log Hourly Wages on GPA by Selectivity (Quality Index 1991)

Panel A: Pooled, All (1) (2) (3) (4) (5) (6)
Selectivity Tier QI QII QIII QI QII QIII

GPA, less-selective 0.085*** 0.089*** 0.088*** 0.107*** 0.106*** 0.100***
[0.014] [0.013] [0.012] [0.014] [0.013] [0.012]

GPA, selective 0.095*** 0.068 0.052 0.087*** 0.053 0.106**
[0.024] [0.043] [0.084] [0.021] [0.033] [0.048]

p-val for diff 0.708 0.632 0.673 0.400 0.120 0.904

Full-time only? No No No Yes Yes Yes

Observations 8637 8637 8637 7580 7580 7580
Adjusted R-squared 0.241 0.235 0.237 0.264 0.260 0.260

Panel B: Pooled, early (1) (2) (3) (4) (5) (6)
Selectivity Tier QI QII QIII QI QII QIII

GPA, less-selective 0.055*** 0.052*** 0.048*** 0.074*** 0.064*** 0.061***
[0.016] [0.015] [0.015] [0.016] [0.015] [0.014]

GPA, selective 0.019 0.004 0.023 0.017 0.019 0.044
[0.023] [0.027] [0.038] [0.018] [0.031] [0.040]

p-val for diff 0.137 0.108 0.519 0.008 0.164 0.671

Panel C: Pooled, late (1) (2) (3) (4) (5) (6)
Selectivity Tier QI QII QIII QI QII QIII

GPA, less-selective 0.127*** 0.132*** 0.121*** 0.145*** 0.145*** 0.131***
[0.021] [0.020] [0.019] [0.022] [0.020] [0.019]

GPA, selective 0.094** -0.002 -0.031 0.103*** 0.015 0.081
[0.039] [0.066] [0.151] [0.034] [0.045] [0.070]

p-val for diff 0.447 0.049 0.317 0.289 0.008 0.478

p-val for diff-in-diff 0.944 0.238 0.409 0.748 0.127 0.650

Full-time only? No No No Yes Yes Yes

Observations 8637 8637 8637 7580 7580 7580
Adjusted R-squared 0.245 0.240 0.241 0.268 0.264 0.263

Yes Yes Yes

Notes: Estimates shown are for OLS regressions using sampling weights. Panel A shows results for all cohorts together; Panel 
B from the 1960s and 1970s; and Panel C from the 1980s, 1990s, and 2000s. Standard errors (in brackets) are robust to 
heteroskedasticity and allow for arbitrary correlation of the error term within college. Asterisks indicate statistical significance 
(* p<0.10, ** p<0.05, *** p<0.01).

Appendix Table 2: Log hourly wages on GPA by selectivity (Quality Index  1991)
(Dependent variable is real log hourly wage)

Controls for sex, race, and 
college major?

Yes Yes Yes Yes Yes Yes

YesControls for sex, race, and 
college major?

Yes Yes

Note: Estimates shown are for OLS regressions on the real log hourly wage using sampling weights. College

selectivity is based on the Quality Index from Black and Smith (2006). Panel A shows results for all cohorts

together; Panel B from the 1960s and 1970s; and Panel C from the 1980s, 1990s, and 2000s. Standard errors

(in brackets) are robust to heteroskedasticity and allow for arbitrary correlation of the error term within

college. Asterisks indicate statistical significance (* p<0.10, ** p<0.05, *** p<0.01).
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Appendix Table 3: Wald Tests of Nonlinearity of Wages in GPA

Panel A: Pooled, All (1) (2) (3) (4) (5) (6)
Education Group Tier I Tier II Tier III Tier I Tier II Tier III

Less-selective, quadratic 0.86 1.14 1.06 3.07 3.03 2.11
[0.354] [0.284] [0.303] [0.080] [0.082] [0.147]

Selective, quadratic 0.36 0.15 0.26 0.09 0.00 0.71
[0.549] [0.696] [0.610] [0.763] [0.992] [0.398]

Less-selective, cubic 0.46 0.96 0.66 1.51 1.90 1.13
[0.634] [0.385] [0.520] [0.221] [0.149] [0.324]

Selective, cubic 0.61 0.33 0.73 0.91 0.13 0.92
[0.545] [0.721] [0.483] [0.401] [0.879] [0.398]

Full-time only? No No No Yes Yes Yes

Panel B: Pooled, early (1) (2) (3) (4) (5) (6)
Education Group Tier I Tier II Tier III Tier I Tier II Tier III

Less-selective, quadratic 0.43 0.12 0.33 0.79 0.55 0.93
[0.511] [0.725] [0.567] [0.376] [0.457] [0.335]

Selective, quadratic 0.17 0.86 0.39 0.03 1.12 0.03
[0.680] [0.354] [0.534] [0.875] [0.290] [0.873]

Less-selective, cubic 3.18 1.35 1.58 4.42 3.31 3.39
[0.042] [0.260] [0.206] [0.012] [0.037] [0.034]

Selective, cubic 0.23 0.44 0.29 0.17 0.62 0.87
[0.791] [0.644] [0.751] [0.846] [0.538] [0.421]

Panel C: Pooled, late (1) (2) (3) (4) (5) (6)
Education Group Tier I Tier II Tier III Tier I Tier II Tier III

Less-selective, quadratic 0.05 0.00 0.00 0.40 0.30 0.02
[0.826] [0.980] [0.947] [0.529] [0.582] [0.878]

Selective, quadratic 0.50 0.21 1.12 0.00 0.03 1.14
[0.479] [0.650] [0.290] [0.955] [0.860] [0.285]

Less-selective, cubic 0.21 0.09 0.01 1.03 0.16 0.10
[0.808] [0.915] [0.985] [0.357] [0.853] [0.906]

Selective, cubic 0.92 0.39 0.80 0.92 0.06 0.83
[0.400] [0.680] [0.450] [0.397] [0.944] [0.438]

Notes: Estimates shown are F statistics (and p-values in brackets) from Wald tests for whether the coefficients on higher-order 
polynomial terms in GPA are equal to a null of zero. See Table 3 for other notes.

Appendix Table 3: Wald Tests of Nonlinearity of Wages in GPA
(Dependent variable is normalized ability measure)

Note: Estimates shown are F statistics (and p-values in brackets) from Wald tests for whether the coefficients

on higher-order polynomial terms in GPA are equal to a null of zero. See Table 3 for other notes.
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