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Abstract: We characterize the structure of Nash equilibria for a certain class of asset market
games. In equilibrium, different assets have different returns, and (risk neutral) investors with
different wealth hold portfolios with different structures. In equilibrium, an asset’s return is
inversely related to the elasticity of its supply. The larger an investor, the more diversified
is his portfolio. Smaller investors do not hold all the assets, but achieve higher percentage
returns. More generally, our results can be applied also to other “multi-market games” in
which several players compete in several arenas simultaneously, like multi-market Cournot
oligopolies, or multiple rent-seeking games.

Keywords: asset markets; Nash Equilibrium; multigames

1. Introduction

1.1. Motivation

There are many situations in which a number of players play several different games (interact in
different markets) simultaneously, and what a player can do in one game is constrained by what he does
in the others (so that the games cannot be analyzed separately). Typically, there is a resource constraint:
Each player has a limited amount of some resource (time, money, effort, capacity, . . . ) and must decide
how much of it to commit to the various “markets” in order to maximize his overall payoff.

Examples include: Strategic investors (with limited budget) in certain asset markets (the subject of
this paper), multimarket Cournot oligopoly (with limited capacity), but also political contests where
several candidates (with limited time) compete in several constituencies, multiple rent-seeking, etc.
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We study such a situation of “multimarket interaction” for the special case of asset market games of
the type considered in [1–3]1. These works in turn build on older work on market games of the kind
introduced in [6], and especially on work on strategic financial markets, like [7].

The present study was directly motivated by the model in [1]: Here investors decide how to allocate
their funds over a number of different assets, which are in constant (unit) supply. Prices are set so
as to equate demand and supply. [1] noted that the unique Nash equilibrium of the game coincides
with the unique evolutionarily stable strategy (ESS), and also coincides with the “competitive outcome”.
While a relationship between evolutionary stability and competitive outcomes has also been observed
in other contexts ([8,9]), and thus is not too surprising, the coincidence of competitive outcomes and
Nash equilibria is rather striking. It seems that the familiar tension (e.g., in Cournot oligopoly) between
price-taking and strategic behavior is absent from these asset markets2. It was this observation which
originally motivated the present study.

It turns out that a slight modification of the model suffices to remove this anomaly: Rather than
constant (inelastic) asset supply, we allow elastic supply, such that different assets may have different
elasticities. This recognizes the fact that in an asset market usually only a few investors (e.g., very
large, professionally managed funds) will act strategically, that is, be aware that their transactions may
influence prices, and take this influence into account for their investment decisions. Only these large,
strategic investors will act as players in our market game. Even if the total supply of an asset is really
constant, part of it will usually be held by other, nonstrategic market participants, and these may be
more or less willing to sell, depending on the price. We model these traders in the simplest possible
way by assuming that their aggregate behavior is described by an upward-sloping (possibly constant)
supply function (one for each asset). Given this, Nash and competitive outcomes no longer coincide (see
Section 1.2).

We also assume that the markets for the various assets are sufficiently separated, so that the supply
of each asset depends only on its own price. While such an assumption is certainly restrictive3, this
permits us to obtain very detailed information about the structure of equilibrium, which would probably
be impossible otherwise.

We note also that uncertainty plays no formal role in our analysis. Following part of the literature
which motivated this study, we assume that the players are risk neutral, so that only expected payoffs
matter. Thus the results in Sections 1–4 of [1] remain true even with elastic supply, as long as all
elasticities are the same (Theorem 4.2).

1 This literature was motivated mainly by the question which types of investment strategies will survive in the long run in
a stochastic environment. Our focus is different: the structure of equilibrium in the static game.

2 The salient point is the coincidence of Nash and Walras independently of the number of players. This is quite different
from the well-known observation (at least since Cournot) that Nash equilibria tend to Walrasian allocations in the limit, when
the number of players goes to infinity, cf. [4] and the references given there.

3 For example, it would not be appropriate for the model of [5]. This model has constant supply of all assets, but features
explicitly both strategic and non-strategic (competitive) traders. The non-strategic traders optimize portfolios consisting of
the same assets as the strategic traders, the only difference being that they take prices as given. Clearly, the non-strategic
traders’ total demand for an asset depends on all prices in an essential way, and so does the remaining “supply” left for the
strategic traders.



Games 2011, 2 211

Remark: Even though our analysis was originally motivated by a financial markets literature, such
markets are probably not the best examples for our theory. Indeed, in financial markets an important
role is played by factors which are not modeled in the present paper, like differential information, risk
aversion, short selling, interdependence of asset prices, etc. Combining such features with strategic
behavior is quite difficult and requires a different sort of analysis (cf. [5,7]).

Instead of financial asset markets, it might be better to think of real assets. For example, the players
could be a group of large investment funds buying real estate in various cities (“markets”), like New
York, London, Hongkong, ... Each player has a certain budget and must decide how much to invest in the
various cities; moreover the players realize that their investments may influence the prices. Alternatively4

the players might be large strategic traders who compete in buying various input factors and sell them on
the world market, at a given world market price.

1.2. Summary of Results

Given the exogenous supply functions (one for each asset) the strategic players decide how much of
their available funds to invest in the various assets. Prices are then set to equate supply and demand in
each market, exactly as in the classical market games with fixed supply. But note that the game is no
longer constant-sum.

The main contribution of the present paper is a detailed characterization of the structure of the
possible Nash equilibria of this asset market game, for the non-symmetric case. The results can be
summarized as follows: In the symmetric case, when all supply functions have the same elasticity,
then there exists a unique Nash equilibrium. It is symmetric and coincides with both the “competitive”
and the ESS outcomes (here “competitive” is of course to be understood as a situation in which every
investor maximizes profits, taking prices–not supply functions—as given). In this equilibrium, prices are
proportional to expected payoffs (prices are “fair”, or “correspond to fundamentals”) and all investors
achieve the same rate of return on their capital. This includes the constant supply situation considered
in the literature quoted above. Intuitively, when the supply of all assets is constant, the market game
is constant-sum, and a player can increase his payoff only at the expense of the others; therefore the
maximization of absolute payoffs (Nash) coincides with the maximization of relative payoffs (ESS)5.
We show that this continues to hold for variable supply, as long as the supply conditions for all assets are
essentially the same (Theorem 4.2).

But the point of the paper is the non-symmetric case where the supply conditions for different assets
are genuinely different. Then Nash equilibria are not symmetric, and neither ESS nor competitive. Prices
are not fair, and different assets have different return rates. More precisely, the lower the elasticity of
supply of an asset, the higher its return. Larger investors are more diversified, with the largest investor
holding positive quantities of all assets, but smaller investors buy only some of the assets (the smaller,
the fewer). Moreover, larger investors necessarily hold relatively more low-yielding assets and achieve
lower average rates of return at equilibrium than small investors (Theorem 4.1); this may be termed the
“curse of size”.

4This interpretation was suggested by a referee.
5 This can be made precise, see [10].
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These somewhat counterintuitive deviations from the competitive outcome, i.e. different rates of
return across assets and/or investors, have nothing to do with market imperfections or other reasons
like different degrees of risk aversion etc., but come from the heterogeneity of supply, combined with
the strategic interplay among large and small investors: at equilibrium, every investor equalizes the
marginal, not the average, rates of return of all assets which he holds in positive quantity. Since marginal
rates differ from average ones, and also across investors due to their different wealth, we obtain these
heterogeneous portfolios.

Equilibrium is unique in the “symmetric” cases (symmetry w.r.t. assets and/or investors, Theorem 4.2
and Theorem 4.3); in general, we can only prove that there exists at most one Nash equilibrium at which
all investors hold all assets (Proposition 4.2; there may exist no such equilibrium).

We also consider competitive and ESS outcomes separately. There always exists a unique ESS, and
a unique competitive rate of return (the same for all assets). At the ESS, all investors achieve exactly
the competitive rate6. At any Nash equilibrium that is not ESS, they achieve strictly more (Theorem 5.1,
Theorem 4.4).

The paper is organized as follows. Section 2 introduces the basic model, in Section 3 we study
competitive allocations and prove the existence of Nash equilibrium, Section 4 contains the main results,
and in Section 5 we study evolutionarily stable strategies. Most proofs, except very short ones, are in
the appendix.

2. Notation and Definitions

We consider an asset market of the kind studied in [1–3]. There are i = 1, 2, . . . , N risk–neutral
investors (N ≥ 2), and k = 1, 2, . . . , K assets (K ≥ 2). The initial endowment (with money) of
investor i is W i > 0, and the total money endowment is W :=

∑
iW

i. The (expected) monetary payoff
per unit of asset k is Ek > 0, and Sk(pk) is the supply function for asset k, where pk ≥ 0 denotes the
price (per unit) of asset k. We allow arbitrary supply functions, subject only to the condition that the
price elasticity of supply be non-increasing. We denote the supply elasticity of asset k by

ηk = Hk(pk) =
pkS

′
k(pk)

Sk(pk)
for pk > 0

and assume, for ∀k:

S.1. The supply function Sk(pk) is continuous and nondecreasing for pk ≥ 0, and strictly positive for
pk > 0.

S.2. The supply function Sk(pk) is twice continuously differentiable (possibly with infinite slope at
pk = 0)7.

S.3. The elasticity Hk(pk) is non-increasing on (0,∞).

Remark: It may be that Sk(0) = 0 or Sk(0) > 0; we will show (cf. Lemma A.2 in the appendix) that
the latter case occurs if and only if supply is constant, Sk(pk) = S̄k > 0 ∀pk ≥ 0. This is the situation

6 A connection between evolutionary stability and competitive outcomes has also been found in other contexts ([9]).
7 For a precise statement see S.4 in the appendix.
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considered in the literature quoted above8. To justify a variable supply in the strategic N -player game
among “big” investors which we are going to study, we may imagine that the asset is also held by a large
number of small, nonstrategic market participants. These traders are simply willing to sell more of an
asset if its price goes up; their aggregate behavior is captured by the supply functions Sk.

Each investor i invests his whole wealth W i in the K available assets, i.e. he chooses a vector
wi = (wi1, . . . , w

i
K) in his budget set

Bi = Bi(W i) = {wi ∈ RK
+ |
∑
k

wik = W i} (1)

where wik ≥ 0 is the amount of money invested in asset k by investor i.
The setBi is i’s strategy space; it is a nonempty, compact and convex subset of RK

+ . The joint strategy
space is B : =

∏
iB

i ⊂ RKN
+ . A strategy profile is denoted by w = (w1, . . . wN) ∈ B. Given w, we

write wk :=
∑

iw
i
k for the total amount of money invested in asset k by all investors (wi is a vector, but

wk is a scalar!). If wk > 0 we say that market k is active (at w).
Alternatively (and equivalently), the behavior of an investor i can be described in percentage terms,

i.e. by αi = (αi1, . . . α
i
K), where αik = wik/W

i denotes the fraction of investor i’s wealth invested in
asset k. This formulation makes the game appear more symmetric and is useful in certain contexts
(e.g., to study evolutionary stability, see Section 5). The vector αi describes how investor i allocates
his money among the various assets (30% in German real estate, 3% in Gold, etc.); for convenience we
refer to αi also as investor i’s portfolio. Similarly, we use the word “market portfolio” for the vector
(w1/W, . . . wN/W ), describing the percentage allocation of total wealth W over the K asset types (in
the finance literature, the term “market portfolio” has a slightly different meaning, but this should cause
no confusion).

For pk > 0, we denote by rk : = Ek/pk the (gross) rate of return per dollar of asset k. In a competitive
equilibrium, with price-taking risk-neutral investors, rk must be the same for all assets (cf. Section 3.1).

REMARK: even though, in the game to be considered below, investors are constrained to choose
wi ∈ Bi, many of the following considerations do not depend on this restriction, but are valid for
arbitrary nonnegative wi ∈ RK . We will therefore, whenever appropriate, pay no attention to the budget
constraints and consider arbitrary strategy profiles w ∈ RKN

+ .
Given w ∈ RKN

+ , the prices pk are determined so as to clear markets, i.e. such that ∀k

pkSk(pk) = wk (2)

It is easy to see (cf. Lemmas A.1, A.3) that this defines a unique price pk = Pk(wk) for every wk ≥ 0;
and that the price function pk = Pk(wk) is differentiable and strictly increasing , with Pk(0) = 0,
limwk→∞ Pk(wk) =∞. Therefore the rate of return,

rk = Rk(wk) : =
Ek

Pk(wk)
=
EkSk(Pk(wk))

wk
(3)

8 Note on normalization: in the literature with fixed supply, it is frequently assumed (w.l.o.g.) that the total supply of each
asset is equal to unity: S̄k = 1 ∀k. In our context, a possible normalization is to choose units such that the return per unit of
each asset is equal to unity: Ek = 1 ∀k. This is sometimes useful, e.g., in the context of Theorem 4.2.
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is also a differentiable function of wk , and strictly decreasing in wk, with limwk→0Rk(wk) = ∞ and
limwk→∞Rk(wk) = 0. Note in particular that if the total investment in asset k goes to zero, wk → 0,
then the expected rate of return Rk = Rk(wk) becomes arbitrarily large. This will ensure that in Nash
equilibrium all markets are active.

We conclude this section with a formula that will be useful in the sequel. Note that by definition (2),
Pk(wk)Sk(Pk(wk)) ≡ wk. Totally differentiating gives:

P ′k(wk)Sk(Pk(wk)) + Pk(wk)S
′
k(Pk(wk))P

′
k(wk) ≡ 1 ⇔ P ′kSk[1 + ηk] ≡ 1

Using Sk = wk/Pk we obtain:

0 <
1

1 +Hk[Pk(wk)]
≡ P ′k(wk)wk

Pk(wk)
≤ 1 (4)

Expression (4) is the elasticity of the price pk = Pk(wk) with respect to the total amount of money wk
invested in asset k. It lies between zero and one because ηk ≥ 0 by S.1 and is equal to one if and only if
the supply elasticity ηk = Hk[Pk(wk)] is zero (i.e., supply is constant).

3. The Market Game

Given a strategy profile w ∈ RKN
+ , the amount of asset k allocated to investor i is given by:

xik(w) :=

 wik/Pk(wk) if wk > 0 (⇒ pk > 0)

0 if wk = 0 (market k is not active)
(5)

If market k is active we may also write

xik(w) =
wik
wk
Sk(Pk(wk)) (wk > 0) (6)

If i is the only investor who holds asset k (wik = wk), then

xik(w) =

 Sk(Pk(wk)) if wik > 0 or Sk(0) = 0

0 [6= Sk(0)] if wik = 0 and Sk(0) 6= 0
(7)

with a discontinuity at wik = 0 if Sk(0) > 0. The payoff of investor i is then given by

πi(w) =
∑
k

Ekx
i
k(w) =

∑
k

wk>0

wikRk(wk) (8)

These data define the asset market game G among the N investors, with strategy spaces Bi and payoff
functions πi.

In this formulation the strategies and payoffs of large and small investors are not directly comparable,
but we can make them so by expressing everything in percentage terms, i.e. by dividing both the invested
amounts wik and the payoff πi of an investor i by his initial wealth W i. This gives a strategically
equivalent game Ḡ as follows. The strategy of investor i is his portfolio αi = (αi1, . . . , α

i
K) = (W )−1·
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(wi1, . . . , w
i
K), his strategy space is the (K − 1)-dimensional unit simplex ∆K , a joint strategy is written

α = (α1, . . . , αN), and the payoff of investor i in the modified game Ḡ is his return per dollar

ri = π̄i(α) =
∑
k

αi
k
>0

αikR̄k(α) =
πi(w)

W i
(9)

where R̄k(α) : = Rk(
∑

iW
iαik); and

∑
iW

iαik =
∑

iw
i
k = wk is the total amount invested in asset k if

the investors use the joint strategy α.
This formulation of the game is quite natural. Indeed, investors frequently describe their strategy by

stating how many percent of their total funds they invest in various types of assets, and they describe their
payoffs by stating the percentage return on their portfolio (e.g., 4.5% p.a.), not the absolute quantities.
We will use the two equivalent formulations G and Ḡ interchangeably, according to convenience, and
refer to both G and Ḡ as the “asset market game”.

Our main interest will be in determining the structure of the Nash equilibria of this game,
corresponding to strategic (fully rational) behavior of the agents (Section 4). But we will also
consider other solution concepts: Competitive outcomes corresponding to price-taking behavior, and
evolutionarily stable strategies (ESS) in the sense of [11], which are motivated by certain types of
boundedly rational behavior (imitation) (Section 5). The relationships between these solution concepts
will also be clarified. Moreover, it is easy to see that the game G is constant-sum if and only if all supply
functions Sk are constant (see Lemma A.4 in the appendix).

Given a strategy profilew ∈ B, the expected payoff from asset k,EkSk = EkSk[Pk(wk)], and the total
expected payoff, E(w) : =

∑
k EkSk, are determined. We say that investor i follows the proportional

investment rule if the amount invested by him in each asset k is proportional to the expected payoff EkSk
of this asset, i.e. if there is γi > 0 such thatwik = γiEkSk ∀k (or αik = EkSk/E(w); “investing according
to the fundamentals”).

3.1. Competitive Allocations

A profile w = (w1, . . . wN) (resp. the corresponding asset allocation) is called competitive if all assets
have the same rate of return, i.e. if there exists r̂ such that for all k

Rk(wk) = r̂ (10)

In this case pk = 1
r̂
Ek ∀k, i.e. prices are proportional to expected payoffs. We also say that prices are

fair. Clearly, in a competitive allocation, the common rate of return r̂ is equal to the total payoff divided
by the total initial money endowment

r̂ =
E(w)

W
(11)

(to see this, use (3) to write wk = r̂−1EkSk and sum over k).

Lemma 3.1. There exists a unique competitive rate of return r̂ > 0. It depends only on the total money
endowment W , but not on the distribution of wealth W 1, . . .WN .

Proof: For r > 0, define wk(r) > 0 by Rk[wk(r)] = r. The properties of the return function Rk(·) imply
that wk(r) is well defined and strictly decreasing in r (from∞ to 0); hence there exists a unique r̂ > 0

such that
∑

k wk(r̂) = W .
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Define ŵk by Rk(ŵk) = r̂. In competitive equilibrium the return rate r̂, the prices p̂k = Ek/r̂,
the profits πi(w) =

∑
k w

i
kRk = W ir̂, and the amounts ŵk are uniquely determined, but not the asset

allocation. Indeed, from the viewpoint of a price-taking investor i, any strategy wi = (wi1, . . . w
i
K) ∈ Bi

is profit maximizing, since all assets yield the same return. Thus there are infinitely many competitive
allocations, characterized by the condition that the total amounts wk =

∑N
i w

i
k invested in the various

assets satisfy wk = ŵk. Among these, a special role is played by the proportional investment rule.

Lemma 3.2. (i) There exists a unique profile ŵ ∈ B in which all investors follow the proportional
investment rule. This profile is competitive and is given by ŵik = ŵk

W i

W
, where ŵk is given by Rk(ŵk) =

r̂. (ii) Let w ∈ B be a competitive profile such that all investors hold the same portfolio αi = αj ∀i, j.
Then w = ŵ and αi = α̂ ∀i, where α̂ = (α̂1, . . . α̂K) : = 1

W
(ŵ1, . . . ŵK) ∈ ∆K is the market portfolio

corresponding to the profile ŵ ∈ R.

Let us call a profile w = (w1, . . . wN) ∈ B symmetric9 if all investors hold the same portfolio, i.e. if
αi = αj for all i, j, where αi = (1/W i)wi. Lemma 3.2 (ii) says that ŵ is the only symmetric competitive
profile. We shall see below that this “proportional competitive profile” ŵ has certain special properties.
In particular, if a Nash equilibrium allocation w is competitive (this is not the case in general), then it
coincides with ŵ (Propostion 4.1). Moreover, ŵ is the unique profile that is evolutionarily stable in the
sense of [11] (Theorem 5.1).

3.2. Nash Equilibrium

A profile w∗ = (w∗1, . . . w∗N) ∈ B is a Nash equilibrium of the game G if for all investors
i = 1, . . . N

πi(w∗) ≥ πi(wi, w∗−i) ∀wi ∈ Bi

where (wi, w∗−i) denotes the profile w∗ with i’s strategy w∗i replaced by wi.

Theorem 3.1. (i) The asset market game G = G[(W i), (Ek, Sk)] has a Nash equilibrium. (ii) At any
equilibrium, all markets are active. (iii) Every equilibrium is strict.

The proof of the theorem is essentially routine, based on the observation that the payoff functions are
concave. Some care must be taken because of possible discontinuities at the boundary of the budget sets.
Details are in the appendix.

The results on the structure of equilibrium in the next section are based on the following observation.
The marginal return to investor i from asset k can be written as

∂πik(w)

∂wik
= rk

[
1− wik

wk

1

1 + ηk

]
for wk > 0 (12)

where rk = Rk(wk), ηk = Hk[Pk(wk)]. Indeed, by definition, xik(w) = wik/Pk(wk), and by (4),
1/1 + ηk = P ′kwk/Pk, therefore

∂xik(w)

∂wik
=
Pk − wikP ′k

(Pk)2
=

1

Pk

[
1− wik

wk

wkP
′
k

Pk

]
=

1

Pk

[
1− wik

wk

1

1 + ηk

]
9 The game G (or Ḡ) is not symmetric, see Section 5.



Games 2011, 2 217

Formula (12) follows immediately from the definitions (8) and rk = Ek/Pk. The “Nash term”
−wik/wk(1 + ηk) in (12) reflects the fact that an increase of wik reduces the return rate of asset k; it
disappears only under the “competitive” assumption of infinitely elastic supply (ηk =∞).

4. Structure of Nash Equilibrium

This section contains the main results. Consider an equilibrium w = (w1, . . . wN) of G with
associated prices pk = Pk(wk), supplies Sk(pk), asset returns rk = Rk(wk) = Ek/pk, and elasticities
ηk = Hk(pk). Denote by E = E(w) =

∑
k EkSk(pk) the aggregate payoff in the economy, and let

R = E(w)/W be the aggregate rate of return (remember that W =
∑

iW
i is the aggregate initial

wealth). If wik > 0 we say that investor i holds asset k, or that he is active in market k. Denote further
by ri : = π̄i(α) = πi(w)/W i the rate of return investor i gets on his capital, and write αi = (αi1, . . . α

i
K),

where αik = wik/W
i, for the portfolio associated with wi.

Theorem 4.1. Let w = (wik) be an equilibrium, with investors and assets ordered such thatW 1 ≥ W 2 ≥
· · · ≥ WN and r1 ≤ r2 ≤ · · · ≤ rK . Then

1. the largest investor ( i = 1) holds all assets: w1
k > 0 ∀k,

2. the asset with the highest return ( k = K) is held by every investor: wiK > 0 ∀i,

3. if investor i holds asset k (wik > 0), then:

(a) i also holds all assets with higher or equal returns (wi` > 0 for r` ≥ rk)

(b) all larger investors j ≤ i also hold at least the same quantity of asset k (wjk ≥ wik), with
strict inequality iff j is strictly larger than i (W j > W i).

4. larger investors hold relatively more low-yielding assets in the following sense: whenever
W i ≥ W j , then the portfolios αi, αj satisfy αi1 + αi2 + . . . αik ≥ αj1 + αj2 + . . . αjk ∀k

5. the lower the elasticity of supply for an asset, the higher its return:

rk < r` ⇔ ηk > η` and rk = r` ⇔ ηk = η`

6. larger investors have lower return rates: ri ≥ rj ⇔ W i ≤ W j

Let w be an equilibrium, and denote by λi the Lagrange multiplier associated with investor i’s budget
constraint. By formula (12), the following first-order conditions [FOC] must hold, for i = 1, . . . N :

∂πi(w)

∂wik
=

 rk

[
1− wik

wk

1
1+ηk

]
= λi ∀k with wik > 0

rk ≤ λi ∀k with wik = 0
(13)

The proof of the various assertions in the Theorem is based on a careful examination of these
first-order conditions. Details are in the appendix.

Table 1 summarizes the results of Theorem 4.1. At a Nash equilibrium, in general, different assets
have different returns; and not every investor is active in all markets. Larger investors are active in
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more markets. The more elastic the supply of an asset, the lower its return rate at equilibrium. Larger
investors hold relatively more low-yielding assets, and achieve lower average rates of return on their
capital. Investors with the same wealth use the same strategy.

Table 1. The structure of equilibrium.

η1 ≥ η2 ≥ . . . ≥ ηk ≥ . . . ≥ ηK

wik r1 ≤ r2 ≤ . . . ≤ rk ≤ . . . ≤ rK
row
sums

r1 λ1 w1
1 w1

2 . . . w1
k . . . w1

K W 1

≤ ≤ ≥ ≥ ≥

r2 λ2 0 . . . w2
k2 . . . w2

k . . . w2
K W 2

≤ ≤ ≥ ≥ ≥

. . . . . . . . . . . . . . .

ri λi 0 0 . . . wiki . . . wiK W i

≤ ≤ . . . ≥ ≥

. . . . . . . . . . . . . . .

rN λN 0 0 . . . 0 . . . wNkN wNK WN

column
sums

w1 w2 . . . wk . . . wK W

An equilibrium allocation: rows correspond to investors and columns to assets. wi
k is

the amount invested in asset k by investor i. If W i = W j , then the corresponding
rows are identical; if W i > W j , then ri ≤ rj , λi < λj , and wi

k > wj
k, except when

wi
k = 0. For any two adjacent columns k and k + 1, rk = rk+1 iff ηk = ηk+1. In this

case, wi
k > 0⇒ wi

k+1 > 0 ∀i.

Intuitively, rk is the average return of asset k, and by (12),

∂πi(w)

∂wik
= rk

[
1− wik

wk

1

1 + ηk

]
is the marginal return of asset k for investor i. The marginal return is always less than the average return
rk (because an extra dollar invested in an asset also pushes up its price), but it gets closer to rk when
the elasticity ηk increases. Since marginal, not average, returns must be equal at equilibrium, we get
the inverse relationship between rk and ηk asserted in the Theorem. Moreover, the discrepancy between
marginal and average return increases with wik, i.e. it is larger for larger investors

Thus with variable supply, Nash equilibrium allocations are not competitive in general (prices are
not fair). Example 1 illustrates such a case. This deviation of asset prices from the expected return has
nothing to do with risk aversion of our investors, but results from their strategic interaction in a situation
where the supply conditions of different assets differ. Of course, in our model, for any asset k, the
exogenous supply function Sk(pk) summarizes the aggregate behavior of the (non-strategic) “rest of the
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market”. This “rest” may contain risk-averse traders (or even traders with no rational attitude to risk at
all). While we do not model these traders explicitly, it may of course be that the elasticity of supply of
some asset k depends on its riskiness; and to the extent that this is the case, our equilibrium prices also
reflect risk, at least indirectly.

Moreover, we observe what we have termed the “curse of size”: larger investors achieve lower
average return rates at equilibrium. Again this has nothing to do with any differences in the skills or
preferences of investors, but results from the equalization of marginal, not average, return rates at a Nash
equilibrium. A typical small investor concentrates his portfolio on the highest-yielding assets, achieving
a high average return rate; and because he is small, his marginal return is high, too. A large investor has
a much lower marginal return and finds it profit-maximizing to hold also the lower-yielding assets, thus
depressing his average return.

Example 1. LetN = 2, K = 2, Ek = 1 ∀k, and S1(p1) = p1, S2(p2) = 1. Then η1 = 1, P1(w1) =
√
w1,

R1(w1) = 1/
√
w1 and η2 = 0, P2(w2) = w2, R2(w2) = 1/(w2). Assume that the initial endowments

are W 1 = 4.75, W 2 = 0.25, so that W = 5. Then the unique Nash equilibrium is given in Table 2. It
is easy to check that the first-order conditions are satisfied, with r1 > λ2, i.e. investor i = 2 does not
hold asset k = 1 (w2

1 = 0). The total payoff at equilibrium is E = π1 + π2 = 3, the average return is
R = E/W = 0.6, and the competitive rate is r̂ = 0.558.

Table 2. Nash equilibrium in Example 1.

η1 = 1 η2 = 0

r1 = 0.5 r2 = 1

r1 = .578 λ1 = 0.25 w1
1 = 4 w1

2 = 0.75 W 1 = 4.75 π1 = 2.75

r2 = 1 λ2 = 0.75 w2
1 = 0 w2

2 = 0.25 W 2 = 0.25 π2 = 0.25

R = 0.6 w1 = 4 w2 = 1 W = 5 E = 3

Theorem 4.2 below shows that the deviation of Nash equilibrium prices from their fair values is
not due to the variability (as opposed to constancy) of supply per se, but to differences in the supply
conditions of different assets. As a preliminary step, the following proposition shows that the only
competitive profile that can possibly be a Nash equilibrium is the “proportional competitive” profile ŵ
defined in Lemma 3.2.

Proposition 4.1. Let w be a Nash equilibrium profile. Then w is competitive if and only if w = ŵ (i.e.,
all investors use the proportional investment rule, cf. Lemma 3.2).

Proof: If the equilibrium satisfies w = ŵ, it is competitive by Lemma 3.2 (i). Conversely, assume
that a Nash equilibrium w is competitive. By Lemma 3.1, rk = r̂, wk = ŵk ∀k. By Theorem 4.1, all
elasticities are equal, ηk = η̂ ∀k, and every investor i holds all assets. Therefore the first-order condition
for an investor i takes the form

r̂[1− wik
ŵk

1

1 + η̂
] = λi ∀k
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Thus, there is γi > 0 such that wik/ŵk = γi ∀k, and all investors hold the same portfolio in percentage
terms, αi = αj . By Lemma 3.2 (ii), w = ŵ. In particular, there is at most one competitive Nash
equilibrium. A sufficient condition for the equilibrium to be competitive is given in the next theorem.

Theorem 4.2. Assume that there exists a common elasticity functionH(·) such thatHk(pk) = H(pk/Ek)

for all assets k. Then there exists a unique equilibrium w, and w = ŵ.

The assumption of the Theorem means that all supply functions Sk(·) have the same elasticity
function, provided units are chosen such that the payoff per unit is the same for all assets. Such a
normalization (e.g., Ek = 1) is always possible w.l.o.g. (cf. footnote 8). In particular, the assumption of
the theorem is satisfied (with H ≡ 0) if supply is constant.

Proof: We prove that all rk are equal at equilibrium. Let r1 ≤ r2 ≤ · · · ≤ rK as in Theorem 4.1.
Then H1(p1) ≥ HK(pK), hence by assumption H(p1/E1) ≥ H(pK/EK). By S.3, the function H is
non-increasing, hence p1/E1 ≤ pK/EK or r1 = E1/p1 ≥ EK/pK = rK . Therefore rk = r̂ ∀k and the
equilibrium is competitive. By Proposition 4.1, w = ŵ uniquely.

A competitive equilibrium, if it exists, is symmetric. There may exist non-competitive symmetric
equilibria (cf. Theorem 4.3), but a game can have at most one symmetric equilibrium. In fact, more is
true: a game can have at most one equilibrium in which all investors are active in all markets:

Proposition 4.2. There is at most one Nash equilibrium in which every investor holds all assets, wik > 0

∀i, ∀k.

Since in a symmetric equilibrium every investor must hold all assets, we obtain immediately:

Corollary 4.1. There exists at most one symmetric Nash equilibrium.

Another interesting special case is when all investors have the same wealth, W i = W 0 ∀i (but supply
elasticities may differ).

Theorem 4.3. Assume that all investors have the same wealth, W i = W 0 > 0 ∀i. Then there exists a
unique equilibrium, and all investors choose the same strategy: wi = wj ∀i, j.

Proof: Consider an equilibrium and number investors and assets as in Theorem 4.1. By assumption, all
investors have the same wealth, and by monotonicity (45) wik ≥ wi+1

k . This is only possible if wik = wjk
∀i, j, i.e., if wik = 1

N
wk ∀i, k. Thus the equilibrium is symmetric, and by Corollary 4.1, unique.

Remark: If the Nash equilibrium is competitive, then all investors necessarily choose the same portfolio,
by Proposition 4.1. The converse is not true: In Theorem 4.3, for example, all investors choose the same
portfolio, but assets with constant, but different supply elasticities have different return rates.

Are the investors better off at Nash equilibrium than at a competitive profile? Consider an arbitrary
profile w ∈ B in which all markets are active, so that the return rates rk = rk(wk) are well defined for
all k. Then the payoff of investor i can be written πi(w) =

∑
k w

i
krk, and his (gross) rate of return (per

dollar invested) is

ri = π̄i(α) =
∑
k

wik
W i

rk =
∑
k

αikrk (14)
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a convex combination of the quantities r1, . . . rK . In a competitive profile, rk = r̂ ∀k, so that of course
ri = r̂. If the profile w is not competitive, then some rk must be strictly smaller than r̂, and some strictly
larger (because the functions rk = Rk(wk) are strictly decreasing, and the sum

∑
k wk = W is fixed).

Thus it is not clear a priori if an investor’s equilibrium rate of return is greater or smaller than r̂, especially
it is not clear for large investors who hold relatively more low-yielding assets (Theorem 4.1 (4)). In fact,
investors never do worse at a Nash equilibrium than at a competitive allocation:

Theorem 4.4. Let w∗ ∈ B be a Nash equilibrium that is not a competitive allocation. Then every
investor i achieves a strictly higher rate of return than the competitive rate:

ri =
πi(w∗)

W i
> r̂ ∀i

5. Evolutionarily Stable Strategies

The concept of an evolutionarily stable strategy (ESS) for a finite game introduced by [11] is defined
for symmetric games as follows. A strategy s in the common strategy space S is an ESS if, starting
from a symmetric situation where everybody uses the strategy s, the payoff of a single deviator after
deviation is never greater than the payoff of the others (the non-deviators) after this deviation. I.e. no
single deviation from the ESS improves the deviator’s relative position.

Although this is a static concept, it can sometimes be shown that an ESS is also a stable rest point of
some suitably specified “evolutionary” dynamic process of imitation and experimentation ([1]).

Since the game G is not symmetric due to the unequal wealth of different investors, neither the
definition of an ESS nor the idea of imitation is directly applicable. But one can argue that these concepts
make sense if we think in percentage terms, i.e., in the more symmetric formulation Ḡ. Indeed, in Ḡ,
every investor, large or small, has the same strategy space ∆K , and the payoffs of different players can
meaningfully be compared. An investor making 3% with a portfolio of a certain composition might look
at some other investor (bigger or smaller) making 4% with a portfolio of a different composition, and
might imitate the composition of the other, seemingly more successful, portfolio. In the spirit of bounded
rationality, such imitative behavior is certainly justifiable. If we accept this, it becomes meaningful to
define an ESS as a strategy which, if adopted by all, cannot be destabilised by a single deviation (under
a dynamic driven by imitation of more successful players).

The game Ḡ resembles a symmetric game because all players have the same strategy space, and any
two players using the same strategy αi = αj necessarily have the same payoff. But the game Ḡ is still
not a symmetric game in the strict sense: if a large and a small investor with different strategies αi, αj

interchange their strategies, this may change prices and hence may change the other players’ payoffs.
Nevertheless, as argued above, we may define a concept of ESS in Ḡ.

For a strategy α0 ∈ ∆K , we denote by ~α0 = (α0, . . . α0) ∈ (∆K)N the symmetric profile in which
every player uses α0. Let us call a strategy α0 ∈ ∆K an ESS of Ḡ if for every player i and for every
strategy αi ∈ ∆K the following is true:

π̄i((α0 |i αi)) ≤ π̄j((α0 |i αi)) ∀j 6= i

where (α0 |i αi) denotes the strategy profile in which player i uses strategy αi and every other player
uses the strategy α0. That is, if a player deviates from the symmetric profile ~α0, then, after the deviation,
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his payoff is not larger than the payoff of any other player, so that nobody has an incentive to imitate the
deviator. On the contrary, the deviator will have an incentive (at least in the weak inequality sense) to
imitate one of the other players, i.e. to switch back to the ESS strategy α0.

Theorem 5.1. The game Ḡ has a unique ESS, namely α0 = α̂, where α̂ is the competitive market
portfolio corresponding to the “proportional competitive profile” ŵ defined after Lemma 3.1. At this
ESS, all players have the same payoff in Ḡ, namely the competitive return π̄i(~α0) = r̂ ∀i.

Thus the ESS outcome is competitive, but different from the Nash outcome in general. Such a relation
between ESS and competitive outcomes has been observed in other contexts as well, cf. [8,9].
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A. Appendix

Lemma A.1. Under assumption S.1
(i) for every wk ≥ 0, Equation (2) determines a unique price pk = Pk(wk). The function Pk(wk) is
continuous and strictly increasing on [0,∞), with

Pk(0) = 0, lim
wk→∞

Pk(wk) =∞
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(ii) The function fk(wk) : = wk/Pk(wk) is nondecreasing for wk > 0 and

lim
wk→0

wk/Pk(wk) = Sk(0) (15)

Proof:
(i) define the function

Vk(pk) = pkSk(pk) for pk ≥ 0 (16)

By S.1, Vk(pk) is continuous and strictly increasing on [0,∞), with Vk(0) = 0 and limpk→∞ Vk(pk) =∞.
Therefore Vk has an inverse V −1k with the same properties. Since equation (2) can be written Vk(pk) =

wk, the price function is equal to this inverse, Pk(wk) = V −1k (wk).
(ii) For wk > 0, also Pk(wk) > 0, and fk(wk) = wk/Pk(wk) ≡ Sk(Pk(wk)). The assertion follows

from S.1 and (i).

Remark: Conversely, the properties of the price function Pk stated in Lemma A.1 imply that the supply
function Sk satisfies S.1. Indeed, if we postulate an arbitrary price function Pk with the properties stated
in Lemma A.1, and define a supply function Sk by the condition Pk(wk)Sk(Pk(wk)) ≡ wk for wk > 0,
and by (15) for wk = 0, then Sk satisfies S.1. To see this, write Sk(Pk(wk)) = wk/Pk(wk) and observe
that the 1-1-transformation wk ↔ pk = Pk(wk) is strictly increasing.

For future reference, we note that for any c > 0

Sk(Pk(ε)) > εc ∀ε > 0 sufficiently small (17)

(Since Sk(Pk(ε))/ε = 1/Pk(ε)).
The following is a more precise statement of the differentiability assumption in S.1. It is phrased so

that an infinite slope at pk = 0 is not excluded.

S.4. For all k, the supply function Sk(pk) is either

(a) twice continuously differentiable on [0,∞) with S ′k(0) finite, or
(b) twice continuously differentiable on (0,∞), with

limh→0(S(h)− S(0))/h = S ′k(0) =∞ = limpk→0 S
′
k(pk)

¿From now on, we maintain the assumptions S.1, S.4, S.3. Clearly, the elasticity function
ηk = Hk(pk) = pkS

′
k(pk)/Sk(pk) is continuously differentiable on (0,∞) and by S.3, the limit

limpk→0Hk(pk) =: Hk(0) ∈ [0,∞] exists (possibly infinite).

Lemma A.2. There are only two possible cases: either
(i) supply is constant, Hk(0) = 0, and Sk(pk) = Sk(0) = S̄k > 0 ∀pk ≥ 0, or
(ii) supply is not constant, Hk(0) > 0, and Sk(pk) > Sk(0) = 0 ∀pk > 0; moreover

(α) S ′k(0) = 0 if Hk(0) > 1 (supply is elastic at 0)
(β) S ′k(0) =∞ if 0 < Hk(0) < 1 (supply is inelastic at 0)
(γ) if Hk(0) = 1, it may be that S ′k(0) is positive and finite. (iii) in any case, limpk→0 pkS

′
k(pk) = 0
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Proof: We omit the subscript k for simplicity.
(i) Clearly, H(0) = 0 iff H(p) = 0 ∀p > 0, i.e. iff S ′(p) = 0 ∀p > 0, i.e. iff supply is constant (and

positive, by S.1): S(p) = S(0) > 0 ∀p ≥ 0. Obviously (iii) is satisfied in this case.
(ii) Assume now that supply is not constant. Then H(0) > 0. By S.1 S(p) > 0 for p > 0. Next we

show that S(0) = 0. By definition,

pS ′(p) ≡ H(p)S(p) ∀p > 0 (18)

and
d

dp

S(p)

p
=
pS ′(p)− S(p)

p2
∀p > 0 (19)

Consider first the case of elastic supply at 0, i.e. H(0) > 1. Then, for p > 0 sufficiently small,
H(p) > 1, and (18) implies: pS ′(p) > S(p), i.e., by (19), the positive function S(p)/p is strictly
increasing in p. Therefore limp→0(S(p)/p) exists and is nonnegative and finite. This implies that
S(0) = 0, and furthermore that S ′(0) = limp→0(S(p) − S(0))/p = limp→0 S(p)/p is finite. Moreover
by (18):

S ′(p) ≡ H(p)
S(p)

p

Both S ′(p) and S(p)/p tend to the same finite limit S ′(0) as p → 0, whereas H(p) is bounded away
from 1 for all p sufficiently small. This is possible only if S ′(0) = 0. This proves (ii)(α). Clearly (iii) is
also satisfied in this case.

Consider now the case of inelastic or unit elastic supply at 0, 0 < H(0) ≤ 1. Then, for p > 0,
H(p) ≤ 1 by S.3, and (18) implies: pS ′(p) ≤ S(p), i.e., by (19), the positive function S(p)/p is
(weakly) decreasing in p. Therefore limp→0(S(p)/p) exists and is strictly positive (possibly infinite).

Since

H(p) =
S ′(p)

S(p)/p

is also weakly decreasing by S.3, the function S ′(p) must be weakly decreasing, i.e. the supply
function S(p) is concave. This implies

S ′(p) ≤ S(p)− S(0)

p
∀p > 0 (20)

It implies also that S ′(0) > 0 (possibly S ′(0) = ∞), since otherwise S ′(p) ≡ 0 and supply would be
constant.

We want to show that S(0) = 0. If S(0) > 0, then, for p > 0 sufficiently small,

S(p)

[
1− H(0)

2

]
< S(0)

because S(.) is continuous and 0 < H(0) ≤ 1. Therefore S(p)− S(0) < 1
2
H(0)S(p) and, by (20)

S ′(p) <
H(0)

2

S(p)

p
for p sufficiently small. (21)

On the other hand, by (18), S ′(p) ≡ H(p)S(p)
p

and for p sufficiently small: H(p) > 1
2
H(0) (because

H(0) > 0. This implies

S ′(p) >
H(0)

2

S(p)

p
for p sufficiently small,
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contradicting (21). Therefore S(0) = 0 for 0 < H(0) ≤ 1 as well. Using (18) we see that

lim
p→0

pS ′(p) = lim
p→0

H(p)S(p) = H(0)S(0) = 0

so that (iii) is also satisfied.
Finally, since S(0) = 0, we have S ′(0) = limp→0(S(p)/p), and using (18) again:

S ′(p) = H(p)
S(p)

p

If p→ 0, both S ′(p) and S(p)/p tend to the same positive limit S ′(0) (possibly infinite) and H(p) tends
to H(0). If 0 < H(0) < 1 this is possible only if S ′(0) = ∞. This proves (ii)(β). If H(0) = 1, it is
possible that S ′(0) is positive and finite; e.g., for S(p) = p, S ′(p) = 1, H(p) = 1 ∀p ≥ 0. This proves
(ii)(γ) and the Lemma.

Lemma A.3.

(i) The function Vk(pk) = pkSk(pk) is continuously differentiable on [0,∞), with V ′k(pk) > 0 for
pk > 0 and V ′k(0) = Sk(0).

(ii) The price function Pk(wk) is continuously differentiable on [0,∞) [resp. on (0,∞)], if Sk(0) > 0

[resp. Sk(0) = 0]; with P ′k(wk) > 0 for wk > 0 and

P ′k(0) =
1

Sk(0)
= lim

wk→0
P ′k(wk) (22)

(where 1/Sk(0) =∞ if Sk(0) = 0).
proof:

(i) For pk > 0, the assertions are trivial. At pk = 0, we have:

V ′k(0) = lim
ε→0

(Vk(ε)− Vk(0))/ε = lim
ε→0

(εSk(ε)− 0)/ε = Sk(0)

For pk > 0, we have:
V ′k(pk) = Sk(pk) + pkS

′
k(pk)

By Lemma A.2 (iii), the last term goes to zero for pk → 0, hence

lim
pk→0

V ′k(pk) = lim
pk→0

Sk(pk) = Sk(0)

This proves (i).
(ii) The price function Pk is the inverse of the function Vk. The assertions follow immediately from

(i) and this fact, noting that P ′k(wk) = 1/V ′k(pk) at all points where V ′k is positive, and that Pk has infinite
slope at zero iff V ′k(0) = 0.

Lemma A.4. The game G is constant-sum (on the set {w ∈ B |wk > 0 ∀k} of strategies where all
markets are active) if and only if all supply functions Sk(·) are constant.

Proof: The “if” part is trivial. Assume now that the game is constant-sum, i.e.,∑
i

πi(w) =
∑
i

∑
k

wikRk(wk) =
∑
k

wkRk(wk) =
∑
k

fk(wk) = const.
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for all wk > 0 with
∑

k wk = W . This implies f ′k(wk) = f ′`(w`) = c ∀wk, w` , and fk(wk) = cwk + dk

∀k, for some constants c ≥ 0, dk ≥ 0. If c > 0, then Sk(Pk(wk)) = fk(wk) = cwk + dk is not constant,
hence limpk→0 Sk(pk) = 0 by Lemma A.2, hence dk = limwk→0 fk(wk) = 0. But then fk(wk) = cwk =

wkRk(wk) ⇒ Rk(wk) = c, contradicting Lemma A.1. Therefore c = 0 and Sk[Pk(wk)] = fk(wk) =

dk > 0, i.e. supply Sk is constant.

Proof of Lemma 3.2.
(i) Assume that all investors follow the proportional rule. Then

wik = γiEkSk ∀i, k (23)

Summing this over i gives wk = (
∑

i γ
i)EkSk ⇔ Rk = (EkSk)/wk = (

∑
i γ

i)−1 =: r̂, i.e. the profile is
competitive. Thus ŵk is uniquely determined by Rk(ŵk) = r̂. Hence EkSk = r̂ŵk. Summing this over k
gives E(w) = r̂W , and summing (23) over k gives W i = γiE(w) ⇔ γi = W i/r̂W . Therefore
wik = γiEkSk = (W i/r̂W )r̂W = ŵkW/W

i. This proves (i).
(ii) Since w is competitive, wk = ŵk where Rk(ŵk) = r̂ ∀k. Since all agents hold the same portfolio

αi = αj , summing wik = αikW
i over i gives ŵk = αikW ⇔ αik = ŵk/W ⇒ wik = αikW

i =

ŵkW
i/W . This is the allocation ŵ given in part (i) of the lemma.

To prepare for the proof of Theorem 3.1, note that the payoff functions πi(w) are defined for all
nonnegative vectors w ∈ RKN

+ , independently of the agents’ budget constraints. Clearly, the functions
xik(w) and also the payoff functions πi(w) are differentiable in wik at all points where wk > 0 (with
one-sided derivatives if wik = 0, but wk > 0). Denote by Wa = {w ∈ RKN

+ |wk > 0 ∀k} the set
of profiles where all markets are active. Note that Wa is convex and the payoff functions πi(w) are
continuous and differentiable onWa.

First we compute some derivatives. Let w be a profile at which market k is active, i.e., wk > 0,
pk > 0, Rk > 0. We have

xik(w) =
wik

Pk(wk)
=
wik
wk
Sk(Pk(wk)) (24)

Therefore, from (12),

∂xik(w)

∂wik
=

1

Pk(wk)

[
1− wik

wk

1

1 +Hk[Pk(wk)]

]
≥ 0 (25)

with strict inequality unless investor i is the only one who buys asset k (wik = wk) and the supply
elasticity is zero (ηk = Hk[Pk(wk)] = 0). Also

∂xik(w)

∂wik
≤ 1

Pk
(26)

with strict inequality unless wik = 0, and

∂xik(w)

∂wik
→∞ for wk → 0 (27)

provided the expression [1 − wik
wk

1
1+ηk

] remains bounded away from 0 as wk → 0 (this is certainly the
case if wik/wk remains bounded away from 1). Moreover
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∂2xik(w)

∂(wik)
2

= − P ′k
[Pk]2

[
1− wik

wk

1

1 +Hk

]
− (28)

− 1

Pk

[
wk − wik

(wk)2
1

1 +Hk

+
wik
wk

−H ′kP ′k
(1 +Hk)2

]
≤ 0

where Pk = Pk(wk) and Hk = Hk[Pk(wk)]. The inequality follows because η′k = H ′k(pk) ≤ 0 by S.3,
and is strict unless wik = wk and both ηk = 0 and η′k = 010. The cross-partials are

∂2xik(w)

∂wik∂w
i
`

= 0 for ` 6= k. (29)

By (8) similar formulae hold for the profit functions πi, e.g.,

∂πi(w)

∂wik
= Ek

∂xik(w)

∂wik
≥ 0 for wk > 0 (30)

The formal proof of Theorem 3.1 is preceded by some lemmas.

Lemma A.5. For all i, the payoff function of investor i, πi(w) = πi(wi, w−i) is concave in i’s own
strategy wi on the setWa, and even strictly concave except possibly at points where wik = wk for some
k (investor i is the only buyer of asset k).

Proof: We have, on the convex setWa:

∂2πi(w)

∂(wik)
2

= Ek
∂2xik(w)

∂(wik)
2
≤ 0 (31)

with strict inequality for wik < wk and all cross-partials are zero.

Lemma A.6. Let w̄ = (w̄1, . . . w̄N) ∈ B be a strategy profile at which not all markets are active
(w̄ 6∈ Wa). Then every investor has a profitable deviation, i.e. for every i there exists a ŵi ∈ Bi

such that
πi(ŵi, w̄−i) > πi(w̄) (32)

Moreover, ŵi can be chosen so that at the new profile ŵ = (ŵi, w̄−i) all markets are active.

Proof: Fix an investor i. Since he must invest his wealth somewhere, there exists an asset m such that
w̄im > 0 (⇒ w̄m > 0, p̄m > 0, R̄m > 0). Let ` be an inactive asset so that w̄` = w̄i` = 0. Consider the
following change in i’s strategy, for small ε > 0:

ŵim = w̄im − ε, ŵi` = ε, ŵik = w̄ik for k 6= m, `.

That is, investor i shifts a small amount ε from asset m to the inactive asset `. This shift decreases his
earnings in market m by (using (26), (30))

0 ≤ ε
∂πi(w̄)

∂wim
≤ εEm

1

p̄m
= εR̄m

10η′ = 0 is implied by η = 0 because η ≥ 0 and nondecreasing.
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and it increases his earnings in market ` by E`S`(P`(ε)). By (17) this is strictly greater than εR̄m for ε
sufficiently small, i.e. (32) is satisfied. If ` is the only inactive market at w̄, we are done. If not, repeat
the construction for the next inactive asset, starting from the profile ŵ = (ŵi, w̄−i).

As an immediate Corollary we have that all markets must be active at equilibrium.

Lemma A.7. If w is an equilibrium, then

∂πi(w)

∂(wik)
> 0 and

∂2πi(w)

∂(wik)
2
< 0 (33)

for all i = 1, . . . N , k = 1, . . . K.

Proof: By Lemma A.6, wk > 0 at equilibrium. Therefore, by (25), (28), both claims are true unless

wik = wk and ηk = 0 (and η′k = 0). (34)

We have to show that this situation is impossible at equilibrium.
Indeed, if (34) holds, then wik = wk > 0 and ∂πi(w)/∂wik = 0 by (25).
On the other hand. there must exist an asset ` with wi` < w`, hence by (25)

∂πi(w)/∂wi` > 0

Shifting a small amount ε > 0 from asset k to asset ` increases i’s profits, contradicting equilibrium.

In particular, if an asset is in constant supply, then it must be held by more than one investor at
equilibrium. Moreover, if w∗ = (w∗i, w∗−i) is an equilibrium, then the payoff function π(wi, w∗−i) is
strictly concave in wi in a neighborhood of w∗i, and concave elsewhere. Therefore every equilibrium
is strict.

Proof of Theorem 3.1.
Assertions (ii) and (iii) follow from the two preceding Lemmas. It only remains to prove assertion (i)

(existence of Nash equilibrium).
For ν = 1, 2, 3, . . . consider the modified game Gν with budget sets Bi(ν) = {wi ∈ Bi|wik ≥

1
ν
∀k} and payoff functions πi as before. Eventually, for ν sufficiently large, Bi(ν) is nonempty,

compact, convex. Clearly at any w ∈ B(ν) =
∏

iB
i(ν) ⊂ Wa all markets are active and each payoff

function πi(w) = πi(wi, w−i) is continuous in w ∈ B(ν) and strictly concave in the own strategy wi.
Therefore there exists an equilibrium w(ν) = (w1(ν), . . . wN(ν)) of the modified game Gν , where of
course wik(ν) ≥ 1

ν
always.

W.l.o.g. (passing to a subsequence if necessary) we may assume that the sequence w(ν)ν=1,2,...

converges, i.e.,
w(ν)→ w∗ = (w∗1, . . . w∗N) for ν →∞

We claim that w∗ is an equilibrium in the unrestricted game G with strategy spaces Bi. We proceed in
two steps:

Step 1. w∗k > 0 ∀k, i.e. w∗ ∈ Wa

Step 2. ∀i, w∗i is a best reply to w∗
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Step 1.
Assume, indirectly, that there is an asset ` with w∗` = 0, i.e., w`(ν) → 0 for ν → ∞. Of course then
also wi`(ν) → 0 for each agent i; but since

∑
iw

i
`(ν) = w`(ν) > 0 always, there exists an agent j such

that wj`(ν)/w`(ν) remains bounded away from 1 as ν →∞ (taking a further subsequence if necessary).
By (27) this implies

∂xj`(w(ν))

∂wj`
→∞ as ν →∞

There must also exist some asset m 6= ` such that w∗jm > 0, and hence w∗m > 0. Fix j, `,m. Then

∂xjm(w(ν))

∂wjm
=

1

Pm(wm(ν))

[
1− wjm(ν)

wm(ν)

1

1 +Hm(Pm(wm(ν)))

]
converges to the finite number

1

Pm(w∗m]

[
1− w∗jm

w∗m

1

1 +Hm(Pm(w∗m))

]
=: cm ≥ 0

as ν →∞. Therefore, for ν sufficiently large, agent j can increase his payoff πj(w(ν)) in the game Gν

by shifting a small amount ε > 0 away from asset m (this is feasible because eventually w∗jm > 1
ν
) to

asset `. This contradicts the assumption that w(ν) is an equilibrium in Gν and proves Step 1.

Step 2.
By Step 1, πi(w) is continuous at w∗. Fix an investor i. We have to show that w∗i is a best reply to w∗−i.
Assume not. Then there exists ŵi ∈ Bi which is a better reply to w∗−i, i.e.

πi(ŵi, w∗−i)− πi(w∗) > δ for some δ > 0 (35)

If the strategy profile (ŵi, w∗−i) 6∈ Wa, then by Lemma A.6 there exists a further deviation ˆ̂w
i

such
that ( ˆ̂w

i
, w∗−i) ∈ Wa and πi( ˆ̂w

i
, w∗−i) > πi(ŵi, w∗−i). Therefore we may assume that (35) holds with

ŵ : = (ŵi, w∗−i) ∈ Wa, so that πi(·) is continuous at this point. Approximate ŵi ∈ Bi by a sequence
ŵi(ν) ∈ Bi(ν). Then by continuity

πi(ŵi(ν), w−i(ν))− πi(w(ν)) >
δ

2
> 0

for ν sufficiently large, i.e. w(ν) is not an equilibrium of Gν , contrary to assumption. This proves Step 2
and completes the proof of Theorem 3.1.

Proof of Theorem 4.1.
Consider a Nash equilibrium w = (w1, . . . wN) with associated prices pk, asset returns rk, and

elasticities ηk. Denote by αi = (αi1, . . . α
i
K) = (1/W i)wi the equilibrium portfolio, and by

ri : = πi(w)/W i the average return of investor i.
The following proof is based on a careful examination of the first-order conditions for a Nash

equilibrium. To understand the following arguments, it helps to keep Table 1 in mind.

Proof of Assertions 4.1–2:
Let w be a Nash equilibrium. By (13)

∂πi(w)

∂wik
= rk[1−

wik
wk

1

1 + ηk
] (36)
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Denote by λi the Lagrange multiplier associated with investor i’s budget constraint. Then the
following first-order conditions [FOC] must hold, for i = 1, . . . N :

∂πi(w)

∂wik
=

 rk

[
1− wik

wk

1
1+ηk

]
= λi ∀k with wik > 0

rk ≤ λi ∀k with wik = 0
(37)

By Lemma A.7, λi > 0 for ∀i. (13) implies, ∀i, ∀k:

λi < rk ⇔ wik > 0 (investor i holds asset k)

λi ≥ rk ⇔ wik = 0 (investor i does not hold asset k)

 (38)

W.l.o.g., order the investors such that

λ1 ≤ λ2 ≤ · · · ≤ λN (39)

and order the assets such that
r1 ≤ r2 ≤ · · · ≤ rK . (40)

We shall see below (see (46)) that (39) implies W 1 ≥ W 2 ≥ . . .WN , i.e., investor i = 1 is the largest
and i = N is the smallest investor. Similarly, asset k = 1 is the worst and k = K is the best asset, where
“better” assets have higher returns per dollar invested.

For given i, define
ki : = min{k|λi < rk} (worst asset held by i) (41)

and for given k, define

ik : = max{i|λi < rk} (smallest investor holding k) (42)

It is easy to see that investor i holds exactly the assets k = ki, ki + 1, . . . K and

1 = k1 ≤ k2 ≤ · · · ≤ kN ≤ K (43)

with ki = kj if λi = λj . Similarly, it is also easy to see that asset k is held exactly by the investors
i = 1, 2, . . . ik and

1 ≤ i1 ≤ i2 ≤ · · · ≤ iK = N (44)

with ik = i` if rk = r`.
The equilibrium allocation w = (wik) is summarized in Table 1.
The largest investor i = 1 holds all assets (w1

k > 0 ∀k) and the best asset k = K is held by all
investors (wiK > 0 ∀i). For fixed k, we know from (13), (39) that

wik ≥ wi+1
k (45)

with strict inequality iff [wik > 0 and λi < λi+1]. Therefore the row sums W i in Table 1 satisfy

W 1 ≥ W 2 ≥ · · · ≥ WN (46)
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with strict inequality
W i > W i+1 iff λi < λi+1 (47)

(since wiK > 0 ∀i). This proves the first three assertions in Theorem 4.1.

Proof of assertion 5:
let rk ≤ r`. Then ik ≤ i` and w.l.o.g. k < `. Summing the first line in (13) for asset k over i = 1, . . . ik

gives (since
∑ik

i=1w
i
k = wk)

rk

[
ik −

1

1 + ηk

]
=

ik∑
i=1

λi =: Λ (48)

Summing the first line in (13) for asset ` also over i = 1, . . . ik gives

r`

[
ik −

1

1 + η`

]
= Λ if i` = ik (49)

r`

[
ik −

∑ik
i=1w

i
`

w`

1

1 + η`

]
= Λ if i` > ik (50)

If i` = ik, the assertion follows directly from (48), (49). If i` > ik, then necessarily r` > rk (per def. of
ik), and (48), (50) imply

ik −
1

1 + ηk
> ik −

∑ik
i=1w

i
`

w`

1

1 + η`
⇒

1

1 + ηk
<

∑ik
i=1w

i
`

w`

1

1 + η`
≤ 1

1 + η`

⇒ ηk > η`, and assertion 5 is proved.

Proof of assertion 6:
write ri = πi(w)/W i =

∑
k(w

i
k/W

i)rk =
∑

k α
i
krk, where αik = wik/W

i is the portfolio associated
with the equilibrium strategy wi. By Abel’s summation formula, we can write

ri =
K∑
k=1

αikrk = AiKrK+1 +
K∑
k=1

Aik(rk − rk+1)

where Aik =
∑k

`=1 α
i
` and rK+1 is arbitrary.

Now fix two investors i ≥ j so that W i ≤ W j (investor i is smaller). We want to show that ri ≥ rj .
From Abel’s formula, noting that AiK = AjK = 1 :

ri − rj =
K−1∑
k=1

(Aik − A
j
k)(rk − rk+1)

Since rk ≤ rk+1 it suffices to show that Aik ≤ Ajk for k = 1, . . . K − 1, or equivalently,

K∑
`=k+1

αi` ≥
K∑

`=k+1

αj` for k = 1, . . . K − 1 (51)

(because Ai` = 1−
∑K

`=k+1 α
i
`). Thus assertion 6 follows from assertion 4.
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Proof of assertion 4:
Note that the coefficients αik have also the “triangular structure” exhibited in Table 1: If some αik > 0,

then also αik+1 > 0, αjk > 0, αjk+1 > 0; and rk − λi > 0.
For αik > 0 the first-order condition (13) can be written

rk

[
1− αik

W i

wk

1

1 + ηk

]
= λi ⇔

αik =
rk − λi

W i

wk(1 + ηk)

rk

This implies
αik
αik+1

=

wk(1+ηk)
rk

rk−λi
W i

wk+1(1+ηk+1)

rk+1

rk+1−λi
W i

and
αik/α

i
k+1

αjk/α
j
k+1

=
(rk − λi)/(rk+1 − λi)
(rk − λj)/(rk+1 − λj)

=: B

(all quantities are positive by the remark made above). From Table 1 we know that λi ≥ λj , so that
rk+1 ≥ rk > λi ≥ λj . But then the function f(λ) = (rk−λ)/(rk+1−λ) is decreasing in λ, henceB ≤ 1.
This implies

αik
αik+1

≤ αjk
αjk+1

(52)

It remains to show that this implies (51).
Let k0 be the first (smallest) k such that αik > 0. Then for k0 ≤ k ≤ m ≤ K

αik = βikmα
i
m

where

βikm : =
αik
αik+1

αik+1

αik+2

· · ·
αim−1
αim

for k < m and βimm = 1

Defining βjkm similarly, we see from (52) that βikm ≤ βjkm for k0 ≤ k ≤ m ≤ K.

Claim 1: αiK ≥ αjK

Proof: assume the contrary, αiK < αjK . Then αik = βikKα
i
K < βjkKα

j
K = αjk for k0 ≤ k ≤ K − 1, and∑K

k=1 α
i
k =

∑K
k=k0

αik <
∑K

k=1 α
j
k. But this is impossible because both sums must be equal to one.

Claim 2: αiK + αiK−1 ≥ αjK + αjK−1

Proof: assume the contrary, αiK + αiK−1 < αjK + αjK−1. Then αiK−1 < αjK−1 by Claim 1. Therefore
αik = βik,K−1α

i
K−1 < βjk,K−1α

j
K−1 = αjk for k0 ≤ k ≤ K − 2. Again the same contradiction arises.

Claim 3: αiK + αiK−1 + αiK−2 ≥ αjK + αjK−1 + αjK−2

Proof: as before, assuming the contrary implies αiK−2 < αjK−2 by Claim 2, and this implies that αik < αjk
for k0 ≤ k ≤ K − 3, leading to a contradiction.

Proceeding in this manner until K − ` = k0, we obtain all the inequalities (51) (the remaining ones
are trivial). This proves assertion 4 and completes the proof of Theorem 4.1.
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Proof of Proposition 4.2.
Let w be an equilibrium, with wik > 0 ∀i, ∀k. Then the first-order conditions (13) take the form

(remember rk = Ek/pk)

Ek

[
1− wik

wk

1

1 + ηk

]
= λipk ∀i, k (53)

Summing over i gives

Ek

[
N − 1

1 + ηk

]
= Λpk ∀k (54)

where Λ : =
∑

i λ
i > 0. The RHS of this equation is strictly increasing in pk, and the LHS is weakly

decreasing in pk by S.3, hence, for any given Λ, there exists only one solution pk. If Λ increases, the
curve described by the RHS shifts upwards, and the LHS does not change, i.e., the intersection point
with the LHS shifts to the left, i.e., pk decreases, ∀k. Since the price function pk = Pk(wk) is strictly
increasing, wk = P−1k (pk) also decreases strictly in Λ, ∀k. Since

∑
k wk =

∑
iW

i = W is constant,
the numbers wk (and hence also pk, ηk) are uniquely determined by (54) and the condition

∑
k wk = W .

Given this, the numbers wik (and the multipliers λi) are uniquely determined by (53) and the budget
constraints

∑
k w

i
k = W i.

Proof of Theorem 4.4.
Write r∗k = Rk(w

∗
k) for the Nash quantities and r̂ = Rk(ŵk) for the competitive values. Clearly,

r∗k

{
>
=
<

}
r̂ ⇔ w∗k

{
<
=
>

}
ŵk

Fix an investor i. Denote by w∗−ik = w∗k − w∗ik the total amount of money invested in asset k by the
‘others’. Define the sets K0 = {k | ŵk > w∗−ik }, K1 = {k | ŵk = w∗−ik }, K2 = {k | ŵk < w∗−ik }.
Then K0 is nonempty (because

∑
k ŵk = W > W −W i =

∑
k w
∗−i
k ), and

W i = W −
∑
k

w∗−ik =
∑
k

(ŵk − w∗−i) =
∑
k∈K0

(ŵk − w∗−i) +
∑
k∈K2

(ŵk − w∗−i)

If K2 6= ∅, the last sum is negative, hence
∑

k∈K0
(ŵk − w∗−i) > W i. Therefore, investor i can

find a deviating strategy wi ∈ Bi such that wik = 0 ∀k 6∈ K0 and ŵk > w∗−ik + wik ∀k ∈ K0. Then
Rk(w

∗−i
k + wik) > r̂ for k ∈ K0 and πi(wi, w∗−i) =

∑
k∈K0

wikRk(w
∗−i
k + wik) > W ir̂, i.e. with the

strategy wi the investor achieves a rate of return higher than r̂. Since w∗i is a best reply to w∗−i, we have
πi(w∗) ≥ πi(wi, w∗−i) > r̂.

If K2 = ∅, then w∗−ik ≤ ŵk ∀k and the strategy wi given by wik : = ŵk − w∗−ik ∀k is feasible
for investor i. The profile (wi, w∗−i) ∈ B is competitive and guarantees player i the return r̂. By
assumption, the equilibrium w∗ is not competitive, hence w∗i 6= wi. Moreover, since any equilibrium is
strict by Theorem 3.1, we must have πi(w∗) > πi(wi, w∗−1) = r̂.

Proof of Theorem 5.1.
By Lemma 3.2 (ii) there exists a unique, strictly positive α0 = (α0

1, . . . α
0
K) ∈ ∆K such that the return

rk = R0 = r̂ in all markets is the same, viz. α0 = α̂. We claim that this α̂ is ESS.
Fix an investor i and let him deviate to some strategy α0 +ε ∈ ∆K , where ε = (ε1, . . . εK) 6= 0 and of

course
∑

k εk = 0. Denote by α′ the new profile where player i uses strategy α0 + ε and all other players
use strategy α0. Write R0 + dRk for the return rate in market k after this deviation, i.e., at the profile α′.
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The crucial observation is that ∀k εkdRk < 0 if εk 6= 0. Indeed, if εk > 0, then more money is
invested in asset k, which strictly increases the price of this asset and strictly decreases the return Rk;
and conversely for εk < 011.

The deviator’s payoff after the deviation is

π̄i(α′) =
∑
k

(α0
k + εk)(R0 + dRk) =

∑
k

α0
k(R0 + dRk) +

∑
k

εkR0 +
∑
k

εkdRk

The second term in the last expression is zero, and the third term is negative, by the observations made
above. Therefore the payoff of a non-deviator j (j 6= i) after the deviation is greater:

π̄j(α′) =
∑
k

α0
k(R0 + dRk) > π̄i(α′)

This proves that α0 is an ESS. It remains to show uniqueness.
Let β0 6= α0 be any other strategy. We have to show that the symmetric profile ~β0 = (β0, . . . β0) ∈

(∆K)N is not an ESS, i.e., we have to show that there exists a deviation ε = (ε1, . . . εK) with
∑

k εk = 0

which improves the deviator’s relative position.
First it is clear that if β0

k = 0 for some k, then the rate of return for sufficiently small investments in
market k is arbitrarily large, and a small shift of money into market k helps the deviator more than the
others. Assume therefore that β0 is strictly positive.

Denote by Rk the rate of return in market k under the symmetric profile ~β0. Since β0 6= α0, we know
from the first part of the proof that not all Rk are equal, i.e. the vector (R1, . . . RK) is not orthogonal to
the hyperplane L = {z = (z1, . . . zK) ∈ RK |

∑
k zk = 0} in RK . Therefore we can find a vector z ∈ L

such that
∑

k zkRk > 0. Clearly, for t > 0 sufficiently small, the vector ε = ε(t) = tz is a feasible
deviation, i.e. β0 + ε(t) ∈ ∆K .

Denote by Rk + dRk the return rate in market k after such a deviation, i.e. at the new profile
β′ = (β0 |i β0 + ε). Then, for the deviator i and any non-deviator j:

π̄i(β′)− π̄j(β′) =
∑
k

(β0
k + εk)(Rk + dRk)−

∑
k

β0
k(Rk + dRk) =∑

k

εk(Rk + dRk) =
∑
k

tzk(Rk + dRk) = t
∑
k

zk(Rk + dRk)

The last term is positive for t > 0 sufficiently small, because dRk → 0 for t→ 0. Thus we have found a
deviation which makes the deviator better off than the others, and β0 is not an ESS.

c© 2011 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

11This argument parallels the one in [1]. Intuitively, as also pointed out in this paper, if an investor shifts money from one
market to another, he “works against himself” by increasing the price of the asset which he is buying, and decreasing the
price of the asset which he is selling.
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