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Abstract: William D. Hamilton famously stated that “human life is a many person game
and not just a disjoined collection of two person games”. However, most of the theoretical
results in evolutionary game theory have been developed for two player games. In spite of
a multitude of examples ranging from humans to bacteria, multi-player games have received
less attention than pairwise games due to their inherent complexity. Such complexities arise
from the fact that group interactions cannot always be considered as a sum of multiple
pairwise interactions. Mathematically, multi-player games provide a natural way to introduce
non-linear, polynomial fitness functions into evolutionary game theory, whereas pairwise
games lead to linear fitness functions. Similarly, studying finite populations is a natural
way of introducing intrinsic stochasticity into population dynamics. While these topics have
been dealt with individually, few have addressed the combination of finite populations and
multi-player games so far. We are investigating the dynamical properties of evolutionary
multi-player games in finite populations. Properties of the fixation probability and fixation
time, which are relevant for rare mutations, are addressed in well mixed populations. For
more frequent mutations, the average abundance is investigated in well mixed as well as in
structured populations. While the fixation properties are generalizations of the results from
two player scenarios, addressing the average abundance in multi-player games gives rise to
novel outcomes not possible in pairwise games.

Keywords: multi-player games; finite population; fixation probability; fixation time;
average abundance
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1. Introduction

The analysis of stochastic evolutionary game dynamics has rapidly developed in the past
decade [1–10]. Here, we are interested in two particular aspects: intrinsic stochastic effects induced
by finite population size and nonlinearities in payoff induced by multi-player interaction. Finite
population analysis in evolutionary game dynamics has the potential to challenge and extend the
traditional predictions based on infinitely large populations [1,11]. For a game in an infinite large
population, evolutionary outcomes are characterized by the equilibrium states of the system and their
stability [12]. However, when we consider the evolutionary process in a finite population, it is
important to investigate the stochastic properties of the system, such as fixation probability, fixation
time and average abundance in mutation-selection equilibrium. In a multi-player game, an individual
obtains its payoff from interactions with more than one co-player. Compared with pairwise games (or
matrix games), this generalization depicts more complex scenarios relevant to biological and social
situations [13–18]. For example, in the yeast Saccharomyces cerevisiae, strains with gene SUC2 secrete
an enzyme called invertase, which catalyses the hydrolysis of sucrose into glucose and fructose. These
can then be transported inside the cells of yeast [19]. The strains with gene suc2, however, do not
secrete invertase. Instead, they just take in the products hydrolysed by the SUC2 strain. In this case,
the SUC2 gene has been referred to as a cooperator, and the suc2 has been referred to as a defector.
Due to the viscosity or the limited dispersal of the nutrients, the interactions often involve more than
two cells, thus it can be referred as a multiple player game. While some authors have argued that the
dynamics of the interaction of these two strains can then be captured by a snow drift game [20,21], it
is not clear if this situation is a social dilemma at all, since the maximum population payoff occurs for
a mixture of the two types [22]. In general, for multiple player games, the payoff is determined by
the probability of a specific configuration of the players. This probability is a nonlinear function of the
population composition and thus makes the fitness nonlinear. Therefore, multi-player games provide a
natural framework for exploring nonlinear effects. For example, when there are only two strategies A
and B in a d-player game where orderings of players do not matter, the payoff structure in a multi-player
game is a simple table,

Opposing A players d− 1 d− 2 . . . k . . . 0

A ad−1 ad−2 . . . ak . . . a0

B bd−1 bd−2 . . . bk . . . b0

, (1)

where ak and bk refer to the payoffs for a strategy A and B individual. If we are interested in calculating
the average payoff of a focal individual with a certain strategy, then we need to choose d − 1 other
co-players to make up a d-player game. Out of the d − 1 other players, some can have strategy A

while others have strategy B. The index k refers to the number of A co-players in the group. In a
finite population of size N with i individuals of type A, the probability for a focal individual of type A to
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choose a co-player group that consists of k A players and d−1−k B players is given by a hypergeometric
distribution. The probability that an A player interacts with k other A players is given by

H(k, d; i, N) =

(
i−1
k

)(
N−i
d−1−k

)(
N−1
d−1

) , (2)

which can be approximated by a binomial distribution when the population size N is large. The
hypergeometric sampling leads to the average payoffs,

πA =
d−1∑
k=0

H(k, d; i, N)ak (3)

πB =
d−1∑
k=0

H(k, d; i+ 1, N)bk.

Since this is valid for the average payoffs, the relation between d and N is not an issue, as long as
d ≤ N . If we would consider only a single interaction instead, one has to ensure that every individual is
taking part in an interaction [23]. Note thatH(k, d; i, N) is a polynomial of degree d−1 in i. The average
payoff of each strategy is thus also a polynomial of degree d−1. For d = 2, that is a pairwise interaction,
the payoffs are linear in the number of strategy A players in the population. For a multi-player game,
i.e., d > 2, the payoffs are nonlinear, but remain polynomials. Such nonlinearities mimic the interaction
pattern among individuals, like the public goods, for example, the invertase produced by the cooperator
yeast in the above example is a saturating function of cooperators’ concentration. Dynamical properties
of such multi-player games in infinitely large populations have been previously addressed [24–26] and
we focus on their finite population version.

Both mutation and selection are fundamental in evolutionary theory. Mutations have the potential
to generate distinct genotypes and phenotypes while selection acts upon those diverse phenotypes. The
Moran process with mutations is employed to mimic this evolutionary process. In addition, intrinsic
random drift is present in this process [1,27]. An individual is chosen with a probability proportional to
its fitness for birth and another randomly selected individual is chosen for death. Mutations can occur
during birth with probability µ. For two strategiesA andB, this is a one-dimensional birth–death process
with the transition probabilities T±i from i A individuals to i± 1 A individuals,

T+
i =

ifA
ifA + (N − i)fB

N − i
N

(1− µ) +
N − i
N

µ

T−i =
(N − i)fB

ifA + (N − i)fB
i

N
(1− µ) +

i

N
µ. (4)

The probability to remain in the same state is 1− T+
j − T−j . Fitness has to be an increasing function

of payoff [28]. We define the fitness of a strategy S as fS = exp[wπS] [29]. We follow the usual
assumption that mutations only switch between the pre-existing strategies but do not generate an entirely
novel strategy; for such a model we refer to [30–32]. The non-negative parameter w measures the
intensity of selection [33]. For w � 1, selection is weak and the game has a very small effect on the
fitness of the strategies, whereas for w � 1, selection is strong and only the fitter type reproduces and
survives. The choice of fS = exp[wπS] has the convenient property to recover the usual results valid for
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weak selection, and to allow for arbitrary limit. Besides, such an exponential fitness can sometimes also
be biologically relevant [34,35].

When the probability of mutation is sufficiently small [4], the waiting time for a mutation to occur
is much longer than the time required for the mutant type to fixate or go extinct [7,10]. To quantify
the evolutionary fate of the mutant type, it is thus important to address the probability of fixation of a
single mutant. Furthermore, if this happens, then how long does it take, i.e. what is the conditional
fixation time?

The fixation probability has been used to define evolutionary stability in finite population [1,36,37].
It has been proposed that a strategy is evolutionary stable in a finite population if in addition to the
usual requirements of evolutionary stability, the fixation probability of an invading mutant is smaller
than the neutral fixation probability. One of the most interesting results arising from this definition is
the one-third rule. For a coordination game, a 2 × 2 game with an unstable internal equilibrium, the
fixation probability of a mutant strategy is larger than that in the neutral case (1/N ) if the attraction
basin of the wild type strategy in replicator dynamics is smaller than one third. This result has been
proved to be robust for a wide class of evolutionary processes [28,36–38]. The one third rule has also
been extended to multi-player games [39,40] and has been proven to be valid for all processes in the
domain of Kingman’s coalescence even in its generalized, multi-player form [41]. Yet, the one third rule
as well as its extensions are only based on weak selection. It is not yet clear how the fixation probability
changes with increasing selection intensity.

Fixation times can be interesting to analyse, e.g., the fixation probability can tell us that a strategy can
fix with a probability greater than neutral, but it can take longer for fixation to occur. This seemingly
unintuitive property of the conditional fixation time has been termed as stochastic slowdown [42,43]. It
was shown that a mutant with a slight frequency dependent advantage can take longer to fixation than
a neutral mutant. How does the fixation time change with the number of players under weak selection?
Do we observe stochastic slowdown for multi-player games as well? If so, is this effect enhanced or
inhibited with the increase of the number of players involved in the game? While multi-player games
naturally convey nonlinearity to the evolutionary dynamics, weak selection reduces the differences in the
fitnesses of the strategies bringing the dynamics close to neutrality. What is the interplay between these
two effects?

For intermediate mutation probabilities, mutations can occur while the previous mutant still has an
intermediate abundance in the population. In this case, considering extinction or fixation does not make
sense as mutations keep the population polymorphic. The system can be characterized by the abundances
of the strategies in the long run. These average abundances can give a measure of how favored a
strategy is in the selection mutation equilibrium. For 2 × 2 games, for a given population structure
and evolutionary dynamics with mutation, a single parameter condition is obtained to determine which
strategy is more abundant than in the neutral case under weak selection [44]. For general n × n games,
a two-parameter condition is obtained [45]. These parameters do not depend on the number of strategies
or the payoff matrix, but only on the particular process under study. But how many such parameters are
necessary for multi-player games?

Motivated by these questions, we investigate the fixation probability, the conditional fixation time
and average abundance in multi-player games. For the fixation probability, we concentrate on how the
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fixation probability changes with increasing selection intensity. For the conditional fixation time, we
address the so-called stochastic slowdown effect [42,43]. For the average abundance, we generalize the
so-called σ rule [45].

2. Fixation

For sufficiently small mutation probabilities, the time of fixation or extinction is much shorter than
the average time between two consecutive mutants. In this case, the transition probabilities are given by
Equation (4) with zero mutation probability, µ = 0.

2.1. Fixation Probability

If there are i individuals of type A in a population of size N initially, the probability that the whole
population will eventually consist only of A individuals is given by [46,47],

ρAi =
1 +

∑i−1
k=1

∏k
l=1

T−
l

T+
l

1 +
∑N−1

k=1

∏k
l=1

T−
l

T+
l

, (5)

where in our case the ratio of transition probabilities is

T−l
T+
l

=
fB
fA

= e−w∆π(l), (6)

with ∆π(l) = πA − πB.
The concept of evolutionary stability in finite populations by using the fixation probability was

proposed in [1]. A condition for evaluating the stability of strategy A in a finite population is
ρB1 (w) < 1/N . For small selection intensity, this condition leads to the one third rule, which has been
derived to capture evolutionary stability. For strong selection intensity, this concept is consistent with
the conventional evolutionary stability [37]. Yet, few authors have considered intermediate selection
intensity. Here we are addressing the shape of the fixation probability through the whole range of the
selection intensity (w > 0). In particular, we are addressing how many maxima and minima there are at
most for a d-player game.

Theorem 1. For a d-player, two strategy game and for the Moran process with the exponential fitness
mapping, the fixation probability as a function of the selection intensity can only be monotonically
increasing or decreasing, or have a single maximum.

Proof. By Equation (5), the fixation probability of a mutant taking over the whole population is

ρA1 (w) =
1

1 +
∑N−1

k=1 e
−w(

∑k
i=1 ∆πi)

. (7)
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Thus, the number of the maxima and minima of ρA1 (w) is determined by the number of the positive
roots of the equation ρ′A1 (w) = 0. This derivative can be written as

ρ′A1 (w) =
(
ρA1 (w)

)2
N−1∑
k=1

(
k∑
i=1

∆πi

)
e−w(

∑k
i=1 ∆πi)

︸ ︷︷ ︸
P (w)

. (8)

Now, ρ′1(w) = 0 is equivalent to P (w) = 0 due to the fact that ρA1 (w) > 0 for all w < ∞. We take
the derivative of P (w) with respect to w,

P ′(w) = −
N−1∑
k=1

(
k∑
i=1

∆πi

)2

e−w(
∑k
i=1 ∆πi). (9)

P ′(w) is never positive. It is zero if the payoff difference fulfills
∑k

i=1 ∆πi = 0 for all 1 ≤ k ≤ N−1

and negative in all other cases. In other words, P (w) is always non-increasing. Hence the equation
P (w) = 0, or, equivalently, ρ′A1 (w) = 0, has at most one solution. This implies that the fixation
probability as a function of selection intensity can be either monotonically increasing or decreasing
or have a single extremum. However, it turns out that ρA1 (w) cannot have a minimum, since this
assumption leads to a contradiction: If there exists a two player game such that ρA1 (w) has a minimum,
then it is necessary that both ρ′A1 (0) < 0 and limw→∞ ρ

A
1 (w) = 1 hold (Figure 1 top right). Yet, if

limw→∞ ρ
A
1 (w) = 1, by Equation (7), we have

∑k
i=1 ∆πi > 0 for all 1 ≤ k ≤ N − 1. Then, from

Equation (8), we have at w = 0, ρ′A1 (0) =
(
ρA1 (0)

)2∑N−1
k=1

(∑k
i=1 ∆πi

)
> 0. This is a contradiction

to ρ′A1 (0) < 0. Thus, the fixation probability as a function of selection intensity can only increase or
decrease monotonically or have a single maximum. Note that this result holds also for any two player
games and proves that the extremum discussed in [1] can only be a maximum.

Corollary. For a two strategy d-player game, if there is w∗ > 0 such that ρA1 (w∗) > 1/N , then the set
of the selection intensities that makes ρ1(w) > 1/N is an interval.

Employing the corollary, given two selection intensities w1 and w2 (w1 > w2), if ρA1 (w1) > ρA1 (w2) >

1/N , then ρA1 (w) > 1/N for all intensities of selection w fulfilling w1 < w < w2. For frequency
independent fitness, the fixation probability of a mutant is φ(r) = (1 − (1/r))/(1 − (1/r)N−1), where
r > 0 is the relative fitness of the mutant strategy compared with the wild strategy. In population
genetics, s = r − 1 is often termed as selection intensity [48]. Notice that φ(r) is an increasing function
of r, the set such that φ(r) > 1/N is (1,+∞), an interval. Therefore in terms of the selection intensity s,
it is still an interval. For the frequency dependent case, such as the most simple 2× 2 games, it has been
shown that there can be one hump in the fixation probability with the selection intensity via numerical
methods [1]. This also suggests that the set {w > 0|ρA1 (w) > 1/N} is also an interval. This corollary
shows that this is universal for general multi-player games.
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Figure 1. Illustrations of possible shapes of the fixation probability as a function of the
selection intensity. Based on Theorem 1, we illustrate the qualitative shape of the fixation
probability as a function of the selection intensity, given that the strong and weak selection
scenarios are known. Under weak selection, the fixation probability of strategy A can be
less than neutral (top row) or greater than neutral (bottom row). Simultaneously, in the
limit of strong selection, the fixation probability can approach zero (left column) or unity
(right column). We show that the top right case, i.e., the fixation probability being less than
neutrality under weak selection and approaching unity for strong selection, is not possible
(Theorem 1). This means that an unfavorable strategy under strong selection can be selected
for under weak selection (bottom left), but a favorable strategy under strong selection will
never be unfavorable for any intensity of selection (top right).
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2.2. Fixation Time

Under the assumption of small mutation probabilities, the time until a single mutantA reaches fixation
(conditional fixation time) can be written as [7,47,49],

τA1 =
N−1∑
p=1

p∑
l=1

ρAl
T+
l

p∏
m=l+1

T−m
T+
m

. (10)

For the conditional fixation time in the neutral case, τA1 |w=0, we have ρAl = l/N , T+
l =

l(N − l)/N2, and T−m/T
+
m = 1. Inserting these expressions into Equation (10) results in τA1 |w=0 =∑N−1

p=1

∑p
l=1N/(N − l). With the identity

∑N−1
p=1

∑p
l=1 =

∑N−1
l=1

∑N−1
p=l [50], we obtain τA1 |w=0 =

N(N − 1) [51,52].
For weak selection, we can formally write down the series expansion of the conditional fixation time

to the first order,
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τA1 ≈ [τA1 ]w=0 + w

[
∂

∂w
τA1

]
w=0

, (11)

where the constant term is the neutral term calculated above. It has been shown that the conditional
fixation time of a single mutant of either type is the same, τA1 = τBN−1 [7,53,54]. This identity holds
for any birth–death process, and is thus valid for any two strategy games and for any selection intensity.
Since τA1 and τBN−1 are identical up to any order in w, we obtain[

∂

∂w
τA1

]
w=0

=

[
∂

∂w
τBN−1

]
w=0

. (12)

By Equation (10), the first order term in Equation (11) reads

∂
∂w
τA1 =

∑
|α|=1

∑N−1
p=1

∑p
l=1 hα, (13)

hα =
(

∂α1
∂wα1

1
T+
l

)(
∂α2
∂wα2

φl
)(

∂α3
∂wα3

p∏
m=l+1

T−
m

T+
m

)
, (14)

with the multi-index α = (α1, α2, α3), |α| = α1 + α2 + α3 with αi ≥ 0. For each above α, hα is linear
in the payoff entries. In other words, hα is in the form of

∑d−1
k=0G

α
kak +

∑d−1
k=0 F

α
k bk, where Gα

k and
Fα
k do not depend on the payoff entries. Therefore, by Equation (13), the first order expansion of the

conditional fixation time is of the form
∑d−1

k=0 Gkak +
∑d−1

k=0 Fkbk, where Gk and Fk are only dependent
on the population size N and the group size of the game d, while they have no relationship with the
payoff entries. By the symmetry property, Equation (12), the first order expansion of the fixation time is
invariant under the payoff matrix transformationA↔ B. In other words, the conditional fixation time of
a single strategy A individual in the game given by Equation (1) is identical with that of a single strategy
B individual in a game with the transformed payoff matrix

Opposing B players d− 1 d− 2 . . . k . . . 0

B b0 b1 . . . bk . . . bd−1

A a0 a1 . . . ak . . . ad−1

(15)

Thus, we have

d−1∑
k=0

Gkak +
d−1∑
k=0

Fkbk =
d−1∑
k=0

Gkbd−1−k +
d−1∑
k=0

Fkad−1−k (16)

for arbitrary ak and bk. This expression holds for any game, but the Gk and Fk are independent of the
game. Thus, we can calculate them for an arbitrary special case. In particular, for the game with payoffs
ai = δi0 and bi = 0, where δij is the Kronecker delta, Equation (16) yields G0 = Fd−1. Similarly,
we obtain

Gk = Fd−1−k, 0 ≤ k ≤ d− 1. (17)
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Thus, the first order expansion of the conditional fixation time is in the form[
∂

∂w
τA1

]
w=0

=
d−1∑
k=0

Gkak +
d−1∑
k=0

Gd−1−kbk. (18)

Gk, as mentioned before, can be obtained via calculating the conditional fixation time for the game with
matrix ai = δik and bi = 0 (see the Appendix)

Gk = N
N−1∑
i=1

H(k, d; i, N) [i(HN−1 −Hi−1 −HN−i) +NHN−i]

−(2 +NHN−1)
N2(d− k)−N(k + 1)

d(d+ 1)
, (19)

where HN =
∑N

i=1(1/i) represents the Harmonic number. In other words, the weak selection expansion
for an arbitrary d-player game is fully determined by d special games, where for each k, Gk has the
form above.

Figure 2. Stochastic slowdown is enhanced in multi-player games. The figure shows the
fixation time conditioned on fixation for a game in which strategy A never has a selective
disadvantage, ak = 2 − (k + 1)/d and bk = 1. The main figure shows the normalized
conditional fixation times (solid lines) and the first order approximations (dashed lines)
for games with d = 2, d = 4, and d = 8 player games. The inset shows the same for
higher intensities of selection elucidating the hump shape of the function that becomes more
pronounced as the number of players increases (population size N = 10).
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An interesting property of conditional fixation time that has been observed for finite populations with
biased transition probabilities is that of stochastic slowdown. Consider that a strategy has a selective
advantage over another, which is negatively proportional to the frequency of the strategy, but always
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present. In such a case the conditional fixation time of one such mutant is actually greater than neutral,
despite its selective advantage [42,43]. This phenomenon can be quantified by the slope of the first order
expansion of the conditional fixation time. For multi-player games we see that stochastic slowdown is
even more pronounced (Figure 2).

3. Average Abundance

For frequent mutations, the concept of fixation is meaningless [10]. The average abundances of the
two strategies are usually different. Under neutrality where both strategies perform equally well, the
average abundance of the two strategies will be just one half. It is therefore of interest to investigate the
conditions under which strategyA is favored, i.e., the expected frequency of the strategy is over one half.
This issue was addressed for a large class of evolutionary dynamics under weak selection in structured
populations [44,55]. For 2 × 2 games a single parameter condition, the so-called σ rule, was derived
under mild constraints. Most interestingly, this single parameter σ does not depend on the payoff entries
but is intrinsic to the population structure, update rule and mutation probabilities. This parameter can
be obtained from any special non-zero game. Once it is known, we can make use of this parameter to
determine which strategy is more abundant for all 2× 2 games. Here, we extend this so-called σ rule to
a two strategy d-player evolutionary game.

3.1. σ Rule for d-player Games

Theorem 2. Consider a population structure and an update rule such that
(i) the transition probabilities are infinitely differentiable at w = 0

(ii) the update rule is symmetric for the two strategies and
(iii) there is at least one i∗ ∈ {0, 1, 2, . . . , d − 1} such that for the game given by the matrix ai = δi,i∗

and bi = 0 for all 0 ≤ i ≤ d− 1, the frequency of strategy A is over one half.
Then in the limit of weak selection, the condition that strategy A is favored is a (d − 1)-parameter
condition: ∑

0≤i≤d−1
i 6=i∗

σiai + ai∗ >
∑

0≤i≤d−1
i 6=i∗

σibd−1−i + bd−1−i∗ , (20)

where σi, 0 ≤ i ≤ d − 1 and i 6= i∗, depends on the model and the dynamics (population structure,
mutation probabilities, update rules) yet not on the entries of the payoff matrix, ai and bi.

Proof. By assumption (i), based on the Appendix B in [44], we have that strategy A is more abundant
than strategy B if and only if ∑

0≤i≤d−1

kiai >
∑

0≤i≤d−1

hibi, (21)

where ki and hi are not dependent on the payoff entries ai and bi. By switching the name of A and B
(Matrix (15)) and since the update rule is symmetric for both strategies (assumption (ii)), strategy B is
favored, provided ∑

0≤i≤d−1

kibd−1−i >
∑

0≤i≤d−1

hiad−1−i. (22)
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Since strategy A and strategy B cannot both have an abundance over one half, strategy A is favored
if and only if ∑

0≤i≤d−1

hiad−1−i >
∑

0≤i≤d−1

kibd−1−i. (23)

Both condition (21) and (23) are necessary and sufficient conditions. These two inequalities can be
mapped to each other by a positive rescaling factor λ. Thus ki = λhd−1−i and hi = λkd−1−i. This leads
to λ = 1 resulting in hi = kd−1−i. This turns condition (21) into∑

0≤i≤d−1

kiai >
∑

0≤i≤d−1

kd−1−ibi. (24)

By assumption (iii), we have ki∗ > 0. Multiplying by 1/ki∗ > 0 on both sides of condition (24)
leads to ∑

0≤i≤d−1
i 6=i∗

σiai + ai∗ >
∑

0≤i≤d−1
i 6=i∗

σibd−1−i + bd−1−i∗ , (25)

where σi = ki/ki∗ , 0 ≤ i ≤ d − 1 and i 6= i∗. Since ki is independent of the payoff entries, σi is also
independent of the payoff entries.

In particular, for d = 2 and i∗ = 1, this degenerates to the main Theorem in [44]. In addition, our
result is also valid for general fitness mapping f(wπ), whose first order derivative does not vanish at
w = 0. For general n× n games, only two parameters are required to capture the condition [45], under
which a strategy is more abundant than the neutral case. Here, however, even for two strategy games,
the number of parameters is increasing linearly with the number of the players (d). This implies that a
multi-player game is far more complex than any pairwise game, even under weak selection.

For 2× 2 games, the population structure coefficient σ reflects the interaction rate ratio between two
patterns of interaction, the interaction of two individuals with the same strategy and that with different
strategies [56]. Similarly, σi depicts the relative interaction rate of the group, in which i co-players have
the same strategy as the focal individual [57,58].

3.2. Calculating the Structure Parameters σi: Three Examples

While the σ rule is valid for well mixed as well as structured populations, what changes is the
interpretation of the parameter σ. In this part, we calculate the σi’s for three different processes. We
begin with a case of a standard Moran process in a well mixed population, then interpret the results of
[59] where the death–birth dynamics takes place on a cycle, and finally we again consider well mixed
populations but with aspiration dynamics [60,61].
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3.2.1. The Moran Process with Mutations in Well Mixed Population

For a 3-player game for the Moran process with mutations in well mixed population, it has been
shown based on coalescence theory that for any mutation probability µ, the abundance of strategy A is
greater than one half if and only if (Equation (B.20) in Appendix B in [58])

a0

(
µ3 + 6µ2 + 8µ

)
+ a1

(
2µ3 + 8µ2 + 8µ

)
+ a2

(
µ3 + 6µ2 + 8µ

)
> b2

(
µ3 + 6µ2 + 8µ

)
+ b1

(
2µ3 + 8µ2 + 8µ

)
+ b0

(
µ3 + 6µ2 + 8µ

)
. (26)

Based on this equation, for the game ai = δi1 and bi = 0, we have (2µ3 + 8µ2 + 8µ) > 0 for any
non-zero mutation probability. Let i∗ = 1, such that σ1 does not exist. Condition (iii) in Theorem 2 is
satisfied, provided the mutation probability µ does not vanish. Dividing Equation (26) by 2µ3 +8µ2 +8µ

results in σ0a0 + a1 + σ2a2 > σ2b0 + b1 + σ0b2, where

σ0 = σ2 =
µ3 + 6µ2 + 8µ

2µ3 + 8µ2 + 8µ
. (27)

In 2 × 2 games, it has been shown that the σ is independent of mutation probabilities [62]. In
contrast, our result implies that for multiple player games, the σis depend on the mutation probabilities.
Therefore, the strategy order for multiple player game can change with the increase of the mutation
probabilities [58], which cannot occur for two player games with two strategies [62].

3.2.2. The Death Birth Process on the Cycle

For death–birth process on the cycle with small mutations, strategy A is more abundant than strategy
B if and only if ρA > ρB [63]. It has been shown in [59] that this is equivalent to

a0 + 2
d−1∑
i=2

ai−1 + 3ad−1 > 3b0 + 2
d−1∑
i=2

bd−i + bd−1. (28)

For ai = δi0 and bi = 0, this reduces to 1 > 0. With i∗ = 0, Condition (iii) in Theorem 2 is satisfied.
Thus we have

σi = 2, 1 ≤ i ≤ d− 2

σd−1 = 3. (29)

3.2.3. The Aspiration Dynamics in the Well Mixed Population.

For aspiration dynamics, one random individual s is selected, it switches its current strategy to the
other with probability 1/[1+exp(−w(πs−a))], where a and w represent the aspiration rate and selection
intensity [61].

For weak selection in a well mixed population, it has been found that the average abundance of
strategy A is over one half if and only if

∑d−1
k=0

(
d−1
k

)
ak >

∑d−1
k=0

(
d−1
k

)
bk [64]. Since

(
d−1
k

)
=
(

d−1
d−1−k

)
,

this is equivalent with

d−1∑
k=0

(
d− 1

k

)
ak >

d−1∑
k=0

(
d− 1

d− 1− k

)
bk. (30)
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Let ai = δi,0 and bi = 0, then by Equation (30) we have 1 > 0. By letting i∗ = 0, Condition (iii) in
Theorem 2 is satisfied. Then we have

σi =

(
d− 1

i

)
, 1 ≤ i ≤ d− 1. (31)

4. Summary and Discussion

Multi-player games characterize more complex interactions compared with pairwise games. It is
also a natural way to introduce non-linear fitness effects into evolutionary game theory [65,66]. This
non-linearity mimics more realistic biological situations such as saturating effect of public goods. Thus,
multi-player games have great applications in both biology and social dilemmas [67–69]. Shifting from
infinite to finite in the size of population leads to the intrinsic stochastic properties of game dynamics.
Compared with previous infinite large population models described in the replicator dynamics, the
fixation probability and the fixation time become relevant properties for rare mutations. For more
frequent mutations, where fixation becomes impossible, the average abundance or the stationary
distribution is taken into account [10,70]. Previous studies focus on how mutation, selection and
population structure affect these properties of stochastic evolutionary games. However, relatively little
work has been done on this issue in the context of multi-player games [26,39,40,71–73]. Motivated
by these, we have investigated how the multi-player interaction pattern influences those dynamical
properties. Here, we have concentrated on the two strategy case and addressed the fixation probability,
the fixation time and the average abundance.

The conditional fixation time and the generalized σ rule are both derived under weak selection. This
is why the results are both in the form of a linear combination of payoff entries (conditional fixation time
for Equations (11) and (18) and the generalized σ rule given in Equation (20)). Intuitively, the number of
coefficients required for the generalizations should be equal to the dimension of the payoff matrix, i.e.,
2d. However, due to the symmetry conditions (Equation (12) and Assumption (ii) in Theorem 2), the
number of the coefficients of the conditional fixation time reduces to d and that of the σ rule degenerates
to d − 1. The linear increase of the number of coefficients required with increasing d reveals that the
complexity of the multiple player interaction is increasing with the number of players d. If we take the
number of the maxima or minima of the fixation probability as a function of the intensity of selection as
an indicator for complexity, then multi-player interactions do not increase the complexity.

Our considerations illustrate that multi-player games can lead to substantial additional complications
that do not appear in two-player games and that are also absent in linear public goods games, probably
the best studied examples of multiplayer games. However, it turns out that there is still a lot to be done
to understand the full complexity of such multi-player interaction.
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Appendix

For the conditional fixation time given in Equation (11), the linear term in the weak selection
expansion is given by[

∂

∂w
τA1

]
w=0

=
N−1∑
j=1

j∑
l=1

[
1

T+
l

∂ρAl
∂w

+ ρAl
∂

∂w

1

T+
l

]
w=0

−
N−1∑
j=1

j∑
l=1

[
ρAl
T+
l

j∑
m=l+1

∆π(m)

]
w=0

. (32)

The weak selection expansion of the fixation probability and the inverse of the positive transition
probability read as, [

∂

∂w
ρAl

]
w=0

=
l

N2

N−1∑
p=1

p∑
i=1

∆π(i)− 1

N

l−1∑
p=1

p∑
i=1

∆π(i), (33)[
∂

∂w

1

T+
l

]
w=0

= −N
l

∆π(l). (34)
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Using these two expressions, we can rewrite the conditional fixation time as,[
∂

∂w
τA1

]
w=0

=
N−1∑
j=1

j∑
l=1

N2

l(N − l)

(
l

N2

N−1∑
p=1

p∑
i=1

∆π(i)

)
−

N−1∑
j=1

j∑
l=1

N2

l(N − l)
1

N

l−1∑
p=1

p∑
i=1

∆π(i)︸ ︷︷ ︸
ξ1

−
N−1∑
j=1

j∑
l=1

l

N

N

l
∆π(l)︸ ︷︷ ︸

ξ2

−
N−1∑
j=1

j∑
l=1

l

N

N2

l(N − l)

j∑
m=l+1

∆π(m)︸ ︷︷ ︸
ξ3

. (35)

Based on the arguments and calculations provided previously in [28,52] we can simplify ξ1 and ξ3 for
the special payoff structure comprising of ai = δik and bi = 0, such that ∆π(l) = H(k, d; k,N). The
term ξ2 has previously been calculated in [40]. For our special matrix it reads

ξ2 =
N−1∑
j=1

j∑
l=1

(
l−1
k

)(
N−l
d−1−k

)(
N−1
d−1

) =
N2(d− k)−N(k + 1)

d(d+ 1)
. (36)

Using the expression for the conditional fixation time as shown in Equation (18), for the above matrix
we have, Gk =

[
∂
∂w
τA1
]
w=0

. Thus, putting together the simplified terms ξ1, ξ2 and ξ3 leads us to the
complete expression for Gk,

Gk = N
N−1∑
i=1

H(k, d; i, N) [i(HN−1 −Hi−1 −HN−i) +NHN−i]

−(2 +NHN−1)
N2(d− k)−N(k + 1)

d(d+ 1)
. (37)
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