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Abstract: I study the speed of the evolutionary process on small heterogeneous graphs 

using the Hawk-Dove game. The graphs are based on empirical observation data of 

grooming interactions in 81 primate groups. Analytic results for the star graph have revealed 

that irregular graphs can slow down the evolutionary process by increasing the mean time to 

absorption. Here I show that the same effects can be found for graphs representing natural 

animal populations which are much less heterogeneous than star graphs. Degree variance 

has proven to be a good predictor for the mean time to absorption also for these graphs. 

Keywords: evolutionary game theory; heterogeneity; games on graphs 

 

1. Introduction 

Game theory was originally brought up by John von Neumann and Oskar Morgenstern [1] to study 

economic behaviour and decision making in humans. In the 1970s game theory was adopted by 

biologists to make predictions about evolutionary processes [2-5]. In evolutionary game theory the 

payoff from a game is linked with the fitness (i.e., the reproductive success) of an individual. 

Strategies are coded by genes. Individuals who receive higher payoffs reproduce at higher rates and, 

consequently, their genes spread in the population. As a result advantageous strategies become more 

abundant. Evolutionary game theory differs in several important aspects from classical game theoretic 

analyses. To begin with, choice of strategies is handed over to natural selection, which means that it 

does not require assumptions about rationality or cognitive abilities of the agents. Furthermore, rather 

than studying the outcome of a game in a two-player setting, evolutionary game theory focuses on the 
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frequencies of different strategies in larger populations. And finally, as a consequence of the previous 

point, evolutionary game theory deals usually with dynamic systems. More recently, evolutionary 

game theory has been taken up by social scientists where the evolutionary dynamics are interpreted in 

terms of cultural evolution [for reviews see: 6,7]. In this context reproduction is interpreted as social 

learning. That is, successful strategies are imitated by other individuals and, hence, a strategy can 

spread in a population through social adoption. 

Originally, models of evolutionary games were developed for large populations where strategy 

frequencies could be approximated by differential equations [8]. However, as real populations are not 

infinitely large, interest has turned to evolutionary games in finite populations [9-11]. Modelling 

evolutionary processes for finite populations brings along some fundamental changes. The 

evolutionary dynamics are no longer described by deterministic differential equations, but they require 

a stochastic formulation. The abundance of individuals following a specific strategy is given in 

absolute numbers rather by continuous proportions. And, as the population is finite, it is possible –and 

in most cases inevitable- that the population will end up in a state where all individuals are of the same 

type (pursue the same strategy) within finite time. If a population has reached such a state, and if 

spontaneous mutations of novel strategies are not considered, the population will stay in that state 

forever. The population is in an absorbing state and the strategy has reached fixation [12]. The 

absorption time is the average time that it takes a population with a given initial condition to reach one 

of the absorbing states. From the perspective of a specific strategy one can distinguish between the two 

absorbing states, which are extinction (no individual of the respective strategy left) and fixation (the 

whole population consists of individuals of that strategy). 

The probability that a specific strategy will reach fixation depends on the inheritance and selection 

process, the relative fitness of the strategy (in relation to the fitness of the other strategies) and its 

initial abundance [10]. Several inheritance processes have been studied extensively, each trying to 

mimic different aspects of natural populations [13]. In this paper I will focus on the Moran process 

[14,15]. In this process one individual is chosen at random for reproduction, though with a probability 

proportional to its fitness. This individual produces one offspring which replaces a randomly chosen 

individual. This process ensures that the population size stays constant. It is meant to mimic the case 

where a population of individuals has reached the carrying capacity for its habitat and, hence, cannot 

increase any more. If all individuals have the same fitness, then the probability that one specific 

individual reaches fixation is given by P = 1/N, where N is the size of the population. In a population 

where all individuals are of one type with fitness 1, a single mutant with a fitness value of 1r   has a 

fixation probability of 

 

   
1 (1/ )

.
1 (1/ )Moran N

r
P

r





        (1). 

 

As in the Moran process the offspring of the reproducing individual is replacing a randomly chosen 

individual, any individual is equally likely to be affected by the reproduction process of any other 

individual. In evolutionary biology a population that fulfils this property is referred to as well-mixed or 

panmictic population [16]. However, real populations are rarely well-mixed. Many populations have a 

certain spatial structure –that is, individuals directly affect only other individuals in their vicinity and 
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neighbouring individuals will usually share part of their neighbourhood. Early attempts to incorporate 

population structure in evolutionary games focused on spatial structure by studying the evolution of 

interactive strategies on regular lattices [e.g. 17,18-23]. Evolutionary games on lattices lead to some 

interesting dynamics that could not be observed in well mixed populations. More recently this 

approach was generalized by replacing regular lattices by graphs which allow to model any possible 

population structure [24-33]. 

Fixation probabilities of various strategies have been studied extensively on many different 

population structures, however, the time to fixation –or, more generally- the time needed to reach an 

absorbing state received only little attention, so far. This is very unfortunate, as fixation and absorption 

time are very important for the understanding of two aspects of evolutionary processes. Firstly, given a 

certain population size and a certain fitness advantage of a mutant strategy type, is it possible that this 

strategy reaches fixation within a realistic time frame? While for some evolutionary scenarios analytic 

models showed that a certain strategy should reach fixation with a very high probability, some 

behavioural ecologists were concerned that the number of generations needed to reach such a state 

could ‘easily exceed the age of the universe’ [34]. Thus, investigating fixation times for realistic 

population sizes and structures addresses the applicability of such abstract evolutionary models for 

explaining organismic evolution. And secondly, absorption times can help to predict the phenotypic 

variability one should expect in a specific population. If one assumes, that mutant strategies enter the 

population at an approximately constant low rate, then the number of different phenotypes present in a 

population at any time will depend on how fast strategies would reach fixation or get extinct [12,25]. 

A derivation of the mean absorption time for well-mixed, infinite populations was first delivered by 

Karlin and Taylor [35] and for finite populations by Antal and Scheuring [36]. Broom and colleagues 

[37] took an analytical approach to derive the exact solutions of the stochastic evolutionary dynamics 

of the Hawk-Dove game for complete graphs, rings, and the star graph. It was argued that the Hawk-

Dove game is particularly interesting because in infinite well-mixed populations the evolutionary 

dynamics yield a mixture of both strategies, and consequently fixation in the finite population case 

should be very slow [36,37]. As in all previous studies graph structures were highly arbitrary, it is 

difficult to predict how the structure of real-world populations should affect absorption times. In this 

study I, therefore, investigated the absorption times of a Hawk-Dove game on graphs that represent 

real-world group structures of primates. 

2. Data Collection 

The used dataset consists of the grooming interaction matrices (Figure 1) of 81 primate groups [38]. 

The data were partly taken from the literature and partly from unpublished material either collected by 

the authors or shared by colleagues. The dataset comprises 35 species and 16 genera. Grooming is the 

search for and removal of ecto-parasites from the fur of the interaction partner. Besides its hygienic 

function it serves as an important social behaviour that the animals use to establish social relationships 

[39]. 
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Figure 1. Graphs based on primate grooming networks. Edges denote grooming 

interactions between individuals; edge weights indicate interaction frequencies. Grooming 

networks from: Macaca arctoides (68,6,7,72,37), fuscata (54,17,46,47,74,55,57,31,73,65), 

fascicularis (24,40,70,32,44), radiata (62,75), mulatta (63), tonkeana (76), assamensis 

(71), sylvanus (52,22,61), Cercopithecus neglectus (9), campbelli (59), mitis (64,67), 

Chlorocebus aethiops (26,18,27,78,19,21,45), Cercocebus torquatus (81), Miopithecus 

talapoin (25), Erythrocebus patas (69,30), Trachypithecus pileatus (53), Presbytis entellus 

(56,42), Colobus guereza (8), Papio anubis (80), papio (34,77,79), cynocephalus (28), 

Theropithecus gelada (12), Mandrillus sphinx (5), Piliocolobus tephrosceles (66), Pan 

troglodytes (58,23,41,35,48,43,36), paniscus (42), Cebus apella (51,15,16,50), capucinus 

(10), olivaceus (33), Callithrix jacchus (3,11,29), Alouatta caraya (4), fusca. (13), palliata 

(49,20), Ateles geoffroyi (60,38,39), Eulemur macaco (1,2). 
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Figure 1. Cont. 
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As grooming implies close proximity of the involved individuals, it indicates high levels of social 

tolerance and it has been shown to be a good predictors for overall spatial proximity [40,41]. While 

grooming episodes can be observed between most members of a primate community, the frequency 
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how often two specific individuals are engaged in such an interaction varies drastically. To incorporate 

this important information about the quality of dyadic relationships it was suggested to represent the 

grooming network as a weighted graph, where edge weights are proportional to grooming frequencies 

[42]. 

3. Evolutionary Dynamics 

The Hawk-Dove game was originally suggested by John Maynard Smith and George Price [4]. The 

basic idea of the Hawk-Dove game is that two individuals compete for a resource. The resource brings 

a benefit B to the one who wins it. Individuals can play one of two strategies: ‘Hawk’, meaning that 

they will fight for the resource, and ‘Dove’, which means that they will abandon the resource as soon 

as a conflict escalates into a fight. Fighting is, however, dangerous and the looser of a fight has to bear 

a cost C. If a Hawk meets a Hawk, they will fight and one of them will win the resource. Thus, the 

average payoff of a Hawk meeting a Hawk is (B-C)/2. If a Hawk meets a Dove the Dove immediately 

withdraws, so its payoff is zero, while the payoff of the Hawk is B. If two Doves meet, the one who 

first gets hold of the resource keeps it while the other does not fight for it. Thus, the average payoff for 

a Dove meeting a Dove is B/2. The strategic form of the game is given by the payoff matrix 
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( ) / 2
.

0 / 2Hawk Dove
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       (2) 

 

I used Monte Carlo Markov Chain (MCMC) simulations to study the evolutionary dynamics on the 

graphs derived from the primate interaction data set. At the beginning a randomly chosen vertex of a 

monomorphic population of residents is replaced by a mutant which plays the opposing strategy. In 

every consecutive round the population is updated according to the following rules: 

(1) Each vertex plays with every of its neighbours one round of a Hawk-Dove game with the payoff 

matrix of equ. 2. 

(2) The fitness of a vertex is calculated as the sum of its payoffs from these games plus a background 

fitness value. 

(3) A vertex is chosen for reproduction with a probability proportional to its fitness. 

(4) A neighbour of the reproducing vertex is chosen with a probability proportional to the edge weight 

and replaced by a clone of the reproducing vertex. 

This updating process is repeated until the population has reached one of the two absorbing states: 

either all vertices are of the residents’ strategy type or of the mutant’s type. The number of rounds it 

takes to reach the absorbing state is the absorption time. 

The simulation of such an evolutionary process was repeated 10,000 times for each of the 81 

different graphs representing the social systems of the primate groups and for each of the following 

seven conditions: (1-3) the fixed fitness scenario with residents having fitness 1, mutants having 

fitness r, with r = 0.5, 1, and 1.5 respectively, (4-5) a population of Doves and a single Hawk mutant 

with C = 2 and 13 respectively, and (6-7) a population of Hawks with a single Dove mutant with, 

again, C = 2 and 13. The mean absorption times for the graphs were compared with the baseline 
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absorption time for the homogeneous complete graph with edge weights of unity (representing a well-

mixed group). Baseline absorption times tabs were calculated following Traulsen and Hauert [43] as 
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with /j j jT T   , where jT   is the probability to increase the number of mutants from j to j+1 and 

jT   is the probability to decrease the number of mutants from j to j-1, with 
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4. Results 

4.1. Fixed Fitness Case 

Before studying the Hawk-Dove game I investigated the simpler case where the fitness is 

independent of the identity of the interaction partner, residents have fitness 1 and mutants have fitness 

r. I simulated the evolutionary dynamics for r = 0.5, 1, and 1.5. The first case resembles a 

disadvantageous mutation where the fitness of the mutant is smaller than that of the residents, the 

second case represents a fitness-neutral mutation, and in the third case the mutation is advantageous. 

The expected fixation probability for a single mutant in a well-mixed population is given by equ. 1. 

Fixation probabilities for the 81 primate graphs are given in Figure 2a-c (see also electronic 

supplementary information). Overall, the fixation probabilities were quite close to the expected value 

for well mixed populations (GLM, identity link, N = 81, r = 0.5: R2 = 0.99; r = 1.0: R2 = 99; r = 1.5: R2 

= 0.94), though variation was slightly higher in the case of advantageous mutations (Figure 2c). 

Expected times to absorption for the complete graphs representing well mixed populations were 

calculated using equ. 3. The mean time to absorption was overall higher for the primate graphs than 

the expected absorption times for the complete graphs of equal size (Figure 2d-f). 
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Figure 2. Fixation probabilities and mean times to absorption for the fixed fitness 

case. The resident strategy has a fitness of 1 and the mutant has a fitness of r with (a, d)  

r = 0.5, (b, e) r = 1.0, (c, f) r = 1.5. Dots give mean values for 10,000 simulations for each 

of the 81 primate graphs and the solid line gives the expected value for a well mixed 

population. 
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4.2. Invasion of a single Hawk in a population of Doves 

Invasion dynamics of a single mutant Hawk in a population of Doves was studied for two scenarios 

which differed in the cost C associated with loosing a fight. In accordance with Broom et al. [37] I 

have chosen C = 2 and 13, while B = 5 in both cases and the games are played in populations with a 

background fitness of FB = 5. The first scenario resembles, therefore, the case where the fighting costs 

are smaller than the benefits B, while in the second scenario the fighting costs exceed the benefits. For 

C = 2 (smaller fighting costs) fixation of a mutant Hawk in a population of Doves was overall higher 

(in 76 out of 81 cases) in the structured primate graphs than the expectation for well-mixed 

populations (Figure 3a). The mean time to absorption, too, was clearly higher for the primate graphs 

than the expectation for well mixed populations (Figure 3c). For C = 13 (higher fighting costs) the 

fixation rates for the primate graphs were closely scattered around the expected value for well mixed 

populations (GLM, identity link, R2 = 0.97), being lower than the expected value in 32 cases and larger 

in 49 cases (Figure 3b). Mean times to absorption were –with two exceptions- higher for the structured 

primate graphs (Figure 3d). 

Finally, I simulated the invasion of a single mutant Dove in a population of Hawks. The same 

parameter combinations were used as above. For C = 2 fixation rates on the primate graphs were more 

often slightly lower than the expectation for well mixed populations (69 of 81 cases), though, the 

deviation from the expected value was usually very small (R2 = 0.99, Figure 4a). Absorption times for 

the primate graphs were, however, again higher than the expected values for well mixed populations 

(Figure 4c). 
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Figure 3. Fixation probabilities and mean times to absorption for a single Hawk 

invader. The Hawk-Dove game is played with a background fitness of FB = 5 and a value 

of the resource of B = 5. Costs for loosing a fight are (a, c) C = 2 and (b, d) C = 13. Dots 

give mean values for 10,000 simulations for each of the 81 primate graphs and the solid 

line gives the expected value for a well mixed population. 
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Figure 4. Fixation probabilities and mean times to absorption for a single Dove 

invader. The Hawk-Dove game is played with a background fitness of FB = 5 and a value 

of the resource of B = 5. Costs for loosing a fight are (a, c) C = 2 and (b, d) C = 13. Dots 

give mean values for 10,000 simulations for each of the 81 primate graphs and the solid 

line gives the expected value for a well mixed population. 
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4.3. Invasion of a single Dove in a population of Hawks 

For C = 13 the expected patterns change. The fixation probability of a single Dove in a population 

of Hawks follows an increasing sigmoid function. The fixation probabilities for the primate graphs, 

too, increased with group size, though they stayed clearly below the expected values for well mixed 

populations (Figure 4b). Due to this lower fixation probabilities for Doves the absorption times for the 

primate graphs were much closer to the expected value than they were in the case of low fighting 

costs. In 29 (out of 81) cases they are even lower than the expected values for complete graphs (Figure 

4d). 

4.4. Vertex degree and strength variance 

Broom and colleagues [44] studied evolutionary dynamics on small-order graphs (with up to eight 

vertices) and found that the variation in the vertex degree can be used as an indicator for the fixation 

probability of a randomly placed mutant. We argued elsewhere [32,42] that quantitative differences in 

social interactions are an important characteristic of their social systems and, hence, we represented 

the primate interaction networks not as binary graphs but as weighted graphs –where edge weights 

represent interaction likelihoods. Consequently I took a slightly different approach to investigate to 

what extent the differences in absorption times can be explained by the graph’s heterogeneity. As one 

measures for heterogeneity I calculated the degree variance [45] given by 
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where ki is the degree of vertex i and E is the edge set of the graph. Furthermore I calculated the 

strength variance accordingly as 
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where the vertex strength s is given by 
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with wij being the weight of the edge connecting vertex i with vertex j. 

 

After a Pearson product-moment correlation showed only a low collinearity between these two 

measures (N = 81, r = -0.21) I entered both variables as linear predictors for absorption time on the 

primate graphs into a general linear regression model for each of the seven simulations (Table 1). For 

both the fixed fitness scenarios and the Hawk invader scenarios this model could explain between 72 

and 76 percent of the variance in the data. As the F-ratios suggested that the explanatory value of the 
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model was mainly due to the degree variance I tested a reduced model with the degree variance as a 

single predictor variable. The explanatory value of this, simpler model was nearly as high as the one of 

the two-factor model (Table 1). Thus, despite clear heterogeneity in the edge weights, the mean time to 

absorption was only clearly affected by the vertex degree variance but not by the vertex strength 

variance. 

Table 1. Degree and strength variance as predictors for absorption times. Results of 

general linear models (GLMs) with identity link function fitted to absorption times. Fixed: 

fixed fitness case, Hawk: a single Hawk invader, Dove: a single Dove invader. F-values 

and significance levels are given for a two-way ANOVA for the full model;  

***: P < 0.001, ns: P > 0.05. 

 Full model 

(vard+vars +vard vars) R
2 

F 

vard 

P 

vard 

F 

vars 

P 

vars 

Reduced model 

(vard) R
2 

Fixed r = 0.5 0.75 255.0 *** 2.5 ns 0.73 

Fixed r = 1.0 0.72 196.3 *** 0.0 ns 0.72 

Fixed r = 1.5 0.76 242.3 *** 0.2 ns 0.76 

Hawk C = 2 0.74 223.2 *** 0.1 ns 0.74 

Hawk C = 13 0.72 200.0 *** 1.7 ns 0.71 

Dove C = 2 0.75 227.1 *** 1.5 ns 0.73 

Dove C = 13 0.72 196.9 *** 0.3 ns 0.72 

 

5. Discussion 

The mean time to absorption is an important variable that deserves more attention as it has received 

so far. Broom and colleagues [37] have shown that on certain artificial graphs absorption was delayed 

in comparison to complete graphs. Here I showed that the same effect can be found for graphs 

representing real-life animal populations (primate groups). This was the case for the fixed fitness 

scenarios, irrespectively of whether the mutation brought a fitness advantage or disadvantage and also 

for the case of a single Hawk invader in the Hawk-Dove game, irrespectively of the fighting costs. For 

the scenario of a single Dove invader and high fighting costs the outcome differed insofar as the 

reduced fixation likelihood for the Dove mutation resulted in absorption times that were overall quite 

close to –and sometimes even lower than- the expected times for well mixed populations. 

The graphs’ heterogeneity could be ascribed to two sources of variation: variance in the degree of 

the vertices and variance in the edge weights, and consequently the vertex strength. However, in 

contrast to my original expectations, linear model fitting suggests that only the former clearly affects 

the mean absorption times of the graphs. Broom and colleagues [44] suggested that the vertex degree 

variance might act as a good predictor for mean absorption times. This study supports this claim by 

showing that this holds also for real-world networks that bring along additional ‘noise’ in terms of 

variance in the interaction likelihoods. 

Besides the use of real-world network data and the inclusion of edge weights representing dyadic 

interaction likelihoods, the model of this study differs in one important aspect from the model applied 
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by Broom et al. [44]: here the total payoff of a vertex is calculated as the sum of the payoffs from the 

dyadic games that it plays with all its neighbours, while Broom and colleagues calculated the average 

over the games with all neighbours. For well mixed populations both rules will yield the same results. 

However, as soon as the graphs are irregular, the outcome might differ quite markedly. Which rule is 

more adequate depends on the system one wants to model. Calculating the average can be interpreted 

in two ways. Firstly, one can think of a situation where a player that is connected with k neighbours 

competes with each neighbour for a resource that is only worth 1/kth of the original value (and loosing 

a fight would also be less costly). This interpretation would, however, render the basic assumption of 

the original Hawk-Dove game –that the resource is not divisible. The second interpretation –which I 

would regard as more plausible- would be to assume that each vertex plays only a single game per 

round with a randomly chosen neighbour. The long term average over many such rounds would then 

equal the average from a single round played against all neighbours. The important consequence of 

averaging is, that each player competes for the same amount of resources –or, in terms of the ‘one-

game-per-round’ interpretation, plays the same number of games. On the other hand, by summing up 

payoffs one assumes that the benefit (or the average benefit) of a resource is always the same, 

irrespectively of the number of neighbours that a vertex has and that the frequency with which a vertex 

competes with a specific neighbour is also independent of the number of neighbours. This means, 

however, that the vertices can vary in the number of games they play and in the amount of resources 

they can allocate. 

In this study I aimed to include all aspects of heterogeneity that could be observed in the real world 

networks –which is, besides the topology, also the variation in the interaction likelihoods (represented 

by edge weights) and the likelihood with which a specific individual is seen as inter-actor (given by 

the vertex strength). As we can see, that in the primate networks some individuals engage in much 

more interactions than others, I did not want to exclude this source of variation by averaging, but I 

opted for summing up the payoffs of the games. That is, vertices with high vertex strength play more 

games (or compete for more resources) than vertices with lower strength. 

In this study I could show, that the heterogeneous structure of small real-world primate groups can 

affect the mean time to absorption of evolutionary games. This means, that, due to the reduced 

extinction rate for strategies one can expect higher variation of strategies than in well mixed 

populations of the same size. On the other side this means that the selection process is slowed down: in 

heterogeneous populations evolutionary changes in terms of fixation of strategies need on average 

longer than in well mixed populations. 
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