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Abstract: In an incomplete information setting, we analyze the sealed bid auction proposed
by Knaster (cf. Steinhaus (1948)). This procedure was designed to efficiently and fairly
allocate multiple indivisible items when participants report their valuations truthfully. In
equilibrium, players do not follow truthful bidding strategies. We find that, ex-post, the
equilibrium allocation is still efficient but may not be fair. However, on average, participants
receive the same outcome they would have received if everyone had reported truthfully—i.e.,
the mechanism is ex-ante fair.
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1. Introduction

This paper conducts an equilibrium analysis of a sealed-bid auction proposed by famed mathematician
Bronislaw Knaster. This auction was designed to efficiently and fairly allocate multiple indivisible items
and has played an important role in the early development of the fair division literature.1 As in standard
auctions, players in Knaster’s auction simultaneously submit a bid for each of the items, where each item
is allocated to the bidder who submitted the highest bid for that item. Unlike standard auctions, however,
the winning bidder of each item compensates the losing bidders in the form of side payments.2 When

1This auction first appeared in Steinhaus’s now classic 1948 article on fair division. Steinhaus credits the auction to
Knaster. Subsequently, descriptions of the procedure have appeared in Luce and Raiffa (1957), Raiffa (1982), Young (1994),
and Brams and Taylor (1996) among others. Kuhn (1967) demoststrates how Knanster’s procedure could be “discovered”
using linear programming.

2Several such auctions are studied in Morgan (2004). In this paper, Morgan analyzes auctions that could be used to “fairly”
dissolve a partnership. He does not consider Knaster’s auction.
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players are truthful, Knaster’s process generates an efficient assignment of the indivisible items and side
payments so that each person receives, in their view, a proportional outcome.3 This is a basic notion of
fairness. The workings of auction are best introduced via a simple “inheritance” example.4

Suppose Ann, Bob, and Carol are heirs to an estate containing four indivisible objects I1, I2, I3, and
I4. The heirs have an equal clam to the objects and are looking to “fairly” divide these items using
Knaster’s procedure. In particular, each heir submits a bid for each item. In the table below, we display
bid vectors for the three heirs, the sum of these bids (or total reported value), and each bidder’s initial
fair share—i.e., 1

3
of their total reported value.

Reported Valuations
Heir A Heir B Heir C

I1 10, 000 4, 000 7, 000

I2 2, 000 600 3, 700

I3 100 1, 500 1, 800

I4 800 2, 000 1, 000

Total: 12, 900 8, 100 13, 500

Initial Fair Share 4, 300 2, 700 4, 500

Knaster’s procedure allocates each item to the highest bidder and uses these bid vectors to determine
side payments for each player. In particular, side payments are constructed so that each heir receives an
equal “surplus” over their initial fair share.

Since items go to the high bidder, heir A receives I1, heir B receives I4, and heir C receives items I2

and I3. These items received create value for the recipient. The amount of value created above the initial
fair share for the recipient is the bidder’s initial excess valuation. If we add up the initial excess values
for the three heirs we get surplus. In this example, the surplus is 6000.

Heir A Heir B Heir C
Items Received: I1 I4 I2, I3

Value Received: 10, 000 2, 000 5, 500

Initial Excess: 5, 700 −700 1, 000

Next, we divide the surplus equally among the participants and add this amount to each participant’s
initial fair share to compute an adjusted fair share. An individual’s side payment is their value received
minus their total adjusted fair share.

Heir A Heir B Heir C
Adjusted Fair Share: 6, 300 4, 700 6, 500

Side Payment 3, 700 −2, 700 −1, 000

Final Allocation I1 − 3, 700 I4 + 2, 700 I2 + I3 + 1, 000

In summary, Knaster’s procedure awards each of the items to the high bidder and the bidders “pay”
their final excess valuation (players with negative excess valuation receive a payment). Heirs leave the

3An outcome is proportional if each of the N participating players receive at least 1
N -th of their value for the whole

collection of items.
4The following is adopted from Luce and Raiffa (1957). The numbers have been adapted to ease some of the calculations.
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auction with value equal to their adjusted fair share. In the example, A ends up with item 1 and pays
$3700 to compensate the other two heirs, B gets item 4 and receives $2700, C receives items 2 and 3

and receives $1000. By construction, the side payment made by A balances with the amounts paid to B
and C.

Knaster’s procedure generates efficient proportional outcomes when the heirs report truthfully.5

Despite this nice property, Knaster’s auction is vulnerable to manipulation if the players have knowledge
of one another’s preferences. Suppose, for instance, Heir B increases his bid for item 1 from $4000 to
$9400. Each bidder still wins the same items, however B’s side payment (compensation) increases from
to $2700 to $3900, which is a clear improvement for B. Kuhn (1967) provides a similar example in his
analysis of Knaster’s procedure and concludes by saying,

“The numbers in this example have been chosen only to exhibit the advantages that can
accrue to a player who falsely portrays his own valuations with a knowledge of the other
player’s true valuations. It points up a clear need for an analysis of the strategic opportunities
of this situation.”

It is unclear, however, if such manipulation could or would take place when bidder information is
incomplete. We therefore seek to answer Kuhn’s call for strategic analysis of Knaster’s auction, but
provide the analysis in an incomplete information setting. In Section 2, we model Knaster’s procedure
as a sealed bid auction. In Section 3, we find equilibrium bidding strategies for the Bayesian game
induced by Knaster’s auction. Welfare consequences of strategic behavior are explored in Section 4.

2. Knaster’s Fair Division Procedure

In this section, we formalize Knaster’s procedure as an auction.6 Let K be a set of m unrelated
items to be allocated among N ≥ 2 heirs, whom we shall henceforth refer to as players. Each player i
assigns the value xij to item j, for j = 1, ...,m. The N private values for each item j are independently
distributed according to cumulative distribution function Fj with support [0, x̄j], where the probability
density function of Fj by fj. Individual values are private, but the distribution function for each item is
known to all players. Last, since objects are unrelated, the value to a player of receiving multiple items
is simply the sum of each item’s value.

Knaster’s procedure solicits bids from each player and uses this information to make an allocation
decision. Specifically, each player submits a bid vector bi = (bi1, ..., bim) to a mediator who awards each
item to the high bidder. Thus, player i is awarded item Ij if bij > maxk 6=i bkj .7 Next, side payments are
computed for each item Ij as follows:

1. First, each player i’s initial fair share of item j (defined as 1
N

-th of their reported value) is
computed—i.e.,

IFSij(b) =
1

N
bij

5In addition, when N = 2 the procedure generates an envy-free allocation.
6See Krishna (2010) for an introduction to auction theory.
7Ties are broken via random assignment.



Games 2013, 4 24

2. Second, surplus value for unit j (defined as the difference between the high bid and the average
bid) is computed—i.e.,

Sj(b) = max
k
bkj −

1

N

N∑
i=1

bij

3. Third, a player i’s adjusted fair share is computed from the bids. This is the player’s initial fair
share of item Ij plus an even share of the surplus—i.e.,

AFSij(b) = IFSij(b) +
1

N
Sj(b)

=
1

N
bij +

1

N
(max

k
bkj −

1

N

N∑
i=1

bij)

4. Last, player i’s side payment for item j is their reported value received (if they win the item) minus
their adjusted fair share—i.e.,

tij(b) =

{
bij − AFSij(b) if bij > maxk 6=i bkj

−AFSij(b) Otherwise.

It is easy to verify that
∑

i tij(b) = 0.8

This concludes the description of the mechanism. Note that our definition of initial fair share and
surplus is for each item. If we sum up a player’s initial fair share (surplus) for each item, we arrive at
that player’s total initial fair share (total surplus) as in the example found in the introduction. Player i’s
payoff for the j-th item as a function of submitted bids b is therefore

πij(b) =

{
xij − tij(b) if bij > maxk 6=i bkj

−tij(b) Otherwise

Since Knaster’s auction can be analyzed item by item, a player’s total payoff is just the sum of the

player’s payoffs from each individual item—i.e.,
m∑
j=1

πij(b).

3. Equilibrium

Knaster’s procedure is a mechanism that induces a Bayesian game between N players. In this
section, we find the Bayes–Nash equilibrium for this induced game in symmetric and increasing
bidding strategies.

8Written out, the side payment rule is:

tij(b) =


(N−1)2

N2 bi +
1

N2

∑
j 6=i bj if bi > maxj 6=i bj

−
(
N−1
N2

)
(bi + bmax) +

1
N2

∑
k 6=i

k 6=max

bk otherwise
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3.1. Knaster’s Procedure with a Single Object

We begin with a heuristic derivation of a Bayes–Nash equilibrium when only one object is
being auctioned.

Suppose players 2 −N follow the symmetric and increasing strategy β. We consider player 1’s best
response problem. Player 1 wins the object if he has the high bid—i.e., b1 ≥ β(x2), ..., b1 ≥ β(xN).
He receives compensation if one of the other players is the high bidder. For instance, Player 2 wins if
β(x2) ≥ b1, x2 ≥ x3, x2 ≥ x4, ...., and x2 ≥ xN . It is convenient to define the following functions:

h(b1, x1, x2, ..., xN) = x1 −
(N − 1)2

N2
b1 −

1

N2

N∑
j=2

β(xj)

g(b1, x2) =

∫ x2

0

...

∫ x2

0

[

(
N − 1

N2

)
(b1 + β(x2))−

N∑
k=3

β(xk)

N2
]

N∏
j=3

dF (xj)

The best response problem for player 1 is to choose a bid b1 to maximize his expected payoff—i.e.,
to solve:

max
b1

β−1(b1)∫
0

...

β−1(b1)∫
0

h(b1, x1, x2, ..., xN)
N∏
j=2

dF (xj) + (N − 1)

x̄∫
β−1(b1)

g(b1, x2)dF (x2)

The first order condition for the problem is found using Leibniz’s Rule:

0 =
1

β′(β−1(b1))

β−1(b1)∫
0

...

β−1(b1)∫
0

h(b1, x1, β
−1(b1), ..., xN)

N∏
j=3

dF (xj)f(β−1(b1))

+...+
1

β′(β−1(b1))

β−1(b1)∫
0

...

β−1(b1)∫
0

h(b1, x1, x2, , ..., β
−1(b1))

N−1∏
j=2

dF (xj)f(β−1(b1))

+

β−1(b1)∫
0

...

β−1(b1)∫
0

∂h(b1, x1, x2, ..., xN)

∂b1

N∏
j=2

dF (xj)

−(N − 1)[
1

β′(β−1(b1))
g(b1, β

−1(b1)) + (N − 1)

x̄∫
β−1(b1)

∂g(b1, x2)

∂b1

dF (x2)

Since the function h is symmetric in its last N − 1 arguments and the partial derivative of g is

∂g(b1, x2)

∂b1

=

x2∫
0

...

x2∫
0

[
N − 1

N2
]

N∏
j=3

dF (xj) =
N − 1

N2
F (x2)N−2
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the first order condition simplifies to:

0 =
(N − 1)

β′(β−1(b1))

β−1(b1)∫
0

...

β−1(b1)∫
0

h(b1, x1, β
−1(b1), ..., xN)

N∏
j=3

dF (xj)f(β−1(b1))

−(N − 1)2

N2

β−1(b1)∫
0

...

β−1(b1)∫
0

N∏
j=2

dF (xj)

− (N − 1)

β′(β−1(b1))

β−1(b1)∫
0

...

β−1(b1)∫
0

[2

(
N − 1

N2

)
b1 −

N∑
k=3

β(xk)

N2
]

N∏
j=3

dF (xj)f(β−1(b1))

+
(N − 1)2

N2

x̄∫
β−1(b1)

F (x2)N−2dF (x2) (1)

In a symmetric Bayes–Nash equilibrium b1 = β(x1), which, after inputting into (1), combining terms
and simplifying, yields:

0 =
(N − 1)

β′(x1)

x1∫
0

...

x1∫
0

[x1 −
(N − 1)2

N2
β(x1)− β(x1)

N2
−

N∑
j=3

β(xj)

N2
]
N∏
j=3

dF (xj)f(x1)

− (N − 1)2

N2

x1∫
0

...

x1∫
0

N∏
j=2

dF (xj) +
(N − 1)2

N2

x̄∫
x1

F (x2)N−2dF (x2)

− (N − 1)

β′(x1)

x1∫
0

...

x1∫
0

[2

(
N − 1

N2

)
β(x1)− 1

N2

N∑
k=3

β(xk)]
N∏
j=3

dF (xj)f(x1)

0 =
[x1 − β(x1)]f(x1)F (x1)N−2

β′(x1)
+

[
1

N2
− 1

N
F (x1)N−1

]
Thus, we are left with the differential equation

[x1 − β(x1)]F (x1)N−2f(x1) + β′(x1)

[
1

N2
− 1

N
F (x1)N−1

]
= 0 (2)

In standard auctions, the boundary condition β(0) = 0 is used to solve the differential equation.
However, in Knaster’s auction, this condition is not optimal. Fortunately, there is a unique value x∗1
such that 1

N2 − 1
N
F (x∗1)N−1 = 0. At this value, the differential equation reduces to the expression

β(x∗1) = x∗1. This is our boundary condition. The solution to Equation (2) is found to be

β(xi) =


xi +

x(N)∫
xi

(
−NF (z)N−1+1
−NF (xi)N−1+1

) N
N−1

dz if xi ≤ x(N)

xi −
xi∫

x(N)

(
NF (z)N−1−1
NF (xi)N−1−1

) N
N−1

dz xi ≥ x(N)

(3)

where x(N) is defined such that F (x(N))N−1 = 1
N

.9 It remains to show that strategy profile where every
player follows (3) forms a Bayes–Nash equilibrium.

9The steps used to solve equation (2) are provided in the Appendix.
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Proposition 1 Symmetric equilibrium strategies in the Bayesian game induced Knaster’s Fair Division
Procedure with N players and one object are given by (3).

Proof. We need to check that following β is an equilibrium. First, it is easily checked that the bidding
strategy β is increasing and continuous. Second, a bidder will never want to bid above β(x̄) or below
β(0). Bidder 1, for instance, should not submit a bid b > β(x̄). A bid equal to β(x̄) wins the item with
probability one, thus increasing one’s bid only decreases bidder 1’s expected payoff. Similarly, Bidder 1
should not submit a bid b < β(0). A bid equal to β(0) is guaranteed to lose the item with probability one
(but win the compensation), so decreasing one’s bid only decreases 1’s expected payoff since it lowers
the compensation. Finally, the expected payoff of bidder 1 whose type is x1 but bids as if his type were
z is

U1(z|x1) =

z∫
0

...

z∫
0

[x1 −
(N − 1)2

N2
β(z)−

N∑
j=2

β(xj)

N2
]
N∏
j=2

dF (xj)

+(N − 1)

x̄∫
z

x2∫
0

...

x2∫
0

[

(
N − 1

N2

)
β(z)

+

(
N − 1

N2

)
β(x2)−

N∑
k=3

β(xk)

N2
]
N∏
j=3

dF (xj)dF (x2)

Differentiating with respect to z and simplifying the resulting expression yields:

d

dz
U1(z|x1) = (N − 1)[x1 − β(z)]F (z)N−2f(z) + (N − 1)β′(z)[

1

N2
− 1

N
F (z)N−1]

Now setting β′(x1) = [x1−β(x1)]F (x1)N−2f(x1)

[ 1
N
F (x1)N−1− 1

N2 ]
we have

d

dz
U1(z|x1) = (N − 1)[x1 − β(z)]F (z)N−2f(z)− (N − 1)[z − β(z)]F (z)N−2f(z)

= (N − 1)[x1 − z]F (z)N−2f(z)

If z < x1, then d
dz
U1(z|x1) > 0. If z > x1, then d

dz
U1(z|x1) < 0. Hence, U1(z|x1) is maximized at

z = x1. Therefore bidding truthfully according to β is a best response.

Example 1 Suppose N = 2 and each player i’s private value is distributed according to the uniform
distribution—i.e., F (xi) = xi for xi ∈ [0, 1] and f(xi) = 1, then the equilibrium bidding strategy for
each player is given by β(xi) = 2

3
xi + 1

6
.10

The equilibrium bidding strategy prescribes over reporting when the player is less likely to win the
item and more likely to earn compensation (i.e., when x < 1

2
), truth telling at x = 1

2
, and for a player to

shade his bid when more likely to win the item and less likely to earn compensation (i.e., x > 1
2
).

10This is easy to check using equation (2).
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Figure 1. Equilibrium Bidding Strategy for u(0,1) and N = 2.
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In general, the equilibrium bidding strategy prescribed in (3) recommends players shade their bids
when their type is higher than the threshold type and to pad their bid when their type is lower than the
threshold. This is intuitive. When a player is not likely to win the auction, he can gain compensation by
increasing his bid. Similarly, a high type player who is more likely to win the item can gain by lowering
his bid to reduce the compensation he must pay others. As in other auctions with shading/padding, there
is a marginal benefit/cost to such actions—i.e., increasing one’s bid increases the probability a player
will win the auction and decreasing one’s bid increases the probability a player will lose the auction. In
the optimal bid, a player continues shading/padding until the marginal benefit falls short of the marginal
cost.

3.2. Multiple Objects

Since the items are unrelated, we can treat each item independently when searching for the optimal
bid. The next theorem follows immediately.

Proposition 2 Symmetric equilibrium strategies in the Bayesian game induced Knaster’s Fair Division
Procedure with N ≥ 2 players and multiple objects are given by the vector valued bid function
Bi(xi1, ..., xim) = (βi1(xi1), ..., βim(xim)), where for k = 1, ...,m, βk(xik) is defined as

βk(xik) =


xik +

xk(N)∫
xik

(
−NF (z)N−1+1
−NF (xik)N−1+1

) N
N−1

dz if xik ≤ xk(N)

xik −
xik∫

xk(N)

(
NF (z)N−1−1
NF (xik)N−1−1

) N
N−1

dz xik ≥ xk(N)

where each xk(N) is defined as the x such that Fk(x)N−1 = 1
N

.
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4. Welfare and Comparative Statics

Knaster’s auction was designed to achieve an efficient and proportional outcome when all players
report their true valuations—i.e., allocations where the items ended up with the people who valued
them the most and each player receives, in their estimation, at least 1

N
-th of the item’s value. However,

in equilibrium, bidders typically do not report truthfully. We now check to see if this behavior has
welfare consequences.11

We are interested in the impact that strategic behavior has on the fairness and the efficiency of the
equilibrium allocation. However, in an incomplete information environment, the notion of fairness is
slightly ambiguous. Specifically, we need to clarify what information players have at the time they are
evaluating the outcome or expected outcome. In particular, we need to know if the players are evaluating
the outcome before they know their type (i.e., ex-ante) or evaluating the outcome after the auction is
done (i.e., ex-post).12 While Knaster was clearly interested in the ex-post case, we mention some results
from the ex-ante case, which is of interest. It is useful to define these notions in terms of general
allocation rules.

Let S be an allocation rule—i.e., a function that assigns to each realization of types a specific
allocation, then the following properties are of interest:

Definition 1 The item assignment of an allocation rule S is ex-post efficient if, for each realization of
types, the object in the allocation prescribed is assigned to the player with the highest realized type for
that object.

Definition 2 An allocation rule S is ex-post proportional if, for each realization of types, after the
allocation rule has been applied, each player i with realized type xi gets a utility of at least xi

N
.

Definition 3 An allocation rule S is ex-ante proportional if, prior to observing types, each player i’s
expected utility from his part of the allocation rule is greater than 1

N

∫ x̄
0
xif(xi)dxi.

Knaster’s auction, when players follow truth telling strategies, is an allocation rule that satisfies all
three of the above properties. However, we are interested in whether Knaster’s auction, when players
follow equilibrium strategies.

Several welfare results are immediate. First, the ex-post assignment of the items in equilibrium is
the same as when players report truthfully—i.e., the item assignment is ex-post efficient. This follows
since equilibrium bidding strategies are increasing. Second, aggregate welfare is the same in equilibrium
as it is under truth telling. This follows from the fact that the ex-post assignment of items is the same
and that side payments always sum to zero. Third, although aggregate welfare is the same, there are

11For notational simplicity, our results will be for the one item case. The generalization is straightforward and left to the
reader.

12There is also a case where players evaluate the outcome when they know their type, but not the types of the other players
(i.e., interim).
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bidders whose expected utility in equilibrium is smaller than their expected utility when everyone tells
the truth. This is easily demonstrated when N = 2, where the x(2) type always prefers the truth telling
outcome. The reason is intuitive. This player’s bid in equilibrium is his true value—i.e., β(x) = x.
At the Bayes–Nash equilibrium, relative to the truth telling outcome, the x(2) player wins the object
with the same probability, has to pay more in compensation if he wins (since types lower than x(2)

bid above their value), and receives less in compensation if he loses (since types above x(2) bid below
their value).13 In contrast, low and high types, relative to the truth telling outcome, are better off at the
equilibrium outcome.

Our next result concerns ex-ante fairness— i.e., a player’s belief about the outcome he will receive
in the auction before he knows his value. Denote the expected utility of a player with type xi in the
truth telling and equilibrium outcomes by UT (xi) and UB(xi) respectively. Specifically, we show that,
on average, there is no difference in the truth telling outcome and the equilibrium outcome. Since the
truth telling outcome is known to be proportional, the expectation is that the equilibrium allocation must
also be proportional.

Proposition 3 The equilibrium outcome of Knaster’s auction is ex-ante proportional. In particular, the
expected difference in the truth telling outcome and the equilibrium outcome is zero—i.e.,∫ x̄

0

(UT (xi)− UB(xi)) f(xi)dxi = 0

Proof. We illustrate the proof for N = 2, the general case is similar and is left to the reader. Since the
probability of winning the item is the same in equilibrium as in truth telling, the expected difference in
UT (xi)−UB(xi) is just the expected difference in the side payments. By design, the transfers always sum
to zero regardless of whether we are at the Bayes–Nash equilibrium or the truth telling outcome—i.e.,
t1(x1, x2) + t2(x2, x1) = 0 and t1(β(x1), β(x2)) + t2(β(x2), β(x1)) = 0. Thus,

t1(x1, x2)− t1(β(x1), β(x2)) = −(t2(x2, x1)− t2(β(x2), β(x1)))

The expected difference is∫ x̄

0

∫ x̄

0

(t1(x1, x2)− t1(β(x1), β(x2))) f(x2)f(x1)dx2dx1

= −
∫ x̄

0

∫ x̄

0

(t2(x2, x1)− t2(β(x2), β(x1))) f(x2)f(x1)dx2dx1

The transfer function t is symmetric—i.e., t1(x1, x2) = t2(x1, x2). So, the above equality can be re-
written as:

2

∫ x̄

0

∫ x̄

0

(t1(x, y)− t1(β(x), βy))) f(y)f(x)dydx = 0

This implies ∫ x̄

0

(UT (xi)− UB(xi)) f(xi)dxi = 0

Since we know the truth telling outcome is proportional, the result follows.

13It straightforward to verify that, when N = 2, the difference UT (x1)− UB(x1) is maximized at x(2).
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Example 2 Consider UT (xi)− UB(xi) when types are uniformly distributed over the interval [0, 1] and
there are only two bidders. Using the bidding strategies computed in Example 1, this difference simplifies
to UT (x1)−UB(x1) = −1

4
x2

1 + 1
4
x1− 1

24
. From this expression we can see that high types and low types

both prefer the outcome under strategic behavior whereas middle types prefer the outcome under truth
telling. The expression is maximized at x1 = 1

2
. In addition, the expected difference is∫ 1

0

(
1

4
z − 1

4
z2 − 1

24

)
dz = 0

While this result is nice, Knaster was interested in ex-post fairness—i.e., the values people had
after the auction was finished. Unfortunately, Knaster’s auction does not yield an ex-post proportional
outcome in equilibrium as our next result demonstrates.

Proposition 4 The equilibrium outcome of Knaster’s auction is not ex-post proportional.

Proof. Suppose types are uniformly distributed over the interval [0, 1] and there are only two bidders.
Specifically, let Player 1 have the type x1 = 1

100
and Player 2 have the type x2 = 0. The symmetric

equilibrium bid function, as given in Example 1, for each player i is β(xi) = 2
3
xi + 1

6
. So, Player 1’s bid

is 13
75

and Player 2’s bid is 1
6
. Therefore, Player 1 wins the object and pays Player 2 a compensation of

17
200

. The outcome results in a profit of 2
200
− 17

200
= − 3

40
, which is worse than the ex-post proportional

outcome for Player 1 of 1
200
.

Proposition 4 is discouraging, but expected given the form of the equilibrium bid function.14 Our last
result explores if competition might eliminate this negative feature of Knaster’s auction. In particular,
we want to know whether the equilibrium bid functions converge to truth telling as the number of players
increases. Why? If this were true, as it is in the first price sealed bid auction, we would know that in the
limit Knaster’s auction is ex-post proportional. Alas, this is not the case. The bid function in Knaster’s
auction diverges from the 45◦ line as N increases. To establish this claim, we demonstrate that the bid
of the lowest type player is diverging from the truth as the number of players increases. First, however,
we need the following lemma concerning the threshold type.

Lemma 1 Threshold type x(N) is strictly increasing in N for N > 1.

Proof. F (x∗(N))N−1 = 1
N

→ F (x∗(N)) =
(

1
N

) 1
N−1 → ∂

∂N

(
1
N

) 1
N−1 =

− 1
N(N−1)2

(
1
N

) 1
N−1

(
N +N ln 1

N
− 1
)

> 0 if and only if 1
N

< exp(1−N
N

). At N = 1,
1
N

= exp(1−N
N

) = 1. Taking the derivative of the left hand side and right hand side yields
∂
∂N

(
1
N

)
= − 1

N2 and ∂
∂N

exp(1−N
N

) = − 1
N2 e

− 1
N

(N−1) respectively. Now 1 > e−
1
N

(N−1) > 0 for N > 1,
which implies − 1

N2 < − 1
N2 e

− 1
N

(N−1). Thus, the right hand side is decreasing at a slower rate than the

left hand side for all N > 1. So, 1
N
< exp(1−N

N
) for N > 1. Hence, F (x∗(N)) =

(
1
N

) 1
N−1 is increasing

in N . Now F is a cdf that , by assumption, is differentiable and strictly increasing. Thus, F has an
inverse F−1 that is strictly increasing. Thus, x(N) = F−1(

(
1
N

) 1
N−1 ) is also increasing in N .

14For N = 2, when values are uniformly distributed over the interval [0, 1], it is straightforward to verify that Knaster’s
procedure is interim proportional. However, it is unknown whether this is true in general.
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Now, we show that the bid function does not converge to the 45◦ line by demonstrating that the bid of
the lowest type bidder is moving in the wrong direction.

Proposition 5 Equilibrium bid functions do not converge to the truth telling function as the number of
bidders increases. In particular, the bid of the player with a type of zero, β(0;N), is strictly increasing
in N for N ≥ 2.

Proof. β(0;N) =
x(N)∫

0

ydz, where y = f(u, v) = uv, u = −NF (z)N−1 + 1, and v = N
N−1

.

d

dN
β(0;N) = x′(N)y(x(N), N) +

x(N)∫
0

∂y(z,N)

∂N
dz

=

x(N)∫
0

∂y

∂N
dz

The last equality follows from Leibniz’s rule and the fact that −NF (x(N))N−1 + 1 = 0 by definition of
x(N). Now from the chain rule:

∂y

∂N
=

∂f

∂u

∂u

∂N
+
∂f

∂v

∂v

∂N

= vuv−1
(
−F (z)N−1 −NF (z)N−1 lnF (z)

)
− uv ln(u)

1

(N − 1)2

Since u ∈ (0, 1) we have ln(u) < 0. Thus, a sufficient condition for ∂y
∂N

to be positive is for

−F (z)N−1 −NF (z)N−1 lnF (z) > 0

−NF (z)N−1 lnF (z) > F (z)N−1

−N lnF (z) > 1

− 1

N
> ln(F (z))

Now since z is less than or equal to x(N) we can form a bound on F (z). In particular, the largest F (z)

can get is

F (x(N)) =

(
1

N

) 1
N−1

ln(F (x(N))) =
1

N − 1
ln(

1

N
)

We now show − 1
N
> ln(F (x(N))).

− 1

N
> ln(F (x(N))) =

1

N − 1
ln(

1

N
)

→ −(N − 1)

N
> ln(

1

N
)

→ exp(−(N − 1)

N
) >

1

N
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The last inequality was established in Lemma 1. Therefore ∂y
∂N

> 0 for all z. It follows

d

dN
β(0;N) =

x(N)∫
0

∂y

∂N
dz > 0

Example 3 The following diagram plots the graph of the bid function β(x;N) for the uniform
distribution case when N = 2, 3, 4, 5, and 6. The bid functions displayed are each increasing
in N .

Figure 2. Bidding Strategies for u(0,1) N = 2, ..., 6.
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5. Discussion

The results in this paper contribute to several literatures: auctions, dissolving a partnership,
bargaining, and fair division. In particular, we have used techniques frequently used in the auctions
literature to analyze a well-known fair division procedure. Specifically, we have modeled Knaster’s
fair division procedure as a sealed bid auction, computed the symmetric Bayes–Nash equilibrium
in increasing bidding strategies, analyzed the welfare consequences of strategic behavior, and then
performed some simple comparative statics of the equilibrium bidding functions.

Knaster’s auction remains efficient at the Bayes–Nash equilibrium outcome. However, the expected
side payments made by bidders are typically different than under truth telling. As a consequence, the
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auction is no longer ex-post proportional.15 Additionally, since bidding strategies do not approach truth
telling with competition, the distortions from truth telling created by strategic behavior do diminish with
the number of players. However, despite these distortions, the auction does maintain some semblance
of fairness. Specifically, the expected difference between the truth telling outcome and the Bayes–Nash
equilibrium outcome is zero.

Fair division mechanisms, such as Knaster’s auction, are appealing when all individuals involved have
a claim to an object or objects. Divorce, inheritance, and dissolving a partnership are natural contexts to
apply such mechanisms. The later topic has been well studied in economics under the guise of efficiency
when agents are strategic. Crampton, Gibbons, and Klemperer (1987), McAfee (1992), Morgan (2004),
Moldovanu (2002) all study mechanisms for dissolving a partnership in an incomplete information
environment.16 Specifically, Crampton, Gibbons, and Klemperer, working an independent private values
framework, find a simple and efficient way to dissolve a partnership that is interim individually rational.
This is in contrast to the well known impossibility theorem of Myerson and Satterthwaite.17 McAfee
and Morgan’s papers are of interest to us because both papers consider fair division mechanisms. In
particular, McAfee looks at an independent private values model and examines several simple auction
mechanisms (including a simple cake cutting algorithm). In contrast, Morgan looks at several simple
mechanisms in a two player common values setting and compares the outcomes of these mechanisms
based on a fairness criterion. Clearly, Knaster’s auction could also be applied to any of these
applied settings.

Brams and Taylor (1999) analyze the fairness properties of several simple fair division mechanisms
and discuss how these procedures could be applied to bargaining scenarios.18 One of these mechanisms,
the Adjusted Winner Procedure, for two players generates allocations that have several nice properties.
Brams and Taylor (1996) compare Adjusted Winner with Knaster’s auction in several examples. Finally,
we note that it is still an open question whether any of these mechanisms (or to what extent) are effective
resource allocation mechanisms in practice. This question is well posed for future research.

6. Appendix

In this appendix, we provide the details for solving the differential equation (2). First, putting (2) in
the standard form we have:

β′(x1) + β(x1)
F (x1)N−2f(x1)[

1
N
F (x1)N−1 − 1

N2

] = x1
F (x1)N−2f(x1)[

1
N
F (x1)N−1 − 1

N2

] . (4)

15Proportional allocations satisfy a basic notion of fairness, but stronger concepts have been developed since Steinhaus’s
paper. Concepts such as envy-freeness, egalitarian, consistency, population monotonicity, and transparent inequity have all
been studied in the fair division literature. See, for instance, Varian (1974), Crawford (1977), Crawford and Heller (1979),
Crawford (1980), Demange (1984), Takenuma and Thomson (1993), Moulin (1990b), and Alkan, Demange, and Gale (1991).
Young (1994) and Moulin (1988, 1990a, and 2003) survey this large literature.

16Also related is Segal and Whinston (2011) who provide general conditions under which efficient bargaining is possible.
17See Krishna, Chapter 5, for a streamlined discussion of this result.
18There is a large body of work on fair division mechanisms presented throughout the mathematics, economics, and

political science literature. For instance, the problem of how to fairly divide a cake has generated a significant body of
interest and can be applied to both divisible good and indivisible good allocation problems. Introductions to this cake cutting
literature can be found in Brams and Taylor (1996), Robertson and Webb (1998), or Su (1999).
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This can be solved using the integrated factor P (x1) = | 1
N
F (x1)N−1− 1

N2 |
N

N−1 .19 Multiplying both sides
of equation (4) by the integrating factor, we have:

d

dx1

(
β(x1)| 1

N
F (x1)N−1 − 1

N2
|

N
N−1

)
= x1

F (x1)N−2f(x1)| 1
N
F (x1)N−1 − 1

N2 |
N

N−1

1
N
F (x1)N−1 − 1

N2

.

Therefore, from the Fundamental Theorem of Calculus,

β(x1)| 1
N
F (x1)N−1 − 1

N2
|

N
N−1 =

x1∫
0

zF (z)N−2f(z)| 1
N
F (z)N−1 − 1

N2 |
N

N−1

( 1
N
F (z)N−1 − 1

N2 )
dz + C

To dispense with the absolute value signs, we look at the function in two cases: F (x)N−1 < 1
N

and
F (x)N−1 > 1

N
.

First, suppose F (x)N−1 < 1
N

, then by definition of absolute value | 1
N
F (z)N−1 − 1

N2 |
N

N−1 =

(− 1
N
F (z)N−1 + 1

N2 )
N

N−1 . So, if x1 < x∗1 , then

β(x1)(− 1

N
F (x1)N−1 +

1

N2
)

N
N−1 =

−
x1∫

0

zF (z)N−2f(z)(− 1

N
F (z)N−1 +

1

N2
)

1
N−1dz + C

Now solving for the bid function yields:

β(x1) =

−
x1∫
0

zF (z)N−2f(z)(− 1
N
F (z)N−1 + 1

N2 )
1

N−1dz + C

(− 1
N
F (x1)N−1 + 1

N2 )
N

N−1

.

Applying integration be parts, the last equation can be alternatively stated as

β(x1) = x1 −

x1∫
0

(− 1
N
F (z)N−1 + 1

N2 )
N

N−1dz − C

(− 1
N
F (x1)N−1 + 1

N2 )
N

N−1

(5)

Second, suppose x1 > x∗1 , then

β(x1)(
1

N
F (x1)N−1 − 1

N2
)

N
N−1 = −

x∗1∫
0

zF (z)N−2f(z)(− 1

N
F (z)N−1 +

1

N2
)

1
N−1dz

+

x1∫
x∗1

zF (z)N−2f(z)(
1

N
F (z)N−1 − 1

N2
)

1
N−1dz + C.

19In particular, our integrating factor P (x1) is found by solving the differential equation

P ′(x1)

P (x1)
=

F (x1)
N−2f(x1)[

1
N F (x1)N−1 − 1

N2

]
ln |P (x1)| =

N

N − 1
ln | 1

N
F (x1)

N−1 − 1

N2
|

P (x1) = | 1
N

F (x1)
N−1 − 1

N2
|

N
N−1

We do not need the most general solution to this differential equation. Hence, we dispense with the arbitrary constant.
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Next, applying integration by parts on the two integrals on the right hand side of the equation gives us:

β(x1)(
1

N
F (x1)N−1 − 1

N2
)

N
N−1 = −

x∗1∫
0

(− 1

N
F (z)N−1 +

1

N2
)

N
N−1dz

+x1(
1

N
F (x1)N−1 − 1

N2
)

N
N−1 −

x1∫
x∗1

(
1

N
F (z)N−1 − 1

N2
)

N
N−1dz + C.

Solving for the bid function yields:

β(x1) = x1 −

x∗1∫
0

(− 1
N
F (z)N−1 + 1

N2 )
N

N−1dz +
x1∫
x∗1

( 1
N
F (z)N−1 − 1

N2 )
N

N−1dz − C

( 1
N
F (x1)N−1 − 1

N2 )
N

N−1

(6)

Finally, the two cases give us bidding functions (5) and (6). Applying the “initial” condition β(x∗1) = x∗1

defines the constant of integration to be C =
x∗1∫
0

(− 1
N
F (z)N−1 + 1

N2 )
N

N−1dz for both functions. The

equilibrium bid function (3) is found by combining (5) and (9) and inserting the value of C.
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