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Abstract: In this paper, we study the Nash implementation in an allocation problem with
single-dipped preferences. We show that, with at least three agents, Maskin monotonicity
is necessary and sufficient for implementation. We examine the implementability of
various social choice correspondences (SCCs) in this environment, and prove that some
well-known SCCs are Maskin monotonic ( but they do not satisfy no-veto power) and hence
Nash implementable.
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1. Introduction

The objective of implementation theory is to study, in a rigorous manner, the relationship between
outcomes in a society and the institutions under which those outcomes arise. The outcomes represent
the production and allocation of public and private goods and services in a society where each agent
has preferences over these outcomes. The institutions are the set of rules under which the allocation
is decided and applied (property rights, voting laws and voting rules, constitutions, contract law, etc.).
The relationship between institutions and outcomes can be viewed from a perspective of design, and,
in this form, is called the theory of mechanism design. The “planner” or the mechanism designer
(representative of state, a local collectivity, a region, manager of a firm, etc.) has a goal in mind—to
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maximize an objective function called social choice correspondence (or rule). This correspondence
represents the social objectives that the society or its representatives want to achieve. A difficulty arises
in the asymmetry of information between planner and agents. This asymmetric information results
because the planner does not know the exact preferences of agents. If, for example, the “options” or
outcomes are public goods, the agents will state false preferences in order to participate with lower
costs, and once the public property is constructed, they can use it like everyone. In order for the agents
to reveal their true preferences, the planner will implement a mechanism (non-cooperative game). It is a
way of collecting messages and making a decision; it represents the communication and decision aspects
of the organization. This mechanism is a list of messages or “strategy” spaces, and an outcome function
mapping messages into allocations, where the strategies of players depend essentially on the preference
profiles and the options (or alternatives) set. A social choice correspondence (SCC) is implementable
in a given solution concept if the payment with this solution of the game corresponds to the socially
desired alternative and vice versa. The planner, thus, hopes to, via this game, get the agents to reveal
their sincere preferences.

To characterize the class of the SCCs which are implementable, some conditions on these
correspondences should be imposed. Thus, Maskin [1], as the first to identify an important relationship
between implementability and a condition known now as Maskin monotonicity, demonstrated that any
implementable SCC in Nash equilibria must satisfy this condition. However, this condition alone is not
sufficient, and so Maskin [1] gave an additional condition called no-veto power, thus proving that in a
society where at least three agents exist, an SCC is implementable if the conditions of monotonicity and
no-veto power hold.

Nevertheless, the problem of implementation theory is that there are important correspondences in
economic, social, and political sciences which do not satisfy no-veto power1. Thus, many authors like
Moore and Repullo [10], Dutta and Sen [11], Sjöström [12], Danilov [13], Yamato [14], and Ziad [15,16],
tried to address this problem by providing alternative conditions.

Thomson [17,18] applied a certain number of conditions for these previous theoretical results to
implement solutions of the problem of fair allocation with single-peaked preferences. He showed that
Maskin’s theorem is silent about the implementability of many solutions which can be implemented by
the Yamato’s condition of strong monotonicity. However, he found that this latter condition is not stable
under intersection and so he appealed to the algorithm of Sjöström [12]. More recently, Doghmi and
Ziad [19,20] provided new sufficient conditions and showed that many solutions can be implemented on
the single-peaked preferences domain in an easier way compared to that of the previous conditions in
the literature.

This domain of single-peaked preferences has been explored in social choice theory since the work
of Black [21]. In parallel, an inverse configuration to this domain, called single-dipped preferences, has
also been explored in this theory and in many economic applications, but it has never been explored in
relation to the problem of implementation theory.

1Also there are well-known correspondences that satisfy neither Maskin monotonicity nor no-veto power. Thus, literature
on implementation theory has recently emerged (Matsushima [2], Matsushima [3], Dutta and Sen [4], Doghmi and Ziad [5],
Lombardi and Yoshihara [6], Lombardi and Yoshihara [7], Holden et al. [8], Korpela [9]) introducing the notion of partial
honesty on the preferences of agents in order to implement this family of correspondences.
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Thus, in this paper, we examine the implementability of solution to the fair division problems when
agents have single-dipped preferences. This type of preference requires that each agent has a unique bad
alternative. Assuming that there is an amount Ω ∈ R++ of a certain infinitely divisible good that is to
be allocated among a set of n agents. The preference of each agent i is represented by a continuous and
single-dipped preference relation Ri over [0,Ω] as illustrated in Figure 1.

Figure 1. Single-dipped preferences.

This type of preference has been introduced by Inada [22] to study public good situations. It is also
explored for private goods areas by Klaus et al. [23] to characterize two classes of division rules that
satisfy Pareto optimality, strategy-proofness, and replacement-domination proprieties. Klaus [24,25]
provided two allocation models with single-dipped preferences. In the first model, she considered the
problem of allocating an infinitely divisible commodity among agents. She characterized the class of
rules that satisfy a whole selection of proprieties. In the second model, she studied the allocation of
an indivisible object to a group of agents. Similar to the first model, she characterized the class of
rules that satisfy some conditions. Ehlers [26] studied the problem of allocating an infinitely divisible
endowment among a group of agents; he characterized a class of Pareto optimal and coalitionally
strategy-proof allocation rules and studied some proprieties of fairness. Manjunath [27] explored the
problem of locating a single public good when preferences of agents are single-dipped, thus providing
a characterization of all rules satisfying unanimity and strategy-proofness properties. More recently,
Barberà et al. [28] were interested in the characterization of the family of all individual and group
strategy-proof rules on the domain of single-dipped preferences. They examined the implications of
these strategy-proofness requirements on the maximum size of the rules’ range.

In this paper, we study the Nash implementation in an allocation problem with single-dipped
preferences. We prove that, with at least three agents, any solution of the problem of fair division
can be implemented in Nash equilibria if—and only if—it satisfies Maskin monotonicity. Thus, via this
result, the no-veto power condition is dispensed of in this area, and so we implement some well-known
correspondences which satisfy Maskin monotonicity but violate the condition of no-veto power.

The rest of this paper is organized as follows. In Section 2, we introduce notations and definitions. In
Section 3, we state and prove our main result in a domain of the allocation problem with single-dipped
preferences, and we justify this result providing some well-known correspondences which satisfy Maskin
monotonicity and violate the no-veto power condition. Section 4 provides our concluding remarks.
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2. General Notations and Definitions

Before defining our domain of applications in Section 3, we provide in this section general notations
and definitions in order to present the key concepts of implementation theory. Let A be a set of
alternatives, and let N = {1, ..., n} be a set of individuals, with generic element i. Each individual i
is characterized by a preference relation Ri defined over A, which is a complete, transitive, and reflexive
relation in some class <i of admissible preference relations. Let < = <1 × ... × <n. An element
R = (R1, ..., Rn) ∈ < is a preference profile. The relation Ri indicates the individual’s i preference.
For a, b ∈ A, the notation aRib means that the individual i weakly prefers a to b. The asymmetrical and
symmetrical parts of Ri are noted respectively by Pi and ∼i.
A social choice correspondence (SCC) F is a mapping from< into 2A\{∅}, that associates with every R

a non-empty subset of A. For all Ri ∈ <i and all a ∈ A, the lower contour set for agent i at alternative a
is noted by: L(a,Ri) = {b ∈ A | aRib}. The strict lower contour set and the indifference lower contour
set are noted respectively by LS(a,Ri) = {b ∈ A | aPib} and LI(a,Ri) = {b ∈ A | a ∼i b}.

A mechanism (or form game) is given by Γ = (S, g) where S = Πi∈NSi; Si denotes the
strategy set of the agent i and g is a function from S to A. The elements of S are denoted by
s = (s1, s2, ..., sn) = (si, s−i), where s−i = (s1, ..., si−1, si+1, ..., sn). When s ∈ S and bi ∈ Si,

(bi, s−i) = (s1, ..., si−i, bi, si+1, ..., sn) is obtained after replacing si by bi, and g(Si, s−i) is the set of
results which agent i can obtain when the other agents choose s−i from S−i = Πj∈N,j 6=iSj.

A Nash equilibrium of the game (Γ, R) is a vector of strategies s ∈ S such that for any i, g(s)Rig(bi, s−i)

for all bi ∈ Si, i.e. when the other players choose s−i, the player i cannot deviate from si. Given
N(g,R, S) the set of Nash equilibria of the game (Γ, R), a mechanism Γ = (S, g) implements an SCC
F in Nash equilibria if for all R ∈ <, F (R) = g(N(g,R, S)).
We say that an SCC F is implementable in Nash equilibria if there is a mechanism which implements it
in these equilibria.

A SCC F satisfies unanimity if for any a ∈ A and any R ∈ <, if for any i ∈ N , L(a,Ri) = A, then
a ∈ F (R).

Maskin [1] introduced the following conditions on F to characterize the SCCs that are implementable
in Nash equilibria.

Monotonicity: This condition stipulates that if an alternative a is socially chosen in a profile R, and if
the alternatives ranked below a for all agents remain ranked below it (in the large sense) in a new profile
R′, then the alternative a must be socially chosen in R′.

A SCC F satisfies monotonicity if for all R,R′ ∈ <, for any a ∈ F (R), if for any i ∈ N , L(a,Ri) ⊆
L(a,R′i), then a ∈ F (R′).

Maskin [1] proved that any Nash implementable correspondence must satisfy Maskin monotonicity.
However, this condition alone is not sufficient. For this, Maskin [1] gave the following additional
condition.

No-veto power: This condition requires that if an alternative is ranked at the top for all agents except
one, then this alternative must be socially chosen.

A SCC F satisfies no-veto power if for i, R ∈ <, and a ∈ A, if L(a,Rj) = A for all j ∈ N\{i}, then
a ∈ F (R).



Games 2013, 4 42

Maskin [1] showed that, with at least three players, any social choice correspondence satisfies Maskin
monotonicity, and the no-veto power is thus Nash implementable.

Doghmi and Ziad [19] reexamined this result by introducing the following new sufficient conditions.
Strict monotonicity: It is a strong version of Maskin monotonicity. A SCC F satisfies strict

monotonicity if for all R,R′ ∈ <, for any a ∈ F (R), if for any i ∈ N , LS(a,Ri)∪{a} ⊆ L(a,R′i), then
a ∈ F (R′).

Strict weak no-veto power. It is a weak version of no-veto power. It lies between no-veto power and
unanimity. A SCC F satisfies strict weak no-veto power if for i, R ∈ <, and a ∈ F (R), if for R′ ∈ <,
b ∈ LS(a,Ri) ⊆ L(b, R′i) and L(b, R′j) = A for all j ∈ N\{i}, then b ∈ F (R′).

Doghmi and Ziad [19] showed that, in addition to unanimity, strict monotonicity and strict weak
no-veto power are sufficient for an SCC F to be implementable.

3. Applications to Allocation Problem with Single-Dipped Preferences

There is an amount Ω ∈ R++ of a certain infinitely divisible good that is to be allocated among a set
N = {1, ..., n} of n agents. The preference of each agent i ∈ N is represented by a continuous and
single-dipped preference relation Ri over [0,Ω] (the asymmetrical part is written Pi and the symmetrical
part ∼i). For all xi, yi ∈ [0,Ω], xiRiyi means that, for the agent i, to consume a share xi is as good as
to consume the quantity yi. A feasible allocation for the economy (R,Ω) is a vector x ≡ (xi)i∈N ∈ Rn

+

such that
∑

i∈N xi = Ω and X is the set of the feasible allocations. We note that the feasible allocations
set is X = [0,Ω] × ... × [0,Ω]. Thus, L(x,Ri) = X is equivalent to L(xi, Ri) = [0,Ω]. For the
set L(x,Ri) = X , xRiy for all y ∈ X implies that xiRiyi. Thus, the agents’ preferences are defined
over individual consumption spaces, not over allocation space. Then the proprieties of implementation
theory, presented in general setup in Section 2, become as follows: A SCC F satisfies monotonicity
if for all R,R′ ∈ <, for any x ∈ F (R), if for any i ∈ N , L(xi, Ri) ⊆ L(xi, R

′
i), then x ∈ F (R′).

A SCC F satisfies strict monotonicity if for all R,R′ ∈ <, for any x ∈ F (R), if for any i ∈ N ,
LS(xi, Ri) ∪ {xi} ⊆ L(xi, R

′
i), then x ∈ F (R′). A SCC F satisfies no-veto power if for i, R ∈ <,

and x ∈ X , if L(xj, Rj) = [0,Ω] for all j ∈ N\{i}, then x ∈ F (R). A SCC F satisfies strict weak
no-veto power if for i, R ∈ <, x, y ∈ X , and x ∈ F (R), if for R′ ∈ <, yi ∈ LS(xi, Ri) ⊆ L(yi, R

′
i) and

L(yj, R
′
j) = [0,Ω] for all j ∈ N\{i}, then y ∈ F (R′). A SCC F satisfies unanimity if for any x ∈ X

and any R ∈ <, if for any i ∈ N , L(xi, Ri) = [0,Ω], then x ∈ F (R). We note that the free disposability
of the good is not assumed.

A preference relation Ri is single-dipped if there is a number d(Ri) ∈ [0,Ω] such that for all xi, yi ∈
[0,Ω] if xi < yi ≤ d(Ri) or d(Ri) ≤ yi < xi, then xiPiyi. We call d(Ri) the dip of Ri.

The class of all single-dipped preference relations is represented by <sd ⊆ <. For R ∈ <sd, let
d(R) = (d(R1), ..., d(Rn)) be the profile of dips. A single-dipped preference relation Ri ∈ <sdi is
described by the function ri : [0,Ω] → [0,Ω] which is defined as follows: ri(xi) is the consumption
of the agent i on the other side of the dip which is indifferent to xi (if it exists); otherwise, it is 0

or Ω. Formally, if xi ≤ d(Ri), then, ri(xi) ≥ d(Ri) and xi ∼i ri(xi) if such a number exists or
ri(xi) = Ω otherwise; if xi ≥ d(Ri), then, ri(xi) ≤ d(Ri) and xi ∼i ri(xi) if such a number exists or
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ri(xi) = 0 otherwise.

Let us introduce some well-known correspondences.

No-Envy correspondence, NE, (Foley [29]). This correspondence selects the feasible allocations
for which each agent prefers his own share than the shares of the other agents. It is defined as follows:
Let R ∈ <sd, NE(R) = {x ∈ X if xiRixj for each pair {i, j} ⊆ N}.

Individually Rational Correspondence from Equal Division, Ied: This correspondence selects the
feasible allocations for which each agent prefers his own share rather than the average one. It is defined
as follows: Let R ∈ <sd, Ied(R) = {x ∈ X : xiRi(Ω/n) for all i ∈ N}.

Pareto correspondence, P : This solution selects the feasible allocations which are not weakly
dominated by another allocation for all agents and not strictly dominated for at least one agent. It is
defined as follows: Let R ∈ <sd, P (R) = {x ∈ X : @x′ ∈ X such that for all i ∈ N , x′iRixi, and for
some i ∈ N , x′iPixi}.

3.1. The Main Result: Robustness of Maskin Monotonicity

As mentioned in Section 2, Maskin monotonicity is a necessary condition that an SCC must
satisfy in order to be Nash implementable. However, Maskin monotonicity alone is not sufficient
for implementation. In this subsection, we show that, in the domain of the allocation problem with
single-dipped preferences, Maskin monotonicity becomes necessary and sufficient for implementation,
and so the no-veto power condition is no longer required. To prove this result, we begin by introducing
the following Lemmas.

Lemma 1 Let R,R′ ∈ <sd and x, y ∈ X . If the preferences are single-dipped, yi ∈ LS(xi, Ri), and
LS(xi, Ri) ⊆ L(yi, R

′
i), then L(yi, R

′
i) = [0,Ω].

Proof. Let R,R′ ∈ <sd and x, y ∈ X . Since we have yi ∈ LS(xi, Ri), and LS(xi, Ri) ⊆ L(yi, R
′
i),

it is clear from the single-dippedness and the continuity of the preferences that L(yi, R
′
i) = [0,Ω]. Q.E.D.

Lemma 2 On a single-dipped domain, any non-constant strict monotonic SCC satisfies unanimity.

Proof. We show that any non-constant strict monotonic SCC F satisfies unanimity. Suppose not;
i.e., for all R,R′ ∈ <sd, for any x ∈ F (R), if for any i ∈ N , LS(xi, Ri) ∪ {xi} ⊆ L(xi, R

′
i), then

x ∈ F (R′). But, for any x ∈ X and any R̃ ∈ <, for any i ∈ N , [0,Ω] = L(xi, R̃i), and x /∈ F (R̃).
We have for all i ∈ N , LS(xi, Ri) ∪ {xi} ⊆ [0,Ω] = L(xi, R̃i). By strict monotonicity, x ∈ F (R̃), a
contradiction. Q.E.D.

According to Lemmas 1 and 2, we have the following corollary:

Corollary 1 On a single-dipped domain, any non-constant strict monotonic SCC satisfies strict weak
no-veto power.
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In the following, we show that strict monotonicity, alone, is sufficient for Nash implementation when
preferences are single-dipped.

Proposition 1 Let n ≥ 3. In the allocation problem with single-dipped preferences, any SCC satisfying
strict monotonicity can be implemented in Nash equilibria.

Proof. By Lemma 2, Corollary 1 and Theorem 1 of Doghmi and Ziad [19], the proof is completed as
required. Q.E.D.

Now, we show that strict monotonicity is not only sufficient, but is also necessary, as long as it
becomes equivalent to Maskin monotonicity.

Proposition 2 In the allocation problem with single-dipped preferences, the strict monotonicity
condition becomes equivalent to Maskin monotonicity.

Proof. Let R,R′ ∈ <sd and x, y ∈ X . Suppose xi ≤ d(Ri) (similar statements can be proved for
xi ≥ d(Ri)). i)⇒, it is clear that LS(xi, Ri)∪ {xi} ⊆ L(xi, Ri). Therefore, strict monotonicity implies
Maskin monotonicity. ii)⇐, in this case, suppose that LS(xi, Ri)∪{xi} ⊆ L(xi, R

′
i) (1). It is clear that

L(xi, Ri) = LS(xi, Ri)∪{xi}∪{ri(xi)} if ri(xi) exists (2). From (1) and the continuity of preferences,
it is necessary to have ri(xi) ≤ r′i(xi) (3). Then, (1), (2) and (3) give L(xi, Ri) ⊆ L(xi, R

′
i) ∀i. Thus,

we have the inclusion of Maskin monotonicity. Q.E.D.

Through propositions 1 and 2, we complete the proof of the following theorem which is the main
result of the paper.

Theorem 1 : Let n ≥ 3. A SCC in the allocation problem with single-dipped preferences is Nash
implementable if and only if it satisfies Maskin monotonicity.

To justify this result, we provide in the next subsection a list of solutions which satisfy Maskin
monotonicity, and violate the condition of no-veto power.

3.2. Examples of SCCs satisfying/not satisfying Maskin’s proprieties

In this subsection, we check whether the no-envy correspondence, the individually rational
correspondence from equal division, (NE∩Ied) correspondence, (NE∩P ) correspondence, and (Ied∩P )
correspondence satisfy Maskin’s conditions of monotonicity and no-veto power or not.

3.2.1. Maskin Monotonicity

In the considered examples of SCCs, we begin by examining the implementability of the no-envy
correspondence. We provide the following proposition.

Proposition 3 The no-envy correspondence satisfies Maskin monotonicity.

As the no-envy correspondence, the individually rational correspondence from the equal division also
satisfies Maskin monotonicity.
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Proposition 4 The individually rational correspondence from equal division satisfies Maskin
monotonicity.

The proofs of Propositions 3 and 4 are omitted. This is because the no-envy correspondence and the
individually rational correspondence from equal division satisfy Maskin monotonicity in the general
environment and so it is obvious that this condition is checked for the restricted domain of an allocation
problem with single-dipped preferences.

By stability under the intersection of Maskin monotonicity, we give the next proposition.

Proposition 5 The intersection of the no-envy correspondence with the individually rational
correspondence from equal division satisfies Maskin monotonicity.

According to Doghmi and Ziad [5], the Pareto correspondence does not satisfy Maskin monotonicity
in the domain of the allocation problem with single-dipped preferences, and is hence not Nash
implementable2. In the following, we examine whether or not some correspondences which intercept
the Pareto correspondence satisfy Maskin monotonicity. We begin by studying the intersection of the
Pareto correspondence with the no-envy correspondence. We give the following lemma.

Lemma 3 On a single-dipped domain, the intersection of the Pareto correspondence with the no-envy
correspondence is not empty.

Proof. We show that for all R ∈ <sd, (P ∩NE)(R) 6= ∅; i.e., there exists x ∈ X such that x ∈ P (R)

and x ∈ NE(R). Suppose not; there exists R ∈ <sd, for all x ∈ X , x /∈ P (R) or x /∈ NE(R). Suppose
that x ∈ P (R) but x /∈ NE(R). This means that (a) @y ∈ X such that for all i ∈ N , yiRixi, and for
some i ∈ N , yiPixi, but (b) there exists a pair {i, j} ⊆ N such that xjPixi. Assume that for all i ∈ N ,
xi ≤ d(Ri) and yi ≤ d(Ri). For affirmation (a), assume that for some i, xiPiyi, for some j, xjPjyj , and
for all k ∈ N \ {i, j}, ykPkxk. Now, since we have by (b), xjPixi, we consider an allocation z ∈ X such
that zi = xj , zj = rj(xj), and zk = yk. Thus we have ziPixi, zj ∼j xj , and zkPkxk, and so x /∈ P (R), a
contradiction. Q.E.D.

Through Proposition 3 and Lemma 3, we complete the proof of the following proposition.

Proposition 6 The intersection of the Pareto correspondence with the no-envy correspondence satisfies
Maskin monotonicity.

Now, we examine the intersection of the Pareto correspondence with the individually rational
correspondence from equal division. We provide the following lemma.

Lemma 4 On a single-dipped domain, the intersection of the Pareto correspondence with the
individually rational correspondence from equal division is not empty.

2The Pareto correspondence satisfies the unanimity condition in the domains of the allocation problem with single-dipped
and single-plateaued preferences, and so it is Nash implementable with partially honest agents in these domains. For more
details, see Doghmi and Ziad [5].
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Proof. By the same reasoning in the proof of Lemma 3, we show that for all R ∈ <sd,
(P ∩ Ied)(R) 6= ∅; i.e., there exists x ∈ X such that x ∈ P (R) and x ∈ Ied(R). Suppose not; there
exists R ∈ <sd, for all x ∈ X , x ∈ P (R) but x /∈ Ied(R). This means that (a) @y ∈ X such that
for all i ∈ N , yiRixi, and for some i ∈ N , yiPixi, but (b) there exists an agent i such that Ω

n
Pixi.

Assume that for all i ∈ N , xi ≤ d(Ri) and yi ≤ d(Ri), and for some i, j, and for all k ∈ N \ {i, j},
yk < xj < xi <

Ω
n
< yi < yj ≤ d(Rj) < xk ≤ di(Ri) ≤ d(Rk) (c). Thus, for affirmation (a), we have

for some i, xiPiyi, for some j, xjPjyj , and for all k ∈ N \ {i, j}, ykPkxk. Now, since we have by (b),
Ω
n
Pixi, we consider an allocation z ∈ X such that zi = Ω

n
, zj = xj , and zk = yj . Thus we have ziPixi,

zj ∼j xj , and by (c), zk = yj < xk ≤ d(Rk), and so zkPkxk, and therefore x /∈ P (R), a contradiction.
Q.E.D.

Through Proposition 4 and Lemma 4, we complete the proof of the following proposition.

Proposition 7 The intersection of the Pareto correspondence with the individually rational
correspondence from equal division satisfies Maskin monotonicity.

3.2.2. No-Veto Power

We check whether the monotonic correspondences satisfy this additional condition for sufficiency or
not. We provide the following proposition.

Proposition 8 The no-envy solution, the individually rational correspondence from equal division,
(NE∩Ied) correspondence, as well as the intersections of these solutions with the Pareto correspondence
all fail to satisfy no-veto power.

Proof. Let R ∈ <sd, Ω = 12, x = (0, 0, 12) ∈ X . Let R1 = R2, for these profile, L(xi=1,2, Ri=1,2 =

[0,Ω]. Figure 2 illustrates such representations. Also, we have xi=1,2P3x3, hence x /∈ NE(R).
For the individually rational correspondence from equal division, we have from Figure 2,

L(xi=1,2, Ri=1,2 = [0,Ω], but Ω
3
P3x3. Hence x /∈ Ied(R). Thus x /∈ (NE ∩ Ied)(R). From Proposition 6

in Doghmi and Ziad [5], the Pareto correspondence violates no-veto power and hence the intersections
of these solutions with the Pareto correspondence all fail to satisfy no-veto power. Q.E.D.

We conclude that, in the domain of the allocation problem with single-dipped preferences, Maskin’s
theorem is silent about the implementability of the monotonic correspondences under consideration. By
Theorem 1, all these monotonic correspondences are Nash implementable.

4. Conclusion

We have examined the Nash implementation in an allocation problem with single-dipped preferences.
We have shown that, with at least three agents, an SCC is implementable in Nash equilibrium if, and
only if, it is Maskin monotonic. We have showed that in this area, some well-known SCCs satisfy
Maskin monotonicity, but they violate no-veto power, and so Maskin’s theorem is silent about its
implementability. Through our result, the no-veto power condition is no longer required and hence
these correspondences are Nash implementable.
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Figure 2. The NE correspondence, the Ied correspondence and the (NE ∩ Ied)
correspondence fail to satisfy no-veto power.

For future research, the Nash implementation can be examined in an extended class of preferences
called single-troughed preferences. This domain of individual preferences is a natural enlargement of
the domain of single-dipped preferences. It requires that each agent is indifferent among several bad
alternatives. It has been used recently by Manjunath [27] to characterize all rules satisfying unanimity
and strategy-proofness properties.
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