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Abstract: We analyze the space of deterministic, dominant-strategy incentive compatible,
individually rational and Pareto optimal combinatorial auctions. We examine a model with
multidimensional types, nonidentical items, private values and quasilinear preferences for
the players with one relaxation; the players are subject to publicly-known budget constraints.
We show that the space includes dictatorial mechanisms and that if dictatorial mechanisms
are ruled out by a natural anonymity property, then an impossibility of design is revealed.
The same impossibility naturally extends to other abstract mechanisms with an arbitrary
outcome set if one maintains the original assumptions of players with quasilinear utilities,
public budgets and nonnegative prices.
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1. Introduction

We study the limitations of the possibility space of deterministic, dominant-strategy incentive
compatible, individually rational, and Pareto-optimal combinatorial auctions in a model with two
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players and two nonidentical items (four outcomes). Our model has multidimensional types,1 private
values, nonnegative prices, and quasilinear preferences for the players with one relaxation: the players
are subject to publicly known budget constraints. This setting is somewhat more complex than that
of common auction literature as it adds budgets and heterogeneity, which more accurately describe
mechanisms used in practice.

The investigated space better characterizes many real world problems such as commonly studied
bandwidth (combinatorial) auctions. Consider the German and British 3G radio spectrum auctions in
early 2000 where telecom companies bid so high as to have jeopardized their financial viability and
consequently considerably slowed down capital investment in 3G equipment. Another contemporary
example arises from globalized supply chains. Globalization has substantially increased competition
among suppliers. As such, there are many suppliers who are trying to win business while incapable of
delivering the contracted quantity/quality of procured goods.

The phenomena in the German and British 3G radio spectrum auctions as well as the present day
proliferation of suppliers highlights the potential gap between willingness to pay and ability to pay, and
the potential of better understanding how budget constraints affect auction design. Further consider that
most goods are not sold in uniform bundles or used as single goods. Though blocks of radio bandwidth
are apparently uniform they are not identical, as well can be said for goods in supply chain auctions
which are bundled to fulfill diverse bill of materials. The addition of the seemingly minor dimension of
heterogeneity profoundly affects auction design complexity.

Our result shows that the basic design requirements of dominant strategy incentive compatibility
(DSIC), individual rationality (IR), and Pareto optimality (PO) lead to the presence of dictatorial
mechanisms and these mechanisms can exhibit zero prices. This means a bandwidth auction can arise
where one telecommunications company dictates its bandwidth allocation regardless of its competitors’
values for the bandwidth and the government collects zero revenue. As the auctioneer would certainly
take issue with such an outcome, in running such mechanism auctions one must consider an anonymity
property that does not allow for a single designated competitor to dictate the auction and in turn
the revenue.

A natural and weak requirement that prevents such dictatorial outcome is that in cases where the whole
bandwidth is allocated to a single telecommunications company, then the company must value or be able
to afford the bandwidth more than any other telecommunications company. With such a requirement no
single telecommunications company can dictate the auction’s allocation.

This motivates our discussion of how to go about designing a dominant-strategy incentive compatible
combinatorial auction for allocating multiple nonidentical items in a Pareto-optimal manner when
participants may be budget constrained and dictatorial design is ruled out. Our main result is an
impossibility: in a model with multiple nonidentical items and nonarbitrary allocation of the
all-item-bundle (a property we term nonarbitrary hoarding), there is no deterministic auction that
is dominant-strategy incentive compatible, individually rational, and Pareto optimal. The same
impossibility naturally extends to more abstract mechanisms with an arbitrary outcome set if

1 Multidimensional types, meaning that a player may have a separate arbitrary value for each of the four possible outcomes.
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one maintains the original assumptions of players with quasilinear utilities, public budgets, and
nonnegative prices.

Our impossibility is composed of three parts. The first part proves under which conditions any
mechanism F that satisfies DSIC, IR, PO, and nonarbitrary hoarding will allocate singletons (an item
for each player) and be a Vickrey-Clarke-Groves (VCG) [1–3] mechanism. The second part proves
under which conditions any mechanism F that satisfies the above properties will allocate singletons
and be a “trivial pricing mechanism”. A trivial pricing mechanism is a mechanism where one player
is allocated a nonempty bundle for free regardless of the other players’ valuations. The third part
concludes our impossibility since both payments cannot coexist and maintain the dominant strategy
incentive compatibility property.

Though our impossibility result does not require efficiency as a property, it does conclude the
existence of efficient solutions. Nevertheless, since Pareto optimality and the property of nonarbitrary
hoarding do not imply efficiency. Proving that VCG defines some of the mechanism space requires
additional tools.

The tool we use to prove that VCG defines some of the mechanism space is a property we term
stability. The stability property derives from the three properties of dominant-strategy incentive
compatible, individually rational, and Pareto optimality together with nonarbitrary hoarding. Stability
essentially bounds the prices of any such mechanism (with strictly positive prices) from below ensuring
that no player has an incentive to collude with the auctioneer ex-post and offer the auctioneer side
payments such that the colluding player can win all the items. To illustrate that stability can be used
to bound the prices of any such mechanism from below consider one-item Vickrey auctions. In one-item
Vickrey auctions the losing player cannot afford to make side payments to the auctioneer after the auction
is concluded, in order to induce the auctioneer to give him the item instead of giving it to the winning
player. In mechanisms that are not budget-constrained, ensuring that a player has no incentive to collude
with the auctioneer ex-post to win all the items means that the price of the remaining items is at least his
marginal value for the remaining items. In budget-constrained mechanisms it is sufficient to require that
either the price of the remaining items is at least his remaining budget (after paying his allocation) or at
least his marginal value for those items.

1.1. Our Contribution

Our result presents the following three contributions. First, that the general space of dominant
strategy incentive compatible, individually rational, and Pareto-optimal combinatorial auctions with
budgets includes dictatorial mechanisms. Second and most importantly, when dictatorial mechanisms
are ruled out and a minimal property of anonymity (named nonarbitrary hoarding) is integrated, the
design of the above combinatorial auctions becomes an impossibility. Moreover our analysis concludes
the existence of efficient and inefficient solution domains which consequently leads to an impossibility as
a manipulation between an efficient and inefficient domain can occur. Third, the above three properties
together with a natural anonymity assumption, i.e. nonarbitrary allocation of the all-item-bundle, imply
the useful property of player-auctioneer coalition resilience even when side payments are allowed. We
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termed the player-auctioneer coalition resilience property stability and use it to prove VCG pricing when
paid prices are all positive.

1.2. The Role of Determinism and Asymmetry from Heterogeneity

Our result shows the impossibility of designing budget-constrained combinatorial auctions that are
dominant-strategy incentive compatible, individually rational, Pareto optimal and nonarbitrary hoarding
in a model of two heterogeneous items. As the nature of the result is negative it applies to any more
complex models that include heterogeneous items. Nevertheless it is easy to see that if one substitutes
the two heterogeneous items with two homogeneous items all the claims still hold in a similar manner.
That is to say that the introduction of asymmetry by the heterogeneity of the items does not change the
nature of the results, claims, or proofs. Therefore for simplicity the result could be presented in the model
of two homogeneous items. However there is much benefit in presenting the impossibility result in the
heterogeneous model. Though the nature of the result is negative the structure of the proofs gives insights
into which domains of valuations will allow the existence of an efficient solution and which domains will
necessitate an inefficient solution. If we chose to present the impossibility in the homogeneous model the
conclusion we would derive regarding the domains of efficiency and inefficiency would not necessarily
be applicable to the heterogeneous model and would provide a much narrower view of the problem
at hand.

Throughout the paper we assume deterministic mechanisms. To understand the role of determinism
in our result one must look into the literature of nondeterministic constrained auctions such as [4]. [4]’s
work defines the properties of constrained-efficient auctions, i.e., maximizing the expected social welfare
under Bayesian incentive compatibility and budget-constrained players. [4] states that the domains of
efficiency and inefficiency are determined by a threshold value. The computation of the threshold value
makes use of expectation and allows for allocations with negative utility for the players. Therefore [4]’s
threshold cannot be used in an individually rational deterministic setting. The domains of efficiency
and inefficiency that can be concluded from our analysis are determined by the smaller of the budgets.
Meaning that the smaller budget defines the threshold for inefficiency. The immediate implication of the
smaller budget as the threshold of inefficiency is that the smaller budget cannot be a privately known
value but must be publicly known. As such, in our deterministic setting both budgets are publicly
knownmuch like [5,7]; while in [4] and [8]’s nondeterministic setting the budgets are privately known.2

Another implication of determinism on our result is that individual rationality is required for each
allocation. Therefore an auction that charges losing players such as an all-play-auction cannot fulfill
the individual rationality property. Consequently there is a gap in price between winning and losing and
thus a manipulation between an efficient and inefficient domain can occur, leading to an impossibility.

2 Since the budgets can be equal, nonarbitrary hoarding together with dominant-strategy incentive compatibility imply that
the second budget has to be public knowledge if the first budget is.
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1.3. Prior Literature

It is well known that in quasilinear environments with a complete preference domain over at least
three outcomes and non-constrained players, only VCG mechanisms satisfy the dominant-strategy
incentive compatible property [9].3 Nevertheless when preferences are subject to free disposal and
no externalities are assumed, as is common in combinatorial auctions, then the possibility space of
dominant-strategy incentive-compatible combinatorial auctions in the multidimensional type model is
not defined. Several papers investigate computationally feasible dominant-strategy incentive-compatible
(but inefficient) auctions with one-dimensional private-values [12,13] as well as with multidimensional
private-value settings with some additional restrictions on the preference space [14,15].

In recent years, several papers studied budget-constrained combinatorial auctions. The authors
of [16] characterized some of the space of deterministic, dominant-strategy incentive compatible,
individually rational and Pareto optimal budget-constrained combinatorial auctions and showed that
the space studied essentially includes one type of mechanism that behaves dictatorially. The
authors of [6] showed that there does not exist a deterministic auction that is individually rational,
dominant-strategy incentive compatible and Pareto optimal with potentially negative prices and
privately known budgets, even when players are one-dimensional types. The authors of [7]
showed that the same impossibility holds for one-dimensional types with different items and
publicly known multi-item demand. The authors of [5] also showed the same impossibility
with publicly known budgets if multidimensional types (two identical items with three outcomes)
are considered.

[5–7] allow negative prices to exist, i.e., some players are paid for participation in the auction either
by the mechanism or by the other players. Practical auction implementations such as the FCC bandwidth
auction usually cannot afford or are unwilling to consider paying bidders (telecommunications
companies) for their participation nor are they interested in encouraging side payments among the
participants. Therefore similar to [4]’s model we chose to assume that all prices are nonnegative.
The assumption that all prices are nonnegative narrows down the domain of possible allocations in
comparison with the potential negative prices model with multidimensional types. Nevertheless some
of the the mechanisms which fulfill the three properties of dominant strategy incentive compatible,
individually rational, and Pareto optimal in the nonnegative price model are not included in the
mechanism space that fulfills the same properties in the negative price model. The reason for the above
is the property of Pareto optimality. Since the nonnegative prices model has a smaller set of possible
allocations there exist situations where a mechanism does not fulfill the Pareto optimal property in the
model with negative prices but does fulfill the Pareto optimal property in the nonnegative price model.

[6] also characterizes the possibility space of dominant-strategy incentive compatibility and Pareto
optimal budget-constrained combinatorial auction mechanisms, [6]’s characterization is restricted
to one-dimensional types and therefore their possibility space characterization does not imply the
possibility space in our model with multidimensional types. More specifically, [6] showed that for

3 In quasilinear environments only Groves’ mechanisms satisfy the dominant-strategy incentive compatible and Pareto
optimal properties [10,11].
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multi-unit demand and identical items, Ausubel’s clinching auction, which assumes public budgets and
additive valuations, uniquely satisfies the properties (described above). In a similar model with small
randomized modification [8] showed that [6]’s result can be obtained with private budgets. Similarly
Ausubel’s clinching auction was concluded by [7] for one-dimensional types with different items and
publicly known multi-item demand. For unit-demand players with private values and budget constraints
in the one-dimensional types model there are several deterministic mechanisms that fulfill the properties
of incentive compatible and Pareto optimality (see [17,18]). In nondeterministic mechanisms with a
one-dimensional types model (one indivisible unit) [4] characterizes constrained-efficiency mechanisms,
which are mechanisms that maximize the expected social welfare under Bayesian incentive compatibility
and budget constraints in a nonnegative price model. [4]’s results are not an impossibility as per
the nature of nondeterministic mechanisms, though the characterization points out the limitations in
designing mechanisms with budget-constrained players, even in the probabilistic domain.4

There are few other works that focus on revenue maximization under budget constraints. The authors
of [19,20] analyze how budgets change the classic results on “standard” auction formats, showing,
for example, that first-price auctions raise more revenue than second-price auctions when bidders
are budget-constrained and that the revenue of a sequential auction is higher than the revenue of a
simultaneous ascending auction. The authors of [21,22] construct single-item auctions that maximize the
seller’s revenue.

1.4. Paper Organization

The paper is organized as follows. Notation and definitions are presented in Section 2. Section 3
discusses the presence of dictatorial mechanisms when designing deterministic, dominant-strategy
incentive compatible, individually rational, Pareto optimal budget-constrained combinatorial auctions
and defines the anonymity property of nonarbitrary hoarding. Section 4 shows the implications of the
properties discussed above and proves VCG pricing for any nontrivial pricing mechanism that satisfies
the four properties above. Section 5 proves our main result, the impossibility of design. The appendix
presents some of the technical proofs.

2. Notation and Definitions

We consider combinatorial auction mechanisms with two heterogeneous items and two players. Let
N = {1, 2} be the set of players and C = {c1, c2} be the set of items. Let B be the set of all subsets of
items, that is, B = 2

C
= {;, {c1}, {c2}, {c1, c2}}.

Each player, i, has a private value, vi(B), for every bundle B 2 B drawn from a valid valuation
space Vi, i.e., players are multi-minded and have different private values for different bundles of the
items.5 We denote player i’s private values by a triple:
Vi = (vi(c1), vi(c2), vi(c1, c2)) 2 Vi. We assume that vi(;) = 0, that is, for both players, the valuation

4 See discussion on the role of determinism in our work.
5 Throughout the paper, we consider valuation spaces where not all valuations are included in the valuation space.
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of the empty bundle is zero. We also assume that vi(B0
)  vi(B) whenever B0 ✓ B, i.e., free disposal;

for both players, the allocation of an extra item cannot reduce their valuation (the usual assumption in
combinatorial auctions). As players are multi-minded and have different private values for different
bundles of the items, a player, i, may have a separate arbitrary value for each of the four possible
outcomes, meaning our valuation space is a multidimensional valuation space and the players have
multidimensional-type valuations.

We assume that the players have limited budgets, b1 and b2 respectively, for acquiring items and these
budgets are publicly known information. Without loss of generality we assume that b1  b2.

We denote the auction mechanism F (V1, V2, b1, b2) = (B1, B2, p(B1), p(B2)) where Bi is the bundle
allocated to player i; and p(Bi) is the price of bundle Bi. We assume that all the prices are nonnegative,
i.e., p(Bi) � 0 for i 2 {1, 2}.

DEFINITION 1 Player 1, player 2, and the auctioneer’s utility are defined as follows:
Player i’s utility is

ui(F (V1, V2, b1, b2)) =

(
vi(Bi)� p(Bi) if p(Bi)  bi

�1 otherwise

The auctioneer’s utility is ua(F (V1, V2, b1, b2)) = p(B1) + p(B2).

For simplicity of notation, whenever F, V1, V2, b1, and b2 are clear from the context we will denote
ui(F (V1, V2, b1, b2)) by ui.

DEFINITION 2 Determinism
An auction mechanism F (V1, V2, b1, b2) is called deterministic if for every given input it outputs a single
outcome.

DEFINITION 3 Trivial Pricing Mechanism
We say that a mechanism F is a trivial pricing mechanism if there is an input (V1, V2, b1, b2), such that
F (V1, V2, b1, b2) = (B1, B2, p(B1), p(B2)) and 9i 2 {1, 2} s.t. (Bi 6= ; and p(Bi) = 0). That is, there
is a player i who is allocated a nonempty bundle for free regardless of the other player’s valuations.

DEFINITION 4 Efficiency
Let F (V1, V2, b1, b2) = (B1, B2, p(B1), p(B2)) be an auction mechanism. Denote by L = {(B0

, B

00
)|B0 2

B and B

00 2 B and B

0 \ B

00
= ;}. We say that F is efficient if for any V1, V2:

(B1, B2) 2 argmax(B0,B00)2L(v1(B
0
) + v2(B

00
)).

DEFINITION 5 Dictatorship
An auction mechanism F (V1, V2, b1, b2) is called dictatorial if there exists a player i 2 {1, 2} (the
dictator) such that for every Vi, Vî, V

0
î
, ui(F (Vi, Vî, b1, b2)) = ui(F (Vi, V

0
î
, b1, b2)).

Intuitively, a mechanism is called dictatorial if there is a player i such that the valuations of the other
player ˆi cannot affect his utility. Note that if the dictator i is indifferent to whether he receives one
allocation or another then player ˆi’s valuations can affect the output.

We next define three properties: individual rationality (IR), Pareto optimality (PO) and dominant
strategy incentive compatibility (DSIC).
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DEFINITION 6 Property 1: Individual Rationality (IR)
An auction mechanism F (V1, V2, b1, b2) is called individually rational if for every player i,
ui(F (V1, V2, b1, b2)) � 0. That is, for each player i:
p(Bi)  min{bi, vi(Bi)} (IR of player i)

Note that the auctioneer’s utility is nonnegative from our assumption that all the prices are nonnegative.

DEFINITION 7 Property 2: Pareto Optimality (PO)
An auction mechanism F is called Pareto optimal if for every input V1, V2, b1, b2, such that V1, V2 in
V1⇥V2, there is no auction mechanism F

0 such that all the following inequalities hold, with at least one
strong inequality:

• u1(F
0
(V1, V2, b1, b2)) � u1(F (V1, V2, b1, b2))

• u2(F
0
(V1, V2, b1, b2)) � u2(F (V1, V2, b1, b2))

• ua(F
0
(V1, V2, b1, b2)) � ua(F (V1, V2, b1, b2))

DEFINITION 8 Property 3: Dominant Strategy Incentive Compatibility (DSIC)
An auction mechanism F (V1, V2, b1, b2) is called dominant strategy incentive compatible (DSIC) if
neither of the two players can increase his own utility by reporting false valuations. That is, given the
true valuations V1 and V2 in V1 ⇥ V2, for every V

0
1 and V

0
2 in V1 ⇥ V2 the following hold:

• u1(F (V1, V
0
2 , b1, b2)) � u1(F (V

0
1 , V

0
2 , b1, b2))

• u2(F (V

0
1 , V2, b1, b2)) � u2(F (V

0
1 , V

0
2 , b1, b2))

Note that if a given mechanism that satisfies PO does not allocate all the items, then we can conclude
that the players are indifferent to the free addition of items that were left out of the allocation. From
free disposal we know that the addition of items cannot decrease any player’s utility. Therefore, for any
mechanism F that satisfies the properties and does not allocate all the items, there is a mechanism F

0 that
satisfies the properties and allocates all the items, such that F 0 is identical to F except for the allocation
of the items not allocated in F . Moreover F 0 can be generated from F by the following procedure. If
S

i2N
Bi 6= C then randomly allocate the items in C �

S
i2N Bi to the two players with no extra charge.

Thus we consider only mechanisms in which all items are allocated,
S

i2N
Bi = C.

3. The Presence of Dictatorial Mechanisms

In this section we prove that the requirement for DSIC, IR, and PO leads to the presence of dictatorial
mechanisms with zero prices. We show that there exists a deterministic dictatorial combinatorial auction
mechanism with (publicly known) budget-constrained players that satisfies the properties of DSIC, IR,
and PO.

PROPOSITION 1 The following dictatorial mechanism with zero prices, an indifference breaking rule,
and player i as the dictator satisfies the properties of IR, DSIC, and PO.

Denote by Besti = {B 2 B|vi(c1, c2) = vi(B)}.
p(B1) = p(B2) = 0.
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If |Besti| = 1 then Bi = {c1, c2}
else choose a bundle Bi from Besti such that vî(C � Bi) is maximized.

Proposition 1’s proof can be found in Appendix A.
In the above proposition, we proved that there exists a dictatorial mechanism that satisfies DSIC,

IR and PO. In the next proposition, we further prove that any dictatorial mechanism that fulfills these
properties must have zero prices.

PROPOSITION 2 Let F be a dictatorial mechanism that satisfies the three properties of IR, DSIC and
PO. Let i be the dictator and let ˆi be the other player. Then it must be the case that p(Bi) = p(Bî) = 0.

Proposition 2’s proof can be found in Appendix B.
The above proposition leads to the question of how to rule out the dictatorial mechanisms from the

domain of possible mechanisms. In other words, can one require a minimal property that will rule out
dictatorships? Fortunately the answer to the above question is positive. We provide the following natural
and weak requirement. In cases where the all-item-bundle is allocated to a single player the winner
must value or afford the all-item-bundle more than the losing player. With this requirement no single
player can dictate the auction allocation. We term the above described anonymity property nonarbitrary
hoarding. In the rest of the paper we show that if we rule out dictatorships by adding the weak property
of nonarbitrary hoarding an impossibility of design is revealed. The formal definition of nonarbitrary
hoarding follows.

DEFINITION 9 Property 4: Nonarbitrary Hoarding
Denote the two players by player i and player ˆi, i 6= ˆ

i. We say that an auction mechanism F obeys
nonarbitrary hoarding if the following condition holds for every player i 2 {1, 2}:
If Bi = {c1, c2} then min{bî, vî(c1, c2)}  min{bi, vi(c1, c2)}.

Intuitively, a mechanism fulfills nonarbitrary hoarding if whenever both items are allocated to a single
player the player is chosen nonarbitrarily, i.e. in accordance to the valuations and budgets of the two
players. Furthermore the player chosen has to be able to afford the two-item bundle more than the
other player.

To better understand the property of nonarbitrary hoarding consider the extended setting of a k-item
auction mechanism. The nonarbitrary hoarding property states that the k-item bundle is not allocated
arbitrarily, that is:
If Bi = {c1, · · · , ck} then min{bi, vi(Bi)} � min{bî, vî(Bi)}.

Note that the property of nonarbitrary hoarding does not imply that a nonarbitrary hoarding
mechanism has to allocate the two-item bundle to one of the players under some valuations and budgets.

In Proposition 1 we provide a mechanism that satisfies the properties of IR, DSIC, and PO. This
mechanism is not nonarbitrary hoarding, as there is one player, player 1, who is always allocated his best
choice regardless of the other player’s valuations.

In the rest of the paper we prove that it is impossible to design deterministic, dominant-strategy
incentive compatible, individually rational, Pareto optimal and nonarbitrary hoarding combinatorial
auctions with (publicly known) budget-constrained players.
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4. The Impossibility Theorem

4.1. Implications of Properties

In this subsection we define a new property called stability and show that stability is implied from the
properties IR, nonarbitrary hoarding, PO, and DSIC in any nontrivial pricing mechanism. We then use
the stability property to derive the set of prices for any nontrivial pricing mechanism that satisfies these
four properties.

4.1.1. Stability

DEFINITION 10 Stability
Let i and ˆ

i, i 6= ˆ

i denote the two players. An auction mechanism is stable if for every player i and for
any Vi 2 Vi, Vî 2 Vî the following condition holds:
p(Bî) � min{vi(c1, c2)� vi(Bi), bi � p(Bi)} (stability of player i)

Stability means that no player i can collude with the auctioneer (or defect with the auctioneer) against
player ˆi to receive the two-item bundle. That is, player i cannot simultaneously increase the auctioneer’s
utility (by " side payment) while maintaining a higher utility from the two-item bundle than the utility
from the mechanism’s allocation. The above intuition can be derived for player i by subtracting p(Bi)

from both sides of player i’s stability inequality in the case where budget is not a limitation, i.e., p(Bî) �
vi(c1, c2)� vi(Bi) ) vi(Bi)� p(Bi) � vi(c1, c2)� (p(Bi) + p(Bî)). The intuition above also holds for
player i when budget is his limitation, i.e., vi(c1, c2)� vi(Bi) > bi � P (Bi) ) p(Bi) + p(Bî) � bi.

While in mechanisms that are not budget constrained, ensuring that a player has no incentive to
collude with the auctioneer ex-post to win all the items means that the price of the remaining items is
at least his marginal value for the remaining items; in budget-constrained mechanisms it is sufficient
to require that either the price of the remaining items is at least his remaining budget (after paying his
allocation) or his marginal value for those items.

In Appendix C we show that stability holds in any nontrivial pricing mechanism that satisfies the four
properties of IR, PO, nonarbitrary hoarding and DSIC.

We prove Lemma C.1 by considering the different feasible allocations. We show for every allocation,
that if stability does not hold then one of the properties of: IR, PO, nonarbitrary hoarding, and DSIC is
violated, or the mechanism must be a trivial pricing mechanism.

The proof of Lemma C.1 can be found in Appendix C.

4.1.2. Determining the Prices

In the following proposition we prove the price structure of any nontrivial pricing mechanism that
satisfies the four properties. In Lemma C.1 we proved that any nontrivial pricing mechanism that satisfies
the four properties must satisfy stability. In Definition 10 (Stability) we stated the prices’ lower bound.6

6 In cases of singleton allocations p(B2) = b1 � p(B1) and p(B1) = b2 � p(B2) implies a trivial pricing mechanism.
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We now show that the prices cannot be higher than the lower bound and therefore they must equal the
lower bound.

PROPOSITION 3 In any nontrivial pricing mechanism that satisfies the properties of IR, DSIC, PO, and
nonarbitrary hoarding, the prices must be as follows:

1. If Bi = {c1, c2} and Bî = ; then:
p(Bi) = min{bî, vî(c1, c2)} and P (Bî) = 0.

2. Else (singletons allocation):
p(Bi) = vî(c1, c2)� vî(Bî).

Proposition 3’s proof can be found in Appendix D.
In Appendix E we analyze the implications of the PO property on the allocation of the two-item

bundle to one player. In the following section we use the implications of PO to show that there is no
mechanism F (V1, V2, b1, b2) that satisfies the four properties.

4.2. Impossibility Statement

In this subsection we show that for any given V1, V2, b1 and b2 there is no mechanism F (V1, V2, b1, b2)

that satisfies the four properties of IR, DSIC, PO, and nonarbitrary hoarding.
In Appendix F, Lemma F.1 we show under which conditions any mechanism F that satisfies the

properties will allocate singletons and be a trivial pricing mechanism. In Appendix F, Lemma F.2 we
show under which conditions any mechanism F that satisfies the properties will allocate singletons
and be a VCG mechanism. Proposition 1 then concludes that the two lemmas (Lemmas F.1 and F.2)
cannot coexist.

THEOREM 1 There is no mechanism F (V1, V2, b1, b2) that satisfies IR, DSIC, PO, and nonarbitrary
hoarding for any given V1, V2, b1, b2.

Theorem 1’s proof can be found in Appendix G.

5. Concluding Remarks

We analyze the space of deterministic, dominant-strategy incentive compatible, individually rational,
and Pareto optimal combinatorial auctions with (publicly known) budget-constrained players. Our
model has multidimensional types, nonidentical items, private values, and quasilinear preferences for
the players. We showed that the above space includes dictatorial mechanisms that exhibit zero prices.
Interestingly we proved that if dictatorial mechanisms are ruled out by the natural anonymity property
of nonarbitrary hoarding then an impossibility of design is revealed. The minimality of the nonarbitrary
hoarding property in creating the impossibility is the topic of our research in progress.

Though the nature of our result is an impossibility, Lemma F.1 and Lemma F.2 provide insights into
which valuation domains will allow the existence of efficient solutions and which domains will enforce
inefficient solutions. Additionally, Lemma F.1 and Lemma F.2 establish the publicly-known budget b1
as the threshold for efficiency.
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[5–7] allow negative prices to exist, i.e., some players are paid for participation in the auction either
by the mechanism or by the other players. Auction holders such as the FCC would find it impractical
and undesirable or are unwilling to pay bidders (telecommunications companies) for their participation,
nor are they interested in encouraging side payments among the participants. Therefore, similar to [4]’s
model we chose to assume that all prices are nonnegative in our multidimensional type model. On the
one hand the assumption that all prices are nonnegative narrows the domain of possible allocations in
comparison with the allowed negative prices model. On the other hand narrowing the domain of possible
allocations allows for more mechanisms to fulfill DSIC, IR, and in particular the Pareto optimality
property. In our work with nonidentical items and multidimensional types, narrowing the domain of
possible allocations exposed the existence of dictatorial mechanisms and the design impossibility once
an anonymity property was assumed. An interesting outcome of our result would be to revisit the other
budget-constrained combinatorial auction literature such as [6,7] and narrow the domain of possible
allocations to determine the role of the nonarbitrary hoarding property in the impossibility of design of
the one-dimensional types model.

Appendix

A. Proposition 1’s Proof

PROOF OF PROPOSITION 1 The mechanism satisfies IR as each player pays zero, that is, no player pays
more than his budget or his values. The mechanism satisfies PO, as player i is allocated his most valued
bundle for free. As we assume nonnegative prices, there is no other allocation that can increase his
utility. Player ˆi is allocated the most valued bundle among player i’s best choice; any increase in player
ˆ

i’s utility will strictly decrease the utility of player i. The mechanism is DSIC as player i is allocated
his best choice for free, so any deviation can only decrease his utility irrespective of player ˆi’s reported
valuation. Player ˆi is allocated the highest valued bundle from a limited set of bundles that does not
depend on his declarations. Any deviation can only decrease his utility.

B. Proposition 2’s Proof

PROOF OF PROPOSITION 2 Let F be a dictatorial mechanism that satisfies the three properties of IR,
DSIC and PO. Let i be the dictator and let ˆi be the other player. Then:

1. p(Bî) = 0, regardless of the bundle allocated to the non-dictator ˆi
Assume to the contrary that p(Bî) = y > 0. From player ˆi’s DSIC we know that p(Bî) cannot
be a function of ˆi’s valuations. From the definition of dictatorship 5 and the dictator’s DSIC we
conclude that the allocation of a DSIC dictatorial mechanism is chosen to maximize the dictator’s
utility. Thus it might be the case that the chosen allocation is not IR for player ˆi as vî(Bî) < y.

2. If |Bi| = 1, i.e., the dictator is allocated a singleton, then p(Bi) = 0.
Following the definition of dictatorship 5, the price paid by player i cannot depend on the other
player’s valuations and following player i’s DSIC, the price he pays cannot depend on his own
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valuations. Thus, we then conclude that player i’s price must be a constant. Suppose that
p(Bi = {c1}) 6= p(B

0
i = {c2}) and, without the loss of generality, assume that p(Bi = {c1}) >

p(B

0
i = {c2}). Consider the following situation:

vi(c1, c2)� p(B

00
i = {c1, c2}) < vi(c1)� p(Bi = {c1}) < vi(c2)� p(B

0
i = {c2}), vi(c1) > vi(c2)

and vî(c2) > vî(c1). From the definition of dictatorship we conclude that the allocation must be
B

0
i = {c2} as to maximize player i’s utility. However, this allocation is not PO as player i prefers

the other singleton, i.e. Bi = {c1} for the same price as in allocation B

0
i and player ˆi prefers the

allocation of item c2 for the same price as in allocation B

0
î
.

Now suppose to the contrary that p(Bi = {c1}) = p(B

0
i = {c2}) = y > 0. Consider the following

valuations: vi(c1) = vi(c2) = vi(c1, c2) = y � " > 0 and vî(c1) = vî(c2) = vî(c1, c2) > 0.

In this case allocating both items to one player is not PO and allocating a singleton to player i is
not IR. Therefore, there cannot exist any mechanism that satisfies the properties with y > 0. Thus
we conclude p(Bi) = 0.

3. p(Bi = {c1, c2}) = 0

We proved in the above case that player i’s price must be a constant. Suppose to the contrary that
p(Bi = {c1, c2}) = x > 0.

Consider the following valuations:
vi(c1, c2) = x� 2" > 0, vi(c1) = x� 4", vi(c2) = 0, vî(c1) = vî(c2) = 0, vî(c1, c2) = x� 4".
From the definition of dictatorship and player i’s DSIC the allocation must be Bi = {c1} as
it maximizes i’s utility (recall that we proved above p(Bi) = 0 for this case). However, this
allocation is not PO as the allocation B

0
i = {c1, c2}, p(B0

i) = " is strictly better for player i and
the auctioneer while player ˆi is indifferent.

C. Lemma C.1’s Proof

LEMMA C.1 In any nontrivial pricing mechanism that satisfies IR, PO, nonarbitrary hoarding and
DSIC, stability must hold.

PROOF OF LEMMA 1 We consider two options:

1. Bi = {c1, c2} and Bî = ;
Suppose to the contrary that player i’s stability does not hold, i.e., p(Bi) < min{bî, vî(c1, c2)}.
Let p(Bi) = min{bî, vî(c1, c2)}� 2 · ".
Consider the same valuations for player ˆi (V 0

î
= Vî) and the following valuations for player i:

• v

0
i(c1, c2) = min{bî, vî(c1, c2)}� " and

• v

0
i(c1) = v

0
i(c2) = 0

Then from the nonarbitrary hoarding property player i will not be allocated the two-item bundle.
Player i’s utility in any other allocation is zero. Thus player i is better off deviating and stating Vi

instead of V 0
i and be allocated the two-item bundle for a positive utility.
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2. Bi = {c1} and Bî = {c2}
Suppose to the contrary that stability of player i does not hold i.e., p(Bi) < min{vî(c1, c2) �
vî(c2), bî � p(Bî)}. Let:
p(Bi) = min{vî(c1, c2)� vî(c2), bî � p(Bî)}� 2 · ".

Case I : bî � p(Bî) � vî(c1, c2)� vî(c2)

that is: p(Bi) = vî(c1, c2)� vî(c2)� 2 · ".
Consider the same valuations for playerˆi (V 0

î
= Vî) and the following valuations for player i:

• v

0
i(c2) = 0

• v

0
i(c1, c2) = vî(c1, c2)� vî(c2)� ".

Note that, from bî � p(Bî) � vî(c1, c2)� vî(c2) it follows that v0i(c1, c2) < bî.

• v

0
i(c1) = v

0
i(c1, c2)� "/2

Allocating both items to player i contradicts nonarbitrary hoarding as v

0
i(c1, c2) <

min{bî, v0î(c1, c2)}. Both allocations (B0
i = {c2}, B0

î
= {c1}) and (B

0
î
= {c1, c2}, B0

i = ;)
are not DSIC as in both allocations player i’s utility is 0. Player i can deviate and state
Vi instead of V 0

i . With this deviation he will be allocated B

0
i = {c1} for a positive utility,

u

0
i = v

0
i(c1)� p(Bi) =

"
2 > 0.

To complete the argument we now show that allocating Bî = {c2} is not DSIC for player ˆi.
Consider the following valuations: V

00
i = V

0
i , v

00
î
(c2) = 0, v

00
î
(c1) = v

0
î
(c1) = vî(c1)

and v

00
î
(c1, c2) = v

0
î
(c1, c2) + " = vî(c1, c2) + ".

Allocating both items to player i contradicts nonarbitrary hoarding as v

00
i (c1, c2) =

v

0
i(c1, c2) < vî(c1, c2) < v

00
î
(c1, c2), and v

00
i (c1, c2) = v

0
i(c1, c2) < bî.

Allocating singletons is not Pareto optimal as both players’ valuation for {c2} is zero, and
they both strictly prefer the two-item bundle over any singleton for the same price. Therefore
by stating V

00
î

player ˆi will be allocated the two-item bundle.

We first argue (below) that in any nontrivial pricing mechanism that satisfies the four
properties, if player ˆ

i is allocated the two-item bundle then p(Bî)  vi(c1, c2). We
then conclude that by stating V

00
î

player ˆi will be allocated the two-item bundle for a price
p(B

00
î
)  v

00
i (c1, c2) and therefore the utility u00

î
= vî(c1, c2)�p(B

00
î
) � vî(c1, c2)�v

00
i (c1, c2) =

vî(c2) + ". That is, player ˆi’s utility is higher than the utility from the allocation Bî = {c2}
where c2 is allocated for free.

Proving the above argument: in any nontrivial pricing mechanism that satisfies the four
properties, if player ˆi is allocated the two-item bundle then p(Bî)  vi(c1, c2).

Suppose to the contrary that Bî = {c1, c2} and p(Bî) = vi(c1, c2) + 2 · ".
From nonarbitrary hoarding it must be the case that min{bi, vi(c1, c2)}  min{bî, vî(c1, c2)}.
Consider the valuations: ¯

Vi = Vi; v̄î(c1, c2) = vi(c1, c2) + "; v̄î(c1) = v̄î(c2) = 0.
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Consider the allocation ¯

Bi = {c1, c2}:
min{bi, v̄i(c1, c2)}  min{bî, v̄î(c1, c2)}. Therefore this allocation does not contradict
nonarbitrary hoarding only if:

i. v̄i(c1, c2) = bî  bi

or:

ii. bi = bî  v̄i(c1, c2)

However, both cases contradict IR for player ˆi when the valuations are Vi, Vî as p(Bî) =

vi(c1, c2) + 2" > bî.

If the allocation is ¯

Bî = {c1, c2} then from IR it follows that p( ¯Bî)  v̄î(c1, c2) = vi(c1, c2)+

". Therefore, when the true valuations are Vi, Vî then player ˆi is better off deviating and
stating ¯

Vî to be allocated the same bundle for a lower price.

Therefore the mechanism must allocate singletons, and from IR player ˆ

i must pay zero.
However, in this case, if player ˆi’s true valuations for the singletons are ", he must still pay
zero (from DSIC as his price cannot depend on his valuations). Thus, either the mechanism
is a trivial pricing mechanism or it is not DSIC.

Case II : bî � p(Bî) < vî(c1, c2) � vî(c2) that is, p(Bi) < bî � p(Bî). Note that if vî(c1, c2)  bî

then this case cannot happen as from IR it follows that vî(c2) � p(Bî). From IR and DSIC
we conclude that p(Bî) cannot be a constant unless p(Bî) = 0. The later case is a trivial
pricing mechanism and therefore we do not claim that stability holds. From DSIC we also
conclude that p(Bî) cannot be a function of player ˆi’s valuations. Therefore p(Bî) must be
a function of player i’s valuations. This means that player i has an incentive to raise p(Bî)

and by doing so decrease the upper bound of p(Bi) that he pays. This situation is not DSIC
unless p(Bi) = 0 (in which case player i has no incentive to lower the price). In this case the
mechanism is a trivial pricing mechanism and therefore stability does not hold. We therefore
conclude that in case II the mechanism must be a trivial pricing mechanism.

D. Proposition 3’s Proof

PROOF OF PROPOSITION 3 We show that the prices cannot be higher than the lower bound given by
stability and therefore they must equal the lower bound. We consider the two different cases.

1. Bi = {c1, c2} and Bî = ;
Using IR we conclude that p(Bî) = 0.
Suppose to the contrary that p(Bi) > min{bî, vî(c1, c2)}.
Let p(Bi) = min{bî, vî(c1, c2)}+ 2 · ". According to IR it must be the case that
p(Bi) = min{bî, vî(c1, c2)}+ 2 · "  min{bi, vi(c1, c2)}.
We show that a mechanism with such a price cannot be DSIC for player i.
Consider the following deviation for player i:

• v

0
i(c1, c2) = min{bî, vî(c1, c2)}+ " and

• v

0
i(c1) = v

0
i(c2) = 0
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The allocation B

0
i = ; contradicts nonarbitrary hoarding as

min{bî, vî(c1, c2)}+ " < min{bî, vî(c1, c2)}+ 2"  min{bi, vi(c1, c2)}.

Suppose that each player is allocated a singleton: B

0
î
= {cj} and B

0
i = {cĵ}. Using the IR of

player i it follows that p(B0
i) = 0. Therefore, from Lemma C.1 it follows that

p(B

0
î
) � min{v0i(c1, c2)� v

0
i(cĵ), bi � p(B

0
i)} = min{v0i(c1, c2), bi}. There are two cases:

Case I v

0
i(c1, c2)  bi

From Lemma C.1 it follows that:
p(B

0
î
) � v

0
i(c1, c2) = min{bî, vî(c1, c2)}+ ".

From free disposal we then conclude that: p(B0
î
) � min{bî, vî(cj)}+ " > min{bî, vî(cj)}

with contradiction to IR of player ˆi.

Case II v

0
i(c1, c2) > bi

However, in this case, v0i(c1, c2) = min{bî, vî(c1, c2)} + " > bi with contradiction to player
i’s IR, as our contrary assumption is that p(Bi = {c1, c2}) = min{bî, vî(c1, c2)}+2 · " > bi.

Therefore player i must still be allocated the two-item bundle for a lower price. Thus any
mechanism with a price higher than min{bî, vî(c1, c2)} is not DSIC.

2. B1 = {cj} and B2 = {cĵ}

• Suppose to the contrary that p(B2) > v1(c1, c2)� v1(cj).
Let p(B2) = v1(c1, c2) � v1(cj) + 2 · ". We show that any mechanism applying this price
cannot be DSIC for player 2. Consider the following deviation for player 2:

– v

0
2(cĵ) = v1(c1, c2)� v1(cj) + "

– v

0
2(cj) = 0

– v

0
2(c1, c2) = v1(c1, c2) +

"
2

If b1 < b2 then allocating both items to player 1 contradicts the property of nonarbitrary
hoarding as v02(c1, c2) > v1(c1, c2).
If b1 = b2 from the property of nonarbitrary hoarding, as v02(c1, c2) > v1(c1, c2), allocating
both items to player 1 might satisfy the properties only if v02(c1, c2) > v1(c1, c2) � b1 = b2.
However, if this is the case then allocating both items to player 1 is not PO. Consider the
following allocation: B00

1 = {cj}, p(B00
1 ) = b1�v

0
2(cĵ), B

00
2 = {cĵ} and p(B

00
2 ) = v

0
2(cĵ). Then

player 2’s utility is zero as before and the utility of the auctioneer is unchanged. Player 1’s
utility is strictly increased as u00

1 = v1(cj)�b1+v

0
2(cĵ) = v1(cj)�b1+v1(c1, c2)�v1(cj)+" >

v1(c1, c2)� b1 = u

0
1.

The allocation B

0
1 = {cĵ} is not IR for player 1 as from Lemma C.1 and from the free disposal

assumption it follows that p(B0
1) � v

0
2(c1, c2)�v

0
2(cj) = v1(c1, c2)+

"
2 > v1(c1, c2) � v1(cĵ).

We claim that allocating both items to player 2 is not Pareto. We proved in case 1 above that
if player 2 is allocated both items then the price must equal min{b1, v1(c1, c2)}. Therefore,
if on one hand v1(c1, c2)  b1 then player 2’s utility from such an allocation is "

2 and
player 1’s utility is zero. The allocation B

00
1 = {cj}, p(B00

1 ) = v1(cj), B00
2 = {cĵ} and
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p(B

00
2 ) = v1(c1, c2)�v1(cj) is strictly better for player 2 as u00

2 = v

0
2(cĵ)�v1(c1, c2)+v1(cj) =

" >

"
2 = u

0
2, while player 1 and the auctioneer are indifferent.

If on the other hand v1(c1, c2) > b1 then player 2’s utility from such an allocation is
v1(c1, c2)+

"
2 �b1 and player 1’s utility is zero. The allocation: B000

1 = {cj}, p(B000
1 ) = v

0
1(cj),

B

000
2 = {cĵ} and p(B

000
2 ) = b1 � v1(cj) is strictly better for player 2 as u000

2 = v

0
2(cĵ) � b1 +

v1(cj) = v1(c1, c2)+ "� b1 > v1(c1, c2)+
"
2 � b1 = u

0
2 while player 1 and the auctioneer are

indifferent.
Therefore player 2 must still be allocated B2 = {cĵ} for a price lower than v1(c1, c2) �
v1(cj) + 2 · ". Thus any mechanism with a price higher than v1(c1, c2)� v1(cj) is not DSIC
for player 2.

• Suppose to the contrary that p(B1) > v2(c1, c2)� v2(cĵ).
Let p(B1) = v2(c1, c2)� v2(cĵ) + 2 · ". We claim that it is not truthful for player 1. Consider
the following deviation for player 1:

– v

0
1(cj) = v2(c1, c2)� v2(cĵ) + "

– v

0
1(cĵ) = 0

– v

0
1(c1, c2) = v2(c1, c2) +

"
2

From the property of nonarbitrary hoarding, as v01(c1, c2) > v2(c1, c2), allocating both items
to player 2 might satisfy the properties only if v01(c1, c2) > v2(c1, c2) � b1. However, if
this is the case then allocating both items to player 2 is not Pareto optimal. Consider the
following allocation: B

00
1 = {cj}, p(B00

1 ) = v

0
1(cj), B00

2 = {cĵ} and p(B

00
2 ) = b1 � v

0
1(cj). In

this allocation player 1’s utility is zero as before, the auctioneer’s utility is unchanged, and
player 2’s utility is strictly increased as u00

2 = v2(cĵ)�b1+v

0
1(cj) = v2(cĵ)�b1+v2(c1, c2)�

v2(cĵ) + " > v2(c1, c2)� b1 = u

0
2.

The allocation B

0
2 = {cj} is not IR for player 2, as from Lemma C.1 and the free disposal

assumption it follows that p(B0
2) � v

0
1(c1, c2)�v

0
1(cĵ) = v2(c1, c2)+

"
2 > v2(c1, c2) � v2(cj).

Allocating both items to player 1 is not Pareto optimal. We proved in case 2 above
that if player 1 is allocated both items then the price must equal min{b2, v2(c1, c2)}. If
v2(c1, c2)  b2 then player 1’s utility from such an allocation is "

2 and player 2’s utility is zero.
The allocation B

000
1 = {cj}, p(B000

1 ) = v2(c1, c2) � v2(cĵ), B
000
2 = {cĵ} and p(B

000
2 ) = v2(cĵ)

is strictly better for player 1 as u

000
1 = v

0
1(cj) � v2(c1, c2) + v2(cĵ) = " >

"
2 = u

0
1.

Player 2 and the auctioneer are indifferent. If v2(c1, c2) > b2 then the property
of nonarbitrary hoarding implies that allocating both items to player 1 means
b1 = b2. Consider the following allocation: ¯

B1 = {cj}, p(

¯

B1) = b1 � v2(cĵ),
¯

B2 = {cĵ} and p(

¯

B2) = v2(cĵ). Then player 2’s utility is zero as before, the
auctioneer’s utility is unchanged, and player 1’s utility is strictly increased as
ū1 = v

0
1(cj)�b1+v2(cĵ) = v2(c1, c2)�b1+" = v

0
1(c1, c2)� "

2�b1+" > v

0
1(c1, c2)�b1 = u

0
1.

Therefore any mechanism must still allocate B1 = {cj} for a price lower than v2(c1, c2) �
v2(cĵ) + 2 · ". Thus any mechanism with a price higher than v2(c1, c2)� v2(cĵ) is not DSIC
for player 1.
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E. Implications of Pareto Optimality

In the next claim we analyze the implications of the PO property on the allocation of the two-item
bundle to one player. In the following section we use the implications of PO to show that there is no
mechanism F (V1, V2, b1, b2) that satisfies the four properties.

CLAIM 1 In any mechanism that satisfies the properties of IR, DSIC, PO, and nonarbitrary hoarding, if
for a certain set of private valuations V1, V2 the output allocation is Bi = {c1, c2} and Bî = ;, then PO
implies that vi(c1, c2)� vi(cj) � min{bî, vî(c3�j)} for every j 2 {1, 2}.

PROOF OF CLAIM 1 Suppose to the contrary that a mechanism F satisfies the four properties, Bî = ;,
Bi = {c1, c2}, but vi(c1, c2)� vi(c2) < min{bî, vî(c1)}. Then from Proposition 3 we know that p(Bi) =

min{bî, vî(c1, c2)}. Therefore ui = vi(c1, c2)�min{bî, vî(c1, c2)} and uî = 0. The allocation B

0
î
= {c1}

and B

0
i = {c2} with the prices p(B0

î
) = min{bî, vî(c1)} and p(B

0
i) = min{bî, vî(c1, c2)}�min{bî, vî(c1)}

is strictly better for player i, better or equal for player ˆi, and equal for the auctioneer as:

• u

0
î
= vî(c1)�min{bî, v1(cî)} � 0 = uî

• u

0
i = vi(c2)�min{bî, vî(c1, c2)}+min{bî, vî(c1)}. From the assumption that vi(c1, c2)� vi(c2) <

min{bî, vî(c1)} we conclude that vi(c1, c2) < vi(c2) + min{bî, vî(c1)}. Thus, u0
i = vi(c2) �

min{bî, vî(c1, c2)}+min{bî, vî(c1)} > vi(c1, c2)�min{bî, vî(c1, c2)} = ui.

• p(Bî) + p(Bi) = p(B

0
î
) + p(B

0
i).

This contradicts the assumption that the allocation is Pareto optimal. The proof that vi(c1, c2)�vi(c1) �
min{bî, vî(c2)} is equivalent.

F. Impossibility Statement’s Lemmas

LEMMA F.1 If the following conditions hold:

1. v2(c1, c2)� v2(cĵ) < min{b1, v1(cj)} and

2. v1(c1, c2)� v1(cj) < min{b2, v2(cĵ)} and

3. v2(c1, c2)� v2(cj) > min{b1, v1(cĵ)} and

4. b1 � v2(c1, c2) + v2(cĵ) < v1(c1, c2)� v1(cj)
7

then any mechanism F that satisfies the properties of IR, DSIC, PO, and nonarbitrary hoarding, must
allocate B1 = {cj}, B2 = {cĵ} and F must be a trivial pricing mechanism.

7 The motivation for Condition 4 is drawn from the proof of Lemma C.1 option 2 (case II), i.e. singletons allocation and
vi(c1, c2)� vi(Bi) > bi � p(Bi).
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PROOF OF LEMMA 2 We first show that if Conditions 1-3 hold then any mechanism F that satisfies the
four properties must allocate B1 = {cj} and B2 = {cĵ}. Assume to the contrary that F is a nontrivial
pricing mechanism. From Claim 1 we conclude that Condition 1 implies that there is no mechanism that
satisfies the four properties and allocates both items to player 2, and Condition 2 implies that there is
no mechanism that satisfies the four properties and allocates both items to player 1. From Proposition 3
and Condition 3 it follows that allocating B1 = {cĵ} is not IR for player 1. Therefore the allocation
must be B2 = {cĵ} and B1 = {cj}.

From Proposition 3 we know that in any nontrivial pricing mechanism p(B1 = {cj}) = v2(c1, c2) �
v2(cĵ) and p(B2) = v1(c1, c2)� v1(cj).
We showed that if Condition 4 holds then the mechanism must be a trivial pricing mechanism. From
Condition 4 it follows that u2 = v2(cĵ) � v1(c1, c2) + v1(cj) < v2(c1, c2) � b1. Therefore player 2 will
be better off deviating to be allocated the two-item bundle even for the highest price of b1. Note that in
any nontrivial pricing mechanism if B2 = {c1, c2} then Proposition 3 implies that p(B2)  b1. Thus
either there is no mechanism that satisfies the properties or the mechanism F must be a trivial pricing
mechanism.

LEMMA F.2 If the following conditions hold:

1. v2(c1, c2)� v2(cĵ) < min{b1, v1(cj)} and

2. v1(c1, c2)� v1(cj) < min{b2, v2(cĵ)} and

3. v2(c1, c2)� v2(cj) > min{b1, v1(cĵ)} and

4. b1 � v2(c1, c2) + v2(cĵ) > v1(c1, c2)� v1(cj)

then any mechanism F that satisfies the properties of IR, DSIC, PO, and nonarbitrary hoarding must
allocate B1 = {cj} and B2 = {cĵ} with VCG prices.

PROOF OF LEMMA 3 In Lemma F.1 we showed that if Conditions 1-3 hold then any mechanism that
satisfies the four properties must allocate B1 = {cj} and B2 = {cĵ}. In Lemma C.1 we showed that
if the inequality in Condition 4 holds then the mechanism is a nontrivial pricing mechanism. From
Proposition 3 we conclude that the prices must be VCG prices.

Though the nature of our result is an impossibility, Condition 4 both in Lemma F.1 and Lemma F.2
can provide insights into which valuation domains will allow the existence of efficient solutions and
which domains will enforce inefficient solutions. For instance if Conditions 1-3 hold then Condition 4
enforces an efficient solution if v1(c1, c2)  b1. Additionally, Condition 4 together with Condition 1
establish the publicly-known budget b1 as the threshold for efficiency.

G. Theorem 1’s Proof

PROOF OF THEOREM 1 In Lemma F.1 we proved that for any mechanism F that satisfies the four
properties there are private valuations such that the mechanism must allocate B1 = {cj} and B2 = {cĵ}.
Furthermore F in such cases is a trivial pricing mechanism.
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In Lemma F.2 we proved that for any mechanism F that satisfies the four properties there are private
valuations such that the mechanism must allocate B1 = {cj} and B2 = {cĵ} with VCG prices.

Clearly, any mechanism in which a player can be allocated an item for free or be allocated the same
item and pay the VCG price, cannot be DSIC. Therefore there cannot be a mechanism, F , that satisfies
the four properties for any given private valuations.
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