
Nikandrova, Arina

Article

Repeated play of families of games by resource-
constrained players

Games

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Nikandrova, Arina (2013) : Repeated play of families of games by resource-
constrained players, Games, ISSN 2073-4336, MDPI, Basel, Vol. 4, Iss. 3, pp. 339-346,
https://doi.org/10.3390/g4030339

This Version is available at:
https://hdl.handle.net/10419/98544

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/3.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/g4030339%0A
https://hdl.handle.net/10419/98544
http://creativecommons.org/licenses/by/3.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Games 2013, 4, 339-346; doi:10.3390/g4030339
OPEN ACCESS

games

ISSN 2073-4336
www.mdpi.com/journal/games

Article

Repeated Play of Families of Games by
Resource-Constrained Players
Arina Nikandrova

Department of Economics, Mathematics and Statistics, Birkbeck College, Malet Street, London WC1E
7HX, UK; E-Mail: a.nikandrova@bbk.ac.uk; Tel.: +44-(0)-20-7631-6457; Fax: +44-(0)-20-7631-6416.

Received: 4 April 2013; in revised form: 28 June 2013 / Accepted: 3 July 2013 /

Published: 11 July 2013

Abstract: This paper studies a repeated play of a family of games by resource-constrained
players. To economize on reasoning resources, the family of games is partitioned into
subsets of games which players do not distinguish. An example is constructed to show
that when games are played a finite number of times, partitioning of the game set according
to a coarse exogenously given partition might introduce new symmetric equilibrium payoffs
which Pareto dominate best equilibrium outcomes with distinguished games. Moreover,
these new equilibrium payoffs are also immune to evolutionary pressure at the partition
selection stage.
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1. Introduction

Classical game theory assumes that economic agents are perfectly rational and have unlimited
reasoning resources, which enable them to make correct decisions at all times. In reality, reasoning
resources are scarce and the economic environment is complex, with agents interacting in many settings
or games. If games played by agents are similar in some dimensions, distinguishing all games at all
times requires undue reasoning effort. This paper examines whether an evolutionary process could weed
out such a waste of resources.

Formally, it is assumed that players repeatedly play games drawn from some pre-specified family.
The family of games remains fixed for the duration of play, but in every period, a new game is drawn.
Due to the scarcity of reasoning resources, the family of games is partitioned into analogy classes, i.e.,
the subsets of games that players do not distinguish. While players choose strategies in the repeated
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games induced by the partitions rationally, the choice of how to partition the game set is beyond their
control and is, instead, governed by some evolutionary process.

In this setting, an example is constructed demonstrating that when games are played a finite number
of times, not knowing exactly which game is currently being played might make all players better
off. Intuitively, coarse partitioning of the game set is a commitment device that allows players to play
strategies that are not incentive-compatible when players know perfectly which game is currently being
played. Such commitment can result in a Pareto improvement. Furthermore, in some instances, the new
equilibrium payoffs are also immune to evolutionary pressure that operates at a partition selection level
(also referred to as a partition selection meta-game).

In the context of this paper, introducing an appropriate notion of evolutionary viability poses a
conceptual challenge. Ideally, the evolutionary pressure should operate on the level of partition selection
only, without affecting the strategies players follow in the resulting dynamic game. Such dichotomy
between decision-making and evolution of cognition is natural. On the one hand, in everyday interaction,
people make conscious choices, taking their reasoning and cognition constraints as given. On the other
hand, the process that shapes human reasoning operates on a different time scale and it takes countless
generations for substantial changes to occur. However, in repeated games, such separation is difficult,
as the partition determines the knowledge of players about the play of the game so far. Hence, an
evolutionary viable strategy has to specify a partition and an equilibrium strategy in the resulting game.

The adopted definition of evolutionary viability is related to the notion of an evolutionarily stable
strategy and attempts to identify partition-strategy pairs that are immune to one-off invasion by a small
number of mutants with a different partition. It is assumed that players in the population are (boundedly)
rational, but do not know much about the workings of the evolutionary process and, hence, are unaware
of the possibility of mutation.

The idea that reasoning resources are scarce and that people use analogies to make decisions in their
day-to-day interactions is not new. For example, [1] advocates that players, rather than being action
rational, i.e., consciously optimizing in each decision situation, are rule rational and apply “rules of
thumb”. These rules of thumb emerge as a result of an evolutionary process and work well on average.
For example, leaving a tip at a restaurant is rational only if one intends to come back to that restaurant
and would like to incentivize staff to provide good service in future. However, customers routinely leave
generous tips even when dining at restaurants where they are unlikely to come back in the near future.
The rule “always tip generously” works well on average and spares its users the anguish of routinely
estimating the likelihood of coming back.

Similarly, [2] suggest that to the use of vague, imprecise language can be explained only if people
have a vague view of the world. This paper models interactions of a player who has evolved to have an
imprecise view of the world and their day-to-day interactions.

The setup of this paper is closely related to [3], who studies the learning process carried out by agents
who are involved in many games. [3] builds a dynamic model in which players simultaneously learn how
to partition the game set and which actions to choose in one-shot two-player games. Instead of being
rational, players adapt their behavior through reinforcement learning. Unlike [3], this paper assumes
that players are engaged in repeated games and that evolutionary pressure operates only at the partition
selection stage, while subsequent decisions of players are rational.
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This paper is also distantly related to the literature on commitment in games, e.g., [4]. This strand
of literature assumes that in the first stage, players voluntarily and credibly commit to a subset of their
pure strategies, and in the second stage, they play the game induced by their commitment. In this
paper, players are limited in what they know about the game and not in what they can do in the game.
More importantly, here, each player’s partition of the game set is not publicly observable and, thus, the
explicit commitment mechanism is lacking.

The rest of the paper is organized as follows: Section 2 outlines an example and characterizes
equilibrium payoffs under exogenously given partitions, Section 3 analyzes the evolutionary viability
of coarse partitioning, and Section 4 concludes.

2. Fixed Partitions

There are two players interacting over two periods. In every period t = 1, 2 they play a normal form
game that is randomly and independently drawn from the set � = {G1, G2} according to probabilities
pj = 1/2, 8Gj 2 �. Each game Gj is a finite simultaneous move game and both games in � share the
same action space. G1 has the payoff matrix:

A B C

A 1, 1 0, 0 0,�0.1

B 0, 0 2, 2 0, 0

C �0.1, 0 0, 0 2, 2

Note that G1 has three Nash equilibria: (A,A), (B,B) and (C,C). Outcomes (B,B) and (C,C) are
also Pareto-efficient in this game. G2 has the following payoff matrix:

A B C

A 0, 0 10, 0 0, 0.1

B 0, 10 7, 7 0, 0

C 0.1, 0 0, 0 6, 6

The unique Nash equilibrium of this game is (C,C). However, payoffs of the Nash action profile are
Pareto-dominated by outcome (B,B).

Players are rational, but they have limited reasoning resources, which makes distinguishing games
costly. Thus, players may partition � into subsets of games they do not distinguish. These subsets are
called analogy classes. The collection of player i’s analogy classes is referred to as i’s partition of �,
and it is denoted by ⇧i. With only two games in �, player i can either distinguish the games and have
the finest partition D = {{G1} , {G2}} or not distinguish the games and have the coarsest partition
N = {{G1, G2}}.

In this section, it is assumed that each player is endowed with an exogenously given partition ⇧ and
both players partition the game set � in the same way. Thus, whenever both players do not distinguish



Games 2013, 4 342

the games, they perceive that they are playing an “average” game 1
2G

1 + 1
2G

2 with the following
payoff matrix:

A B C

A 0.5, 0.5 5, 0 0, 0

B 0, 5 4.5, 4.5 0, 0

C 0, 0 0, 0 4, 4

Partition ⇧ divides histories of dynamic game {Gj, pj}2j=1 into equivalence classes and players,
who partition � according to ⇧, can condition their continuation play only on these equivalence classes.
This implies that in all respects, the fixed partition game is a standard dynamic game with the exception
that the strategies available to players are restricted to some class.

Let U⇧
i (s) denote the expected average per period payoff of player i when players partition �

according to ⇧ = (⇧i,⇧�i) and follow strategy profile s = (si, s�i) :

U⇧
i (s) = E

⇥
1
2

P2
t=1 u

t
i

⇤

where {ut}2t=1 is a sequence of stage game payoffs associated with a realized outcome path and
expectation is taken with respect to the measure over outcomes induced by s and the stochastic process
governing the draws of the games. While playing games from �, player i aims to maximize U⇧

i (s) .

In the current setting, the idea of sequential rationality is captured by the notion of subgame perfect
equilibrium. Let E (⇧) denote the set of subgame perfect equilibrium payoffs in the fixed partition game,
where all players partition � according to ⇧. The aim of this section is to compare E (N ) to E (D).

Below, it is demonstrated that, in the finitely repeated setting, coarse partitioning of � can introduce
new equilibrium payoffs, and thus, E (N ) is not necessarily included in E (D) . Moreover, both players
may be strictly better off in the best subgame perfect equilibrium when they partition � according to N ,
as compared to the best equilibrium with partition D.

Suppose players are endowed with partition D. Our interest lies in finding the highest subgame
perfect equilibrium payoff of the induced dynamic game. By the logic of backwards induction,
in the second period, a Nash equilibrium should be played in any realized stage game. However, since
game G1 has more than one Nash equilibrium, it is possible to condition the second period play on the
outcome of t = 1. This could potentially allow the construction of inter-temporal incentives to support
non-Nash outcomes in the first period. Nevertheless, here, flexibility in the second period choice of Nash
equilibrium in G1 does not suffice to sustain Pareto-efficient play in t = 1. A Pareto-efficient outcome
in t = 1 involves playing either (B,B) or (C,C) if G1 is realized and playing (B,B) if G2 is drawn.
Suppose that in t = 1, game G2 is realized, and consider the interim incentive of player i to comply with
Pareto-efficient play of B in t = 1. If player i deviates and plays A instead, he improves his immediate
payoff by three. This deviation triggers a punishment in t = 2, which costs one if G1 is drawn and noth-
ing, otherwise. Hence, the expected magnitude of the future punishment is 0.5, which is less than three,
the myopic incentive to deviate.

Since in t = 1, Pareto-efficient play is impossible, the average expected payoff in the best subgame
perfect equilibrium is four. This payoff is attained by playing one of the ”good” Nash equilibria, (B,B)

or (C,C) whenever game G1 is drawn and playing the only Nash equilibrium, (C,C) whenever game
G2 is drawn.
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Suppose players are endowed with partition N . Then, it is as if in each t, they are playing the average
game 1

2G
1 + 1

2G
2, which has two Nash equilibria: (A,A) and (C,C). However, the Pareto-efficient

outcome is (B,B). This outcome can be sustained as a subgame perfect equilibrium outcome in t = 1

by the following strategy for 8i :

s⇤i : Play B in t = 1; if (B,B) is played in the first period, play C in t = 2; otherwise, play A in t = 2.

This strategy prescribes playing a Nash equilibrium in t = 2 in the subgames after a deviation, as well as
in the subgame where there was no deviation. In t = 1, the best deviation from B yields an immediate
gain of 0.5, but triggers reversion to the unfavorable Nash equilibrium in t = 2, which costs 3.5.

Hence, player i finds it optimal to follow the prescribed strategy, s⇤i , in t = 1.

Thus, when players do not distinguish games, the best average expected payoff is:

1
2 (4.5 + 4) = 4.25

which exceeds four, the best expected payoff attainable when players partition the set of games
according to D.

3. Partition Selection

The aim of this section is to identify partitions that are viable under evolutionary pressure. To this
end, the notion distantly related to an evolutionary stable strategy (ESS) is deployed.

A strategy is evolutionarily stable if there exists an ✏0 > 0 such that for all ✏ < ✏0, the population
playing the native strategy can resist any invasion of ✏ mutants. This definition is equivalent to requiring
the native strategy to be a best response to itself, as well as to satisfy an additional stability condition.
Thus, the ESS notion is a refinement of a symmetric Nash equilibrium.

In the present setting, by assumption, the evolutionary pressure operates only at the level of
partitioning of �. Hence, the interest lies in identifying the evolutionarily stable partitions. However, the
viability of a partition depends on the strategies the population and the invading mutants subsequently
follow in the dynamic game, and it is difficult to separate the evolutionary selection of viable partitions
of � from the selection of strategies in the dynamic game.

Perhaps an obvious way to define an evolutionarily stable partition of � is to consider the following
two-stage game. In the first stage, players commit to a partition of �, and their choice becomes public
knowledge. In the second stage, players play a subgame perfect equilibrium of the dynamic game
induced by the chosen partition. An ESS could be defined as a partition profile that constitutes a
symmetric (and stable) Nash equilibrium in the first stage of the game. The equilibrium partitions depend
on the continuation payoffs of players, and a strategy of a player has to specify the course of actions for
every, including out-of-equilibrium, selection of the partition. It could be assumed that after a deviation
in the partition selection stage, the play of the dynamic game proceeds to the subgame perfect equilibrium
with the lowest payoff for the deviator. This setting resembles the commitment games considered by [4].

However, it is somewhat unnatural to assume that the choice of partition is public. If the chosen
partition remains private, the only proper subgame of the two-stage game is the game itself and subgame
perfection has no bite. In this case, the appropriate equilibrium concept needs to specify the beliefs
players hold in every period.
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To abstract from the issues related to learning of opponents’ partitions, as well as to avoid the
evolutionary selection at the level of the dynamic game strategies, the following simplifying assumptions
are made. The evolutionarily viable strategy is defined as a tuple � = (⇧, s) consisting of a partition,
⇧, and a subgame perfect equilibrium strategy, s, such that, when agents in the population partition �

according to ⇧ and in the induced game, play s, no mutant with a different partition can do better than
incumbents in a paring with incumbents. While playing the induced game, agents from the population
believe that with probability 1 all other agents partition � according to ⇧ and play strategy s.

The standard definition of ESS applies to symmetric strategies. Here, the symmetry requirement is
imposed on the way agents partition �, but not on the strategy s. Hence, for a strategy � = (⇧, s) to be
evolutionarily stable, it is necessary that a mutant in the role of any player cannot do better than an agent
from the population in the same role.1

In the partition selection meta-game, the overall utility of a player Ûi (�) , where � = (⇧, s) with
⇧ = (⇧i,⇧�i) and s = (si, s�i) , takes into account the payoffs this player derives from playing the
dynamic game induced by partition profile ⇧, U⇧

i (s) , as well as the cost of sustaining ⇧i. It is assumed
that Ûi (�) is lexicographic, firstly increasing in the payoffs derived from playing the games from � and,
secondly, decreasing in the cardinality of the partition.2

Definition. In the partition selection game, strategy profile � = (⇧, s) is partition deviation

stable if and only if s = (si, s�i) is a subgame perfect equilibrium in the dynamic game induced by

⇧ = (⇧i,⇧�i) , where ⇧ is such that both players partition � in the same way, i.e., ⇧1 = ⇧2, and for

each player i, i = 1, 2:

1. U (⇧i,⇧�i)
i (si, s�i) > U

(⇧̃i,⇧�i)
i (s̃i, s�i) , or:

2. U (⇧i,⇧�i)
i (si, s�i) = U

(⇧̃i,⇧�i)
i (s̃i, s�i) and: |⇧i| 

���⇧̃i

��� ,

for all alternative strategies of i, �̃i =
⇣
⇧̃i, s̃i

⌘
.

Section 2 demonstrates that players endowed with coarse partition N could be better off than players
who partition � more finely. It turns out that a population of agents endowed with a coarse partition
might be immune to one-off invasion by mutants with finer partitions.

Consider the partition selection meta-game and suppose that in this game, strategy �⇤
i is partition

deviation stable. Strategy �⇤
i prescribes choosing N and, in the induced dynamic game, playing accord-

ing to s⇤i defined in the previous section. Suppose player i is a mutant who can distinguish the games.
By assumption, this player should behave optimally at every stage of the dynamic game. If in t = 1,

this player does not exploit his superior information and mimics the play prescribed by s⇤i , in t = 2, he
has no profitable deviation either as (C,C) is a Nash equilibrium strategy profile in both games. Thus,
for the deviation to be profitable,3 it has to involve a deviation from the play prescribed by s⇤i in t = 1.

1Alternatively, it is possible to symmetrize the setting and define agent’s payoff from the repeated play of games from �

as the average of payoffs across all possible roles. The requirement that a mutant in the role of any player cannot do better
than the population is more stringent.

2Similar modification was used by [5] in their study of evolutionary stability in a repeated Prisoner’s Dilemma Game
played by finite automata.

3A player, who chooses to distinguish the games, but subsequently plays in the same manner as s⇤ prescribes, obtains
U (D,N )
i (s⇤) = UN

i (s⇤) from the play of the induced dynamic game. However, he sustains higher cardinality of the partition,
and hence, the overall utility of this player is lower that the utility from playing �⇤

i .
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In t = 1, the best response to B is to play B in G1 and to play A in G2. In t = 2, the best response to C

is C in both games, while the best response to A is to play A in G1 and to play C in G2. Thus, mutant i,
who responds optimally to s⇤i in every stage of the game and does not mimic the play prescribed by s⇤i ,
obtains the expected payoff of:

1
2

⇥
1
2

�
2 + 2+6

2

�
+ 1

2

�
10 + 1+0.1

2

�⇤
= 4.1375

from the repeated play, which is less than 4.25, the payoff from following s⇤i . Thus, a mutant with a finer
partition obtains lower payoff than the population, and the strategy that prescribes not distinguishing the
games and then playing according to s⇤i is partition deviation stable in the partition selection meta-game.

The example indicates that a necessary condition for a strategy profile �⇤ = (N , s⇤) to be partition
deviation stable is that, in the last period on the equilibrium path, s⇤ prescribes playing a Nash
equilibrium in every game, even if games are not distinguished. Otherwise, mutant i with a finer partition
definitely has a profitable deviation in t = 2.

4. Final Remarks

This paper studies the interaction of substantially rational agents who are involved in a repeated
play of normal form games drawn from some fixed family. Reasoning resources are assumed to
be costly, and hence, players do not necessarily distinguish all games. The primary interest lies in
identifying equilibrium payoffs that are consistent with evolutionary pressure that shapes the constraints
on reasoning of agents in the long-run.

In this setting, the most striking result is that, when games are played a finite number of times,
coarse partitioning of the game set might shift outwards the Pareto frontier of the dynamic game, thus
introducing new symmetric equilibrium payoffs that Pareto dominate the best equilibrium outcomes with
distinguished games. This implies that coarse partitioning of the game set eliminates an unnecessary
waste of reasoning resources as well as commits players to act in their common interest. Given this,
it does not come as a surprise that the new equilibrium payoffs could be immune to evolutionary pressure
at the partition selection stage.

Deriving the general conditions under which coarse partitioning of the game set is not only beneficial
for society as a whole, but also stable in an evolutionary sense is a challenging task. The necessary
conditions can be broadly summarized as follows. In order to generate a Pareto improvement through
coarse partitioning, it is necessary that in some games, the Pareto-efficient action profile is not a Nash
equilibrium. Furthermore, in these games, it should be impossible to provide inter-temporal incentives
for achieving the Pareto efficiency in early periods, when games are distinguished. In contrast, coarse
partitioning should provide the flexibility in the choice of future Nash equilibria that is sufficient for
sustaining Pareto-efficient play in early periods. Finally, a necessary condition for coarse partitioning to
be evolutionary stable is that, in the last period on the equilibrium path, players play a Nash equilibrium
in every game, even if games are not distinguished. If this last condition does not hold, a mutant with a
finer partition can improve his last period payoff relative to the payoff of the population.
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