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Abstract

For games of simultaneous action selection and network formation, game-
theoretic behavior and experimental observations are not in line: While
theory typically predicts inefficient outcomes for (anti-)coordination games,
experiments show that subjects tend to play efficient (non Nash) strategy
profiles. A reason for this discrepancy is the tendency to model correspond-
ing games as one-shot and derive predictions. In this paper, we calculate
the equilibria for a finitely repeated version of the Hawk-Dove game with
endogenous network formation and show that the repetition leads to addi-
tional equilibria, namely the efficient ones played by human subjects. We
confirm our results by an experimental study. In addition, we show both
theoretically and experimentally that the equilibria reached crucially depend
on the order in which subjects adjust their strategy. Subjects only reach
efficient outcomes if they first adapt their action and then their network. If
they choose their network first, they do not reach efficient outcomes.

Keywords: Network games, Hawk/Dove games, finitely repeated game

JEL Codes: D85, C72, C73, C92
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1 Introduction

In recent years, online social networks such as Facebook or Twitter have
attracted several millions of users worldwide. The motivation for the par-
ticipants has been empirically studied in recent years. Users on Twitter, for
example, have four main reasons: daily chatter, conversation, sharing infor-
mation and reporting news (Java et al., 2007); users on Facebook (Joinson,
2008) are driven by interest in building social capital, communication, social
network surfing and new contents, i.e., photos, profiles, etc. Similarly, online
social networks in firms have three benefits for participants: personal shar-
ing, career advancement, and promotion of projects (DiMicco et al., 2008).
In sum, all motivations identified in these empirical studies resemble each
other and either relate to (1) communication among participants or (2) in-
fluencing other participants by distributing information. However, it is still
unclear how and why these motivations enjoy wide acceptance and attract
high numbers of participants. In this paper, we suggest a behavioral eco-
nomic approach to analyze online social networks.

In these networks, participants choose both their network, i.e., the par-
ticipants they are linked to, and their action, i.e., the information they share
and the frequency with which they update them. Based on the empirical
studies of different motivations in online social networks, we believe there
are basically two actions: one aggressive (hawk) and one defensive (dove) ac-
tion. Given that links connect two different participants, the latter play an
anti-coordination game: If both try to influence each other, each participant
can unilaterally increase his payoff by deviating to a defensive communica-
tion strategy. On the other hand, if both follow a defensive communication
strategy, they can unilaterally increase their payoffs by switching to a more
aggressive action. Given that all linked participants see the same profile of a
user, we expect our subjects to resort to the same action toward all of them.

Corresponding games, i.e., games with simultaneous action selection and
network formation, have been studied in the past. In coordination games
(e.g., Hojman and Szeidl, 2006), players choose their action in a 2x2 coor-
dination game and play this with all other players they are linked to. Here
unilateral linking leads to complete networks, in which all players resort to
the same equilibrium of the one-shot game, namely the payoff dominant or
risk dominant equilibrium (Goyal and Vega-Redondo, 2005). This changes
if bilateral linking is allowed, i.e., if both linked players have to agree on
its establishment. Here different network structures emerge and the strate-
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gies played depend on the network structures generated, e.g., in circles only
risk dominant actions are chosen, while in complete networks payoff and risk
dominant equilibria are possible (Jackson and Watts, 2002). However, all
theoretic analyses confirm that the risk dominant equilibria are more likely.
In contrast, subjects in behavioral experiments (Corten and Buskens, 2010,
Corbae and Duffy, 2008) play the payoff dominant equilibrium more often.

The tension between theory and experiment observed in networked coor-
dination games also occurs in anti-coordination games, namely Hawk-Dove
games with endogenous network formation. For unilateral linking, one-shot
game-theoretic models predict for several parameter combinations that in
equilibrium more hawks than doves (Bramoulle et al., 2004, Berninghaus
and Vogt, 2006) exist in the network, with overall payoff decreasing as the
number of hawks increases. In behavioral experiments, however, subjects
tend to play strategy profiles, with higher numbers of doves staying closer
to efficient strategy profiles of the one-shot game (Berninghaus at al., 2012).
In addition, subjects in experiments on bilateral linking seem to favor fair
outcomes and even coordinate on strategy profiles in which they alternate
their behavior in each period to gain equal payoffs for all players (Tsvetkova
and Buskens, 2012).

In this paper, we aim to extend the existing literature in several direc-
tions: First, we analyze Hawk-Dove games with endogenous network forma-
tion, hereafter called the Network Hawk-Dove game, as a finitely repeated
instead of one-shot game. We show that by applying simple trigger strate-
gies, the strategies observed experimentally are theoretically plausible and
can be predicted. Second, we show that by limiting the strategy set for some
periods, the theoretical predictions change. Namely, players reach lower pay-
offs if they can only choose their action in some periods, while they reach
efficient outcomes if links are fixed or they are free to choose links and actions
throughout the game. Third, we confirm our theoretical predictions by an
experimental test of the Network Hawk-Dove game.

Our results help us to better understand online social networks: Success-
ful online social networks allow the participant to easily change his links,
whereas changing his action, i.e., modifying his profile is difficult. Given our
results, this design principle might be one of the reasons guaranteeing the
success of online social networks. Besides, we believe our approach enriches
the existing literature. In addition to the existing Nash equilibria, Berning-
haus et al (2012) suggest a new (one-shot) concept to predict the observed
behavior. We show that the existing Nash concept suffices. In addition,

2
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Berninghaus et al. (2012) derive their results from an experiment in con-
tinuous time. The motivation for this approach is convincing: By letting
subjects continuously choose their strategies, one can expect them to adapt
their strategies faster to the strategies of others. As our results show, and as
we extensively discuss in Section 5, this is not necessary.

2 The Network Hawk-Dove game

Each player i ∈ {1, . . . , n} in a Network Hawk-Dove game participates in a
Hawk-Dove game with all players j she is linked to, using a Network game.
We first introduce the Hawk-Dove game and the Network game separately
before combining them into the Network Hawk-Dove game.

In the Network game GN := {ΣN ,ΠN(·)}, player i decides with whom
she wants to interact.1 Hence, each strategy in the Network game σNi is a
subset of all players σNi ⊆ ΣN \{i} with ΣN := {1, . . . , n}. Establishing links
to other players is not costless but infers a cost k > 0 per established link.
The payoff of the Network game is ΠN(σNi , σ

N
−i) := −k · |σNi |. Each strategy

profile σN = (σN1 , . . . , σ
N
n ) implies a directed graph g(σN) = (V (σN), E(σN))

with edges E(σN) and vertices V (σN). Each vertex vi ∈ V (σN) corresponds
to 1 player i ∈ {1, . . . , n}. For each link player i establishes to player j, i.e,
if j ∈ σNi , an edge (i, j) from vertex vi to vj exists in E(σN). Each player
i has a set of contacts Ni(σ

N) := σNi ∪ {j|(j, i) ∈ E(σN)}, consisting of the
players to whom she establishes a link, σNi , and those who establish a link
to her, {j|(j, i) ∈ E(σN)}.

The Hawk-Dove game is a symmetric 2 × 2 normal form game GB :=
{ΣB,ΠB(·)}. Player i in the Hawk-Dove game can choose from two strategies,
hawk (H) and dove (D), i.e., ΣB := {H,D}. One can interpret hawk as an
aggressive and dove as a defensive strategy. If two hawks interact, their payoff
is minimal. All other strategy profiles lead to pareto-optimal outcomes ([?]),
although only (H,D) and (D,H) are Nash equilibria. Table 1 summarizes the
payoff matrix of ΠB(·).

The non-cooperative Network Hawk-Dove game Γ := {S;P} is a com-
bination of Hawk-Dove game GB and Network game GN . Hereafter, we
call strategies in the Hawk-Dove game actions and strategies in the Network
game links to distinguish them from the strategies in the Network Hawk-Dove
game. In the Network Hawk-Dove game, each player i chooses her action σBi

1We model the Network game as a non-cooperative game (Bala and Goyal, 2000).

3
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Table 1: Payoff Matrix Hawk-Dove game (with a > b > c > d > 0)

Hawk (H) Dove (D)
Hawk (H) d,d a,c
Dove (D) c,a b,b

and her links σNi . Hence, the strategy set S := ΣB × ΣN in the Network
Hawk-Dove game is a Cartesian product of the strategy sets in GB and GN .
Notice that, although each player i chooses whether to establish a link to ev-
ery other player j, she only chooses her action once. Each player i, pays for
her links and participates in a Hawk-Dove game GB with every linked player.
Clearly, the payoff of player i using strategy si = (σBi , σ

N
i ) ∈ S depends on

the number of contacts playing hawk niH(s) =
∑

j∈Ni(σN ) 1{σB
j =H} and dove

niD(s) =
∑

j∈Ni(σN ) 1{σB
j =D}. The number of contacts in the neighborhood is

ni(s) := niH(s) + niD(s). Given the payoff function P : S → R, the payoff of
player i is:

Pi(s−i, {σBi = H;σNi }) := d · niH(s) + a · niD(s)− k |σNi |

Pi(s−i, {σBi = D;σNi }) := c · niH(s) + b · niD(s)− k |σNi |

Given this definition of the Network Hawk-Dove game, k can be any real
number. However, we limit our analysis to (1) k ≥ 2d, (2) a > b > k > c > d
and (3) n ≥ 3. (1) k > 2d follows the standard interpretation of Hawk-Dove
games, where d represents injuries from aggressive behavior and typically is
0 (Neugebauer et al., 2008) or negative (Smith and Price, 1973). Hence,
linking two hawks is not beneficial, even if both alternate in paying for the
link. If a > b > k > c > d holds (2), links from hawks to doves pay, while
they do not pay between hawks, and links from doves to hawks do not pay,
while they pay between doves, offering all players a variety of link decisions.
This changes for all other parameter combinations: If k > a, no links are
established. If a > k > b, only links from hawks to doves pay and each
hawk will link to all doves. If c > k > d, only links between hawks do not
pay. Hence, doves benefit from links to all others, turning their link decision
trivial again. Due to our first restriction, d > k cannot hold. (3) We assume
that more than 2 players, i.e., n ≥ 3, participate in our Network Hawk-Dove
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game to investigate real networks and not only Hawk-Dove games with an
outside option.

2.1 Efficiency

We believe that investigating Network Hawk-Dove games experimentally is
especially worthwhile as several equilibria of the one-shot Network Hawk-
Dove game are not efficient. In this section, we first characterize the param-
eter combinations that lead to efficient strategy profiles before deriving the
Nash equilibria of the one-shot game and comparing the resulting predictions.

To characterize efficient strategy profiles, we basically proceed in two
steps. First, we show under which conditions links are efficient before using
this information to derive efficiency conditions for the whole network.

Theorem 1. In efficient strategy profiles of Network Hawk-Dove games

a) all links are unilateral,

b) all hawks are linked to all doves but not to any hawks, and

c) all doves are linked to all other doves.

Proof. Condition (a) is a consequence of the game design. Players benefit
from all other players they are linked to. Redundant links do not increase
payoff.

Conditions (b) and (c) follow from a > b > k and k > 2d.

Definition 1 (Link efficiency). A strategy profile is link efficient if all links
are in line with Theorem 1.

Using the definition of link efficiency, we can now derive the number of
hawks in an efficient strategy profile.

Theorem 2. In efficient strategy profiles of Network Hawk-Dove games, all
links are link efficient and the number of hawks nH is

a) 0 if a+ c ≤ b+ 1
2
k holds, or

b) bzc2 and/or dze with z = 1
2
(n− b−0.5k

a+c−b−0.5k
(n− 1)) if a+ c > b+ 1

2
k.

2bzc is the largest integer smaller or equal to z, and dze is the smallest integer number
higher or equal to z.
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Proof. Let nH be the number of hawks and nD = n−nH the number of doves
in the network. In link efficient strategy profiles, the aggregated payoff of all
players is

P (·) = nH · (n− nH) · (a+ c− k) + 0.5(n− nH) · (n− nH − 1) · (2b− k)

with nH · (n − nH) being the number of links between hawks and doves
yielding a+ c− k per link and 0.5(n− nH) · (n− nH − 1) being the number
of links between doves yielding 2b− k. To identify the maximum of P (·), we
differentiate P (·) twice:3

∂P (·)/∂nH = (n− 2nH) · (a+ c− k) + (2nH − 2n+ 1) · (b− 0.5k)

and
∂2P (·)/∂n2

H = −2(a+ c− b− 0.5k).

Condition (a) follows from ∂2P (·)/∂n2
H ≥ 0: If ∂2P (·)/∂n2

H = 0, then
∂P (·)/∂nH = (1 − n) · (b − 1

2
k) < 0 as n ≥ 3 and b > k. Hence, P (·) is

maximal if nH = 0. The same holds for ∂2P (·)/∂n2
H > 0: Here a minimum

lies at ∂P (·)/∂nH = 0 dissolving to nH = 1
2
(n + b−0.5k

b+0.5k−a−c · (n − 1)). With

the observation that a + c > k for the minimum nH > n − 1
2

holds. Hence,
the maximal payoff is reached with nH = 0.

Condition (b) is the consequence of ∂2P (·)/∂n2
H < 0. Here a maximum

lies at ∂P (·)/∂nH = 0 being equivalent to nH = 1
2
(n+ b−0.5k

b+0.5k−a−c ·(n−1)).

Example 1. As a running example in the paper, we use the parameters sum-
marized in Table 2. Specifically, in a network of n = 6 players, establishing
links costs k = 50. A hawk being linked to another hawk earns d = 20, while
he earns a = 80 when linked to a dove. Doves earn b = 60 for links to
other doves and c = 40 for links to hawks. We also use these parameters
in our behavioral experiment described in Section 4.1. Notice that for these
parameters all conditions (1) to (3) for network Network Hawk-Dove games
motivated in the previous subsection are fulfilled (1) k = 50 ≥ 40 = 2d, (2)
a = 80 > b = 60 > k = 50 > c = 40 > d = 20 and (3) n = 6 ≥ 3.

For this set of parameters a + c = 120 > 85 = b + 1
2
k holds. Hence, an

efficient strategy profile can be established if nH = 1
2
(n− b−0.5k

a+c−b−0.5k
(n− 1)) =

3Notice that our analysis is a simplification as we search the optimum of P (·) under
the condition that 0 ≤ nh ≤ n. However, we ignore this condition when differentiating
and manually check for the borders of the condition later.
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Table 2: Running example of Network Hawk-Dove game with k = 50 and
n = 6

Hawk (H) Dove (D)
Hawk (H) d = 20, d = 20 a = 80, c = 40
Dove (D) c = 40, a = 80 b = 60, b = 60

0.5 hawks face nD = n−nH = 5.5 doves. In this case, the maximal payoff in
the population is nH ·(n−nH) ·(a+c−k)+ 1

2
(n−nH) ·(n−nH−1) ·(2b−k) =

1058.75. If the number of hawks is an integer, the maximal payoff in the group
is 1050. This payoff is reached if both nH = 0 and nH = 1.

2.2 One-shot Nash equilibria

To compare efficient strategy profiles and Nash strategy profiles, we derive
conditions for the Nash equilibria in the one-shot Network Hawk-Dove game
Γ. Definition 2, Theorem 4, and the corresponding proof follow the idea
introduced by Berninghaus and Vogt (2006) and are repeated here to simplify
understanding of the subsections and subsubsections below. Although the
arguments in these proofs differ from Bramoulle et al. (2004), all predictions
in the present subsection are equivalent to their results.

In a Nash equilibrium, no player has an incentive to deviate by either
changing his links σN

∗
i ∈ ΣN or actions σB

∗
i ∈ ΣB unilaterally. Hence, the

definition of a Nash equilibrium in Network Hawk-Dove games is as follows:

Definition 2 (Nash condition). Each strategy profile s∗ = (σN
∗
, σB

∗
) in Γ

is a Nash equilibrium if

∀i : Pi(s
∗
−i, s

∗
i ) ≥ Pi(s

∗
−i, si) for si ∈ Si.

Using the Nash condition, we first characterize conditions for links in a Nash
equilibrium. We then use these to derive the Nash equilibrium for the whole
network.

Theorem 3. In Nash equilibria of Network Hawk-Dove games

a) all links are unilateral,

7
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b) all hawks establish links to all doves but not to any hawks, and

c) all doves establish links to every other dove.

Proof. Condition (a) and its proof are equivalent to Condition (a) of Theo-
rem 1.

Conditions (b) and (c) follow directly from a > b > k > c > d.

Definition 3 (Link balance). A strategy profile is link balanced if all links
are in line with Theorem 3.

The conditions for links are similar in link balanced and link efficient
strategy profiles. In both configurations, only links involving at least one
dove exist. However, the link balance is more specific. While the direction
of links between hawks and doves is not specified according to link efficiency,
hawks have to pay for these links in link balanced strategy profiles.

Theorem 4. In Nash equilibria of Network Hawk-Dove games, all links are
link balanced and the number of hawks n∗H satisfies

n∗H ≥
a− b

a− b+ c− d
(n− 1) > 0.

Proof. In link balanced strategy profiles, unilateral deviation from hawk
to dove is beneficial if the following inequality holds: Pi(s

∗
−i, {H;σN

∗
i }) =

n∗Da − k|σN∗
i | < n∗Db − k|σN∗

i | = Pi(s
∗
−i, {D;σN

∗
i }). This inequality is al-

ways false as a > b holds. Each dove player deviates from dove to hawk if
Pi(s

∗
−i, {D;σN

∗
i }) = n∗Hc+ (n∗D − 1)b− k|σN∗

i | < n∗Hd+ (n∗D − 1)a− k|σN∗i | =
Pi(s

∗
−i, {H;σN

∗
i }) holds. This inequality is false if the inequality of the the-

orem is met.

Example 2. We apply the parameters from Table 2 to Theorem 4. The
number of hawks n∗H is above a−b

a−b+c−d(n − 1) = 2.5 in Nash equilibrium.
This clearly differentiates efficient strategy profiles from Nash equilibria: In
the former only 0 or 1 hawks exist, while in the latter 3 or more hawks
participate.

Nash equilibria and efficient strategy profiles do not only differ in our running
example. If a+c ≤ b+ 1

2
k, the number of hawks in an efficient strategy profile

is nH = 0 (see Theorem 2). This always differs from the equilibrium predic-
tion, which needs n∗H to be greater than 0 (see Theorem 4). If a+ c > b+ 1

2
k,
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the upper bound for the number of hawks is nH = n
2
≥ 1

2
(n− b−0.5k

a+c−b−0.5k
(n−1))

in efficient strategy profiles, while the Nash equilibrium prescribes a lower
bound for the number of hawks. Hence, this also allows for several parameter
combinations in which efficient outcome and Nash equilibria differ.

Notice that the Nash equilibrium with the lowest overall payoff is always
the strategy profile in which all players resort to hawk and link to no other
players.

Lemma 1. The Nash equilibrium of the Network Hawk-Dove game, yielding
the lowest payoff for all players, is characterized by only hawk players (nH =
n) and no links.

Proof. According to Theorem 4, the described strategy is a Nash equilibrium
as all links are link balanced and n = n∗H ≥ n − 1 ≥ a−b

a−b+c−d(n − 1) holds
if c > d, which is a property of the Hawk-Dove game. As no links exist,
the payoff in this equilibrium is 0. Any other Nash equilibrium yields higher
payoffs for at least two players and no lower payoffs for any of the players
since in all other Nash equilibria at least one player resorts to dove and at
least one link from another player to this dove exists, yielding positive payoffs
for both players, given the links are link balanced.

2.3 Finitely repeated game Nash equilibria

In the introduction to this paper, we discuss that in anti-coordination games
with endogenous network formation subjects often resort to strategy profiles
that yield higher payoffs than the payoffs reachable when resorting to one-
shot Nash equilibria. Repeatedly playing the game, even for a finite number
of periods, can help to reach efficient outcomes. Here trigger strategies can be
used to punish players who deviate from the desired strategy profile (Fried-
man, 1985, Benoit and Krishna 1985). In this subsection, we first present
such trigger strategies before we apply these trigger strategies to the Network
Hawk-Dove game.

2.3.1 Trigger strategy equilibria for games with finite horizon

Solution 1 summarizes a trigger strategy (as proposed by Friedman (1985),
Benoit and Krishna (1985)) to establish desired strategy profiles that are no
equilibria of the stage game. The basic idea of the trigger strategy is that
subjects begin playing the desired strategy profile in the first period and

9
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keep playing this strategy. If one player deviates, all others punish her by
switching to the Nash equilibrium yielding the lowest payoff for the deviator.
If there is no deviation, all players switch to the Nash equilibrium yielding
the highest overall payoff for the last {t∗ + 1, ..., T} periods.

Solution 1 (Trigger strategy for games with finite horizon). To establish
a desired strategy profile in a finitely repeated game, the following trigger
strategy can be used:

a) In t = 1 play the desired strategy profile.

b) In t ∈ {2, ..., t∗} keep playing the desired strategy profile if no player
deviated. Otherwise, resort to the Nash equilibrium of the stage game
yielding the lowest payoff for the deviator.

c) In t ∈ {t∗ + 1, ..., T} play the Nash equilibrium of the stage game,
yielding the highest overall payoff if no player deviated. Otherwise,
resort to the Nash equilibrium of the stage game yielding the lowest
payoff for the deviator.

Using this trigger strategy results in additional sub game perfect equi-
libria, in which players resort to a strategy profile yielding higher payoffs
than the payoff maximal Nash equilibrium, if the following conditions for the
game hold. First, players need to resort to a Nash equilibrium in the termi-
nal period. Otherwise, at least one player could deviate from the strategy
profile played. Second, during periods {t∗+1, ..., T} two Nash equilibria, one
to punish deviators and one to reward non deviators, are required, or else a
player deviating in period t∗ could not be punished in subsequent periods.
Third, for the punishment to be effective, the sum of payoffs in the Nash
equilibrium to reward, minus the payoffs in the Nash Equilibrium to punish
in periods {t∗ + 1, ..., T}, has to exceed the payoff gain for deviating from
the desired strategy in period t∗. Otherwise, a player would deviate in t∗.
Notice that this condition is sufficient for periods {1, ..., t∗−1} to prevent any
deviations because deviations in earlier periods would increase the number
of periods other players could use to punish and, hence, could not lead to a
payoff increase. As the described trigger strategy does not allow for beneficial
deviations in any period, the resulting Nash equilibrium is sub game perfect.

10

Jena Economic Research Papers 2013 - 048



2.3.2 Trigger strategies equilibria in the Network Hawk-Dove game

Our analysis of the one-shot game shows that efficient strategy profiles and
Nash equilibria in the Network Hawk-Dove game differ in the number of
hawks in the network. Hence, (1) the desired strategy profile played in period
t = 1 should ensure a certain number of hawks nH . All links should be link
balanced (see Definition 3) to ensure that payoffs are equally distributed.
(2) The best punishment for deviations from the desired strategy profile is
to play the Nash equilibrium (see Lemma 1), with nH = n hawks having
no links. This ensures that all payoffs are 0. (3) As the desired strategy
profile in periods 1 to t∗ is no equilibrium in the one-shot game, players
have an incentive to deviate. To overcome this, we choose to play the Nash
equilibrium of the one-shot game yielding the highest payoff during the last
periods. The following definition summarizes this trigger strategy:

Definition 4 (Trigger strategy for the Network Hawk-Dove game). Let the
trigger strategy in the Network Hawk-Dove game be as follows:

a) In t = 1 play hawk or dove so that nH hawks are in the network and
ensure that the links are link balanced.4

b) In t ∈ {2, ..., t∗} keep playing your strategy as in (a) if no player devi-
ated. Otherwise, play the hawk strategy and remove all links.

c) In t ∈ {t∗, ..., T} play the Nash equilibrium of the one-shot game yield-
ing the highest overall payoff with n∗H hawks if no player deviated from
the desired strategy in t ≤ t∗. Otherwise, play the hawk strategy and
remove all links.

The described trigger strategy is rather generic as three parameters, i.e.,
nH , n∗H , and t∗, are not specified. We derive values for these parameters
in the remainder of this section. As we have shown when deriving efficient
strategy profiles (see Theorem 2) for several parameter combinations, the
payoff increases when the number of hawks decreases. We now define the
minimum number of hawks nH in a Nash equilibrium of the one-shot Network
Hawk-Dove game. Applying the trigger strategy from Definition 4 is only

4Notice that finding a corresponding strategy profile is a coordination problem. How-
ever, we do not discuss how to find this strategy profile. Deviations can be punished since,
after seeing the strategies in the previous period, all players know whether it was found
or not.
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meaningful for nH < nH as for all nH ≥ nH one of the payoff maximal
strategy profiles is a Nash equilibrium. Here the links, which are a subset of
all link efficient strategy profiles, have to be link balanced.

Definition 5 (Minimum number of hawks in one-shot Nash equilibrium).
The minimum number of hawks in the Nash equilibrium of the one-shot Net-
work Hawk-Dove game is

nH = d(n− 1)(a− b)
a− b+ c− d

e.

Using the minimum number of hawks in the Nash equilibrium of the one-shot
Network Hawk-Dove game, we parameterize the trigger strategy to result
in additional Nash equilibria of the T -period repeated Network Hawk-Dove
game.

Theorem 5. To reach Nash equilibria that are no Nash equilibria of the stage
game in the T -period repeated Network Hawk-Dove game Γ, the trigger strat-
egy for the Network Hawk-Dove game (Definition 4) has to be parameterized
as follows:

a) nH < nH ,

b) n∗H =

{
nH if nH < nH

nH if nH ≥ nH
with nH being the efficient number of hawks,

c) t∗ ≤ T − nH ·(d−c)+(n−nH−1)·(a−b)
min{n∗H ·c+(n−n∗H−1)(b−k);(n−n∗H−1)(a−k)} .

Proof. Condition (a) follows directly from the observation that the desired
strategy profiles are non Nash equilibria of the stage game.

Condition (b) characterizes the equilibrium played in periods t∗+ 1, ..., T
if no player deviated. In the equilibrium, all links are link balanced and the
number of hawks is chosen such that the highest overall payoff for all players
is reached. If one Nash equilibrium is efficient (nH ≥ nH), this should be
played. Therefore n∗H = nH has to hold. Otherwise, the Nash equilibrium
with the highest overall payoff is characterized by n∗H = nH as the payoff
in the one-shot game is monotonically decreasing if the number of hawks
increases (see the proof of Theorem 2).

Condition (c) characterizes the number of periods to resort to the payoff
maximal equilibrium. If one player deviated in t ≤ t∗, the payoff of all players

12

Jena Economic Research Papers 2013 - 048



is 0 in all subsequent periods. Therefore each player not deviating earns a
minimum of

min{n∗H · c+ (n− n∗H − 1)(b− k); (n− n∗H − 1)(a− k)}
for each of the T − t∗ last periods. For this payoff we expect that all links

are link balanced (which they are in equilibrium). Further, the left argument
(n∗H · c+ (n−n∗H − 1)(b− k)) is the minimal payoff for resorting to dove, i.e.,
the payoff if paying for all links, and the right argument ((n−n∗H−1)(a−k))
is the payoff for resorting to hawk. The gain for not deviating has to be at
least as high as the gain from deviating in t = t∗. A player being a hawk
in t∗ will not deviate as, given the links are link balanced, she is linked to
doves only, and switching from hawk to dove will reduce her payoff. A dove,
on the other hand, might switch to hawk in t∗ to increase her payoff by

nH · (d− c) + (n− nH − 1) · (a− b).
For the trigger strategy to reach an equilibrium (T − t∗) ·min{n∗H · c +

(n−n∗H −1)(b−k); (n−n∗H −1)(a−k)} ≥ nH · (d− c) + (n−nH −1) · (a− b)
has to hold, which simplifies to condition (c).

Example 3. Let us consider our running example again. The minimum
number of hawks in the Nash equilibrium of the one-shot Network Hawk-Dove
game is nH = 3 = d2.5e, and the number of hawks yielding the maximal payoff
in a Nash equilibrium of the one-shot version of the game is also n∗H = nH = 3
as nH = 3 > 0.5 = nH (see the intermediate results in all previous examples).
If nH ∈ {0, 1, 2}, then nH < 3 = nH holds and all nH hawks link to all n−nH
doves and all doves are unilaterally linked to each other during periods 1 to
t∗. In periods t∗ + 1 to T , the players switch to the Nash equilibrium with
nH = 3 hawks. Any deviation is punished by subsequently playing hawk and
removing all links. The number of periods in which the Nash equilibrium of
the stage game T − t∗ is played depends on nH . T − t∗ is greater than or
equal to 2 > 1.67 for nH = 0, 1 for nH = 1 and 1 > 0.33 for nH = 2. In
other words, the trigger strategies ensure for nH = 1 that the efficient strategy
profile is played except for one final period in a sub game perfect equilibrium.

Clearly, besides the sub game perfect equilibria described in Theorem 5,
other sub game perfect equilibria in the network exist. For example, any
combination of nH in periods 1 to t∗ can be established as a sub game perfect
equilibrium, at worst by increasing the number of periods for which the payoff
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maximal equilibrium is played. However, to describe the complete set of all
equilibria is not the aim of this paper. Rather, we aim at showing that
by playing the Network Hawk-Dove game repeatedly, strategy profiles with
numbers of hawks can be established as Nash equilibrium that do not occur
in the one-shot version of the game.

3 Fixed actions and links

A severe drawback of the trigger strategy introduced in Definition 5 is the
need for coordination. Players have to coordinate on one equilibrium. With-
out any pre game communication this is difficult. Hence, in this section we
extend our analysis to two variants with smaller subsets of strategies and
evaluate whether these simpler variants of the game still yield efficient out-
comes.

We have introduced the Network Hawk-Dove game as a combination of
two isolated games, the Hawk-Dove game and the Network game. Using these
two parts of the game, we now introduce two new versions of the Network
Hawk-Dove game: (1) We derive the Fixed Action game ΓB by reducing the
strategy set of the players to SN = ΣN . Here we enforce a fixed action set
σB for all players. Everything else remains unchanged. That is to say, each
player can modify her set of links sNi ∈ SN , although all actions σBi in the

Hawk-Dove game are fixed. (2) In the Fixed Link game ΓN , we reduce the
strategy set of the players to SB = ΣB and enforce a fixed set of links σN

for all players. Everything else remains unchanged. That is to say, each
player i faces costs for her links |σNi | · k and plays a Hawk-Dove game with
all contacts.

3.1 One-shot Nash equilibria

Analogous to the one-shot Network Hawk-Dove game Γ, we derive Nash
equilibria for both versions of the game, the Fixed Action game ΓB and the
Fixed Link game ΓN .

Theorem 6. Given a Fixed Action game ΓB, a Nash equilibrium s∗ ∈
(ΣB, SN) is established if the strategy profile (σB, sN) is link balanced.

Proof. The proof is identical to the proof of Theorem 3.
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Notice that, if fixed actions σBi are identical to actions in a Nash equilibrium
of the one-shot Network Hawk-Dove game, the resulting Nash equilibrium
in a Fixed Action game is equivalent to this equilibrium as for establishing
links identical preconditions hold (see Theorems 4 and 6). Similarly, fixed

actions σBi that are identical to actions in an efficient strategy profile lead
to links in the Fixed Action game that are compatible to the links in the
efficient strategy profile. This follows from equivalent conditions for links in
Theorem 2 and Theorem 6.
Having characterized the Fixed Action game, we now describe conditions for
the Fixed Link game:

Theorem 7. Given a Fixed Link game ΓN , a Nash equilibrium s∗ in (SB,ΣN)
is established if the following statement holds:

a) Each player i uses the hawk action if in his neighborhood the following
condition holds:

niH(s∗) <
a− b

a− b+ c− d
· ni(s∗),

with niH(s∗) (ni(s∗)) being the number of hawks in her neighborhood.

b) Each player i uses the dove action otherwise.

Proof. Conditions (a) and (b) follow from the payoff function P (·) of the
Network Hawk-Dove game. The payoff of the hawk action exceeds that of
the dove action if the following inequality holds: Pi(s

∗
−i, {H;σNi }) = d ·

niH(s) + a ·niD(s)− k |σNi | > c ·niH(s) + b ·niD(s)− k |σNi | = Pi(s
∗
−i, {D;σNi }).

With niH(s) = ni(S) − niD(s), this inequality simplifies to the inequality of
condition (a). A player resorts to the dove action if the inequality does not
hold (condition (b)).

To allow for trigger strategies in the finitely repeated version of the Fixed
Link game, two equilibria are required in the stage game: one with a low and
one with a high payoff. During the last periods, the equilibrium with the
low payoff is played to punish deviations from desired strategies, while the
one with high payoffs is applied to reward players for not deviating. Hence,
we investigate whether at least two Nash equilibria exist in any Fixed Link
game.5

5Notice that for reasons of understandability, we do not consider the costs for links in
our analysis of the Fixed Link Game. Link costs are fixed in the Fixed Link Game and
do not change behavior.
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Lemma 2. Each Nash equilibrium (σB, σN) of the one-shot Network Hawk-
Dove game Γ implies the following Nash equilibria (sB, σN)6 in the Fixed

Link Game ΓN :

a) For all i (j) with σBi = H (σBj = D), sBi = H (sBj = D) holds, or

b) For all i (j) with σBi = H (σBj = D), sBi = D (sBj = H or sBj = D

such that nH < a−b
a−b+c−d(n− 1)) holds.

Proof. Condition (a) follows from the proof for equilibria in one-shot Network
Hawk-Dove games.

Condition (b) is the result of a search for additional Nash equilibria: All
players i with σBi = H have identical contacts. They are linked to all players
j with σBj = D. According to condition (a) of Theorem 7, they have to resort
to the same strategy. Hence, sBi = D holds in an additional equilibrium. All
players j are linked to all other players in the network, and they choose their
strategy sBj such that condition (a) of Theorem 7 holds for the whole network,

i.e., nH < a−b
a−b+c−d(n− 1).

Example 4. Our running example allows for a Nash equilibrium in the Net-
work Hawk-Dove game with five hawks as 5 ≥ nH = 3. All hawks have exactly
one link to the only dove in the network. Now let the links be fixed and let
players play a Fixed Link game. If the players resort to the same strategies
as in the Network Hawk-Dove game, the network is still in equilibrium. Let
all 5 former hawks alter their action to dove. The former dove will choose
to play hawk as in her neighborhood the number of hawks is 0. Now all doves
have exactly one contact, namely a hawk being in equilibrium according to
Theorem 7.

Next, we analyze Fixed Link games derived from non Nash equilibrium strat-
egy profiles in the Network Hawk-Dove games. In particular, we focus on
link efficient strategy profiles. These strategy profiles are especially relevant
in Fixed Link and Network Hawk-Dove games. As the cost for establishing
a link to a hawk always exceeds the benefit and establishing a link to a dove
is always beneficial, such strategy profiles can be expected to be frequent in
these games. We show that, in analogy to Fixed Link games derived from

6Here and in the remainder, we call action decisons sB and network decisions sN in
the derived game if they differ from the original game, while we call them σB and σN if
they are identical to the original game.
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Nash equilibria in the one-shot Network Hawk-Dove games, there are two
types of equilibria in these games. Hence, all link efficient strategy profiles
can continue to be played using the trigger strategies described above.

Lemma 3. Every link efficient strategy profile (σB, σN) of the Network Hawk-
Dove game Γ implies two Nash equilibria (sB, σN) in the Fixed Link Game

ΓN :

a) For all i with σBi = H, sBi = H and

nH + δH − 1 <
a− b

a− b+ c− d
· (n− 1) < nH + δH

holds, or

b) For all i with σBi = H, sBi = D and

δH − 1 <
a− b

a− b+ c− d
· (n− 1) < δH

holds,

with nH being the number of players with σBi = H and δH being the number
of players with σBj = D, sBj = H.

Proof. For all link efficient strategy profiles that are Nash equilibria in Γ this
follows directly from Lemma 2. For all other link efficient strategy profiles
in Γ nH < a−b

a−b+c−d(n − 1) holds (see Theorem 4). Following the intuition

of condition (b) in Lemma 2, all nH players i with σBi = H have identical
contacts. Hence, they all resort to the same action sBi . All nD = n − nH
other players either resort to sBj = H or sBk = D.

Condition (a) analyzes the case of sBi = H. Whether an equilibrium is
reached, depends on the fraction of players j with sBj = H and σBj = D to
players k with sBk = D and σBk = D. Let the number of players i be nH , the
number of players j be δH , and the number of players k be nD − δH with
n = nH + nD. In the neighborhood of each player i niH(s) < a−b

a−b+c−d · n
i(s)

has to hold for player i to resort to hawk (see Theorem 7). For players i this
is equivalent to δH < a−b

a−b+c−d · (δH + nD − δH) as they are linked to players
j and k only. All players j and k are linked to all players in the network.
Hence, for them nH+δH−1 < a−b

a−b+c−d ·(n−1) and nH+δH > a−b
a−b+c−d ·(n−1),

respectively, have to be fulfilled. The three inequalities are equivalent to

δH <
a− b

a− b+ c− d
· (n− nH) (1)
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and

nH + δH − 1 <
a− b

a− b+ c− d
· (n− 1) < nH + δH . (2)

Inequality (1) is fulfilled if the left inequality of (2) is fulfilled.
Condition (b) focuses on all nH players i resorting to sBi = D. Let the

number of players j be δH with sBj = H and the number of players k be
nD − δH with sBk = D. In the corresponding neighborhoods, the following
inequalities have to hold: players i, δH > a−b

a−b+c−d · (n − nH); players j,

δH − 1 < a−b
a−b+c−d · (n− 1), and players k, δH > a−b

a−b+c−d · (n− 1). The three
inequalities are equivalent to

δH >
a− b

a− b+ c− d
· (nD) (3)

and

δH − 1 <
a− b

a− b+ c− d
· (n− 1) < δH . (4)

Inequality (3) is contained in the right-hand part of inequality (4) if nH ≥ 1,
which is fulfilled for all non Nash equilibria of the one-shot Network Hawk-
Dove game (see Theorem 4).

Example 5. We continue with our running example. Here three non Nash
equilibrium strategy profiles with the described types of players are possible.
For these strategy profiles the number of hawks nH is 1, 2, or 3 (see our
previous examples). We focus on the link efficient strategy profile with nH = 1
players i with σBi = H and nD = 5 players j with σBi = D. In addition,
nH + δH − 1 < 2.5 = a−b

a−b+c−d(n − 1) < nH + δH has to hold, i.e., nH +
δH = 3. Now one equilibrium exists, with player i resorting to hawk, 2 other
players resorting to hawk, and 3 other players resorting to dove. To be an
equilibrium, players resort to hawk if niH(s) < a−b

a−b+c−d · n
i(s) = 1

2
ni(s) and

to dove otherwise (see Theorem 7). In the neighborhood of the players with
σBj = H, this condition equals 2 < 1

2
· 5 = 2.5. As she resorts to hawk, she

will not deviate. For the players with σBj = D resorting to dove (hawk) the
condition is 3 > 1

2
·5 = 2.5 (2 < 1

2
·5 = 2.5). Hence, no player has an incentive

to unilaterally deviate. The game is in equilibrium. Now consider case (2).
Here the player with σBj = H resorts to dove. δH − 1 < a−b

a−b+c−d(n − 1) =

2.5 < δH has to hold, i.e., δH = 3. Therefore 3 players with σBj = D are
hawks and 2 players with σBj = D are doves. The neighborhood of the players
with σBj = D is equivalent to the neighborhood of the players with σBj = D in
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case 1. Hence, they will not unilaterally deviate. For the player with σBj = H

niH(s) = 3 > a−b
a−b+c−d · n

i(s) = 1
2
· 5 = 2.5 holds. Hence, he will not deviate

either. Case (2) is also an equilibrium.

With Lemma 2 and Lemma 3 we have shown link efficient strategy profiles
with any number of hawks nH exist implying only two types of Nash equi-
libria. In one Nash equilibrium all players with σBj = H are hawks, and in
another Nash equilibrium all players with σBj = H are doves. This is a pre-
condition for finitely repeated games to reach a Nash equilibrium in which,
at least in some periods, strategy profiles are played that are not Nash equi-
libria of the stage game (see Section 2.3). This serves as a precondition for
an analysis of the Nash equilibria in the finitely repeated version of the Fixed
Link game.

3.2 Finitely repeated game Nash equilibria

In this subsection, we investigate what kind of equilibria result from finitely
repeating Fixed Action and Fixed Link games. We let players explicitly
choose the strategy parameters they could not choose in the first period of
these games. That is to say, we let the players participate in a Network Hawk-
Dove game in period t = 1 and let them play either the Fixed Action game
or the Fixed Link game for T − 1 periods afterwards. We call the respective
games T -period Fixed Action game and T -period Fixed Link game. We
start our analysis with both Fixed Action and Fixed Link games, in which
the players resort to a Nash equilibrium of the Network Hawk-Dove game in
period t = 1.

Theorem 8. In the T -period Fixed Action and Fixed Link game, playing a
Nash equilibrium of the Network Hawk-Dove game in period t = 1 and all
subsequent periods is a Nash equilibrium of both repeated games.

Proof. The proof is obvious. The Nash equilibrium of the one-shot Network
Hawk-Dove game in period t = 1 is a Nash equilibrium in all subsequent
stage games since the conditions for Nash equilibria in the Fixed Action and
the Fixed Link game are compatible to the conditions for Nash equilibria in
the Network Hawk-Dove game. Hence, in every period a Nash equilibrium is
played.

In the remainder, we analyze whether other equilibria, yielding higher
overall payoffs, can be established. As we have shown in Theorem 6 in the
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Fixed Action game, only one equilibrium per action configuration exists in
the one-shot game. Hence, only this Nash equilibrium can be played in
the repeated version of the game. Therefore no punishment and no trigger
strategy is possible.

Theorem 9. In the T -period Fixed Action game, the following sub game
perfect equilibria depending on the number of hawks in the network nH exist:

a) All links are link balanced.

b1) If T (a − b + c) ≥ (T − 1)k − d holds, the number of hawks nH in the
population has to satisfy the condition

0 ≤ nH ≤
T (a− b)

T (a− b) + (T − 1)c
n.

b2) If T (a − b + c) < (T − 1)k − d holds, the number of hawks nH in the
population has to satisfy the condition

T (a− b)− (T − 1)k

T (a− b+ c)− (T − 1)k − d
(n− 1) ≤ nH ≤

T (a− b)
T (a− b) + (T − 1)c

n.

Proof. Condition (a) follows directly from the conditions of equilibria in the
Fixed Action game (see Theorem 6).

Condition (b1) follows from the gain a player, who is hawk in t = 1,
makes by switching to dove in t = 1. Her payoff is T (n − nH)(a − k) for
playing hawk. Switching to dove yields T (n − nH)(b − k) + (T − 1)nH · c
because she will still link to all doves, but in periods t ∈ {2, .., n} all hawks
will link to her to be in equilibrium. Playing hawk pays if

T (n− nH)(a− k) > T (n− nH)(b− k) + (T − 1)nH · c,

which simplifies to nH < T ·(a−b)
T ·(a−b+c)−cn, condition (b1).

Condition (b2) follows from the gain a player, who is dove in t = 1,
makes by switching to hawk in t = 1. As dove, she receives (nH · c + (n −
nH − 1)b)T −

∑T
t=1 |σNi,t| · k. When deviating to hawk in t = 1, she receives

nH · d+ (n− nH − 1)a− |σNi,1| · k + (T − 1)(n− nH − 1)(a− k). Simplified,
the payoff for a dove exceeds that for deviating to hawk if

nH · (T (a−b+c)− (T −1)k−d) < (n−1) · (T (a−b)− (T −1)k)+k

T∑
t=2

|σNi,t|.
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This inequality corresponds to two conditions: (1) If T (a−b+c)−(T −1)k−
d < 0, nH > ((n−1)(T (a−b)−(T −1)k)+k

∑T
t=2 |σNi,t|)/(T (a−b+c)−(T −

1)k−d) has to hold, which is always fulfilled as k
∑T

t=2 |σNi,t| ≤ k(T−1)(n−1)
and nH ≥ 0 and corresponds to (b1). (2) If T (a− b+ c)− (T − 1)k− d > 0,
nH < ((n−1)(T (a−b)−(T−1)k)+k

∑T
t=2 |σNi,t|)/(T (a−b+c)−(T−1)k−d).

Here the right-hand side of the inequality is minimal if k
∑T

t=2 |σNi,t| = 0. This
corresponds to condition (b2).

The network is in equilibrium in periods 2 to T , while all conditions
described here ensure that the overall game is in equilibrium. Hence, the
described equilibrium is also sub game perfect.

Example 6. Consider again our running example. Here 60T ≥ 50(T−1)−20
holds for every T > 1. Hence, 0 ≤ nH ≤ 20T

70T−50
n has to hold. For T = 2

this is equivalent to nH ≤ 2 < 8
3
, with the maximum nH decreasing as T

increases. A comparison of these results to the predictions of the one-shot
Network Hawk-Dove game shows that for T -period Fixed Action games lasting
for 2 periods or more, the efficient strategy profiles of the stage game can be
established in equilibrium.

The observation that the T -period Fixed Action game allows for the effi-
cient strategy profiles of the one-shot Network Hawk-Dove game is not unique
to our running example. As Theorem 9 postulates a lower bound for nH and
no upper bound (see Theorem 4), and the upper bound in the T -period Fixed
Action game is below n (see Theorem 9), strategy profiles in the T -period
Fixed Action game always exist, which cannot be reached in the Network
Hawk-Dove game.

After deriving the Nash equilibria for the T -period Fixed Action game,
we analyze the T -period Fixed Link game accordingly. Here several link
configurations allow for two types of equilibria. Hence, we introduce a new
trigger strategy. In the first period, players resort to the strategy profile
with a desired number of hawks nH . If one player deviates, the equilibrium
strategy yielding the lowest payoff for the deviator is played until period T .
If no player deviated until period t∗, the equilibrium yielding the highest
payoff for all players is chosen.

Definition 6. Let the trigger strategy in the T -period Fixed Link Game be
as follows:

a) In t = 1 play hawk or dove so that nH hawks are in the network. If
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you are a hawk, link to all doves; if you are a dove, ensure that you are
unilaterally linked to all other doves.

b) In t ∈ {2, ..., t∗} keep playing your strategy as in (a) if no player devi-
ated. Otherwise, play the equilibrium yielding the lowest payoff for the
deviating player.

c) In t ∈ {t∗, ..., T} keep playing your strategy if no player deviated from
playing the equilibrium of the one-shot game yielding the highest overall
payoff. Otherwise, play the equilibrium with the lowest payoff for the
deviating player.

In addition to the trigger strategy, we need to know whether the payoffs of the
players, after switching from a certain strategy profile to a Nash equilibrium,
are higher as hawk or dove. The following lemma investigates this aspect:

Lemma 4. For players in the Fixed Link game ΓN = {(sB, σN), P (·)} derived
from a non Nash equilibrium, but from a link efficient strategy profile (σB, σN)
in a Network Hawk-Dove Γ the following two observations hold:

a) Players with σB = H reach higher payoffs with sB = H if δH <
a−b

a−b+c−d(n− nH) and with sB = D otherwise.

b) Players with σB = D reach higher payoffs if sB = H than if sB = D.

Proof. Let nH players i be the players with σB = H, δH players j be the
players with σB = D, sB = H, and nD − δH players k be the players with
σB = D, sB = D.

Condition (a) follows from the equilibrium condition in Fixed Link games
(see Theorem 7).

Condition (b) follows from considering the payoffs of the players with
σB = D. We consider two cases: (1) all players i choose sB = H and (2) all
players i choose sB = D.

In case (1), each player j earns (nH + δH − 1)d + (nD − δH)a and each
player k earns (nH + δH)c + (nD − δH − 1)b. Hence, for sB = H yielding
higher payoffs: (nH + δH − 1)d+ (nD − δH)a > (nH + δH)c+ (nD − δH − 1)b
has to hold. With nD = n− nH , this simplifies to

nH + δH −
a− d

a− b+ c− d
<

a− b
a− b+ c− d

(n− 1). (5)
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As a−d
a−b+c−d > 1, this inequality is fulfilled for all link efficient strategy profiles

that are no Nash equilbria (see Lemma 3, condition (a)).
In case (2), the condition to resort to hawk changes to (δH − 1)d+ (nH +

nD − δH)a > (δH)c+ (nH + nD − δH − 1)b, which simplifies to

δH −
a− d

a− b+ c− d
<

a− b
a− b+ c− d

(n− 1). (6)

As a−d
a−b+c−d > 1, this inequality is fulfilled for all link efficient strategy profiles

that are no Nash equilbria (see Lemma 3, condition (b)).

Using the trigger strategy and Lemma 4, we can now derive the equilibria
using the trigger strategy.

Theorem 10. In the T -period Fixed Link game, following the trigger strat-
egy yields a sub game perfect equilibrium if all players resort to the Nash
equilibrium of the one-shot Network Hawk-Dove game for all periods T , but
no other equilibria exist.

Proof. We now consider whether the trigger strategy can yield additional
equilibria in which more than nH = a−b

a−b+c−d(n − 1) hawks persist. A dove
following the trigger strategy in the worst case earns t∗(nH · c + (n − nH −
1)b) + (T − t∗) · ((nH + δH) · c + (n − (nH + δH) − 1)b), with δH being the
number of additional hawks necessary to reach an equilibrium. Doves who
switch to hawk in periods t∗ to T earn more during these periods according to
Lemma 4. Let us assume the dove deviates to hawk in t∗ to ensure minimal
punishment. Now her payoff is (t∗−1)(nH ·c+(n−nH−1)b)+nHd+(n−nH−
1)a+(T−t∗)·((nH+δH)·c+(n−(nH+δH)−1)b). To establish an equilibrium,
t∗(nH ·c+(n−nH−1)b)+(T−t∗)·(nH ·c+(n−(nH+δH)−1)b) > (t∗−1)(nH ·c+
(n−nH−1)b)+nHd+(n−nH−1)a+(T−t∗)·((nH+δH)·c+(n−(nH+δH)−1)b)
has to hold. This simplifies to nH > a−b

a−b+c−d(n − 1), which is equivalent to
condition (c) of Lemma 4, i.e., the Lemma describing the sub game perfect
equilibria in the Network Hawk-Dove Game. As doves are always connected
to all other players in the network, we can conclude that the Nash equilibria
in the Fixed Link Game are a subset of the equilibria in the Network Hawk-
Dove Game.

Notice that in our formal analysis, we focus on T-period Fixed Link and
T-period Fixed Action games. A further extension would be to investigate
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finitely repeated versions of these games. We believe that this is not worth-
while: As we know that repeatedly playing a stage game is always a Nash
equilibrium in the repeated game, our results show that any number of hawks
can be established in the (repeated version of) the T-period Fixed Action
game. For Fixed Link games we did not come to this conclusion. Hence,
the repetition of T-period Fixed Link games might lead to additional equi-
libria. However, as the T-period Fixed Link games have the same equilibria
as the Fixed Link game, and these do not suffice to implement additional
equilibria in the repeated version, we do not believe such equilibria to occur
by repeating the T -period Fixed Action game again.

4 Experiment

To evaluate our theoretical prediction from Section 2, we designed an experi-
mental test. This section summarizes the corresponding experimental design,
hypotheses, and experimental results.

4.1 Design

To evaluate the hypotheses described, we conducted laboratory experiments
at the Karlsruhe Institute of Technology. Each experimental session lasted
approximately 1.5 hours. For all sessions we recruited a total of 162 partic-
ipants using ORSEE (Greiner, 2004) from a pool of students in Karlsruhe.
At the beginning of each experimental session, we randomly assigned the
participants to groups of six. We handed out written instructions to each
participant, describing the experimental setup. After all participants had
read the instructions, they played one treatment implemented using zTree
(Fischbacher, 2007) at a computer terminal. Finally, we paid the participants
in private, depending on their success in the treatment.

The baseline treatment (Treatment Basic) is equivalent to the Network
Hawk-Dove game and consisted of 50 periods. In every period, participants
could specify other participants they wanted to establish links to and the
action they wanted to play. At the end of each period, the experimental
software calculated participants payoff (with the payoff function being iden-
tical to our running example in Table 2). For each link a participant had
established, he had to pay k = 50 points. All linked participants then played
the Hawk-Dove game. That is to say, if a participant played dove and his
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neighbor hawk, he received 40 points, while his neighbor received 80 points.
If both participants played hawk, they received 20 points each. They received
80 points when coordinating toward dove action. After payoff calculation,
the computer terminal showed the actions, all links, and the individual per-
formance to each participant.

We conducted two modifications of Treatment Basic: (1) Treatment Fixed
Link and (2) Treatment Fixed Action. Treatment Fixed Link was identical
to 10 times playing the T -period Fixed Link game with T = 5. In Treatment
Fixed Action, the T -period Fixed Action game with T = 5 was played 10
times. That is to say, we limited the strategy sets of the players in periods
2, ..., 5, 7, ..., 10 and allowed them to choose both, actions and links, in periods
1, 6, ....

At the end of the experiment, all participants received a show-up fee
of 5.00 e . For 1, 000 points earned during the experiment, a participant
received 1.00 e . On average, each participant earned 11.39 e .

4.2 Hypotheses

To begin with, we summarize the results of the preceding sections and ap-
ply the parameters of our experiments to these results (Table 3). We have
shown (Theorem 2) that the payoff increases with the number of doves in
the network. As we motivated in the introduction, network experiments
with (anti-)coordination games have one central property: Theory predicts
inefficient outcomes (e.g., Jackson and Watts, 2002, Bramoulle et al., 2004).
However, in experiments efficient strategy profiles occur frequently (Corten
and Buskens, 2010,Corbae and Duffy, 2008, Berninghaus et al., 2012). This
result is not surprising as experimental tests of several other games show a
tendency toward efficient outcomes (Engelmann and Strobl, 2004).

We have further shown that when analyzing the Network Hawk-Dove
game as a finitely repeated game, such efficient outcomes are also theoreti-
cally plausible in the repeated Network Hawk-Dove game and the T -period
Fixed Action game. However, they do not occur in T -period Fixed Link
games. To confirm these theoretical predictions, we designed an experiment
in which the overall payoff is maximal if the number of hawks nH is 0 or
1. This efficient strategy profile can be established both in the repeated
Network Hawk-Dove game and the T -period Fixed Action game but does
not constitute an equilibrium in the T -period Fixed Link game. Hence, this
setup allows us to check whether our theoretical predictions actually occur

25

Jena Economic Research Papers 2013 - 048



in an experimental setup.

Table 3: Number of hawks in Nash equilibrium

Network Hawk-Dove Fixed Action Fixed Link
General Prediction (a > b > k > c > d)

One-shot n∗H ≥ a−b
a−b+c−d(n− 1) n∗H ∈ {0, ..., n} n∗H ∈ {0, ..., n}7

Repeated n∗H ∈ {0, ..., n} n∗H ∈ {0, ..., n}8 n∗H ≥ a−b
a−b+c−d(n− 1)

Our example (a = 80 > b = 60 > k = 50 > c = 40 > d = 20; n = 6)
One-shot n∗H ≥ 2.5 n∗H ∈ {0, ..., 6} n∗H ∈ {0, ..., 6}
Repeated n∗H ∈ {0, ..., 6} n∗H ∈ {0, ..., 6} n∗H ≥ 2.5

Based on our theoretical predictions, we expect the following properties
in Treatment Basic:

Hypothesis 1. In Treatment Basic, we expect ...

a) a trend toward efficient strategy profiles, ...

b) more hawks in period 50 than in periods 1 to 49, and ...

c) links to doves only.

Equilibrium predictions for the Fixed Action game are identical to these
predictions except for the trend toward more hawks in period 5. However,
due to the reduced strategy set and a higher simplicity of the game, we
expect there will be fewer deviations from the equilibrium strategy than in
the Network Hawk-Dove game.

Hypothesis 2. In Treatment Fixed Action, we expect ...

a) the number of hawks and links to be similar to the number of hawks in
periods 1 to 49 of Treatment Basic and ...

b) fewer deviations from the equilibria than in Treatment Basic.

7For the neighborhoods ni
H > a−b

a−b+c−dn
i has to hold.

8(If T (a − b + c) < (T − 1)k − d holds, nH ≥ T (a−b)−(T−1)k
T (a−b+c)−(T−1)k−d (n − 1) has to be

satisfied.
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Hypothesis 2 (b) results from our expectation that the Fixed Action game
simplifies the decision situation. Subjects who only adjust their links have a
much simpler task than subjects who have to choose both, links and actions,
as the latter do not have to coordinate on the desired number of hawks and
doves but merely adjust their links to the given strategy profile.

For the Fixed Link game predictions are identical to the predictions of
the repeated Network Hawk-Dove game in period 5. However, similar to
the Fixed Action game, we expect that participants benefit from the higher
simplicity of the game and that we see fewer deviations from equilibria.

Hypothesis 3. In Treatment Fixed Link, we expect ...

a) the number of hawks to be higher than the number of hawks in periods
1..49 of Treatment Basic and in all periods of Treatment Fixed Action
and ...

b) fewer deviations from the equilibria than in Treatment Basic.

Similar to Hypothesis 2 (b), Hypothesis 3 (b) accounts for the lower
complexity of the T -period Fixed Link game.

4.3 Results

A first glance at the data (see Fig. 1) shows that the number of hawks
remains almost stable throughout the game in Treatments Fixed Link and
Fixed Action, with the number of hawks being higher in Treatment Fixed.
As expected, the graphs in Figure 1 suggest an increase in the number of
hawks in the last period of Treatment Basic, whereas the development of the
number of hawks resembles that in Treatment Fixed Action in all preceding
periods.

When we compare the number of links, again Treatment Basic and Treat-
ment Fixed Action resemble each other - except for a steep decrease in the
number of links in Treatment Basic in periods 6, 11, ..., i.e., in all periods in
which the one-shot Network Hawk-Dove game is played. As expected, the
number of links in Treatment Fixed Links is below the number of links in
both other treatments.

To sum up, a first glance at the data is in line with our expectations except
for Treatment Fixed Action. In this treatment, players tend to establish fewer
links than in all other periods when choosing actions and links simultaneously.
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Figure 1: Development of behavior during the experiment
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One might criticize that a comparison between the treatments is difficult,
because in Treatment Basic subjects can choose both, links and actions, in
every period, while in Treatments Fixed Action and Fixed Link they can only
do so in a subset of periods. Hence, we focus our analyses on all periods of
the game and discuss differences between periods 1, 6, .. and the other periods
of Treatments Fixed Action and Fixed Link whenever they occur.

4.4 Treatment Basic

In Treatment Basic, the number of hawks in the population, 2, is on average
above that of all groups (see Table 4). While the number of hawks is around
2 during the first periods, it sharply increases to 3 on average in period
50. A binomial test confirms this increase (p=0.04), which is in line with
Hypothesis 1 (b).

Table 4: Number of hawk players per group

Grp. Basic Fixed Fixed Link
t = 1..49 t = 50 All Action t = 1, 6, ... other t All

1 2.04 3.00 2.06 2.20 2.30 2.90 2.78
2 2.24 4.00 2.28 2.20 0.90 1.70 1.54
3 2.45 3.00 2.46 2.00 2.60 2.73 2.70
4 2.76 4.00 2.78 2.60 3.60 3.18 3.26
5 2.39 3.00 2.40 2.00 2.50 2.73 2.68
6 1.24 2.00 1.26 2.00 3.70 2.48 2.72
7 1.88 2.00 1.88 2.20 2.40 2.08 2.14
8 1.49 4.00 1.54 1.80 2.70 2.45 2.50
9 1.76 3.00 1.78 2.00 1.70 2.43 2.28

Avg. 2.03 3.11 2.05 2.11 2.49 2.52 2.51

The number of hawks during the first 49 periods is higher than the number
of hawks in efficient Nash equilibria, i.e., 0 or 1, and no group in our experi-
ments reached an average of 1 or less. However, in all groups except one the
average number of hawks is below 2.5, the minimum number of hawks in the
one-shot equilibrium of the Network Hawk-Dove game. Hence, we observe a
tendency toward efficient Nash equilibria as predicted by Hypothesis 1 (a).
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Table 5: Avg. number of links per group

Grp. Basic Fixed Action Fixed
t = 1..49 t = 50 All t = 1, 6, ... other t All Link

1 12.04 12.00 12.04 10.63 10.60 10.62 10.30
2 11.14 13.00 11.18 11.80 12.40 11.92 9.40
3 10.02 11.00 10.04 9.95 10.30 10.02 9.60
4 7.43 3.00 7.34 8.58 10.00 8.86 9.80
5 10.16 12.00 10.20 10.43 11.30 10.60 10.40
6 13.00 6.00 12.86 9.30 9.60 9.36 9.30
7 10.49 12.00 10.52 10.55 11.50 10.74 11.60
8 11.57 10.00 11.54 11.20 11.10 11.18 7.70
9 10.35 12.00 10.38 9.65 11.00 9.92 9.30

Avg. 10.69 10.11 10.68 10.23 10.87 10.36 9.71

We attribute the low number of hawks to difficulties in establishing links.
In a population of 2 hawks, we expect 14 links in equilibrium, i.e., 8 links
from hawks to doves (4 per hawk player to each dove) and 6 links between
doves (to link all 4 doves). However the average number of links is between
10 and 11 per group (see Table 5). In addition, the links should decrease in
period 50. Here all 3 hawks should link to all 3 doves, and the doves should
link to each other, resulting in 12 links. The number of links increases in
5 of 9 groups, not confirming the expected decrease (Wilcoxon, p=0.953,
Z=-0.059).

To further analyze the link quality, we calculate different types of links
relative to the possible number of links (see Table 6). For example, 45%
observed (H,H) links in group 1 means that 45% of possible links between two
hawks were established. Recall that links to hawks should not be established
while all links to doves exist in equilibrium. Hence, an average of 35% of
all links between two hawks is established, and 11% of all links from doves
to hawks exist on average. This result clearly rejects Hypothesis 1 (c). In
addition, 40% of all links between doves are not established. Only links from
hawks to doves persist to a high extent (about 80% are established, while
only 4% are missing).

Given the deviations in the established links from the equilibrium pre-
diction, it is not surprising that the number of hawks in the population is
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Table 6: Detailed analysis of links in Treatment Basic

Grp. (H,H)-links (D,D)-links (D,H)- or (H,D)-links
Obs. Bil. Obs. Bil. Mis. Obs. Bil. Mis. (D,H)

1 45% 9% 76% 12% 36% 90% 5% 14% 12%
2 30% 4% 70% 6% 36% 86% 2% 16% 9%
3 13% 1% 46% 3% 57% 91% 1% 10% 4%
4 39% 3% 51% 2% 51% 52% 4% 52% 19%
5 35% 3% 63% 5% 42% 80% 2% 22% 7%
6 44% 4% 84% 15% 31% 96% 13% 16% 18%
7 22% 2% 80% 6% 26% 67% 2% 35% 8%
8 41% 0% 74% 2% 29% 86% 4% 18% 11%
9 49% 4% 56% 5% 49% 86% 5% 20% 12%

Avg. 35% 3% 67% 6% 40% 82% 4% 23% 11%

Abbreviations: Obs. = Observed, Bil. = Bilateral, Mis. = Missing

2 instead of 0 or 1 in the efficient equilibrium. In addition, this allows for
efficiency increases in Treatments Fixed Action and Fixed Link, in which the
subjects can focus on establishing the best links or choosing the right actions
only.

4.5 Treatment Fixed Action

We now compare the results of Treatment Basic with those of Treatment
Fixed Action with a focus on the differences in the established links. Our
analysis concentrates on periods 1 to 49 of Treatment Basic in the light of the
results of our theoretical prediction and behavioral results, clearly showing
different behavior in the last period. The number of hawks in the population
is identical in both Treatment Basic and Treatment Fixed Action (Mann
Whitney U, p=0.931, U=39.0), confirming Hypothesis 2 (a).

The number of links does not differ between Treatments Basic and Fixed
Action (Mann Whitney U, p=0.489, U=32.0). Nevertheless, the lower num-
ber of links in periods 1, 6, ... (see Fig. 1) is significant (Mann Whitney U,
p=0.002,U=7.0). In our analysis of Treatment Fixed Action, we therefore
focus on periods 2, ..., 5, 7, ... and only mention periods 1, 6, ... explicitly if
behavior during these periods differs.
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Table 7: Detailed analysis of links in Treatment Fixed Action

Grp. (H,H)-links (D,D)-links (D,H)- or (H,D)-links
Obs. Bil. Obs. Bil. Mis. Obs. Bil. Mis. (D,H)

1 6% 0% 75% 8% 34% 89% 3% 14% 4%
2 13% 1% 88% 12% 23% 100% 9% 8% 11%
3 6% 1% 69% 14% 45% 99% 2% 4% 4%
4 17% 2% 62% 8% 46% 90% 1% 11% 1%
5 2% 0% 72% 10% 38% 90% 1% 11% 1%
6 6% 0% 69% 13% 44% 89% 1% 13% 3%
7 7% 0% 74% 6% 32% 97% 1% 4% 1%
8 0% 0% 67% 9% 42% 100% 0% 0% 0%
9 0% 0% 62% 8% 46% 93% 2% 10% 2%

Avg. 6% 1% 71% 10% 39% 94% 2% 8% 3%

Abbreviations: Obs. = Observed, Bil. = Bilateral, Mis. = Missing

In line with our expectation (see Hypothesis 2), (b) the number of links
between hawks (Mann Whitney U, p=0.000, U=1.5) and the number of links
from hawks to doves (Mann Whitney U, p=0.014, U=12.0) is lower in Treat-
ment Fixed Action than in Treatment Basic (see Tables 6 and 7). Bilat-
eral, i.e., inefficient, links between two hawks (Mann Whitney U, p=0.006,
U=10.0) or between hawks (Mann Whitney U: p=0.094, U=21.0) and doves
as well as missing links from hawks to doves (Mann Whitney U: p=0.000,
U=4.0) are also less frequent in Treatment Fixed Action. Even links from
doves to hawks do not occur as often (Mann Whitney U: p=0.001, U=5.0).
This clearly confirms Hypothesis 2 (b). However, these results do not hold
if periods 1, 6, ... are also subject of the analysis. Here all significant effects
except for the number of links between two hawks and links from doves to
hawks vanish.

The fraction of players playing all optimal links is about 30% from period
5 on (except for periods 6, 11, ...) in Treatment Fixed Action. In Treatment
Basic, it takes longer until these levels are reached, in line with the results on
links involving hawks. The situation changes when we analyze links between
two doves (see Fig. 2). In Treatment Fixed Action, the fraction of missing
links between doves increases over time toward levels close to 100%. That
is to say, in later periods doves are almost never linked. Throughout the
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game, the fraction of links between doves (and the number of missing links
between doves) does not vary (Mann Whitney U, p=0.796, U=37.0; p=1.000,
U=40.0). We attribute this to the fact that most links between doves are
established after every Network Hawk-Dove game played but are removed
afterwards, which, in turn, we attribute to a lack of reciprocity. Subjects
try to alternate in paying for the all links between doves. However, they
fail to do so, which is confirmed by the fact that in Treatment Fixed Action
bilateral links between doves are more frequent (Mann Whitney U, p=0.040,
U=17.0), yielding fewer links and contradicting Hypothesis 2.

The results of Treatment Fixed Action clearly confirm Hypothesis 2 - ex-
cept for one aspect: Subjects fail in reciprocally establishing links between
two doves. This result is especially surprising because, in contrast to Treat-
ment Basic, subjects in Treatment Fixed Action can focus on the links only.

4.6 Treatment Fixed Link

The number of hawks in Treatment Fixed Link is about 2.5 and therefore
significantly higher than in the first 49 periods of Treatment Basic (Mann
Whitney U, p=0.050, U=18.0) and also significantly higher than in Treat-
ment Fixed Action (Mann Whitney U, p=0.024, U=15.0), confirming Hy-
pothesis 3 (a). However, it is still lower than in period 50 of Treatment Basic
(Mann Whitney U, p=0.077, U=20.0).

We investigate this by checking whether the played action (hawk or dove)
is the best response to the strategy profile of all other players (see Fig. 3).
Throughout the game, for almost the same fraction, i.e., about 50% of the
players who play dove, dove is in fact the best strategy. This percentage is
quite low. It indicates that half of the dove players could increase their payoff
by switching to hawk. As for Treatment Basic, this is not surprising: Here,
in an efficient Nash equilibrium, several players resort to dove so as not to
be punished in the long run, although a switch to hawk would increase their
payoff in the short run. However, this does not hold for Treatment Fixed
Link. Here subjects play a one-shot Nash equilibrium. A deviation does not
have a negative consequence in the long run. The result is more intriguing
when we focus on the number of hawks playing the optimal action, given
the strategy profile of all others (see Fig. 3, right chart). Throughout the
game, the fraction of hawks who should play hawk to maximize their payoff
is higher in Treatment Basic than in Treatment Fixed Link.

In consequence, the fraction of players maximizing their payoff (see Ta-
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Table 8: Fraction of best actions given other links and actions per group

Basic Fixed Fixed
Grp. t = 1..49 t = 50 All Action Link

D H D H D H D H D H

1 62% 90% 100% 67% 63% 90% 60% 92% 79% 44%
2 71% 95% 100% 0% 71% 93% 55% 91% 21% 84%
3 91% 96% 100% 100% 91% 96% 63% 85% 79% 60%
4 69% 62% 100% 25% 69% 62% 76% 78% 83% 61%
5 69% 86% 100% 67% 70% 86% 59% 92% 83% 75%
6 29% 96% 25% 50% 29% 95% 58% 88% 80% 74%
7 33% 94% 75% 100% 34% 94% 62% 93% 57% 77%
8 27% 96% 100% 0% 29% 94% 64% 95% 49% 70%
9 61% 92% 100% 100% 62% 92% 66% 98% 56% 71%

Avg. 57% 90% 89% 57% 58% 89% 63% 90% 65% 68%

ble 8) by playing hawk is higher (Mann Whitney U, p=0.003, U=8.0) in
periods 1 to 49 of Treatment Basic than in Treatment Fixed Link, while this
does not hold for doves (Mann Whitney U, p=0.489, U=32.0). However,
this changes in period 50 of Treatment Basic. Here for more doves playing
dove is the best alternative in Treatment Basic compared to Treatment Fixed
Link (Mann Whitney U, p=0.014, U=13.0), while no such effect exists for
doves (Mann Whitney U, p=0.605, U=34.0). Hence, this result contradicts
Hypothesis 3 (b).

To sum up, we observe an increase in the number of hawks in Treatment
Fixed Link compared to the first periods of Treatments Basic and Fixed
Action. However, this increase is not as high as that in the last period of
Treatment Basic. We attribute this to the problems of subjects in finding
the best response to the strategy profiles they face. Similar to Treatment
Fixed Action, the increased simplicity does not help to better identify and
play the equilibria.

4.7 Summary

Treatments Basic and Fixed Action yield almost the same number of hawks
per population, namely about 2. First, given the theoretical predictions of
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the Network Hawk-Dove Game, these are more hawks than we expect in
an efficient Nash equilibrium. We attribute this deviation to the players’
problems when choosing their optimal links. Second, in Treatment Fixed
Link subjects resort to hawk less often (about 2.5 per network) than expected
by the Nash prediction. This is the consequence of not playing the best
response to the strategies of others.

Table 9: Payoff per capita and per period

Grp. Basic Fixed Fixed
t = 1..49 t = 50 All Action Link

1 661.63 560.00 659.60 623.40 357.80
2 679.59 390.00 673.80 640.00 492.40
3 654.08 610.00 653.20 559.80 396.80
4 377.14 130.00 372.20 497.00 387.60
5 651.22 680.00 602.00 640.40 533.60
6 651.22 420.00 646.60 526.40 459.80
7 645.31 840.00 649.20 675.80 472.00
8 735.71 60.00 722.20 669.80 429.40
9 599.39 600.00 599.40 608.00 415.80

Avg. 622.72 476.67 619.80 604.51 438.36

We finally examine the payoffs in all three treatments (see Table 9). While
payoffs in Treatments Basic and Fixed Action do not differ (Mann Whitney
U, p=0.387, U=30.0), they are significantly higher than in Treatment Fixed
Links (Basic: Mann Whitney U, p=0.003, U=8.0; Fixed Action: Mann Whit-
ney U, p=0.000, U=2.0), clearly showing that the increase in simplicity does
not improve payoffs.

5 Discussion

Like Berninghaus et al. (2012), we investigate Network Hawk-Dove games.
However, their work differs from ours in two aspects: (1) They play the
corresponding experiments in continuous time. (2) Their theoretic analysis
considers one-shot versions of the game only. In this section, we discuss the
advantages and disadvantages of both approaches.
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Berninghaus at al. (2012) motivate the usage of continuous time experi-
ments with lower coordination failures. Such failures in Network Hawk-Dove
games should be expected since the best choice of action and links depends
on the choices of all other players in the group. As we are interested in equi-
librium play, it seems an intriguing idea to find a way to shorten the time
needed to reach these equilibria. However, our experiment shows that coor-
dination failures are not reduced: Subjects find equivalent strategies both if
they play in continuous time, as in (Berninghaus, 2012), and in discrete time,
as in this study. Efficiency in our study is around 60%, while it is around
76% in the study with continuous time. This decrease in efficiency results
from slower adaptations to the strategy profiles of others rather than from
different behavioral patterns, confirming that discrete time experiments lead
to the same strategy profiles as continuous time experiments and offer no
additional insights.

However, a disadvantage of continuous time experiments is their lack
of control: While we can limit the strategy sets in certain periods, this is
not possible in continuous time experiments. The goal of Berninghaus et al.
(2012) has been to investigate the strategy adaptation process, namely to find
out whether subjects first choose actions and adjust their links accordingly
or the other way around. They show that in continuous time experiments,
subjects tend to choose actions and fix links afterwards. Our design with
discrete time allows for additional insights. Apart from the fact that the in-
terplay of actions and links is confirmed, we observe that subjects who adjust
their actions to a given network never reach the levels of efficiency reachable
if actions are chosen first. We can even measure the loss in efficiency imposed
by this limitation. Moreover, we even see the impact on the adaptation pro-
cess for the different setups. Hence, our experiments suggest that discrete
time experiments should be preferred over experiments in continuous time.

Berninghaus et al. (2012) use a theoretic analysis of the one-shot Network
Hawk-Dove game to predict behavior. They do this using the Nash concept,
which is not in line with their own theoretical predictions and a new concept
derived from their experimental results. We believe that our approach, i.e.,
using the Nash concept and extending the analysis to a multi-period model,
is preferable to the introduction of a new concept as this leaves a central
question open: When to apply which concept?
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6 Conclusion

In this paper, we have extended existing game-theoretic analyses of the one-
shot Network Hawk-Dove game (Bramoulle et al., 2004, Berninghaus and
Vogt, 2006) to the finitely repeated version of the game. We have shown
that, although efficient strategy profiles and Nash equilibria of the one-shot
game differ, efficient strategy profiles are sub game perfect Nash equilibria
in the finitely repeated version of the game. This helps to better understand
the behavior observed in anti-coordination games with endogenous network
formation. Here the subjects typically tend to play efficient strategy profiles,
although game-theoretic models of the one-shot games predict outcomes with
low payoffs only. Our results are especially worthwhile because a small design
change, i.e., limiting the strategy set to action selection in some periods, has
resulted in our game-theoretic model not predicting efficiency and the subject
not reaching efficiency in the lab.

Our results suggest that in real world (online) social networks, humans
should choose their actions wisely and adjust their contacts accordingly. In
your own company, do encourage employees to decide early whether to be-
come a manager or an employee and encourage them to interact. In the
online world, let community members choose their strategies early and let
them build links easily.
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A Experimental Instructions

In this appendix, we list our experimental instructions. The first subsection
consists of a translation of the German instructions used during the exper-
iments. Both latter subsections are translations of the paragraphs modified
for Treatments Fixed Action and Fixed Link.

A.1 Treatment Basic

Welcome to this experiment and thank you very much for your participation.
You will receive 5.00 e for showing up in time. During the experiment, you
will have the opportunity to earn additional money. Please stay calm and
switch of your mobile phone. Please read these instructions carefully which
are identical for all participants. Communication among the participants is
not allowed. If you do not follow these rules, we impose a fine of 5.00 e on
you. If you have any questions, please raise your hand. The experimenter
will then come to you and answer your question in private. The endowment
of 5.00 e for showing up in time as well as any other amount of money, you
earn during the experiment, will be paid to you in cash at the end of the
experiment. We will pay you privately to ensure that no other participant
becomes aware of the amount of your payment. Your payment depends on
your own decisions as well as the decisions of other participants. The payoff
in the experiment is measured in points. The points you earn during the ex-
periment will be converted into Euro at the end of the experiment and paid
to you. You find the conversion rate at the end of this document. You and all
other participants enter their decisions independently of other participants
in individual computer terminals.

Course of the experiment

At the beginning of the experiment, you are randomly assigned to five
other participants, forming groups of six. Each member of your group will
be randomly assigned to one of six positions. The participants in one group
will not necessarily sit side by side. The composition of the group and the
positioning remain unchanged. In the following, ”participants stands for
the participants in your group. The participants of other groups are not
considered in the remainder of these instructions.

This experiment consists of 50 periods. At the beginning of each period,
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you have to make two decisions:

• You decide on the strategy you will play during the next period.

• You decide on the connections you establish to participants you want
to play with.

While making your decision, you will see the following display on your
computer screen (see Figure 4). Your position and the period you play in
are visualized in the upper area of the screen. On the left side of the display
you decide on your strategy. On the right side you choose the partners to
whom you want to establish connections. By marking several different other
participants you can establish connections to more than one participant.
Your payoff

At the end of each period, your payoff is calculated based on the decisions
of all participants. The result of this calculation, your decisions and the
decisions of all other participants are shown on the computer screen.

Table 10: Payoff

Your fellow player
Strategy A Strategy B

You
Strategy A You: 20, Fellow Player: 20 You: 80, Fellow Player: 40
Strategy B You: 40, Fellow Player: 80 You: 60, Fellow Player: 60

The calculation of your payoff is as follows. For each connection you
established to another participant you face costs at height of 50 per connec-
tion. In addition you receive a positive payoff for each participant you are
connected to. Therefore, it does not matter whether the other participant,
you or both established the connection. The payoff depends on your strategy
and the strategy of the connected participant (see Table 10). If both of you
chose Strategy A, you receive a payoff of 20 points. If you chose Strategy
A and the other participant chose Strategy B, you receive 80 points. If the
other participant chose Strategy A and you Strategy B, you receive 40 points.
If both of you chose Strategy B, you receive 60 points. You receive a payoff
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per period calculated as the payoff from all games with other participants
minus the costs for the connections established by you.

Example: Imagine you are Participant 1. You have established a con-
nection to Participant 2. Participant 3 has established a connection to you.
You play Strategy A, Participant 2 plays Strategy A and Participant 3 plays
Strategy B. Your Payoff is calculated as follows: The connection to Par-
ticipant 2 costs 50 points, the connection of Participant 3 to you is free of
charge for you. You receive 20 points from the game with Participant 2 and
80 points from the game with Participant 3. Summed up, you receive 50
points (80 + 20− 50).

Information at the end of each period

In the end of each period you see your earnings during the last period and
the current structure of the network. In the upper area of the corresponding
display you see your position and the period you currently play in. On the left
half you see the costs for connections established by yourself, the payoff from
every game with another participant you are connected to and your earnings
during the last period, namely the sum of your connection costs and the
payoffs per game. On the right half of the display you see the structure of
the network. The visualization follows these conventions:

• Every participant, even yourself, is visualized by a circle. Within the
circle stands an identification number of the participant and the strat-
egy, namely A or B, the corresponding participant is playing.

Example: The following visualization represents Participant 9 playing
Strategy X.

9: X

• Connections between participants are visualized with arrows. Each ar-
row starts at the participant who established the connection and points
to the participant to whom the connection was established.

Example: The following visualization represents a connection between
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Participant 9 and Participant 8. Participant 9 has established the con-
nection.

9: X 8: Y

• If both participants established a connection to each other, the arrow
has heads at both ands. If no connection exists, no arrow connects the
circles representing the participants directly.

End of the experiment

The experiment ends after 50 periods. Throughout all periods the groups
and the assignments to positions do not change. Please remain seated during
all periods and only get up when asked.

In the end of the experiment your points are converted to money. For
1.000 points you earned during the experiment, you receive 1.00 e . Your
earnings are rounded to the next amount dividable by 5 Cent.

A.2 Treatment Fixed Action

The instructions of Treatment Fixed Action were identical to the instructions
of Treatment Basic, except for two paragraphs in the section ”Course of the
experiment.

The end of the second paragraph (“At the beginning of each period [...]
want to play with.”) was replaced by “At the beginning of each period,
you decide on the connections you establish to participants you want to play
with. At the beginning of the first period, and then after every 5 periods
(namely, Period 6, Period 11, ) you also decide on the strategy you will play
during the next period.”

The third paragraph (“While making your decision [...] to more than one
participant.”) was extended by “During the periods, in which you cannot
decide which strategy you play, the left part of the display is empty. During
these periods you play the strategy of the preceding period.”

A.3 Treatment Fixed Link

In the instructions of Treatment Fixed Link, we modified the same two para-
graphs of Treatment Basic as in Treatment Fixed Action.
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In particular, the second paragraph (“This experiment consists of [...]
want to play with.”) now read “At the beginning of each period, you decide
on the strategy you will play during the next period. At the beginning of
the first period, and then after every 5 periods (namely, Period 6, Period 11,
) you also decide on the connections you establish to participants you want
to play with.”

After the third paragraph (“While making your decision [...] to more than
one participant.”) we added “During the periods, in which you cannot decide
to whom you want to establish connections to the right part of the display is
empty. During these periods the network structure remains identical to the
structure of the preceding round for you and all other participants.”
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Figure 2: Fraction of players having optimal links given played actions
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Figure 3: Fraction of players using optimal action given played actions
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Figure 4: Decision Screen
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