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Solving nonlinear stochastic optimal control

problems using evolutionary heuristic

optimization∗

I. Savin†‡ and D. Blueschke§

Abstract

Policy makers constantly face optimal control problems: what controls
allow to achieve certain targets in, e.g., GDP growth or inflation? Con-
ventionally this is done by applying certain linear-quadratic optimiza-
tion algorithms to dynamic econometric models. Several algorithms
extend this baseline framework to nonlinear stochastic problems. How-
ever, those algorithms are limited in a variety of ways including, most
importantly, restriction to local best solutions only and the symme-
try of objective function. In Blueschke et al. (2013a) a new flexible
optimization method based on Differential Evolution is suggested. It
allows to lift these limitations and achieve better approximations of
the policy targets, but is designed to deterministic problems only. This
study extends the methodology by dealing with stochastic problems in
two different ways: applying extreme event analysis and by minimizing
the median objective value. Thus, this research is aimed to broaden
the range of decision support information used by policy makers in
choosing optimal strategy under much more realistic conditions.
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1 Introduction

Over the recent few decades, a large number of studies have tried to ex-
tend or rather to replace the traditional research methods by using different
computer-based simulation techniques. These methods becoming increas-
ingly popular include, among others, those areas of research like agent-based
modeling, artificial neural networks and heuristic optimization. This paper
follows the latter line of research and analyses the use of an evolutionary,
heuristic approach in comparison to a more ’traditional’ algorithm for opti-
mal control of nonlinear stochastic problems.

The baseline framework in the field of optimal control problems is the
linear-quadratic (LQ) optimization technique which is included in nearly all
existent solution algorithms. There are many extensions of those methods for
more sophisticated scenarios like considering nonlinear models and stochastic
problems (e.g. Chow (1975), Chow (1981) and Kendrick (1981)). One of the
algorithms which deals with these types of problems is OPTCON described
in Matulka and Neck (1992) and Blueschke-Nikolaeva et al. (2012). However,
the OPTCON algorithm still relies on the LQ optimization technique and,
therefore, has some limitations typical for this framework.

One very important limitation which is common for nonlinear problems
is the necessity of linearization of the problem, which, especially in the case
of stochastic problems, requires some simplification assumptions and causes
loss of information. In a recent work by Blueschke et al. (2013a) a new
way of handling optimal control problems is analyzed. The authors test an
evolutionary (so-called heuristic) approach for this purpose, namely Differ-
ential Evolution (DE, Storn and Price (1997)), which does not rely on LQ
framework. The authors apply DE to optimal control problems in nonlinear
dynamic economic systems with asymmetric objective function, where the
’classical’ OPTCON algorithm does not work. They choose the DE method
for this purpose because of its ability to explore complex search spaces with
multiple local minima thanks to cooperation and competition of individual
solutions in the DE’s population, and the application easiness as it needs
little parameter tuning. Applying the DE method increases computational
time substantially but allows to get new insights into optimal control prob-
lems. In particular, some better approximations of the targets stated by
policy makers are achieved. However, the work by Blueschke et al. (2013a)
is designed to deterministic problems only. The present study extends this
methodology and analyses the application of DE for stochastic problems.

Two alternative ways of dealing with stochastic nature of the problem are
considered. On the one hand, applying DE for stochastic problems allows to
run an ’extreme event analysis’, where the outcomes of the best and worst
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scenarios (in terms of the objective function value achieved) can be investi-
gated. On the other hand or rather in addition, DE allows to minimize the
expected objective value using a different selection criterion. While in the
’classical’ optimization algorithms, where policy makers have only very lim-
ited information: an optimal strategy (usually only a local optimum) and an
ex-post objective value, the present paper by combining the two alternatives
broadens the range of decision support information by policy makers for the
choice of the optimal strategy. Here we use the notation ’ex-post objective
value’ to highlight the following limitation of classical stochastic optimal con-
trol algorithms. An ex-post objective value means that the problem is solved
as if it were stochastic, which leads to a set of optimal controls (u∗

t ). In order
to evaluate this stochastic solution (i.e. to calculate the final objective value)
one applies in classical algorithms the deterministic model, which means that
a certain set of parameters is used to calculate respective states (x∗

t ). The
final objective value (an ’ex-post objective value’, as denoted in our paper)
is then calculated for this resulting solution (x∗

t ,u
∗

t ). In contrast, using the
DE algorithm allows us to calculate both the ’ex-post objective value’ for
the best solution and an expected objective value, which takes the stochastic
nature explicitly into account.

Possibility to calculate both, ex-post objective value and an expected ob-
jective value constitutes an important advantage also because, as we demon-
strate, the ex-post objective function and the actual expected objective func-
tion (represented by the least median, see Section 3.2) are not ’associated’:
if one function monotonously decreases on a certain sequence of solutions,
the other one will not necessarily do the same on this set of solutions. As
a consequence, a solution most preferable by the ex-post function does not
necessarily have the lowest expected value and the other way around. This
raises the question on whether the classical approaches are well specified
for the stochastic nonlinear problems and whether their solutions are not
merely suboptimal ones? As we show below, DE outperforms OPTCON in
minimizing the expected objective function for two different problems tested
supporting our criticism in this regard.

The paper proceeds as follows. In Section 2 we define the class of problems
to be tackled by the algorithms. Section 3.1 briefly reviews the OPTCON
algorithm and describes its limitations. Section 3.2 introduces DE as an
alternative strategy for solving nonlinear stochastic optimal control problems.
In Section 4 results obtained for these two approaches based on two different
models are stated. Section 5 concludes.
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2 Problem description

The task is to solve an optimal control problem with a quadratic objec-
tive function (a loss function to be minimized) and a nonlinear multivari-
ate discrete-time dynamic system under additive and parameter uncertain-
ties. The intertemporal objective function is formulated in quadratic tracking
form, which is often used in applications of optimal control theory to econo-
metric models. It can be written as

J = E

[

T
∑

t=1

Lt(xt, ut)

]

(1)

with

Lt(xt, ut) =
1

2

(

xt − x̃t

ut − ũt

)

′

Wt

(

xt − x̃t

ut − ũt

)

, (2)

where xt is an n-dimensional vector of state variables that describes the state
of the economic system at any point in time t, ut is an m-dimensional vector
of controls, x̃t ∈ Rn and ũt ∈ Rm are given ’ideal’ (desired, target) levels
of the state and control variables, respectively. T denotes the terminal time
period of the finite planning horizon. Wt is an ((n +m) × (n +m)) matrix
specifying the relative weights of the state and control variables (states and
controls, henceforth) in the objective function. The Wt matrix may also
include a discount factor α, Wt = αt−1W . Wt (or W ) is symmetric.

The dynamic system of nonlinear difference equations has the form

xt = f(xt−1, xt, ut, θ, zt) + εt, t = 1, ..., T, (3)

where θ is a p-dimensional vector of parameters that is assumed to be con-
stant but unknown to the policy maker (parameter uncertainty), zt denotes
an l-dimensional vector of non-controlled exogenous variables, and εt is an
n-dimensional vector of additive disturbances (system error). θ and εt are
assumed to be independent random vectors with expectations, θ̂ and On, and
covariance matrices, Σθθ and Σεε, respectively. f is a vector-valued function
with f i(.....) representing the i-th component of f(.....), i = 1, ..., n. Solving
an optimal control problem means, therefore, to find a certain set of con-
trols (u∗

1, u
∗

2, ..., u
∗

T ) which minimizes the objective function J , i.e. to find
u∗ = argminu J with respect to (3).

At this point an important distinction should be made, namely the dis-
tinction between deterministic and stochastic systems. In the case of a deter-
ministic problem, the decision-maker knows the functionality of the system
for sure, i.e. without any uncertainties. In such a case the stochastic com-
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ponents are set to zero: εt,Σ
θθ,Σεε = 0. In the present study we explicitly

consider the parameter uncertainty (Σθθ 6= 0), which makes the optimization
much more complex, but at the same time more realistic.

Later on in the present study applying the DE algorithm, the stochastic
enters the system by different Monte Carlo realizations of parameter θ. For
each possible set of controls different sets of states should be then calculated
depending on these different θ as given by equation (3).

3 Optimization algorithms

3.1 OPTCON

The OPTCON algorithm determines approximate solutions to optimal con-
trol problems with a quadratic objective function and a nonlinear multivari-
ate dynamic system under additive and parameter uncertainties. It relies on
standard techniques of LQG framework1 and combines elements of previous
algorithms developed by Chow (1975) and Chow (1981), which incorporate
nonlinear systems but no multiplicative uncertainty, and by Kendrick (1981),
who deals with linear systems and all kinds of uncertainty. In our experi-
ments we use the last version of the OPTCON algorithm, which is called
OPTCON2. We skip the presentation of the OPTCON algorithm, which can
be found in more detail in Matulka and Neck (1992) and Blueschke-Nikolaeva
et al. (2012), and discuss only those issues relevant for this paper.

Due to the stochastic nature of the problems considered, optimal control
becomes a challenging task. It is well known in stochastic control theory that
a general analytical solution to dynamic stochastic optimization problems
cannot be achieved even for very simple control problems. The main reason
is the so-called dual effect of control under uncertainty, meaning that controls
not only contribute directly to achieving the stated objective, but also affect
future uncertainty and, hence, the possibility of indirectly improving the
system performance by providing better information about the system (see,
e.g., Aoki (1989) and Neck (1984)). Therefore, only approximations to the
true optimum for such problems are feasible, with various schemes existing
to deal with the problem of information acquisition.

As for linear problems, this field is well researched and there exist several
algorithms which allow to find a reliable solution at least for problems under
open-loop and open-loop feedback information patterns. A detailed descrip-
tion of those traditional solution concepts for the linear problems can be

1Optimization of linear systems with Gaussian noise under a quadratic objective func-
tion.

5

Jena Economic Research Papers 2013 - 051



found in Kendrick (2005). For nonlinear problems one can either use a linear
approximation approach as it is done in the OPTCON algorithm or one can
apply the perturbation method as shown, for example, in Cosimano (2008)
and Benigno and Woodford (2012). For stochastic problems with adaptive
control strategies Tucci et al. (2010) show that the problem is non-convex,
which means that a local optimization method could be not appropriate.
Some problems of the nonlinear stochastic problems are shown in Blueschke
et al. (2013b), but there is even more to say concerning an extension to non-
linear problems. The OPTCON algorithm like all algorithms relying on LQG
optimization technique solves the nonlinearity problem by a local linear ap-
proximation. This works in a stochastic case only under some simplifying
assumptions. The most restrictive one among them is the assumption of the
linear dependence of covariances in the linearized model from the covariances
in the nonlinear model, which is required to be able to transfer the stochastic
input of the nonlinear system (covariance matrix) into the linearized model.
This implicates also a certain loss of information.

Another important limitation of the classical algorithms for nonlinear
stochastic problems is the calculation of the expected ’cost-to-go function’.
The algorithm minimizes the expected value of it, but only for the local linear
approximation and, thus, there is no way to calculate the ’correct’ expected
objective function value of the original, nonlinear problem. As a result, only
a very limited amount of information is available for the decision maker as
output, namely an ex-post objective value calculated for the given (or rather
expected) set of uncertain parameters.

Summarizing these limitations, there is a need for a method which can
solve these problems and deliver a more informative solution of a nonlin-
ear stochastic optimal control problem. We propose to use the Differential
Evolution method for this purpose, as described below.

3.2 Differential Evolution

Thanks to the recent advances in computing technology, new nature-inspired
optimization methods called heuristics have been developed. These methods
are designed to provide ways of tackling complex optimization problems and
detect global optima of various objective functions (eligible for certain con-
straints) in discrete and continuous search spaces. For an overview of these
techniques see Gilli and Winker (2009).

Differential Evolution (DE), proposed by Storn and Price (1997), is a
population based optimization technique for continuous objective functions.
For applications of DE in finance, risk management and innovation manage-
ment see Lyra et al. (2010), Winker et al. (2011) and Egbetokun and Savin
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(forthcoming), respectively.
A detailed explanation on how DE deals with optimal control problem for

a single parameter set θ (deterministic scenario) one can find in Blueschke
et al. (2013a, p. 824-825). In short, starting with an initial population of
random solutions (line 2 in Algorithm 1), DE updates this population by
linear combination (line 7) and crossover (line 9) of four different solution
vectors into one, and selects the fittest solutions among the original and the
updated population. This continues until some stopping criterion is met.

Each member of the population (each candidate solution) contains all
control variables for all time periods. Thus, each candidate i = 1, ..., p rep-
resents an alternative complete solution path for the whole optimum con-
trol problem, and is given as an (m × T )-matrix P

(1)
.,.,i = (P

(1)
j,t,i) j=1,...,m

t=1,...,T

=

(u
(1),i
1 , u

(1),i
2 , ..., u

(1),i
T ), where u

(1),i
t is an m-dimensional vector of controls and

T – the size of the planning horizon.
It is important to mention that each candidate solution is also described

by the time paths of corresponding state variables, which results from the
dynamic system f , parameter set θ and the selected controls, i.e. (x

(1),i
t=1,..,T =

f(..., u
(1),i
t=1,..,T , θ, ...)). For each candidate solution (for each set of control

variables) and for each parameter set θ there is a unique set of state variables.
These state variables are not directly included in a candidate solution but
they contribute to the objective function which is to minimize.

Algorithm 1 Pseudocode for Differential Evolution
1: Initialize parameters m,T, p, F and CR
2: Randomly initialize P

(1)
j,t,i, j = 1, · · · ,m; t = 1, · · · , T ; i = 1, · · · , p

3: while the stopping criterion is not met do
4: P (0) = P (1)

5: for i = 1 to p do

6: Generate r1,r2,r3 ∈1, · · · ,p, r1 6= r2 6= r3 6= i
7: Compute P

(υ)
.,.,i = P

(0)
.,.,r1 + F × (P

(0)
.,.,r2 - P

(0)
.,.,r3)

8: for j = 1 to m and t = 1 to T do

9: if u < CR then P
(n)
j,t,i = P

(υ)
j,t,i else P

(n)
j,t,i = P

(0)
j,t,i

10: end for

11: if J(P
(n)
.,.,i ) < J(P

(0)
.,.,i) then P

(1)
.,.,i = P

(n)
.,.,i else P

(1)
.,.,i = P

(0)
.,.,i

12: end for

13: end while

To take the stochastic nature of the problem into account some additional
Monte Carlo simulations are required. In particular, a population of different
θs is generated representing alternative possible realizations of parameters.
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In the following we apply two approaches on how to take these stochastic
component into account: extreme event analysis and least median objective
value analysis.

3.2.1 Extreme event analysis

The first alternative of solving a stochastic optimal control problem using DE
one can denote as ’extreme event analysis’. The idea is to create a certain
number of randomly drawn (Monte Carlo) possible realizations of uncertain
parameters θ, MC DE (default MC DE = 1000).2 1000 θ realizations is
considered to be, on the one hand, representative population of Monte Carlo
draws, and on the other hand, manageable from the computational point of
view (more details on cpu time required in Section 4). To generate those
1000 Monte Carlo draws a normal distribution is used. This choice is mainly
driven by the well established properties of the distribution and its still big
popularity in literature. Once there exists more evidence that for this specific
problem a different distribution shall be used, it can be easily implemented
in the code.3

For example, for the SLOVNL model containing 15 uncertain parameters
(for more details see Appendix) we create a matrix of the size 1000×15 of
possible realizations of θ’s values. For each of these 1000 sets we run an
independent optimization using DE. The motivation behind is to choose the
best policy for the case if the stochastic parameters occurs to have a specific
realization. This alternative has the disadvantage to handle the system for
each set of parameters θ as if it were deterministic. But it also allows to gain
insights of what could happen, e.g., in the best, median, 20%-best quantile,
or worst scenario (in terms of the objective function value achieved).

3.2.2 Least median objective value analysis

Since in the extreme event analysis only single Monte Carlo draws of θ are
used, it only provides information on special cases (i.e. lowest parameter
values for some of the variables in (3)) and does not allow to provide any
statement on how DE can solve the model at hand with, strictly speaking,
uncertain θ. To this end, we take the same set of random θs for each member
of the DE population and minimize not a single objective value (for a single
θ draw), but their expected value over the whole set of θs. Thus, in each

2To get the Monte Carlo realizations of θ, the given covariance matrix Σθθ is Cholesky
decomposed to get the lower-triangular matrix. Applying this to uncorrelated random
numbers produces a matrix with the covariance properties of the system being modeled.

3The Matlab code can be obtained from the authors on request.
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DE restart a new population of DE candidate solutions Pj,t,i is initialized
and for the given set of 1000 θ draws DE minimizes the expected objective
function value not in its mean but median to get a value being more robust to
outliers. In short, the best DE solution is the one having the least expected
median value over the 1000 Monte Carlo θ realizations. In other words, the
algorithm looks for a set of controls which corresponds to the least median
objective value J (LMJ) based on all possible realizations of θ (represented
by 1000 Monte Carlo draws).

The choice ofmedian instead of mean is dictated by its well known robust-
ness to outliers, which in the view of the quadratic objective function and the
complex nonlinear econometric models, where different variables have very
different scaling and weights differently affecting the penalty function of the
type (1) and producing those outliers, has a crucial role. Necessarily, the
choice of the robust aggregated measure of expected value over the Monte
Carlo draws of θ shall match the drawing distribution of the θ parameters. As
long as the normal4, uniform or any other symmetric distribution is employed,
there must be no problem with the approach. If, however, an asymmetric
distribution is used, an alternative robust approach may be necessary.

Technically, the sequence of calculations proceeds as follows. For given
initial controls (u) and every draw from the set of random θs a series of
initial states (x) is calculated. Afterwards, for the resulting population of
solutions a median objective value LMJ is calculated using 1000 Monte Carlo
θ realizations. Subsequently, candidates of the DE population are matched
with each other creating new solutions, their new median objective value
is calculated (using the same set of random θs), the least fittest ones are
discarded, while the most fittest (having lowest LMJ) create further new
candidates. This continues until a stopping criterion is fulfilled.

3.2.3 DE calibration

Tuning of the DE parameters is always a problem specific issue. For this
reason, similar to Blueschke et al. (2013a), we conduct a series of simulation
experiments calibrating the DE parameters. In brief, we run DE for different
CR and F ranging between 0.1 and 1 and construct a phase portrait that
pictures combinations of parameter values with the lowest average number of
generations required to achieve the value–to–reach (V TR).5 For the MacRae
model (MacRae (1975)), the combination is highlighted if the minimum ob-
jective value obtained (JDE) becomes less than or equal to V TR in less than

4Note that in the case of normal distribution mean and median coincide.
5V TR is set to either 101% or 105% of the objective value achieved by OPTCON

(JOPTCON ). Thus, the deviations of 1% and 5% are suitable for illustrative reasons here.
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or equal to 100 generations (left and middle panels in Figure 1). As a result
of this exercise, we set F = 0.8 and CR = 0.6.
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Figure 1: Phase portrait and progress plot for the MacRae model

Afterwards, to illustrate convergence of the resulting objective function
values, we apply DE with 100 restarts for different g (number of genera-
tions): in the upper left plot of Figure 2 the cumulative distribution function
F (LMJ) for different g is given, whereas the other plots are kernel density
estimations of objective function values identified.

15.5 16 16.5 17 17.5
0

0.5

1

LMJ

F
(L

M
J)

 

 

16.0056 16.0057 16.0058 16.0059 16.006
0

2

4

6
x 10

4

LMJ

D
en

si
ty

 fu
nc

tio
n

15.5941 15.5941 15.5942 15.5942 15.5943
0

2

4

6
x 10

4

LMJ

D
en

si
ty

 fu
nc

tio
n

10
25
75
100

16.255 16.26 16.265 16.27 16.275 16.28
0

200

400

600

LMJ

D
en

si
ty

 fu
nc

tio
n

 

 
g=25

g=75 g=100

Figure 2: Empirical distribution of objective function values for different g

However, as the size of the model increases, the computational burden of
the calibration exercise in the stochastic scenario described above increases
tremendously. Since in the deterministic scenario considered in Blueschke
et al. (2013a) F = 0.4 and CR = 0.1 were identified as the best parameter
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combination for the SLOVNL model, we compared it with the one recom-
mended as a default for many standard applications, namely F = 0.8 and
CR = 0.8 (Storn and Price 1997) (keeping p = 10d in both cases). We
find that the latter leads DE population to a fast convergence into few local
minima preventing further efficient exploration of the search space. In con-
trast, the combination applied in the deterministic approach maintains the
diversity longer (mainly due to smaller crossover rate) providing a richer set
of possibilities for exploration of better solutions.6 It is worth to mention
that we also checked the DE calibration for the deterministic scenario of the
MacRae model and found that the optimal calibration parameters are very
close to the ones identified in the stochastic approach, namely F = 0.7 and
CR = 0.5.7 This gives some evidence that calibration of the DE parame-
ters conducted on the deterministic scenarios can also well fit for stochastic
problems saving a lot of time.

As for the DE stopping criterion to be applied, this has to fulfill two con-
ditions: i) DE algorithm shall ensure that population of solutions converges
to an optimum (local or global); ii) DE has to stop once the convergence
is observed. To combine those two conditions is particularly difficult under
different θs applied. To solve this problem, we set an upper limit on the
number of DE generations to be performed within one restart (gmax equal
to 100 and 2500 for MacRae and SLOVNL, respectively), but at the same
time control for convergence within the population by looking on the candi-
dates’ objective values. Working on a continuous optimization problem, it
is very unlikely that two candidates reach an exactly the same value, but a
difference of 0.0001% between the fittest solution and few closest followers is
realistic and, therefore, is applied in our study. Thus, DE algorithm stops if
30% of solutions in the population reach this deviation from the best solution
available. In addition, if for 100 periods more than 50% of solutions in the
population do not improve, the algorithm also stops. Given the stochastic
nature of DE, we restart the algorithm 20 times to ensure that it converges
if not to global optimum - to a good approximation of it.

Both methods, OPTCON and DE, are implemented in Matlab to sim-
plify their comparison. The corresponding computational time for the two
models tested in this study necessarily varies depending on the complexity
of a particular problem. For SLOVNL around 750 generations are sufficient
to obtain a solution, and require about 2-3 days (!) - for conducting both,

6For a detailed discussion of exploration of new solutions versus exploitation of existing
ones see March (1991).

7In the deterministic approach DE well approximates the OPTCON results achieving
the objective function value of 15.9577173 versus 15.9577151 provided by OPTCON. More
details can be obtained on request.
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extreme event analysis and least median optimization - using Matlab 7.11
and Pentium IV 3.3 GHz.

4 Simulation results

The present section is divided in three parts. First, we run the least me-
dian objective value analysis. To be more precise, we compare simulation
results in terms of objective function values minimized: LMJ via DE and
ex-post J via OPTCON and via DE. In addition to the convergence analy-
sis of the DE results, we demonstrate that i) LMJ and ex-post J functions
lead to different final solutions, while only the former one (LMJ) – explic-
itly tackling the stochastic problem – actually approximates a global solution
for the optimal control problem; ii) DE clearly surpasses OPTCON in mini-
mizing LMJ for two models considered: MacRae and SLOVNL. Second, in
addition to the more accurate objective function being minimized, our DE
algorithm provides results on extreme event analysis separately solving the
optimal problem for a set of possible parameter realizations and comparing
those between each other (e.g., plotting different percentiles) and to the re-
sults obtained from minimizing LMJ via DE and the corresponding ex-post
J , thus, increasing amount of information for a policy maker to select an
optimal solution. Third, given the simplicity of the models considered, we
briefly illustrate differences between solutions in terms of states and controls
obtained by DE and OPTCON.

4.1 LMJ analysis

As mentioned in Section 3.1, the classical algorithms (based on LQG frame-
work) minimize the expected value of the objective function (expected cost-
to-go), but only for the local linear approximation and, thus, there is no way
to calculate the ’correct’ expected objective function value of the original,
nonlinear problem. As output most classical algorithms provide the objec-
tive value evaluated in a deterministic way along the best path of control and
state variables. We denote this function value as ex-post J and provide it
in addition to the least median objective value of J (LMJ), which is more
appropriate to reflect the stochastic nature of the problem.

In order to calculate the corresponding ex-post J for DE, we choose the
best set of controls (i.e. the one with lowest LMJ) in each generation and
calculate for this set of controls u the respective states of the system using
the initially given θ̂. While in general we observe a similar progress of the two
objective values which drop substantially compared to the initial population,
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for both models tested there are some fluctuations of the ex-post J (right
plots in Figures 3 and 4). This points out the possibility of finding a better
value and then loosing it (since it is not the objective criterion of DE and the
two functions are not associated). At this point it is useful to specify what
we mean by this expression and provide the following definition:

Definition 1 The two functions F1(ut) and F2(ut) are associated iff for any
two different solutions u

′

t and u
′′

t (∀u
′

t, u
′′

t that u
′

t 6= u
′′

t ) holds that

F2(u
′

t) ≥ F2(u
′′

t ) ⇔ F1(u
′

t) ≥ F1(u
′′

t ).

In other words, if one function is monotonously decreasing on a certain se-
quence of solutions ut, the other function shall also monotonously decrease
on this set of solutions.

Figures 3 and 4 illustrate results of the best run (out of 20 restarts) of
the DE algorithm applied to the MacRae and SLOVNL models using 1000
different sets of θ for 100 and 2500 generations (at maximum), respectively.
While left part of the figures demonstrates the progress of LMJ (which is to
minimize), its right part depicts the corresponding ex-post J values.

Figure 3: LMJ and ex-post J evolution over gmax for MacRae
Note: Transparent vertical lines on the right plot of the figure mark those generations, in which ex-post
J rises towards its previous value thus illustrating the non-monotonic progress of the function.

For the MacRae model we see that the DE result in terms of ex-post J
surpasses the OPTCON stochastic solution (≈16.6471) almost reaching the
deterministic solution for that model (15.9577): deviation is of the order 10−3

(Table 1). The LMJ value obtained by DE is respectively lower than the one
calculated for the OPTCON solution (using the same set of randomly chosen
θs as for DE). For the SLOVNL model, in case of LMJ the decrease is from
1.26 × 107 to 9.17 × 106 and in case of the ex-post J it is from 2.76 × 106

to 1.23 × 106. Thus, for both models considered instead of converging to
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Figure 4: LMJ and ex-post J evolution over gmax for SLOVNL
Note: Transparent vertical lines on the right plot of the figure mark those generations, in which ex-post
J rises towards its previous value thus illustrating the non-monotonic progress of the function.

the results obtained by OPTCON, DE arrives at different optima having a
superior LMJ value, while ex-post J may be better or worse.8

Table 1: Results for both optimization algorithms with different settings

OPTCON Differential Evolution

deterministic ex-post J LMJ deterministic ex-post J LMJ

M
a
cR

a
e min 15.9577 16.6471 17.2721 15.9577 15.9638 16.7295

std − − − (.0000) (.0003) (.0000)

cpu .01s .02s 5.2s 23s 4169s

S
L
O
V
N
L min 904,649.68 918,574.53 9,505,241.36 904, 649.98 1,226,557.91 9,175,091.31

std − − − (0.62) (11,335.89) (41,017.66)

cpu .5s 6s 4.9s 58s 217930s

Note: Results on deterministic DE solution are obtained by the algorithm explained in detail in Blueschke
et al. (2013a). Ex-post J for OPTCON stands for the standard stochastic result reported (for consistent
comparison). LMJ for OPTCON is calculated for the resulting OPTCON solution using the same set
of randomly chosen θs as for DE. Results on minimum and standard deviation are stated for 20 restarts,
while cpu time corresponds to one restart only.

The clear difference between LMJ and ex-post J obtained via DE for
both models is due to the different θ parameters involved in computation:
while in the first case those are the Monte Carlo θ draws used in each DE
generation to compute the median of all possible objective value realizations,

8In particular, comparing results obtained by DE through 20 different restarts one
could see that solutions with lower LMJ have higher ex-post values than those with
slightly higher least median values. Looking closer on the series depicted in Figures 3 and
4 one could see that, e.g., ex-post J value rises to a value higher than the preceding one
(to 15.9691 from 15.9583 on 11th generation for MacRae and to 2.91× 106 for SLOVNL
just after beginning) but than also looses a value lower than the one corresponding to the
final solution (15.9583 for MacRae and 1.21× 106 for SLOVNL).
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in the latter case a single set of uncertain parameters (as if they were deter-
ministic) is used. Recalling equation (3), we calculate the optimal states in
case of LMJ function from the dynamic system f , parameter set θi and the
optimal controls, i.e. (x∗

i = f(..., u∗, θi, ...)) (i = 1, ..., 1000) and use these
possible stochastic solutions (u∗, x∗

i ) to calculate the LMJ value. Usually,
the system function f is very sensitive to the changes in θ.9 As a result of
many ’unexpected’ realizations of θ many states can exhibit a higher devia-
tion from the ideal path and, respectively, higher objective values J , which
leads to a high LMJ value. For calculating ex-post J the expected values of
parameters θ are used, namely θ̂, which are estimated and available to pol-
icy maker, and which clearly reduce a possibility of outliers and other more
’unexpected’ results.

The difference between LMJ and ex-post J does not always have to be in
favour of one of the approaches and may vary depending on the specific set of
θs employed. It is more important to highlight the fact that the ex-post J is
not necessarily monotonically decreasing while DE minimizes LMJ . Hence,
the solutions identified through explicit minimization of stochastic θ – with
minimum LMJ – and the ones reported by traditional algorithms do not
necessarily coincide. This finding can be considered as a direct consequence
of LMJ and ex-post J not being associated according to Definition 1.

Since in the traditional optimal control algorithms the ex-post J is the
only information available to the decision-maker (except the optimal set of
controls), the present DE algorithm with no doubt broadens the range of
information available and can be a helpful complementary tool for anyone
facing an optimal control problem. And what is more, the fact that DE
surpasses OPTCON based on the actual least median function evaluated
for a random set of 1000 θ for both models illustrates that OPTCON only
reaches suboptimal solutions, which can be further improved by the more
flexible (heuristic) approach.

To test the robustness of the result (ex-post J and LMJ not being as-
sociated) we run a sensitivity analysis with respect to the variance of the
parameters θ applied to SLOVNL model. To this end, we apply a similar
procedure as it was performed by Blueschke et al. (2013b) and multiply the
covariance matrix Σθθ (defined in Section 2) by a parameter ρ:

Σθθ
SA = ρΣθθ. (4)

Afterwards, Monte Carlo realizations of θSA drawn from the resulting covari-

9For the MacRae model this is not the case, because the model has just one state
variable, one control variable and one parameter. Thus, ex-post J may be larger than
LMJ in absolute terms for MacRae
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ance matrix Σθθ
SA are used by DE to calculate LMJ and the corresponding

ex-post J . The sensitivity analysis is conducted for three different parameter
values ρ=0.5, 1 and 2 with 20 restarts for each value. Given the type of prob-
lem specified (equations (1-3), one would expect the resulting LMJ solution
to rise in ρ and variance between the results (different DE restarts) obtained
to increase. The latter shall illustrate the transmission of a larger parameter
variance into a larger variance in results, while the former is explained by
the following relations: higher variance in parameters θ leads to higher vari-
ance of resulting state variables (because of equation (3), or rather due to
high sensitivity of system function f to changes in θ), which leads to higher
objective values and higher LMJ value. Regarding the ex-post J function,
there is no clear theoretical foundation on which impact of higher variance
is to be expected.

0.5 1  2  

0.5

1

1.5

2
x 10

7

ρ

LM
J

0.5 1  2  

1.2
1.4
1.6
1.8

2
2.2

x 10
6

ρ

ex
−

po
st

 J

Figure 5: Sensitivity results for different ρ applied to SLOVNL

The results of this sensitivity analysis are presented in Figure 5 and sup-
port our expectations. One can see that variance in results rises in ρ for
both objective functions (with increasing ρ the boxplots are larger). LMJ
values also increase with higher values of ρ. A very interesting detail is that
LMJ values increase not only monotonously but very much linearly in ρ.
For ex-post J a non-linear (U-shape dynamics) is observed. The latter result
is fairly unexpected (and requires further research) but indicates again that
the LMJ and ex-post J functions are not associated according to Definition
1.
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4.2 Extreme event analysis

Figures 6 and 7 are meant to illustrate the variety of the θ draws (extreme
event analysis). The lower panel contains boxplots of the 1000 Monte Carlo
draws for each model parameter rescaled between 0 and 1.10 The more equally
the draws are dispersed between zero and one, the more representative they
are. The ’worst’ and ’best’ draws illustrate specific θ realizations with the
largest and the lowest objective value J obtained via DE. Thus, these draws
can be attributed to the ’best’ and ’worst’ scenarios possible. One can see
that though those draws are distinct from each other, they do not necessarily
locate on the opposite sides of the boxplots.

In the upper panel of the Figures 6 and 7 one can see how the objective
function values identified by DE relate to each other. In particular, how the
LMJ and the corresponding ex-post J values are related to the objective
function values obtained for single parameter draws: to certain percentiles
of the entire distribution of 1000 θs (upper left plot) and percentiles of J
outcomes (upper right plot). Thus, for example, one can evaluate how wide
is the range of outcomes between different parameter realizations (percentiles
in θ) and between ’best’ (5th percentile in J) and ’worst’ (95th percentile in
J) possible realizations and how the objective value (LMJ and ex-post J)
of the optimal result obtained via DE relates to them.
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Figure 6: Different θs and corresponding objective values for MacRae

10For this, we deduct from each θ draw the minimum of the draws for the respective pa-

rameter and divide it by the difference between the maximum and minimum: θi−min(θ)
max(θ)−min(θ) .
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Figure 7: Different θs and corresponding objective values for SLOVNL

4.3 Comparison of states and controls

On Figures 8 (left plot) and 9 we plot percentage deviations of the con-
trols obtained by DE corresponding to single Monte Carlo θ draws over the
respective planning horizons. These figures also illustrate the difference be-
tween the OPTCON solution (marked with a cross) and least median solution
(LMJ) obtained by DE (marked with a box) and their relative position to
the controls obtained in the ’best’ and ’worst’ scenarios. For the MacRae
model, e.g., one can see that DE and OPTCON solutions lie around the dis-
tributions mean, while OPTCON is closer to the θ draw of the ’best draw’
scenario. For SLOVNL this generally also holds being most evident for the
net tax rate (TaxRate). The ’worst draw’ scenario (i.e. best solution in
worst case of θ realizations) for the control variable M3N (nominal money
stock) can be interpreted, for example, as a recommendation to run a more
active monetary policy in most of the time periods as a best response to the
pessimistic scenario.

On Figures 8 (right plot) and 10 we plot percentage deviations of the ob-
tained states over the respective planning horizons. Similarly to the controls,
these figures show the relative position of the DE and OPTCON solutions to
the mean, worst and best scenarios for different state variables. For MacRae,
in contrast to the controls, DE solution is closer to the θ draw of the ’best
draw’ scenario. For SLOVNL the resulting states seem to be very close ex-
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Figure 8: Percentage deviation in controls and states for MacRae.

cept the short term interest rate (STIRLN), where DE starting from the forth
period systematically prefers some larger values than OPTCON.

Interestingly, one can see that for SLOVNL basically for almost all states
(except of inflation) the volatility of the results obtained in the extreme event
analysis rises consistently over time (in every next period relative deviation
of solutions corresponding to single θ draws from the mean over 1000 draws
increases). This may be explained by the stochastic nature of the problem
itself and its increasing uncertainty for every next period involved.

T
ax

R
at

e

 

 

04q1 04q3 05q1 05q3 06q1 06q3

−10

0

10

20

best draw
worst draw
LMJ via DE
ex−post J via OPTCON

T
ax

R
at

e

 

 

04q1 04q3 05q1 05q3 06q1 06q3
−0.1

−0.05

0

0.05

0.1

G
R

 

 

04q1 04q3 05q1 05q3 06q1 06q3

−5

0

5

G
R

 

 

04q1 04q3 05q1 05q3 06q1 06q3
−0.1

−0.05

0

0.05

0.1

M
3N

 

 

04q1 04q3 05q1 05q3 06q1 06q3

−20

0

20

40

M
3N

 

 

04q1 04q3 05q1 05q3 06q1 06q3
−0.4

−0.2

0

0.2

0.4

Figure 9: Percentage deviation in controls for SLOVNL
Note: While the upper panel illustrates the positioning of the worst draws relative to other results, the
lower one provides boxplots on the majority of the results depicting how their variation changes over time.
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Figure 10: Percentage deviation in states for SLOVNL
Note: While the upper two panels illustrate the positioning of the worst draws relative to other results,
the lower ones provide boxplots on the majority of the results depicting how their variation changes over
time.

5 Conclusions and Outlook

In this paper we apply a heuristic approach (Differential Evolution) to solve
stochastic nonlinear optimal control problems. The main reason to do that
is the DE’s flexibility allowing to deliver solutions in the specific situations,
where the classical methods exhibit some limitations. In particular, we ap-
ply extreme event analysis and minimize the median objective value obtained
over a set of randomly drawn (stochastic) parameter realizations aiming by
this to broaden the range of decision support information used by policy mak-
ers in choosing the optimal strategy. To test the quality and performance
of DE we compare its results with the ones obtained by the OPTCON algo-
rithm, which uses the classical techniques of linear-quadratic optimization,
on the MacRae and SLOVNL models.

First, we demonstrate that DE indeed allows to obtain a broader infor-
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mation set about the stochastic solution. In addition to the ex-post J , which
is the only information available in traditional algorithms, DE calculates the
expected objective value and the best responses for different draws of param-
eters. Second, we find that the best solution (the optimal set of controls) in
terms of ex-post J does not necessarily have the minimum expected objec-
tive value, and hence, may represent a suboptimal solution. This shall be
considered as a specific finding of a more general one, namely that the two
objective functions are not associated, which questions the correctness of the
objective function specification by classical approaches based on local-linear
approximation. Finally, it is shown that DE surpasses classical methods in
finding better solutions in terms of expected objective value (LMJ) for both
models tested, which supports the claim that heuristic methods are better
suited in identifying good approximations of global optima in complex search
spaces.

Clearly, these results require further analysis both, from the side of addi-
tional models to be tested and (potentially) alternative approaches to sample
stochastic parameters to be examined. Furthermore, usefulness of Differential
Evolution in handling further limitations of the classical methods (as, e.g.,
symmetry of the objective function demonstrated in Blueschke et al. (2013a))
shall be addressed in future research. Additionally, particular attention shall
be given to the computational costs of applying the suggested DE algorithm
to stochastic problems. As the cpu time corresponding to the small and very
small models like SLOVNL and MacRae already varies between few hours
and days, it may become prohibitively large for more complex models. Thus,
more effort shall be devoted to shrink the computational cost by i) outsourc-
ing certain parts of the code into a lower-level language, like C++, which
is more efficient for the large loops (e.g., 1000 θs) and ii) by parallelizing
the computational burden of the extreme event analysis (where individual
parameter sets are independently analyzed) between several computers.
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6 Appendix

In the following we briefly describe the models used in our study. The MacRae
model is a very simple one-state, one-control, one unknown parameter linear-
quadratic tracking model (MacRae (1975)). The SLOVNL model is based on
the Slovenian economy using quarterly data from databases and publications
by the Slovenian Statistical Office, the Bank of Slovenia and Eurostat.

The SLOVNL model

The small nonlinear macroeconometric model of the Slovenian economy
(SLOVNL) consists of 8 equations (4 behavioral and 4 identities). The model
includes 8 state variables, 4 exogenous non-controlled variables, 3 control
variables and 15 unknown (estimated) parameters. The quarterly data for
the period 1995:1 to 2006:4 yield 48 observations and admit a full-information
maximum likelihood (FIML) estimation of the expected values and the co-
variance matrices for the parameters and system errors. The start period for
the optimization is 2004:1 and the end period is 2006:4 (12 periods).
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Endogenous (state) variables :

x[1] : CR real private consumption
x[2] : INV R real investment
x[3] : IMPR real imports of goods and services
x[4] : STIRLN short term interest rate
x[5] : GDPR real gross domestic product
x[6] : V R real total aggregate demand
x[7] : PV general price level
x[8] : Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate
u[2] GR real public consumption
u[3] M3N money stock, nominal

Table 2: Weights of the variables in the SLOVNL model

a: ‘raw’ weights b: ‘correct’ weights

variable weight variable weight
—————— ———– —————— ————
CR 1 CR 3.457677
INV R 1 INV R 12.16323
IMPR 1 IMPR 1.869532
STIRLN 1 STIRLN 216403.9
GDPR 2 GDPR 2
V R 1 V R 0.333598
PV 1 PV 423.9907
Pi4 0 Pi4 0
TaxRate 2 TaxRate 37770.76
GR 2 GR 63.77052
M3N 2 M3N 0.090549
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