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Abstract
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groupings of varying experimentally induced quality. We use this variation in class group quality
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experimental effectsin the later grades, and the direct class size effects are rendered substantially
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1 Introduction

The question of the existence and the quantitative importance of peer effects in
influencing individual behavior has long eluded credible empirical study. The
essential problem is that whether the researcher is interested in how individual
behavior is affected by group characteristics (termed exogenous or contextual
effects) or group behavior (termed endogenous effects), data are rarely avail-
able in which the relevant groups or their associated traits are exogenously
assigned. While this criticism applies to any empirical study when we examine
how individual traits are associated with individual outcomes, the problem is
particularly vexing in the study of peer effects. The conceptual problems are
numerous, and well elucidated in the literature (see especially the writings of
Manski (1993, 1995, 2000) in the economics literature, and Hauser (1970) in the
sociology literature) and indicate the numerous pitfalls whereby a researcher
may erroneously infer the presence of peer effects, when in fact the estimates
may only be indicative of the respondent and her associated group sharing a
common environment.

As the conceptual idea related to the study of peer effects places the same
individual in a variety of alternative group settings (based either on (exogenous)
inputs or outcomes, depending on what is of interest to the researcher), the ideal
data required by the empirical researcher needs to sample a large number of
nearly identical individuals placed in a multiplicity of alternative group settings.
The problem is how to mimic this conceptual ideal with observational data,
whereby alternative group settings almost surely carry with them differences
based on unobserved characteristics as well.

Here again, the problem of the unobservables confounding inference is clearly
not unique to the study of peer effects. But as one of the canonical modes of
detecting and quantifying the importance of peer effects places some measure
of group outcomes as one of the key explanatory factors in a regression for
individual behavior, the presence of these unobservables becomes particularly
acute. In particular, even if we can argue that the other covariates in such
a regression are plausibly exogenous, to the extent that the unobservables are
shared by some or all of the other group outcomes, then the summary measure of
the group outcomes that serves as the peer effect measure will appear spuriously
important for that reason. Thus, the criteria that must be imposed on the
unobservables in order for the researcher to claim that the estimated peer effects
represent something of behavioral significance (as opposed to simply representing
a quantified version of the statement that they all share a common environment)
are far more stringent than for a simple regression which is used to understand
individual attributes and individual outcomes.

We take up this challenge in this paper by utilizing data on an experiment
conducted in Tennessee in the early 1980’s designed ostensibly to study the ef-
fects of class size on student achievement in grades Kindergarten through third
grade. These data are commonly called the Project STAR data, and they have



been studied extensively in the literature with regards their to primary objec-
tive, the class size effect. Some of the more well-cited papers include Krueger
(1999), Hanushek (1999), and Finn and Achilles (1990). We argue that the ef-
fects found by these authors represent a reduced-form impact of class size, but
that they do not try to break these effects down into their constituent com-
ponents. In particular, we take the view that Heckman (1992) has offered on
social experiments generally, in that they constitute a ‘black box’ of underlying
components. Heckman has pointed out that it is essential to understand these
more structural components of social experiments so as to properly extrapo-
late the knowledge gained from them to large-scale policy implementation. In
our work here, we focus on the crucial aspect of Project STAR in that it was
conducted over several grades. As the experiment progressed over time, from
Kindergarten to third grade, it is possible that the experimental effects capture
less a ‘pure’ class size effect and potentially more a feedback effect (or ‘social
multiplier’), operating through the experimentally induced peer quality differ-
ences across classes. It is important to note that we do not disagree with the
authors who have written on the Project STAR results as regards the reduced
form results they find and report, but we do offer an alternative interpretation
of these results in such a way that allow for quite different policy proposals (i.e.
not based entirely on changing class sizes) which may offer the same slate of
academic outcomes.

At the core of our reinterpretation of the Project STAR results is the main
purpose of this paper, which is to estimate peer effects using data wherein
some fraction of the variation in reference group characteristics is exogenously
determined. We are interested in this paper in ‘endogenous’ peer effects (as
termed by Manski) whereby individual outcomes are altered by some aspect of
the distribution of the reference group outcomes. Such peer group effects have
the feature that they generate a feedback effect, so that the intensity to which
social programs operate within and between groups affects the total aggregate
outcome. Positive feedback, for example, would imply that social programs
which are highly concentrated on groups of individuals will be more efficient
than programs which are ‘sprinkled’ across the landscape. While the Project
STAR design in principle kept students assigned to Small classes in Small classes
for the duration of the experiment (and the same for the students in Regular
sized classes), the exit and subsequent replacement of students from and into
the Project STAR schools meant that the population of students participating
in the experiment had differential exposures to the Small and Regular class size
treatments. This fact is the key to our identification strategy for the estimation
of the peer groups effects.

The simultaneous determination of an individual student outcome and her
corresponding class group outcomes, as well as their common exposure to a class
size of a given type (Small or Regular), both necessitate that we need a means
by which we can use the experimental design to deliver an instrumental vari-
able(s) by which some fraction of the variance in group outcomes is exogenously



determined. Were students exogenously assigned to not just class types within
schools, and were test scores available for the newly entering students before
they enrolled in the Project STAR schools, we could simply utilize ordinary
least squares, using a measure such as the sample mean of the lagged test scores
of a student’s current classmates as the peer group measure. While this ap-
proach is not possible owing to the lack of test scores for the new entrants, this
idea does emphasize the value of the longitudinal nature of the experiment. In
particular, a suitable version of previous exposure to the Small class treatment is
a good candidate for an instrument. At the individual level, this prior exposure
to the treatment is a component of lagged test scores that we can observe, and
so using the fraction of the class previously exposed to the Small class treatment
is a suitable candidate instrument for the student’s current peer group average
test scores. The fact that the instrument is lagged is what allows us to avoid
the simultaneous determination of the individual student’s outcome, as well as
the outcomes of her peers. This idea utilizes the experimental design to extract
the variation in student performance due to the impact of the experiment in
an earlier grade, because of the boost in performance owing to the Small class
treatment versus both the Regular class treatment and the entire group of newly
entering students who had no prior exposure to the experiment.

This is where the exit, and subsequent replenishment, of students out of
and into the Project STAR schools is crucial for our purposes. In the extreme
case where no exit and entry takes place, then our instrument for peer group
quality would be perfectly collinear with the class type indicator, and we would
be unable to infer what is a peer group effect from what is a class type effect.*
Fortunately, the entry and exit patterns of students across classes as well as
across schools was quite diverse, and so we have rather good power in explain-
ing group outcomes, even conditional on a class type indicator included as a
regressor. We interpret the coefficient on the class type regressor as a ‘pure’
class type (or size) effect, net of the feedback effects due to alterations in peer
group quality from the impact of the experiment in the earlier grades. Not sur-
prisingly, owing to the lag nature of our strategy to split these two effects apart
given the overall reduced form effect, we have no power to tell these apart for
Kindergarten, and extremely little power to do so as of the first grade. However,
for the second and third grades, we have relatively good power, and we find that
after controlling for the experimentally determined peer group effect, the pure
class size effect is rendered much smaller than the reduced form effects found
in the earlier studies on Project STAR, and in many cases, these ‘pure’ class
size effects are insignificantly different from zero. The bulk of the reduced form
effects as of the second and third grades appears to be due to the feedback of

4In fact, this is also a version of the ‘reflection problem’ (as labeled by Manski (1993))
whereby it is unclear what fraction of students performing well in a Small class is due to the
class size effect as opposed to the peer group effect. Absent entry and exit of students from
the Project STAR schools, we would be unable to apportion what fraction of a class type
effect is due to a pure resource effect, and what fraction is due to a peer effect.



the peer group effects.

We also comment on the methods used to estimate the importance of peer
group effects commonly used in the literature, and link these to methods used
to study phenomena which may be quite distinct from the study of peer group
effects. Fundamentally, peer group effects are spillover effects whereby group
output exceeds individual effects summed to the group level. The degree to
which the per-person group output exceeds the individual output is the peer
effect. We show that this is precisely what is estimated by the canonical ap-
proach in the literature which estimates variants of regressions of individual
outcomes on typically the average of the outcomes of the other members of the
peer group. We also discuss the specification problems which lead to mean-
ingless coefficients of 1 in extreme circumstances, but possibly less than 1 (but
with no more meaning) in more typical settings, thereby obscuring the spurious
regression problems plaguing the research exercise. We then consider a variety
of alternative means by which peer group effects may be estimated from the
data, as well as specification checks that can be performed.

The next section of the paper discusses the Project STAR experimental de-
sign and the aspects of the data which are crucial for our research question. We
then provide a brief conceptual discussion in Section three of the identification
issues involved in extracting the peer group effects from the Project STAR data.
In Section four we discuss our core empirical results. Section five then considers
the more conceptual issues involved in the estimation of peer effects generally,
and Section six concludes.

2 The Project STAR Experimental Design and
Data

Project STAR was funded by the Tennessee State Legislature and conducted by
the Tennessee Department of Education with the goal of obtaining conclusive
results regarding the efficacy of class size reductions.” The ambiguity of the
existing empirical literature, which used observational data, compelled the Leg-
islature to appropriate funding in order to design, implement, and interpret an
experimental study before investing in across-the-board slashing of class sizes.
The 79 schools that participated in the first year of the study, the 1985-86 school
year, were selected to provide variation in both geographic location across the
state and in the size and economic status of the school locations (schools were
designated as inner city, suburban, urban, or rural). Importantly, the experi-
mental randomization took place within schools, so that participating schools
were required to be large enough to have at least one class of each type un-
der study. At the outset of the experiment, kindergarten students and their

5For more comprehensive descriptions of the experiment see Folger (1989), Word et al.
(1990), Finn and Achilles (1990), and Krueger (1999).



teachers were randomly assigned to one of three class types: Small classes (13-
17 students), Regular classes (22-25 students), or Regular/aide classes (22-25
students) which included a full-time teacher’s aide.® The experimental design
called for students to remain in the same class type through the end of third
grade, at which time all children returned to Regular size classes. Students en-
tering STAR schools after kindergarten were added to the experiment. All told,
there were between 6,000 and 7,000 students in the experiment in each year,
and the experiment involved a total of 11,600 children over all four years.

The validity of any experimental study may be compromised if the random
assignment is not credible. As such, the schools participating in the STAR
experiment were audited to enforce compliance with the random assignment
procedures. A critical piece of our identification of peer group effects lies with
the new students who entered the participating schools during the course of
the STAR experiment. Fortunately, the protocol was for all entering children
to be randomly assigned to a class type. All available indications are that the
initial random assignment to classes of students, both those attending kinder-
garten as well as those entering in later grades, and teachers was done soundly.
Since the STAR data only contains information on the actual class type a stu-
dent attended in a given year, and not the type of class to which the student
was randomly assigned, Krueger (1999) explores the possibility that students
switched class types immediately after their random assignment. In his sub-
sample of 1581 students in 18 schools, he finds that for 99.7% of students, the
class type attended in kindergarten was the class type to which the students
were randomly assigned. This indicates that the initial random assignment of
students was taken very seriously by the participating schools.

Note also that if the randomization were done correctly, we would expect the
average characteristics of students across the treatment and control groups to
look identical prior to the start of the experiment. Unfortunately, students were
not given a baseline test before attending class, so it’s not possible to compare
test scores across class type to address credible randomization. But we can of
course compare the observable characteristics of students (as well as teachers)
and see if on average they look similar in Small, Regular, and Regular/aide
classes. Krueger and Whitmore (2001) performed this exercise for both students
and teachers. For students, class-type assignment was modeled as a function of
demographic characteristics (free lunch?, race, and gender) and school-by-entry-
wave fixed effects to account for the fact that randomization occurred within
schools and at the time in which a student entered the experiment. The results
indicate that student characteristics are not correlated with assignment status,
as we would expect under random assignment to class type. An analogous model
was estimated for the assignment of teachers, with the relevant demographic

6The average class size over the course of the experiment was 15.3 for the Small classes,
22.8 for the Regular classes, and 23.2 for the Regular/aide classes. In the 1985-86 school year,
the statewide pupil-teacher ratio in Tennessee was 22.3.

"Free lunch is intended as a measure of parents’ economic status.



characteristics being race, gender, master’s degree, and total experience. Again,
these characteristics are not jointly significant in explaining assignment status,
a result consistent with the random placement of teachers in class types.

As is common in social experiments, particularly those of an extended lon-
gitudinal nature, Project STAR deviated both in its administration and due to
behavioral responses of the participants in a way that was not ideal given the
intentions of the original experimental design. Rather than weakening the merit
of the experiment, we argue that in this case particular exogenous changes in
the composition of classes allow us to address a broader set of issues than solely
the effectiveness of class size reductions. The first deviation, and of only lim-
ited interest in our analysis, is at the end of kindergarten students in Regular
and Regular/aide classes were re-randomized between these two class types. In
a practical sense, the distinction between Regular and Regular/aide classes is
inconsequential since many of the Regular classes employed a part-time aide.
Empirically, the results of the Project STAR experiment indicate that the dif-
ference in student achievement between Regular and Regular/aide classes is
insignificant. Nonetheless, in our analysis that follows we often distinguish be-
tween Regular and Regular/aide classes when modeling student outcomes, but
our principal instrument for peer quality groups Regular and Regular/aide stu-
dents together.

A second departure from the original experimental protocol is that a number
of students, on the order of 10% per year, switched between Small and Regular
classes. Krueger (1999) attributes this primarily to behavioral problems and
parental complaints. If the students who switched class types systematically
differed from those who remained with their initial assignments, then a compar-
ison of outcomes of the treatment and control groups may no longer estimate a
parameter of interest.

Finally, student mobility substantially affected the experimental design. Stu-
dents attrited out of the experiment, due in part to families having moved to
different school districts and students having attended private schools, and stu-
dents entered STAR schools after kindergarten. Since kindergarten was not
mandatory in Tennessee at the time of the experiment, a particularly large in-
flux of students is seen entering in first grade (2313 new students entered in first
grade compared with 4516 of the kindergarten students remaining in the exper-
iment at that time). A substantial number of new entrants also appeared later
in the experiment; 1679 students entered in second grade and 1281 students
entered in third grade. We argue that it is primarily this inflow of new students
that renders a simple comparison of treatment and control groups ineffective in
isolating the ‘pure’ class size effect. To credibly estimate the class size effect, it
is also necessary to consider the difference in peer group composition induced by
the new entrants and, to a lesser extent, the students switching between class
types. More specifically, the new entrants generate variation in peer quality via
two distinct routes. First, a new entrant does not have the ‘boost’ in achieve-
ment provided by attendance in a Small class, so if the student is randomly



assigned to a Small class he lowers the average quality of students in that class.
Second, the STAR data indicates that students who entered the experiment
after kindergarten are lower achievers than those who attended STAR schools
at the outset of the experiment. This may occur because the late entrants did
not attend kindergarten, and may also reflect unobserved family background
characteristics and parents’ tastes for their childrens’ education. The new en-
trants are then randomly assigned to a class type, and ‘water-down’ the quality
of both the Small and Regular classes.

Table 1 summarizes the mean characteristics of students in the sample by
their transition status between grades®; students either switch class type, remain
in the same class type, or are new entrants into the experiment. A comparison
of the ‘switchers’ with the ‘stayers’ indicates that the movement of students
between class types is likely nonrandom. Comparing the switchers to those who
remain in their initially assigned class type, we see that the switchers tend to
have a slightly higher tendency to be on free lunch. But the comparisons be-
tween gender and race reveal essentially no systematic differences. On average,
students who switched from a Small class to a Regular class between grades had
lower test scores prior to switching than those students remaining in a Small
class. The averages in Table 1 also illustrate the disparities between the group
of new entrants and the students previously in the experiment. In addition to
lower test score averages, new entrants are more likely to be nonwhite, male,
and on free lunch than students already attending STAR schools.

Given the probable nonrandom selection of students who switch class type,
we emphasize that we primarily identify the peer group effects off of the varia-
tion induced by the new entrants. Table 2 lists the number of students in each
grade and class type by the students’ place of origin: randomly assigned to the
relevant class type, switched from the other class type, or new entrant. The
number of students previously randomly assigned to their current class type
dominate the switchers, consistent with the experimental protocol for students
to remain in the same class type through the end of third grade. The new en-
trants substantially outnumber the switchers in any given year, lending credence
to our identification strategy.

This study uses the Project STAR Public Access Data, which follows the
initial cohort of participating students, plus new entrants, through third grade.
The data contains student level observations and includes the whole universe
of students in the experiment in a given year, not just a subsample. The key
variables included for each observation are student characteristics (race, gender,
free lunch status), teacher characteristics (race, hold master’s degree, total ex-
perience), class type, school identifiers, and test scores. The Public Access Data
contains two test scores: the Stanford Achievement Test (SAT) in reading and
the SAT in math, which were administered to students at the end of each school

8Net of the variation across schools. Because the schools themselves were not selected at
random, all analyses in this paper condition on school effects.



year. Following Krueger (1999), we rescaled the raw test scores into percentiles.
For each grade and test measure, the Regular and Regular/aide students were
grouped together and given percentile scores ranging from 0 to 100. The stu-
dents in Small classes were then assigned a percentile score for each test based
on where their raw scores fell in the distribution of Regular-class students. To
obtain the percentile test score measure used in our analysis, we took the av-
erage of the percentile math score and the percentile reading score.” If one of
these scores was missing, we used the one available score as the percentile test
score.

Our analysis for estimating peer group effects requires knowing which stu-
dents were taught in the same class. The Public Access Data only identifies
class type, so if, for example, there was more than one Small class in a school,
we had to infer which students were grouped together and physically located in
the same classroom. We did this by using the teacher characteristics variables
collected for each student. If students in the same school and class type had
been taught by, say, a white teacher with a master’s degree and 25 years of total
experience, we could safely assume that these students were classmates.”

3 The Identification of Peer Group Effects With
the Project STAR Data

Before moving to a more general discussion of issues and alternative methods
of the estimation of peer effects, we begin with a simplified discussion of how
we use the Project STAR data to estimate standard peer group effects. The
canonical regression model that has been used in the literature to study peer
group effects (of the typed coined ‘endogenous’ by Manski) is usually a variant
of:

Yij = BY—ij + xi;7 + €ij (1)
where y;; is the outcome of interest for individual ¢ who has group affiliation
j. As is typical in this literature, we start by assuming that the peer group
affiliation is known a priori by the researcher, and in our case, we assume it is
the student’s classroom.!! The key regressor of interest is the sample mean of

9Krueger (1999) has access to several additional tests: the SAT word recognition test, and
the Tennessee Basic Skills First (BSF) tests in reading and math. His primary analysis uses
the SAT word recognition test in addition to the SAT reading and math tests. Our ability to
replicate his results indicates that the absence of the SAT word recognition test in our data
is of little consequence.

10In a few cases, it appears that two teachers in the same school and teaching in the same
class type did have identical characteristics. For their students, we could not determine which
ones were grouped together, so these students were dropped from our analysis in the relevant
grade. This resulted in our losing 77 students in kindergarten and 47 students in the third
grade.

11 An extremely small minority of work on this topic tries to confront this issue seriously,
as opposed to replacing our residual ignorance of peer group affiliation with blunt force as-



the group outcomes, net of individual i’s outcome, a quantity commonly referred
to as the ‘leave-out mean’ denoted as §j_; ; where

R = 1
Y-id =1 ; ykj = 77— (V¥ — i) (2)

For ease of exposition, we have assumed that the group sizes are the same
across groups and it is designated by N. Indeed, in the Project STAR data,
within a class type subgrouping, the class size N is ideally homogeneous, but in
fact it does vary. We let J denote the number of groups, and so the sample size in
this simplified setup (ignoring the differences in class sizes) is NJ. Also, the fact
that the data include every individual in a given class implies that we can use
the leave-out mean as the peer group measure. In typical observational datasets
such as the High School and Beyond, or the National Education Longitudinal
Study (NELS), only a small fraction of a student’s peers in a school are included
in the survey, and so researchers would often use the group mean inclusive of
individual ¢, g;;, as that was more representative of the population-level mean
outcome for the school. The nature of the Project STAR data affords us the
luxury that we do not have to deal with some of the issues that arise when
using the group mean inclusive of individual #’s outcome when studying the
determinants of y;;.

While the canonical approach has taken the mean of reference group be-
havior as the relevant peer group measure, here again this is done for lack of
information as to what features of the distribution of peer group outcomes are
relevant for individual behavior. It could be the 90th percentile, or the 10th
percentile, or possibly not just the mean, but perhaps also lower variance aids in
enhancing individual achievement ceteris paribus. We agree these are unsolved
and interesting issues, but again ignore them for the moment, and focus on
identification issues with the set of canonical assumptions.

The point is that even with the litany of strong assumptions we have already
imposed, the problem of identifying 3 from the above equation is still not nearly
solved. The essential problems are two-fold: (i) The individuals who comprise
each peer group j are not generally exogenously (as regards individual outcomes)
determined and (ii) even when groups are exogenously formed (by a lottery or
some randomization device), individual and group outcomes are simultaneously
formed, a problem termed the ‘reflection problem’ by Manski as an analogy
to a mirror image thought to be causing its corresponding object to move, as
opposed to be simply reflecting it. As we indicated above, the reflection problem

sumptions needed to make the research venture progress. Woittez and Kapteyn (1998) use
survey responses as to who constitutes peers as the relevant peer group, as opposed to simply
assigning generic group designations as we have done. Conley and Udry (2000) use survey
responses on conversations about farming methods to deal with learning models in develop-
ment. Manski (2000) points out the formidable identification problems when group affiliation
is not known a priori.

10



implies that simply estimating equation (1) without regard to this issue implies
nothing more than a quantitative statement that the individual and the peer
group share a common environment.

To move beyond such statements and to try to capture the behavioral impacts
of a peer group on individual behavior, we need an empirical strategy which will
abstract from the two prominent sources of endogeneity just discussed. The
question of peer group formation is a common issue in empirical economics as
it is just a form of sorting or endogenous migration. Perhaps one of its best
known forms is that of Tiebout sorting wherein the demand for public goods
across communities needs to first address why those communities formed in the
first place. The general strategy in such situations is to either try to find some
fraction of the variance in group composition which is exogenously determined,
or to exploit variation in the public good demand which is not determined by
the preferences of communities. Alternatively, one could try to fully model the
process by which groups are formed, and thereby use sources of variation from
that model which are unrelated to the outcome process. Unfortunately, this
latter approach requires very rich data on preferences as well as detailed data
on group members and potential group members, or it runs the risk of being a
tautological exercise in that it faces little discipline from the data.

The flip-side of this concern over the endogeneity in the peer group measure
§—i,j is also ensuring that a suitable instrument is also correlated with the peer
group measure, net of the other covariates. This is the rank condition necessary
for identification, and the key issue here is that it has to hold in the presence of
the covariates. This is not trivial, as one of the key regressors is the indicator for
whether the child is assigned to a Small class in her current grade, which we label
Dj. We let D; =1 when the child is assigned to the Small class treatment, and
clearly, for a given class j, this does not vary at the individual student level.'?
Therefore, any peer group measure, or any candidate instrument for the peer
group measure, must vary within classes in order to satisfy the rank condition.
Naturally, this would rule out, for example, differences in peer group measures
between the treatment and control groupings of the Small and Regular classes.
The problem with such an identification strategy is that we would be unable to
distinguish between what is a pure class size effect versus what is a peer group
effect as the two measures move completely in tandem within schools.

In order to drive a wedge between the current class-size designation category
D; and some factor which uses the experiment to generate exogenous changes
in peer group composition, we turn instead to the timing of the experimental
impacts and the essence of the feedback effect. As we discussed in Section 2,
the exit of children from the Project STAR schools and the subsequent random
assignment of children to Small and Regular classes to fill their place imply

12The reader should also bear in mind the experiment did not utilize a random selection of
schools, as discussed in Section 2 above. As such, all econometric methods implicitly contain
a set of school fixed-effects. For that reason, only instruments that contain some within-school
variation are valid candidates to use as instrumental variables.
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that a child who is randomly assigned to a Small class in her current grade
was not necessarily in the Small class in the previous year if she was new to
the Project STAR schools. In order to avoid cluttering the notation with an
additional subscript denoting the timing of variables, let us stick to our current
notation scheme (of labeling things for the current grade only), but define a new
variable for the children of class j to indicate their random assignment status
for the previous class year d;;. Therefore, d;; = 1 if student ¢ was previously
randomly assigned to a Small class, and due to the exit and entry of students,
it is not necessarily the case that in Small classes (i.e. D; = 1) that d;; is 1 for
each student.'® As a useful piece of additional notation, define the number of
students in each class 7 who were previously randomly assigned to a Small class
as S5 = Zf\; d;;, and the associated fraction of students who were previously
randomly assigned to a Small class z; = = 5;.

Now if all students in the current class j had valid test score measures taken
before they began the year in class j, then we could use this average as one
measure of the peer group quality and study the impact of this measure on
individual test scores at the end of the school year. However, even apart from
the fact that we only have such data for incumbent participants in the Project
STAR study, this simple but direct approach would have potential pitfalls. First,
while it is true that students were randomly assigned to class types, it is not clear
they were randomly assigned to specific classes within the class type categories
within schools. Second, the OLS approach of using the lagged average of test
scores on the student’s current year peers assumes the other inputs to the test
score outcome that are common to the entire group are controlled for in the
regressors. In fact, even with the measure under study, class size, there were
small but detectable differences in class sizes within a given class type category.
Thus, even with the use of the lagged measure, we may have to be careful to
avoid an omitted variables problem when looking across years. Finally, we come
back to the reality of the data that we lack test scores for the previous year for
the New Entrants, and so they would have to dropped in order for such an
analysis to be feasible.

Instead, we make use of the hypothesis that the class size treatment assignmen
had an impact on the subsequent year’s test score to solve these three problems.
In particular, by grouping the New Entrants with the Regular class students and
contrasting them with the ‘boost’ in test scores received by the children placed
in Small classes in the previous year, we can conceptually extract the com-
ponent of the lagged test score that was induced by the experiment by using
the variation in current scores explained by lagged treatment status. Further-

t14

13We are ignoring the rather small fraction of students who switch class type assignments
in violation of the experimental protocol. They are not essential to our identification strategy,
and they only add inessential complexity to incorporate them into our current discussion.

14 As we shall discuss, it is not essential, although it is extremely helpful, for the class size
treatment per se to have an impact on test scores on average in order for the identification
strategy to work.
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more, as regards the possible failure of the exogenous assignment of students
to individual classes within class types, we can replace this with the somewhat
weaker assumption that the class groupings were not determined by the fraction
of children previously randomly assigned to Small classes. Finally, as regards
the possible omitted variables common both to the student and her peer group,
now we need to only worry about omitted variables that are correlated with the
fraction of children in each class that were previously assigned to the Small class
types. Of course, as we do not have any explicit randomization device creating
the classes, we cannot be positive some type of exogeneity failure is present, but
this instrumental variables strategy of using the previous random assignment
indicators as a forcing variable for the latent (or unobserved) lagged test scores
is less susceptible to these specification problems than if the lagged test scores
were observed, in which case more stringent identifying assumptions would have
to be made.

The strategy then is to use the contemporaneous average of the peer group
test scores y_; ; as the peer group measure. The instrument for this measure,
which tackles litany of endogeneity problems discussed above, is the fraction of
the class net of student ¢ who were previously randomly assigned to a Small

class: 1
Z_ij = msﬂ»,j (3)

with the analogous ‘leave out i’ quantity as:

N
S_ij =Y dij =55 —dy (4)
ki

Note that this instrument handles the problem that the test scores for the New
Entrants are not observed prior to their exposure to the treatment. In effect,
we ‘pick out’ the component of the post-exposure test outcome that is due to
having been exposed to the Small class treatment in the previous grade or not,
and so use only that variation in the predicted peer group measure. The use
of the lagged instrument also deals with the reflection problem, as only the
component of the peer group measure that varies with the lagged treatment is
used in the predicted peer group measure.

The presence of the current grade class type indicator D; in the regressor
set, however, might render this nothing more than a conceptual discussion. In
order for the instrument to have power, it must be that z_;; be correlated
with §_; ; net of D;. By the Frisch-Waugh Theorem, this means that z_; ;, the
fraction of student i’s classmates who were previously in Small classes, must
have sufficient variation after its linear dependence on Dj is factored out. This
is clearly where the degree of New Entrants, and in particular, the extent to
which the New Entrants are spread across classes j is key to give the instrument
any chance of power in our data. As we show in Figures 1 and 2, fortunately
for our purposes, the Fraction of New Entrants does indeed have significant
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variation across classes for all three grades. Figure 1 is a histogram of the
fraction of each Small class who were previously randomly assigned to a Small
class as well. Were there no new entrants, and no students switching class type,
the histogram for each grade would be a single bar at 1. In fact, we can see while
there is a pronounced tendency for that fraction to fall between 0.5 and 1, the
histogram reveals substantial variability in this fraction across classes. Figure
2 does the same exercise for the Regular classes, where absent the new entrants
and switchers, each histogram would be a single bar at 0. While the variation
across classes here is less visually apparent, it is also clear we have some power.
Finally, as we shall see below when we present the first-stage regression results,
this net variation (net of the Small class indicator Dj;) in the instrument also has
decent explanatory power at the third grade level, and moderate at the second
grade level, for the peer group outcomes.

The inclusion of the class type indicator D; also helps ease the exogeneity
requirements for the group formation. For example, the presence of the class
type indicator in the regression has the effect of sweeping out all observed and
unobserved factors that vary purely at the class type level. So if we assume
that the (possibly endogenous) sorting that takes place within class types of
students and teachers into particular classes is the same for the Small and Reg-
ular classes, then the presence of the D; treatment indicator will ‘balance the
bias’ (Heckman, 1997) and net it out of our estimated equation. The point is
that randomization creates two groupings of students and teachers that are, in
principle, identical on either side of the treatment and control line. While the
sorting within the two clusters of students and teachers into classes may well be
endogenous, as long as that process is the same for both groups, the presence
of the treatment indicator will guarantee that it will be differenced out. Of
course, if students and teachers are assigned not just to class types on the basis
of randomization, but also individual classes within class types, then this entire
discussion is moot. But we have been unable to verify with certainty that all
schools in the Project STAR experiment created classroom groupings via ran-
domization, and so we proceed under these weaker assumptions. While the idea
of identical endogenous processes leading to class formation (under the scenario
where we dispense with the possibility that classes were formed via a random-
ization scheme), we should mention it is not difficult to construct behavioral
models in which these processes would not be identical owing precisely to the
differing class sizes on either side of the treatment and control lines.'® That is
a very nuanced version of the endogenous sorting story, and to speak more to
it empirically would require far richer data than we have access to here.

Our instrumental variables strategy yields differences in the power to detect
peer effects across grades. First, it should be obvious by the very nature of
our identification strategy, in that it relies on the lagged Small class assignment

15 A point we owe to Andy Foster for pushing us think beyond the purely statistical statement
of this identifying assumption.
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variable, that peer effects will not even be estimable via this strategy for Kinder-
garten. Given that not all children attend Kindergarten in Tennessee, this is
perhaps not a serious shortcoming of our strategy. By default, we assign all of
the reduced form effect to the ‘pure’ class size effect in examining the Kinder-
garten class type estimate, although what we are really saying is that, given
our identification strategy, we cannot tell if some portion of this effect is really
being driven by peer group effects or some other source. Similarly, while we
are not prohibited from empirically estimating a peer group effect for the First
grade with our strategy, as we will see, we really have quite low empirical power.
This brings us to the conceptual point we wish to make on this subject in this
section. Because our identification strategy literally relies upon the feedback of
the treatment assignment effect on students as the Project STAR cohort ages,
we expect to see greater notional power for the later grades. We wish to stress
that of course the failure to detect an effect does not imply there is no effect,
and so in our context the failure to detect peer effects in the early grades may
simply be symptomatic of the very design of our identification strategy.

To summarize this section, we rely most heavily on the aspect of Project
STAR that it randomly assigns a Small class treatment to individuals and then
clusters those children differently as the experiment progressed across grades.
This is the key to our identification strategy in extracting measurement of the
endogenous peer group effects from these type of data. We will discuss the
specific econometric properties of our estimation scheme and how it fits in with a
more general discussion of peer group effects in Section 5 below. We do not argue
that the students in Project STAR are randomly placed into individual classes,
but merely class types (Small or Regular) within each participating school. The
technical literature on this aspect is unclear, and in any case, our strategy is
operational if, as we assume, students and teachers are only guaranteed to be
assigned randomly to class types and not purely classes. The bottom line is we
are relying on the social multiplier effects of the class size reductions to identify
the peer effects and not the random assignment of students to different peer
groups. The extra assumption we must incur lacking the random assignment
to individual classes is that the potential sorting that does occur along the
lines of our instrument is the same process across the two randomly determined
treatment groups. Finally, as we stated at the outset, we have for now adopted
the canonical approach of the literature in other respects, such as adopting
the regression model that is linear in the peer group mean outcome as well as
the extremely critical assumption that the relevant peer group is the student’s
classmates as regards the test score outcomes.
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4 The Evidence on the Social Multiplier Effects

of the Small Class Size Treatment in Project
STAR

In this section we use the Project STAR data together with our identification
strategy just discussed in the previous section to estimate peer effects. Before we
move to that estimation framework, we first replicate the earlier work done with
Project STAR on the class size effects as in Krueger (1999), and then interpret
these as reduced-form (or total) class size effects that we try to pull apart into
their underlying components of the peer group effect and the residual which we
call the ‘pure’ class size effect. We consider both the instrumental variables as
well as the reduced form results, the latter of which combine the direct class
size effects together with the social multiplier or feedback effects created by
the experiment. The reduced form allows us to begin to perturb the canonical
framework to alternative specifications. We also consider the robustness of our
baseline instrumental variables results to alternative instrumentation strategies,
as well as assess the sensitivity of our results to departures of the Project STAR
data from the experimental protocol (such as class type switchers).

4.1 Estimates of the Peer Effects and the Pure Class Size
Effects: Inside the Black Box of Project STAR

We begin our empirical analysis with first presenting the reduced-form class size
effects using the Project STAR data. The results are broken out by the four
grades for which the experiment ran, and as we discussed above, all regressions
include school fixed-effects as the STAR data were not a random sample of
schools. Owing to the randomization of students and teachers within schools
to the three class types - Small, Regular, and Regular with a teacher’s aide (we
use Regular as our omitted base group) - a simple OLS regression estimates the
treatment effects of interest as the coefficients on the Small and Regular/aide
dummies.'® These results are presented in Table 3, and our results reproduce the
analogous results presented by Krueger (1999) and Hanushek (1999) (without
regard to their subsequent interpretation of these results). In short, the Regu-
lar/aide classes do marginally better, although the difference is not statistically
distinguishable from the Regular class base group. The Small class estimates,
however are all quite significant at conventional levels, and range from a low of
4.8 percentile points to a high of 7.3 percentile points relative to the Regular
class students. It is not much violence to these results to summarize them as
saying that being in a Small class appears to have roughly a 5 percentile point

16Tn an experimental setting, the inclusion of covariates helps in countering small imperfec-
tions in the randomization along observable dimensions, but primarily serves to reduce the
residual uncertainty and so reduce the sampling error of the effects of interest.
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gain over students in Regular classes (of either type) at each of the four grade
levels.

What we wish to do is essentially pry apart this 5 percentile effect into its
constituent components of a pure class size effect and the peer group effect
which is the focus of our work. An alternative statement of our goal is to split
the class size effect into its direct and indirect effects, although this language
is rather imprecise and leaves the implications for policy counterfactuals rather
muddled. Whereas earlier authors, especially Krueger (1999), interpreted the
roughly 5 percentile point gain implied by the coefficient on the Small Class
indicator as pertaining to the causal effect of the Small Class size as compared
to the omitted control group, Regular Classes, we wish to remain more agnostic
at this stage.

We interpret this as the total effect of being assigned to the Small Class
type, but we view this categorization as a bundle of components which comprise
the ‘black box’ of the class type, and which may include peer effects and other
elements of a general schooling production function. At the inception of the
program (i.e. Kindergarten and possibly First Grade) it seems plausible that
the cohort design to the study would more precisely reflect a pure class size
effect. But as the cohort ages, it becomes increasingly difficult to argue that the
simple contrast between the Treatment and Control groups reflects a pure class
size effect, without allowing for the possibility that the experimentally induced
changes in the peer group compositions might also play a role. What the earlier
literature as exemplified by Krueger (1999) and Hanushek (1999) focused on
was the lack of widening of the gap between the students who remain in the
Small classes as the experiment progressed, and why the 5 point gain appeared
to be a once and for all gain, as opposed to an increase in the slope of the test
score-grade relationship as well as in the intercept.

Table 4 presents the simplest possible departure from the Treatment and
Control indicators used to measure the class size effects from Table 3. In Table
4 we include the additional characteristic of the classes given by the average
(leave-out mean) test score of the class §_; ; - a measure we intend to capture
the ‘peer group effects’ as articulated in Section 3 above. We are not trying to
ascribe any behavioral significance to these regressions, but we want to present
a benchmark by which the IV estimates we present below might be compared.
In particular, owing to the reflection problem which we discussed in Section 2,
the individual outcome y;; and the peer group outcome y_; ; are simultaneously
determined and so the reverse causality would have to be considered formally
to give this a behavioral interpretation.!” The remarkable stability of the es-

17As we discussed in Sections 2 and 3, we do not have test score outcomes for the New
Entrants prior to their entry to the Project STAR schools. Therefore, we cannot resort to
ad hoc fixes to the reflection problem by utilizing a lagged version of the peer group measure
(i.e. the student’s current peers’ test score in the previous grade). However, we did use,
purely for comparison sake, the lagged mean peer group effect lagged one grade for those
students who were in the Project STAR schools in the previous grade. This exercise has
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timated coefficients across grades on the peer effect measure certainly presage
the analytical results we consider in the next section and in the Appendix that
derive the sample properties of the type of peer group estimators considered in
Table 4. Across the three columns, we see that the estimated coefficients on the
peer group measures are virtually identical at 0.58 with standard errors of 0.04.
The coefficients on the Small class indicators exhibit a little more heterogeneity
across grades, and they have fallen to roughly half their original magnitudes
from the total program effect estimates given in Table 3. The point estimates
suggest a small decline in the Small class effects across the three grades (as
in Table 3), although the decline is not statistically significant. All three esti-
mates of the Small class effect, however, remain statistically distinct from zero
even after including the contemporaneous peer effect measure as an additional
regressor.'®

At the bottom of Table 4 we present what we call the normalized peer
effect which places the estimated coefficient on the peer group measure given in
the first row of each column on the same scale as the coefficient on the Small
class indicator. Conceptually, it captures the discrete effect of moving from
a Small to a Regular sized class on the average peer group measure. From
a measurement perspective, we can view the sum of the effects on the Small
class indicator and on this ‘normalized’ peer group effect as roughly splitting
the overall (roughly 5 percentile point) reduced-form experimental effect into
its constituent components of the direct class size effect and the feedback effect
induced by the peer group effect. As we can see in the last row, the normalized
peer effects reflect the homogeneity of the peer effect coefficients and they vary
from roughly 4 to 3 points. If we sum the Small class effect in the second row of
Table 4 with the normalized peer effect, we get the estimated total Small class
effects of 6.66 for First grade, 5.26 for Second grade, and 4.95 for Third grade.

the effect of replacing the reflection problem which hinders the behavioral interpretation of
the results in Table 4 with another problem, which is, what does the lagged peer group
measure mean if it is only constructed over those students who were in the experiment last
year? Interpretation problems aside, we find the biggest change occurs in the first grade,
where the estimated coefficient on the peer effect drops from the estimated 0.58 in Table 4
to 0.05 with a standard error of 0.07. The second and third grade estimates on the peer
group measure drop by about half to 0.21 for both grades. For the most part, the Small class
dummy coefficients remain qualitatively the same, although the point estimates show a more
pronounced monotonic decline across grades. But as both versions of Table 4 suffer from
measurement or simultaneity problems, we only use them to serve as a benchmark to contrast
our later results to.

18Here again we would be remiss if we did not point out the presence of the reflection problem
and the problems with interpreting the results in Table 4 behaviorally. As regards the Small
class effect, obviously one potential impact is that it enhances the performance of a student’s
peers. Therefore, including it as a covariate will obviously diminish the potential effect of the
Class size mechanism, as it simply splits the total effect displayed in Table 3 into a direct and
indirect effect, with the contemporaneous peer group measure being a potential outcome of
the contemporaneous class type indicator. The IV estimators considered below do not have
this mechanical problem of simply splitting the overall effect of purely the contemporaneous
class size measure.
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If we compare these to the total experimental effects of the Small class type
presented in Table 3, these were 7.31, 5.94, and 4.76. Thus, for the most part,
the Small class direct effect and the normalized peer effect combined appear to
account for the average total experimental effect of the Small class assignment.

We turn now to our instrumental variables strategy which avoids the reflec-
tion problem and also accounts for the aspect of the sampling design of the
experiment in that we do not have test scores for the New Entrants prior to
their joining the Project STAR schools. As we discussed in the previous sec-
tion, we use as an instrument for the contemporaneous peer group measure 3_; ;
the fraction of the current peer group students who were assigned to the Small
class treatment in the previous grade z_; ; = ﬁ ch\;z dij. The instrument
therefore treats students who are either New Entrants to the experiment or pre-
viously randomly assigned to one of the Regular class types as the same as far
as explaining variation in the class to class variation in average test scores.”

As we noted in our conceptual discussion in the previous section, this strat-
egy looks to have promise since the fraction of students who were previously
randomly assigned to a Small class has good variation across classes for the
Small class type group (owing to the significant quantity of the New Entrants).
In Table 5 we present the first stage of the projection of §_;; on z_; ;. We
do this by grade, and as the grade increases, obviously the number of potential
instruments grows, as students may have first been exposed to the Small class
treatment in an ever-increasing number of prior grades. So, for example, by the
third grade, there are three such possible instruments. By looking at the first
three rows of Table 5, the reader can see that for the most part, the instruments
are individually generally not statistically distinct from zero. The exceptions
to this are the Kindergarten effect for the Second grade regression, which is
marginally statistically significant, and the rather large point estimate for the
Third grade, which is highly significant at conventional levels. The joint test on
the combined significance of the instruments for each regression is given in the
4th row from the bottom of the table. There the reader can see we have quite
low power for the First grade, weak to moderate power for the Second grade, and
quite good power for the Third grade owing largely to the Kindergarten peer
measure effect. This pattern of power for our instrumental variables framework
we anticipated in our previous conceptual discussion of our strategy, as it relies
directly on the feedback notion of what a peer group effect is, and so it only be-
comes detectable as the cohort ages and the feedback effects potentially surface
from the environment.

1976 the extent that the ‘Regular’ class size represents the average class size in the schools
from which these students came, this may not be such a bad approximation. The random
assignment of the New Entrants to the Small and Regular class types helps balance the
differences between the New Entrants and the previously assigned students along unobserved
dimensions once the contemporaneous class type indicator D; is conditioned on. As we noted
in Section 2, however, there is plenty of evidence to suggest that unconditionally the New
Entrants and those students previously randomly assigned to even just Regular classes are
observationally distinct.
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Notice also that because we are instrumenting for a grouped version of the
dependent variable, the first-stage regression is also almost the reduced form for
the two equation system at the individual level.2® Therefore, we can also exam-
ine the effect of the class type indicators after holding constant the direct peer
treatment effects of interest. This approach has the advantage of avoiding any
sort of reflection type problems. However, as regards our principle identifying
assumption, it may be subject to the endogenous sorting objection if the sorting
is systematically different between the Small and Regular classes. But keeping
with our assumption that this bias is balanced across the treatment arms of the
experiment, then the coefficients on the Small class indicators tells us to what
extent the Small class effect of Table 3 is only reflective of the spillover effects
generated by the past impact of the experiment. Indeed, while the Small class
effect for the First grade, 6.39 (and statistically distinct from zero), is still close
to its Table 3 estimate, the point estimate for the Grade 2 effect is half its Table 3
value, and is statistically indistinguishable from zero. Finally, the Grade three
point estimate is actually negative, but is again indistinguishable from zero.
Thus, our conclusions which we shall discuss below regarding the insignificance
of the Small class effects at Grade 2 and 3 of the Project STAR experiment
are not subject to a criticism that we may have mishandled the treatment of
the endogenous peer effects. Once measures capturing the prior exposure to the
Small class treatment of an individual’s peers are included, the current effects
of having been assigned to a Small class are substantially attenuated.

The second stage instrumental variables results presented in Table 6 rep-
resent the core results of our paper. They show that once we account for the
simultaneous determination of the individual y;; and contemporaneous peer
group outcomes %_; ; using the lagged fraction of the peer group exposed to the
treatment as an instrument, the estimated peer effects swamp the direct Small
class size effects in grades 2 and 3. The first grade point estimate of the peer
effect is roughly one-third of the second and third grade estimates, and is quite
imprecisely estimated. As such, it is indistinguishable from no effect, although
as we indicated above, and we wish to stress again, this lack of finding an effect
should certainly not be construed to imply that there is no effect, as the power
of the empirical design is quite weak here. Indeed, the confidence interval on the
first grade effect more than encompasses the Second and Third grade effects,
and so could even be construed as consistent with those point estimates.

20The use of the term ‘almost’ here may be unclear. For the most part, the dependent
variable in the first stage regression presented in Table 5, §_; ; varies little across students
within classes, but more so across classes. Below we shall consider reduced forms purely at
the classroom level, as the treatments of interest vary only at the class level rather than the
individual level, and so in this sense, the standard errors presented in Table 5 over-count the
degrees of freedom for these treatments. The class level results are presented in Appendix
Table 1, and show that our correction for the within-class correlation of the errors almost
completely compensates for the possible overstatement of the degrees of freedom. Thus,
inferences drawn from Table 5 are not deceptive owing to the ‘over-counting’ of the degrees
of freedom.
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The normalized peer effects are presented in the last row of Table 6, and
roughly speaking, the Second and Third grade effects have a point estimate of
about 4.5. The Small class effects presented in the second row are now extremely
small relative to the 5 percentile point estimates of the overall effect presented
in Table 3, and quite indistinguishable from zero. Given the precision of the
standard errors on these two point estimates, we can clearly reject their equality
to the earlier reduced-form effects. This pattern is reversed, however, for the
First grade estimates. There the Small class effect remains largely unchanged
at 4.91, although the standard error on this estimate is extremely large, so it
is also indistinguishable from zero. The estimated normalized peer effect is less
than half the grade two and three effects, at roughly 2 percentile points. The
associated t-statistic, however, is less than 0.30, reflecting the low power, and
as we already noted, the peer effect for the First grade is indistinguishable from
0.

This very stark pattern of the apparent complete overtaking of the Small
class size effect by the peer effect as of the second grade may strike the reader
as unusual, and perhaps indicative of some spurious attribute of the setting
driving these results. For that reason we next turn to examining the sensitivity
of these basic results to alternative specifications and measurement schemes.
However, it is also useful to pause for a moment and point out one exercise this
paper will not be able to shed much light on. Namely, as a measurement device,
we have posited that individual outcomes vary with the mean outcomes of the
reference group. But we have not considered the behavioral model by which
these individual outcomes, which are presumably the result of underlying choices
and inputs, come to be influenced by the reference group. Manski (2000) among
others has delineated three broad channels by which the peer group mechanism
might propagate: 1. Preference interactions 2. Expectation interactions and
3. Constraint interactions. While we certainly agree that for the evidence in
this paper to lead to precise policy prescriptions we would need to establish
how these behavioral mechanisms lead to the peer group influences we observe,
we emphasize that the Project STAR data do not sample characteristics that
enable us to speak to these alternative explanations empirically. It is possible
at this juncture to offer stories which might rationalize this pattern of results
across grades that rely differently on say the preference versus the expectations
rationales behind the peer influences, but we shall avoid this ez post theorizing
in this paper, and leave this exploration until the relevant variables can be
sampled.

4.2 Assessing the Robustness of the Peer Effect Results

Table 7 presents our first set of robustness checks of our basic specification
presented in Table 6. Essentially this table is concerned with the fact that since
each student in Project STAR can be represented as a given experimentally
assigned ‘type’, then using one source of variation is equivalent to using one
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minus another source of variation. For example, each student currently in a
Small class was either previously randomly assigned to a Small class last year
(PRASC), a New Entrant to the Project STAR schools (NE), or one of the
rather small fraction of class type Switchers (S). If we let each of these variables
denote their respective fractions, then we have for each Small class:

1= PRASC + NE+ S (5)

So then it is identically true that for just the Small classes, using the fraction
PRASC as an instrument, as we did in Table 6, is equivalent to using (1 - NE -
S) as an instrument.

For the Regular type classes, a student who was PRASC who is now in a
Regular class is clearly a Switcher, and so we will replace the designation of
switcher to PRASC for the Regular classes, to keep the notation for a Switcher,
S, as being just for those who switch from a Regular to a Small class. Introducing
the notation of PRARC for those students who are in a Regular class now who
were previously randomly assigned there, we have:

1= PRARC + NE + PRASC (6)

So now we have the identity that PRASC = 1 - NE - PRARC, and so using
PRASC as an instrument for the Regular classes is identical to using 1 - NE -
PRARC as an instrument. Notice we have purposefully not used notation to
distinguish between New Entrants to Regular classes versus New Entrants to
Small classes, as the randomization should equate those two groups. However,
PRARC and PRASC are potentially distinct groups as they have been exposed
to different treatments at an earlier point in the experiment.

The basic point of spelling out these identities is that using the variation
explained by the proportions of students in the classes who were, for example,
previously randomly assigned to a Small class is identically the same as using
the ‘mirror image’ (and thus the same first stage projection and the same IV
estimate) proportions of the other groups of students across classes. This point
is useful to keep in mind in interpreting Table 7. First, we can examine the
possibility that the peer effect works differently for the Small and Regular class
types. Therefore, the first row of Table 7 pools the class types as in Table 6
and uses PRASC as the instrument, thus replicating the first row of Table 6.
The next two rows allow the peer effect to be potentially different across class
types. For the Third grade, the estimated peer effect coefficients are roughly the
same, and roughly average to the pooled Third grade effect presented in Table
6. For the Second grade, the Small class peer effect is roughly the same as the
pooled Second grade effect from Table 6. However, when looking just within
the Regular classes, the estimated peer effect is highly imprecise and the point
estimate is actually negative. Now here is where the identities just presented
become useful. As we noted above, for the Regular classes, the number of
students PRASC is equal to the number of Switchers (into Regular class types).
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Therefore, a regression which uses only the fraction of class type Switchers will
produce an identical point estimate, and by looking at the last row of Table 7,
the reader can see that the -0.56 point estimate from the third row is identical
to the -0.56 estimate for the Second grade in the last row.

Thus, when we allow the peer effect coefficient to differ by class type, we can
see that in the case of the Second grade, the point estimate is quite different
for the Regular classes than for the pooled (across class types) estimate given
in Table 6. Likewise for the peer group effect for the Regular classes for the
First grade as is shown in the first column of the third row of Table 7. In
contrast to the Table 6 pooled estimate, the point estimate here is roughly the
same magnitude (and statistical significance) of the Second and Third grade
estimates from Table 6. And of course here again, the estimate is identical
to the First grade estimate for the Regular classes in the last row of Table 7
which uses the fraction of class type Switchers as the excluded instrument. Our
point in displaying this numerical equality of the estimated effects, as well as
the brief conceptual discussion we just provided on the ‘reverse image’ form of
identification is precisely to highlight to a skeptical reader that our identification
strategy uses different groups to identify effects when we pool across class types.
The reader, for possibly good reasons, may be worried about relying entirely on
class type switchers to identify a peer group effect, as students who opt to switch
class types (in this case the somewhat more unusual choice of switching from
a Small to a Regular sized class) is endogenously determined with respect to
the outcome. Such readers may therefore wish to discard those aspects of our
analysis that include these Switchers as a source of identifying information. For
this reason, they may wish to instead focus on the Small class estimates given in
the second row of Table 7, as opposed to the pooled class type estimates given
in Table 6.

The Small class peer effect estimates from the second row of Table 7 are
qualitatively the same as the pooled peer effect estimates from Table 6 for the
Second and Third grades. The First grade peer effect estimate, while still quite
imprecisely estimated, is now quite large at 1.72 and is statistically distinct
from zero at conventional levels. This discrepancy with our Table 6 results is
in some sense reflective of the low power properties of our identification design
with regards to the First grade setting that we have discussed previously. Across
the multiplicity of specifications we have presented both in the paper, as well
as those not presented, we tend to find much more systematic and uniform peer
effect estimates for the Second and Third grade, whereas the results for the
First grade are much more mixed and far more specification dependent.

This pattern is also seen in the specifications we present in the middle rows
of Table 7 where we now use the percent of New Entrants in the class as the
instrument for the peer group measure. The idea here is to use the variation in
peer group ‘quality’ induced by those students who were not exposed to either
the treatment or control groups of Project STAR. As we noted in discussing our
primary identification strategy underlying Table 6, we might expect that the
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New Entrants are comparable to the students already assigned to the control
classes in the Project STAR groups, but if there is some type of spillover, or
simply that the New Entrants represent a distinct group apart from the pre-
existing Project STAR students, then this strategy might be appropriate. Our
primary intent, however, is not to offer a strong behavioral justification for this
instrumental variables strategy, but simply an alternative measurement strat-
egy of the peer group coefficient. For the most part, our conclusions from the
other parts of Tables 6 and 7 stand. The Second and Third grade results tend
to be statistically distinct from 0, although the estimated effects are diminished
in comparison to Table 6. This is especially true when we break the estimated
effects out by class type and we look at the effects for just the Regular classes
- these effects are roughly half of their Table 6 counterparts. Part of this at-
tenuation might arise from the mixing of the students previously assigned to
either Small or Regular classes under this identification strategy. For the First
grade, we do find a statistically and economically significant estimated effect for
the pooled class type specification, but the effect estimated for just the Small
class types is highly imprecise, and for the Regular class type it is just below
conventional levels of statistical significance. Overall, this alternative measure-
ment strategy does not alter our primary conclusions from Table 6, and this
is especially so as we think more carefully as to what source of variation this
alternative strategy picks out of the variation in peer quality across classes.
Finally, we present what might be thought of as the ‘perverse’ source of
variation in peer quality across classes, and that is using the fraction of students
in each class who opt to switch away from their initially randomly assigned
class type. As we discussed in Section two, and was also discussed in Krueger
(1999), this may not be such a contaminated source of variation as the reader
might think at first blush, as many of the students who switch class types are
documented to do so for disciplinary reasons and the like. Thus, it is not obvious
that a student who switches from a Regular to a Small class does so because
she is more academically motivated. For that matter, we should mention that
while the numbers are only about one-third as large, we do see some degree
of switchers in the opposite direction, from Small to Regular classes. For the
average student, it may be plausible to think that these different groups of
switchers, from Regular to Small and from Small to Regular, impart different
biases on the estimated effects, which is why we present them broken out by
class type (and not pooled) in the last two rows of Table 7. For the reasons just
discussed, therefore, it is perhaps not too surprising that the point estimates
of the peer effects based on those who switch into the Small classes from the
Regular classes (presented in the next to last row) are slightly larger than the
estimates based on the switchers from the Small to Regular classes (presented
in the last row). However, the differences are extremely slight (a maximum of
0.07) and are not statistically significant across grades. Thus, if the reader does
posit that the switchers endogenously select into class sizes based on preferences
for academic ‘quality’ we find no statistical evidence of a systematic bias in one
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direction based on these estimates. For that reason, we have not excluded the
switchers from our overall analysis as these estimates and further specification
checks indicate that they do not exert a systematic influence on our estimated
effects. We interpret this as confirming the Project STAR informal survey-
based evidence and Krueger’s (1999) evidence that the treatment of switchers
in alternative specifications is essentially inconsequential in the impact on the
final results.

4.3 What Do the Peer Effects Mean?

Our intent so far has been to take the canonical approach of estimating an
equation such as:

Yij = BY—ij + Ty + € (7)
and to construct useful estimates of the peer effect manifested in § by utilizing
the random assignment features available in the Project STAR data. In particu-
lar, our identifying strategy relied on the notion that subjecting a student to the
Small class type treatment induced not just potentially a boost in that child’s
test score outcome, but an indirect or spillover effect on the child’s classmates
through the peer group effect. This is what we mean by the feedback or social
multiplier effect of the Small class type treatment. However, as has been noted
frequently in the literature, the linear-in-the-peer-group-mean specification just
presented implies that given a population of students of a particular quality,
a reallocation of those students into alternative groupings would lead to the
same aggregate outcome if this specification accords to the underlying mech-
anism generating the data.?! We now turn to the question of whether, given
the Project STAR treatment, non-linearities in the peer group effect exist so
that reallocations or alternative groupings of students exposed to the treatment
affect aggregate output. In terms of policy questions, this would speak to the
pure efficiency implications of ‘ability tracking’ in which classes are formed to
homogenize along the basis of initial test score outcomes.

To examine this, we turn directly to the class-level reduced forms (as instru-
menting non-linear versions of §_; ; obscures the basic point) where we allow
the instrument of the percentage of students previously randomly assigned to
a Small class to enter in a rather arbitrarily non-linear way by breaking the
percentage into five dummies as it varies from 0 to 100 percent. We have in-
cluded the other covariates in these specifications by grade (including, of course,
class type) but have suppressed reporting those coefficients for brevity. Unfor-
tunately, as the relevant variation here occurs at the class level and we have

21But just to re-emphasize, it is not true that this implies that the class size treatments
applied to a population of NJ students individually produces the same aggregate output
compared to the design of it being applied to J groups of N students each. The latter design
contains the feedback or social multiplier effect of the Small class type assignment we are
attempting to measure. If this is not clear at present, we hope that it will be clear to the
reader by the end of the next section.
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only about 330 classes in the data, we have little power to detect these non-
linearities. This is compounded by the fact that for each grade, only a little
more than 100 of the classes (of either the Small or Regular type) contain more
than 20 percent of children who were previously randomly assigned to a Small
class. The average cell size outside of this base group, therefore, is only about
30 classes. For the most part, the linear-in-the-group-mean model appears to
be consistent with the data. There is extremely slight evidence of a larger point
effect once the fraction of students who were previously in a Small class passes a
40 percent threshold for all three grades. And there is also slight evidence in the
Third grade of a larger benefit as this threshold is moved to 60 percent. Assum-
ing a particular parametric form of the non-linearity would lend greater power
to this exercise, but we were unable to quantify a convincing non-linear pattern
that we felt appropriately summarized this reduced form. Such non-linearities
may exist, but it will likely take a sample much larger than the Project STAR
design in the number of classes dimension to measure them with accuracy.

In Table 9 we take on the idea that it may not be the ‘quality’ of a student’s
peers that matters for individual outcomes, but more of the ‘sameness’. That
is, imagine a school in which an entire first grade class is promoted intact to
the second grade, so that the student’s classmates remain exactly the same. In
Table 8 a class in a cell like ‘80 to 100 percent of classmates were previously
randomly assigned to a Small class’ might have simply been a Small class that
was moved virtually intact across grades. Looking at Table 8 we cannot tell if
the estimate was created by the ‘sameness’ of the class, or because the class was
exposed to the Project STAR Small class treatment. In Table 9 we include an
additional set of dummy controls, analogous to those used in Table 8, to control
for an arbitrary non-linear profile of class ‘sameness’ - i.e. the fraction of the
class that was previously in the same class together. Interestingly, even with
this additional set of controls for class ‘sameness’, the conclusions of Table 8,
with only a slight non-linearity appearing in the Third grade at the 60 percent
threshold, appear to hold up quite well. One feature that might be interesting
for future work on this topic is that the class ‘sameness’ estimates tend to be
larger than the ‘quality’ estimates for the Second grade estimates. However,
the opposite is true for the Third grade estimates where the ‘quality’ or Small
class treatment exposure measures tend to have estimated coefficients which are
larger than the ‘sameness’ coefficients.

5 Sample Properties of the Peer Group Effects
and Alternative Estimation Schemes
Until now, we have asked the reader to bear with the canonical regression-based

estimation framework of extracting peer group effect estimates from a sample
of data. We have argued that the Project STAR data provide a superior means
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of estimating such effects because it uses randomization to allocate individuals
to treatment and control groups, and these individuals are sampled over time
so that the resulting feedback, or social multiplier, effects of the social program
can be extracted from the data. That framework consists of the (appropriately
instrumented) ‘y on §’ regression familiar from studies in the literature that
try to get at quantifying endogenous peer group effects. We turn now to ‘un-
wrapping’ this ‘y on ¢’ regression by working out its properties in the sample.
Much work has been done on the conceptual and population aspects of the peer
effects model, but very little has been done on spelling out exactly what sample
information is being used to produce an estimated effect. We show that our in-
strumented peer effects model employed in the previous section in fact captures
the very essence of an endogenous peer effect, that being the social multiplier or
feedback effect, of the social program used to create the instrument. We then
relate our approach to other innovations in the empirical study of externalities,
as well as recall related discussions from the early union wage effect literature on
the differing effects estimated by individual-level and industry-level data which
pertain to spillover effects.

The ‘y on g’ approach makes sense from the usual perspective of trying to
quantify a relationship where an outcome of interest is regressed on an input or
regresssor of interest (generally net of other covariates, but this is unimportant
to the ideas considered here.) However appealing though that might be, this
regression also comes very close to running a regression of y on itself - the
y’s being for other individuals in the sample being the only aspect saving this
from being purely tautological. Least squares estimators have the property of
placing the fitted regression line through the point of means of the dependent
and independent variables of the regression. Therefore, even when the regression
is not literally a regression of y on the y for the same individual, a coefficient of
1 may still be produced purely because least squares is the estimating procedure
- it tells us nothing about the underlying true parameter values generating the
data.

In fact, we show in the Appendix the relevant algebra that establishes the
sample properties of several estimation schemes in which the estimator equals 1
without considering any underlying data generating process. The first of these
is the OLS case when the group mean inclusive of individual 7 is used as the
regressor, for example because the data sample only a fraction of the hypoth-
esized peer group (such as the entire school in the High School and Beyond or
the National Education Longitudinal Study).?? However, of more relevance to
our work is the Instrumental Variables estimator where the instrument is the
full group mean (again, inclusive of individual %), but the peer group measure
is the ‘leave out mean’ as we are able to use with the Project STAR data. This
estimator also provides a sample estimate of 1 regardless of the underlying data

22 Altonji (1988) considers alternative estimation schemes for group characteristics when the
sample contains only a small fraction of the relevant group members.
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generating process.

The empirical literature on peer effects has been especially pre-occupied with
tackling the endogenous peer group affiliation problem. For that reason, the
recent papers by Zimmerman (1999) and Sacerdote (2001) which use the random
assignment conventions of a few colleges in designating freshmen roommates
have drawn some appeal. As we discuss below, however, relying purely on
random group assignment to study peer effects leaves the researcher an estimator
that is still rather ‘fragile’ in its properties. The point of this paper, however,
is that access to a randomized social experiment, whereby a treatment alters
the outcomes of some of the individuals and the peer group formation is the
same process across the experimental groups, allows for estimators which are
not as fragile in extracting meaningful peer group estimates from the data. To
put this more succinctly, the presence of a randomized social experiment of
varying intensities across groups allows the researcher to directly investigate the
presence of spillover effects. We present the relevant derivations behind this
argument now, and then see how they tie-in to the instrumented peer group
regression methods we utilized in the previous section. We then conclude with
a general discussion of the estimation of spillover or externality effects from
other literatures.

We begin with a stripped-down version of our estimating equation (leaving
out covariates for the moment, dropping considerations of timing of the outcome
and peer group measure, and assuming the group sizes are of homogeneous size
N):

Yij = TY—ij + Vi (8)
In general, even in the absence of covariates, this regression will not produce a
coefficient of 1, unlike the ‘full mean’ specification discussed in the Appendix
when no covariates were included. Re-writing the ‘leave out mean’ in terms of
the full group mean and the individual outcome, we have:

_ 1 _
Y- = 57— N¥5 — vis) (9)

Therefore, the OLS estimator for the regression just given is:
J N _
Zj:l Zmﬂﬁ(]\@j = Yij)Yij]
7 N .
Zj:l Dzt [ﬁ (Nyj — yi)I?
Simplifying this, we have:
(N = D) S IN(5:)° = B )]
7 _ — N
2 5=al(N3(5)% = 2N2(55)% + 22521 (wi5)?]
Now, since Z;‘le N(y;)? is simply the Between Sum of Squares (BSS) in the
outcome variable and Z}‘le Z?;(yij)z is the Total Sum of Squares (TSS), we

T =

T =

(11)
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may write this expression in the more interpretative form using this notation:

(N —1)[N - BSS — TSS]
N(N — 1)BSS — (N - BSS — TS8)

(12)

ﬁ':

Finally, using the notation WSS for the Within Sum of Squares, and making
use of the equation T'SS = BSS + WSS, we can rewrite this as:

WSS
. BSS — %;; (13)
BSS + w-1)2

We can use this last expression to begin to develop some intuition for the
least squares ‘y on ¢’ regression by unwrapping how it utilizes variation in
the outcome measure within and between groups. First, notice that this OLS
estimator of the peer group effect goes to 1 ‘mechanically’ (i.e. regardless of the
underlying true value of the peer effect) as one of two things happen: (i) The
reference group size N goes to infinity and (ii) the Within Sum of Squares (WSS)
in the outcome measure goes to 0. This tells us immediately that our sample will
have no power to detect (true) peer effects if there is no variation in the outcome
measure within groups but only across groups. This would occur, for example,
if groups were constructed by ability grouping used in schools where variation in
student ability occurs mostly across classes rather than within classes. Failure to
account for institutions and behavioral mechanisms that lead to the formation of
homogeneous groupings along reference group lines can easily lead the researcher
to spuriously conclude peer effects are present. Similarly, the ideal data contain
a large number of reference groups so that the reference group size is not too
large relative to the overall sample size, and N does not grow at too fast a rate
as the overall sample size increases.??

By ignoring the term in the denominator that is down-weighted by order
N2, we can derive a more intuitive expression that approximates equation (13):

1o 055 (14)
(N—-1)BSS

This expression is key to our ‘unwrapping’ of the ‘y;; on y_; ;” regression. Simply
put, if reference groups are literally the sum of their parts then there are no
spillover or peer group effects. Consider altering individual ¢’s outcome in a peer
group of size N — 1 (i.e. net of individual ¢ herself). If the resultant increase
in the WSS is exactly (N — 1)BSS, i.e. the blip in the within-group variation
only shows up in the between-group variation appropriately ‘inflated’ by the net
group size N — 1, then the estimated peer effect will be zero. If, however, the
between group variation increases by more than the N — 1 contribution from

23Power considerations, which we do not examine here, would place a brake on driving the
optimal reference group size too close to zero, as does the tradeoff in reducing the Within
Sum of Squares as the group size diminishes.
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individual ¢’s impact on the within-group variation, then the estimated peer
effect will be greater than zero. The upper bound on the coefficient estimated
via OLS is 1, which occurs when the variation in individual outcomes is purely
across groups rather than within groups.

Equation (14) is the key to our following analysis. It illustrates the basic
intuition that the between group variation in outcomes contains the spillover
(or peer) effects, whereas the within group variation gives a ‘clean shot’ of the
individual variation purged of the group-level peer effect. The same princi-
ple that group level versus individual level data on the same variable contain
different spillover or sorting effects is also the basic principle underlying the
identification strategies in Boozer (2001) and Senesky (2000), both of whom use
contrasts within and between groups to purge or extract effects which manifest
themselves purely at the group level. Of course, the idea is not new, as the work
of Lewis (1963, 1987) on union wage effects articulated this point carefully. In
Lewis’s case, the early industry level data on unionization percentages and aver-
age wages of workers contained not only the direct impact of (individual) union
status on wages, but also the potential ‘union threat’ mechanism whereby higher
unionization percentages in an industry meant the union could extract greater
demands in the form of wages. Thus, Lewis viewed the ‘union threat’ effect as
a nuisance and a possible reason why the early estimates based on aggregate
data might overstate the individual union wage effect based on micro data.

The Lewis ‘threat effect’ corresponds to our peer group effect. In our setting
it is actually the object of interest as opposed to a bias that needs to somehow be
eliminated. The analytics given above lay out how the two forms of estimating
‘the’ union wage effect - via aggregate-level or individual-level (micro) data -
combine to estimate the full set of parameters. As we just discussed, were we
interested solely in the direct effect, we could utilize the purely within-group
individual-level variation to estimate an effect purged of the spillover or peer
group effect. Of course, to make the analogy to Lewis more exact, we need to
introduce the analogous variable to his unionization status which in our case
would be class size. Before coming to the specific treatment of dealing with
class size, let us start by adding covariates to the simplified regression given in
equation (8).

In this case, we amend equation (8) as:

Yij = BY—ij + Tij7 + € (15)
In this case, a simple application of the Frisch-Waugh Theorem allows us to

apply the intuitive approximation we derived in equation (14) to the variation
in the outcome net of its linear dependence on the covariates x}; denoted as:

. (WSS|ay, — )
(N —1)(BSS[Z))

where the overbars denote the sample means of the respective variables. This
expression highlights the sensitivity of the estimated peer effects to the type of

(16)
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covariates included in the regression. For example, a covariate that varies solely
at the group or classroom level, such as teacher characteristics or the current
class type, affects only the between variation in BSS. It has no effect on the
conditional WSS as it is orthogonal (by construction) to the WSS. Therefore,
adding a covariate that varies solely at the classroom level unambiguously drives
down the estimated peer effect, the more so as the covariate is related to the
cross group variation in outcomes. This is an alternative statement of the ‘re-
flection problem’ in that all characteristics of the common environment shared
by individual 7 and her peers must be controlled for, or the estimated peer effect
will be overstated.

Adding covariates that vary both within and between groups or classes, such
as student race or gender, have an ambiguous effect on the estimated peer effect.
Their effect depends on whether they explain relatively more of the within or
the between class variation in test scores. To the extent that they largely soak
up the within class variation, but less of the between class variation, this will
lead to a larger estimated peer effect that approaches 1. A covariate that affects
the within and between variation ‘proportionately’ (i.e. a 1 unit change in a
covariate for the within variation equates to a ﬁ unit change in the between
variation for a given individual) will contribute zero to the estimated peer effect,
as no spillover is present.

Studies which rely purely on exogenous (or randomly formed) group assign-
ment mechanisms, such as Zimmerman (2000) or Sacerdote (2000), essentially
follow the approach just described. They include in the covariates a number
of factors which describe the individual heterogeneity, and run a regression of
the individual outcome on a lagged version of the outcome of their randomly
assigned college roommate. The discussion we just presented shows that their
estimated effect relies entirely on how the covariates affect the variation in out-
comes within and between roommate pairs. If the covariates do little to control
for the possibly heterogeneous environments shared by roommate pairs in the
between pair variation, but they parse out individual variation quite well, then
such studies may be estimating spuriously large peer group effects. As we show
in the Appendix, the lagging of the outcome variable (to overcome the simul-
taneity problem) used as the key right-hand side regressor simply modifies the
expression given in equation (16) by multiplying it by the autocorrelation co-
efficient in the current and lagged outcomes being used in the regression. If
the randomization of the roommates is done correctly, and the appropriate co-
variates are controlled for, then our observations here do not indicate a specific
problem with such studies. However, we do wish to point out the ‘fragile’ nature
of the identification achieved by relying solely on exogenous group formation,
and the sensitivity of such estimates to the inclusion and exclusion of potential
covariates. In addition, as we discuss in the next subsection, the use of random
assignment for group formation has the problem that for large enough group
sizes N, the variability in peer composition across groups goes to zero as N in-
creases. Thus while randomization helps ensure group formation is exogenous,
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it runs the risk in large group settings that the peer effect will not even be
identified. In small groups, the variability across groups will arise due to the
finite-IV sampling error.

We turn next, therefore, to the empirical strategy we have used in this paper.
This does not rely on randomized group assignment as in Zimmerman (1999)
and Sacerdote (2001), but instead on the hypothesis that conditional on the
current class type assignment D;, the treatment status in the earlier grade,
di;, of a student’s peers is exogenous. The inclusion of the current class type
dummy D; in the list of covariates allows that if there is endogenous selection
into individual classes based on the d;;’s of the class, it must be the same process
for both the Small and Regular classes, so that the bias is thus differenced out
across the treatment and control lines by the presence of D;. The necessary
exclusion restriction is that another student’s (call them k) prior treatment
status dj; has no impact on student ¢’s outcome except via the endogenous peer
effect mechanism. Thus, we take the instrument for the endogenous 3_; ; to be:

1 N
Z—ij = —N 1 dej (17)
k#i

And as above, since the reference group size N is taken as constant across
groups, define the part of the instrument z_; ; that varies by j as:

N

S—i,j = dej = Sj — dLJ (18)
k#i

with S; being simply the total number of students previously assigned to the
Small class treatment in the current class j. Finally, in order for the instrument
to have power conditional on the covariates (most importantly, conditional on
the class type indicator D;) we need to assume the assignment status to the
Small class previously has an effect above and beyond the current class type
status. Simply put, this means we need the Small class assignment to have
not purely just a once and for all effect, but also an effect on the slope of the
test score profile across grades. In fact, empirically we come dangerously close
to not having any power, as Krueger (1999) reports that much of the Project
STAR effects are of the once-and-for-all variety. However, he also presents
point estimates that show a slope effect that is about one-fifth the size of the
5 percentile point ‘intercept’ effect. Thus, while the power is reduced it is still
present, and it is worth noting, the power will also tend to be greater the earlier
in the experiment the student was assigned to the Small class treatment, for
this reason.

With this instrument in hand, we now consider the sample properties of
the Instrumental Variables estimator of equation (15), where the peer group
measure j_; ; is taken to be endogenous and instrumented with z_; ;. Taking
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again the simplification that the group size N is the same across groups, the IV

estimator is: 5 N
1 g
Zj:l Dim1 N0 i
J N 1 _
Zj:l 21:1 N_1S—i,jy—i7j

Again, the N — 1 factor divides out of the numerator and denominator and this
simplifies to:

B =

(19)

J N
21 2oim1 (S5 — dij)ys
J N —
Dim1 it (S5 = dig) [ (N ;= vig)
and multiplying out and passing the sum over individuals through the numerator
and denominator yields:

. (20)

(N = 1) Y7 [INS;g; — S, dijyig)
71 [N2S;5; — 2N S5 + S0l yijdig]

Now make use of the same notation, BSS, WSS, and TSS (to refer to the
Between, Within, and Total Sum of Squares respectively) as above, but here
applied to covariances between the outcome and treatment indicators, rather
than pure variances in the outcome variable within and between groups (just
for economy of notation in this step). Recalling our notation that S; = Nz;,
we again have:

B =

(21)

- (N —1)[N - BSS — TSS]
9= NN -1)BSS = (N -BSS — 759

(22)

which is the same expression, in terms of sums of squares, that we had above
in equation (12). Using the operator Cov to refer to the sample covariance, it
again simplifies down to be approximately:

Bl Covl(ys; — §5), (dij — dj)lai; — 7]
(N = 1)(Cov(y;, d;|z})

(23)

What is somewhat more comforting about this expression than the analogous
expression given in equation (16) for the randomized-groups peer effects esti-
mator, is that it relies not just on the univariate variation in the outcome (net
of the covariates) within and between groups, but instead now relies on the
co-variation in the outcome with the previous treatment assignment dummy d;;
within and between groups. Then, to the extent that the covariation is larger
Between classes than Within classes, the second term will be driven to a quan-
tity less than 1, and a positive estimate of a peer effect will result. Whereas
the pure random-assignment OLS estimator in (16) relies crucially on both the
randomization being done properly as well as (more importantly) the type and
quantity of the covariates which are included, the IV estimator properties just
spelled out in equation (23) indicate that the IV estimator is less fragile to
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the specification and takes advantage of a randomly allocated program at the
individual level.

However, the spurious detection of peer group effects may still arise in the
IV case. If, contrary to our assumptions, prior treatment assignment d;; is used
as a factor in assigning students to classes, and in particular such that there
is no within-class variation in d;;, then in general we will estimate a spurious
peer effect of 1. What we require, therefore, is that students are assigned to
individual classes, conditional on their current class type Dj, such that d_; ; is
an exogenous variable.?* In the context of Project STAR, this requires that to
the extent the New Entrants are placed into individual classes in a way that
is related to their outcome variable differently than those students who were
in Project STAR from the previous grade, then this differential assignment
mechanism must be the same for the Small and Regular classes. So either (i)
there is no endogenous sorting on the basis of the treatment assignment d;; into
classes, or (ii) to the extent there is endogenous sorting, the ‘bias is balanced’
across the Treatment and Control groups.

By inspection, equation (23) hints that the instrumented ‘y on g’ regression
coefficient may be estimated without placing the outcomes of one’s peers as a
regressor on the right-hand side. Instead, when a social program is available,
then an appropriate comparison of the ratio of the effects of that social program
within and between classes can provide evidence of endogenous social effects
without resorting to the rather uncomfortable ‘y on §’ device. We take up
this analysis in the next subsection. The discussion also shows the ties of the
endogenous peer effects literature to other similar estimators of spillover or
externality effects, the linkages to which have not been entirely clear in the
existing literature.

5.1 Alternative Estimation Schemes to the Canonical Ap-
proach Based on Within and Between Group Con-
trasts

We begin this subsection by comparing the tradeoffs between the random peer
assignment strategies utilized by Zimmerman (1999) and Sacerdote (2001) to
the ‘social program’ strategy used in this paper of identifying peer effects. The
first thing to note in the random assignment case is that the estimate of the peer
group effect is generally heavily over-identified. The reason is that to the extent
that individual outcomes are influenced by observable characteristics such as
gender, race, family background, etc. and the group compositions vary along

24(Clearly, unconditional on Dj this is certainly not the case. Owing to the experimental
design, students who remained in the Project STAR schools from grade to grade remained in
the same class type, apart from the small number of switchers. Therefore, overall, students
who were in a Small Project STAR class last year are much more likely to be found in a
Small Project STAR class this year. The question of exogeneity, therefore, is if students are
clustered into individual classes within class type in a manner systematically related to J,@ -
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these observable lines, then the peer effect can be estimated off these varying
group compositions. For each observed characteristic of the individual a separate
peer effect can be estimated, provided the variation in the individual charac-
teristic across groups is sufficient. If the researcher maintains the hypothesis
that the peer influences work through the outcomes (i.e. the endogenous effects
model of Manski) then the empirical model will be heavily overidentified. Of
course, one quirk of relying on the random group assignment hypothesis is that
as the group size N tends towards infinity, the variation in group characteristics
will tend to zero if indeed groups are formed via a randomization scheme. In
finite group sizes, there will tend to be variation in characteristics across groups
due to sampling error. For this reason, the college roommate context considered
by Zimmerman (1999) and Sacerdote (2001) where N is quite small (generally
2 or 3) is ideal. But one should be careful in considering asymptotic properties
of estimators under the random group formation hypothesis, in that only the
number of groups be allowed to approach infinity and not the group size. In the
latter case, the model would be asymptotically unidentified.

We also consider in this subsection a weaker identifying assumption that
pertains to our Project STAR data. In that case, the classes themselves are not
necessarily randomly formed, but only the class types. However, we argue in
this paper that classes are exogenously formed along the lines of the fraction
of child Previously Randomly Assigned to a Small Class conditional on the
class type indicator (as well as the other covariates). In that case, we can
no longer rely on the demographic or individual characteristics to provide a
source of necessarily exogenous variation in peer qualities, but only have the
experimentally induced variation arising from having been previously exposed
to the Small class treatment in the Project STAR schools. Thus we lose the
overidentified nature of the empirical model with the gain of allowing for weaker
identifying assumptions.

We are going to use equations 14 and 16 as the intuitive basis that a mo-
ments estimator constructed from the Within and Between class estimators of
the Previously Randomly Assigned to a Small class indicator (PRASC, denoted
above as d;;) will replicate the instrumental variables estimator of the ‘y on 3’
peer effects regression. This is the same idea pursued in Boozer (2000) whereby
IV estimators based on group-level characteristics can be seen as contrast or
moment estimators based on how the stochastic processes vary within versus
between groups. In the present context, this has a direct analogy to the early
work of Lewis (1963, 1987) regarding what aggregate or industry level data ver-
sus individual level data on unionization identifies. This also has the effect of
linking our analysis to concepts relating to the peer effect, such as Philipson’s
(2000) ‘external treatment effect’ which measures the spillover which may arise
in medical vaccination trials, whereby greater density of vaccination may have
larger aggregate benefits, even holding constant the total number of vaccina-
tions administered. Finally, in the case where the analyst, like Lewis in dealing
with the ‘union threat effect’, finds the spillover or externality effect a nuisance
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parameter, the estimation scheme discussed below allows for a pure estimate of
the direct Small class size effect, net of the peer effect feedback.

Rather than do the tedious algebra to show the estimator we propose is
numerically identical in the sample, we choose the simpler task of showing that
they have the same limiting value as the sample size grows due to the number
of groups growing large, holding class sizes fixed. We first pose the endogenous
peer effects data generating process (dgp) as:

Yij = 0di; + BYy—i; +0D; + xgjp + u;j; (24)

Notationally, d;; indicates if the child was previously randomly assigned to a
small class, and D; indicates if the current class is Small or not, and so it has no
within-class variation for a given class indexed by j. Since the sample average
of y_; ; to the class level is simply ;, the Within class estimator derived from
applying OLS to the following regression (with the f; denoting the class specific
fixed effects):

Yij = Ozdij + )\ﬂfi,j + xgjn + fj + €45 (25)
can be written in terms of the dgp (dropping the error terms for ease of exposi-
tion) as:

Yig — i = 6(dij — dj) + B(G—i; — ¥5) + (a}; — T))p (26)

Then, using equation 9, the term involving the peer effect can be simplified to:
_ - B _ _

vig = Y5 = 8(dij = dj) = 37— (s = ;) + (a5 = T5)p (27)

And so the Within class regression of individual test scores on the previously
randomly assigned to a small class last year dummy as well as the individual-
level covariates will estimate, in terms of the dgp:

6 7 P
Yij — Yj 1+N§1( J J) ( j J)l‘i‘ﬁi"_l ( )

As the group size N is large, then the within-class estimates will come very
close to delivering a clean shot of the direct effect of having previously been
randomly assigned to a small class. As the magnitude of the peer effect in our
case is less than 1, but the group size is roughly 20, we can almost safely ignore
this ‘correction’ to the within estimates of delivering a clean shot of the direct
effect of the prior experimental status purged of the feedback spillover effects.
However, when the group size is roughly 2 or 3, as in the case of Zimmerman
(1999) or Sacerdote (2001) who study college roommates, this correction is less
likely to be negligible. The correction arises because, when the peer groups are
small, each individual’s contribution to the peer effect is non-negligible. In that
case, the within-class regression will tend to understate the direct effect because
the within regression subtracts out part of the direct effect by netting out the
group mean in ;.
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Similarly, we can examine the limiting properties of the Between class re-
gression, where OLS is applied to the class averaged data:

yj = d; + T 4+ ¢D; + v; (29)

Again, ignoring the true error term, we can re-write this in terms of the param-
eters of the dgp as:
5= —d, 1 #,—L— 11— B)D, (30)
yj_lfﬁJ le—ﬁ J
Therefore, if we focus on the Within and Between class estimators of the
coeflicients on the d;; PRASC indicator, we have that the Within estimator has
the limit (limits being taken as J, the number of groups, tends to infinity):

plim & = 31
paan G
and similarly, the effect on c{j in the Between estimator has the limit:
s 6
plimyp = —— (32)

1-p4

Thus, to a first approximation, for the class size N large, we can form an
estimator for the peer effect § as:

plim (1 — %) ~ (33)

The intuition is that the Within estimator & estimates the direct effect of
PRASC purged of the class-level peer effect due to the inclusion of the J class
dummies. On the other hand, the Between estimator 1& will estimate an ‘in-
flated’ version of the direct effect, which is inflated the more that the peer effect
0 tends towards 1. In the case where the Within and Between estimates of the
PRASC effect are the same, the implied peer effect is therefore zero. But in
large samples, the Between class estimate of PRASC will tend to be larger than
the Within class estimate. In this setup, however, nothing about the construc-
tion of the estimator implies the estimated peer effect from a finite sample will
be bounded on the interval from 0 to 1.

Of course, since the group size N is known (and in the analytics here, as-
sumed to be constant across groups, unlike in the Project STAR data where
it varies slightly, thus introducing another form of approximation) we can pro-
vide the exact minimum distance estimator based on the Within and Between
estimators as:

Gy
(4

plim [(1 - =0 (34)




which is slightly attenuated for large N from the approximate form we gave
above. Also notice that as the fraction % goes to 0 (i.e. the implied peer effect

goes to 1) the approximation also becomes exact. Roughly speaking, if we take
the ratio of the Within to the Between estimates to be 0.5, and N = 21, this
correction shows up only in the second decimal place, and is thus well within
the sampling error of our estimates of the peer effects in the previous section.
Similarly, the exact estimator for the direct effect of d;; is not simply the Within
estimator &, but instead a slightly larger version:

. N B
plzm la (W%—l))] = (35)

Here again, in the case where there is no spillover effect manifested in the
estimates, the Within and Between estimates will be the same, and so indeed the
Within group estimate will be an estimate of the direct effect of the Small class
size effect purged of the group level feedback effect. And even in the presence of
a feedback effect, for large enough group sizes N, the Within group estimator of
the treatment effect provides a clean estimate of the direct effect of the program,
net of the social multiplier effects. Of course, identification requires that the
fraction of those treated vary within groups (and groups are not segregated
by treatment status, as would be the Project STAR data were their no New
Entrants and perfect adherence to the experimental design protocol) as well as
that fraction must vary across groups so there is variation in the x variable of
interest.

Next we turn to the important observation that in studies where a random-
ization device is used to assign peer groups, the implied peer group effect will
generally be overidentified. The reason is that often the researcher has avail-
able other characteristics of the individuals, captured in the regressors xgj, that
are associated with differences in student performance. As such, even though
there is not a social program altering individual performance as is the case with
the PRASC indicator d;;, the differing compositions of peer groups as reflected
by z allow for identification of the peer effect coefficient 3 by contrasting the
Within and Between coefficients on the z’s in equations 21 and 23 in the manner
just discussed above for the regressor d;;. Take for example the kth element of
the coefficient vectors on the xs from the Within regression in equation 18 and
the Between regression in equation 22, then we should have for each element in
the regressor set that:

. Rk N-1
lim | (1 — 22 [ ———
pzml( %k)<N1+%§>
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thus showing the overidentified nature of the random group formation case when
the analyst has information on more than one individual characteristic that

. Rh N -1
= G = plim (—A—f) —
Tk N—-1+=F

k
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varies in intensity across groups. The caveat here is that as N gets large, then if
groups are truly formed randomly, the variance in the cross-group variation in
average group characteristics will shrink to zero. For finite N, there generally
will be variation in the averages that arises due to sampling error. Thus, ideally
the analyst will have access to data in which the average group size in the ran-
domly formed groups case is small, as otherwise the ability to detect peer effects
will be minimized. In this respect, the college roommate setting of Zimmerman
(2000) and Sacerdote (2000) is ideal, as N is quite small. In Project STAR this
would be more of a problem were classroom assignments, rather than class type
assignments, randomly determined as this would undermine the identification
of peer group effects.

The points that we wish to emphasize from the discussion in this section are:
(i) The linear peer group model that is typically used in the literature when
groups are randomly formed is generally overidentified, as long as there remains
sufficient variation in the exogenous characteristics across groups. This will
tend to occur when the group size N is small, and the variation in group char-
acteristics thus arises by sampling error - clearly, these characteristics must vary
sufficiently across groups, and must be correlated with individual performance
to be of value. The overidentification arises from the number of restrictions the
randomization of group formation implies. (ii) Even in the absence of randomly
formed groups, an exogenously assigned social program operating at the indi-
vidual level will allow for identification of endogenous peer effects as long as
the intensity of the program varies within and between groups. If the program
varied only between groups, but groups were stratified by program status, then
we could not separately identify the individual effect from the spillover effect
created by the endogenous peer effects. Similarly, as the within group variation
essentially only identifies the direct effect of the program, lack of variation in the
fraction of participants in the social program across groups would eliminate the
very source of variation that is crucial in identifying the feedback effects. This
would arise in our context if students were placed in classes (and not just class
types) randomly and class sizes were sufficiently large so as to eliminate vari-
ability in class characteristics which are needed to create differential exposures
to the peer ‘qualities’.

(iii) The fact that our Instrumental Variables estimator of the peer group
effect can be derived as approximately 1 minus the ratio of the Within class esti-
mator of the Previously Randomly Assigned to a Small class indicator (PRASC,
or d;;) to the Between class estimator, shows the tight relationship of the canon-
ical peer group estimation scheme and other problems in applied work. Lewis
(1963, 1987) noted in his work the tendency of the Between industry union wage
effects to be larger than the micro data union wage effects (Within industry or
not), and he carefully considered the possibility of a ‘union threat’ effect which
is analogous to our peer effect spillover which was responsible for the wedge be-
tween these two sets of estimates. More recently, Philipson (2000) has proposed
a framework to consider the extrapolation of individually based clinical trials
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for medical treatments, which have varying levels of intensity in the treatment
populations across sites. He points out that in the case of vaccinations, say, a
spillover or externality arises when larger fractions of children are vaccinated for
an unvaccinated child. He proposes random assignment of treatment status in-
tensities not only within sites, as is classically done in clinical trials, but between
sites so as to allow for assessment of what he calls the ‘external effects’. Such a
two-stage randomization design, he argues, allows for extrapolation of the micro
level clinical trials to a macro level setting by handling explicitly the ‘implemen-
tation bias’ that arises because of the external effects. In fact, by comparing
his proposed estimators with the analytics we just presented - in particular,
the equivalence of the IV-endogenous peer group effect approach with the ‘con-
trast’ estimator based on the ratio of the Within and Between estimators - the
reader can see that, conceptually at least, his proposed estimation scheme is our
‘unwrapped’ endogenous peer effect estimator using the exogenously assigned
social program d;; as the driving force behind the peer group ‘quality’.

5.2 Empirical Results Based on the Within and Between
Class Comparison of Prior Treatment Status Effects

In this subsection we make use of the within and between class relations between
the prior Small class treatment assignment variable d;; and individual test scores
yij. We focus our empirical work here on illustrating equations (24) to (33) in
the previous section using the Project STAR data. In Table 10 we present
in the upper panel the between class estimates of the current class type (D)
effect, as well as the fraction of the class previously randomly assigned to a
Small class Jj. As the number of classes is roughly five percent of the total
individual-level sample, the standard errors are quite large. The grade one
Small class effect is now slightly larger than in Table 6, for example, at 6.48,
and it statistically significant with a wide confidence interval. The grade two
effect is indistinguishable from zero, and the point estimate is roughly half the
reduced-form 5 percentile point grade two effect. The point estimate for the
grade three effect is actually negative, although is statistically indistinguishable
from zero.

Now as equation (32) shows, the estimates of the coefficient on d; across
classes will be an ‘inflated’ version of the direct effect of d;; on student perfor-
mance as long as the peer effect § is greater than zero. For the first grade, the
between class estimate of the effect of Jj is 1.53, and is indistinguishable from
zero. For grade two, the effect is somewhat larger at 4.26, but is again well
within sampling error of zero. For grade three, however, we see a quite large
estimated effect of 13.77 with an associated t-statistic of over 3.

The within class estimates in the bottom panel are more precisely estimated
owing to the larger degrees of freedom. As we showed in equation (31), for a
group size of roughly N = 20, the within class estimates of the coefficient on d;;
is essentially the direct effect of this variable on student performance purged of
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the feedback or peer effects. The deviating from class means of the covariates
also eliminates the current class type D; as a regressor as it varies only across
classes. In contrast to the role played by Jj in explaining the cross-class variation
in the top panel, in the bottom panel, the largest estimated effect of d;; occurs
for the first grade. The estimate there is 3.64, which is statistically distinct
from zero, but statistically indistinguishable from the reduced form Small class
effect in Table 3. The second grade estimate of the direct effect of d;; is 1.53
and it is well within sampling error of zero. While this within class estimate is
not statistically distinct from the corresponding between-class estimate of 4.26
in the top panel, it is roughly one-third the size of the between class effect,
suggesting a role for a spillover (or peer) effect at the class level. Finally, the
grade three direct effect estimate is 2.33 and is statistically distinct from zero at
conventional levels. However, as the cross-group effect in the upper panel is so
large at 13.77, then this is rather strong evidence of a spillover /feedback effect
at the group level.

In the last row of Table 10 we have computed the implied point estimate
of the peer effect § (in equation (24)) using equation (33). While we have
not yet computed the delta-method standard errors, it should be clear to the
reader the peer effects estimated this way will have a much wider confidence
interval than the corresponding peer effect estimates computed via IV in Table
6. The implied grade one effect is actually negative, although it is clearly quite
imprecise and so well within sampling error of a zero effect, consistent with the
0.3 (and statistically insignificant) estimate in the first row of Table 6. The
grade two estimate of 0.64 is well within sampling error of the 0.86 peer effect
estimated via IV in Table 6. We should note, however, that as the between class
estimate of the grade two effect of 4.26 is statistically non-distinct from zero,
the implied peer effect computed via equation (33) is likely not distinct from
zero either, as it is the between estimate that contains the information on the
spillover effect. Finally, we see roughly the same result for the implied grade
three effect of 0.83, which is quite similar to the corresponding effect from Table
6 of 0.92.

In Figure 3, we have plotted the third grade within and between class rela-
tions between y;; and d;; net of the other covariates (notably the current class
type D;) via the Frisch-Waugh Theorem. We have super-imposed the relations
on top of the between class Frisch-Waugh residuals for the 322 classes (the
within class data points being far too numerous to display meaningfully). This
plot shows that there is not just a cluster of classes or individuals driving these
estimated relationships, but the effect is spread throughout all 322 classes. The
fitted regression lines show the larger gradient for the between class relationship
as compared to the within class relationship, thus yielding visually apparent ev-
idence of a spillover effect via equation (33). The two lines cross at the point
where d; and ; net of the covariates is 0. As these are fitted (Frisch-Waugh)
residuals, this is the overall sample mean of both d;; and Jj by the construction
of the residuals.
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6 Conclusions

There has been a recent spate of exciting new empirical work documenting the
existence and magnitude of peer effects in educational and social settings gener-
ally. Some of this work has made innovative use of institutional rules which pair
college freshmen in a randomized fashion with roommates, as in Zimmerman
(1999) and Sacerdote (2001), thereby hurdling one large obstacle in this liter-
ature, that being the endogenous sorting of individuals into their peer groups.
Of course, the random assignment itself solves only one of the many problems,
well delineated by Manski (1993), that have plagued the advancement of this
literature. Peer affiliation, issues of model specification such as timing and mea-
surement issues generally, must still be pushed to the back burner even with such
data. Furthermore, as we document in this paper, and Sacerdote (2001) notes
in his work, random assignment alone does not allow for distinguishing what
may be ‘endogenous’ peer effects - whereby an individual is directly affected by
the outcomes of her peers, leading to a social multiplier or feedback effect - from
‘exogenous’ effects, whereby the individual is affected not by outcomes of her
peers per se, but the characteristics of her peers.?

In this paper, we take this literature to the next step by making use of data
with a social program administered in a randomized fashion at the individual
level. The Project STAR data on the effects of class size reductions for early-
elementary school students from Tennessee in the early 1980’s is a very natural
dataset to use for such a purpose. Owing to the cohort design of the experiment,
as the cohort progressed from Kindergarten to the final grade of the project,
Third Grade, the exit and replacement of students out of and into the Project
STAR schools provides a sample of classrooms with differing past exposure to
the Small class treatment. If a social multiplier, or endogenous peer effect,
is indeed present, then classes with higher intensities of students exposed to
the Small class treatment in the past, should have a classroom-level effect that
exceeds the individual-level effect by a margin greater than the share of students
treated. In this way, data which contain a randomly allocated social program
can measure a spillover effect of a social program directly, thereby assuring
a finding of an endogenous peer effect. Data which consist of purely random
pairings of students, with no social program present, must rely on more stringent
identifying assumptions to make such a claim. Furthermore, we also show that
experimental designs such as that proposed by Philipson (2000) to study the
spillover or ‘external’ effects of medicinal trials are in fact the same notion as an
endogenous peer effect, as his conceptual idea focuses on measuring the feedback

25Tn a recent paper, Moffitt (2001) corroborates this argument that merely doing random
assignment of group memberships does not guarantee identification of the structural peer
effects from the estimated reduced form effects if exogenous effects are allowed for in the dgp.
Furthermore, he verifies our argument that a randomly allocated social program identifies
endogenous spillover effects via a classical simultaneous equations framework for the N = 2
case. See the discussion surrounding his equation (10).
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effect of a clinical trial. In addition, he proposes a two-stage randomization
scheme, whereby intensities of a clinical trial are randomly assigned not just to
individuals within a site, but also what fraction of each site is eligible to receive
the treatment. Such a design would be a welcome addition to social experiments
more generally.

The question of endogenous peer effects or exogenous peer effects is highly
important. Even apart from considerations on the cost side of a social program -
especially factors such as fixed setup costs per locale, for example - the presence
of endogenous peer effects on the benefits side implies an economy of scale. In
that case, social programs which are clustered in nature will have greater benefits
than those programs which are sprinkled across the landscape. In the context of
education, this literature fits well with the research on the pure resource effects
as it speaks to the efficient allocation of such resources within and between
schools.

In this paper, our ‘introduction’ of the presence of the peer effects lurking
in the reduced form Small class size effects of Project STAR turns out to have
rendered the class size resource effects per se to a much smaller magnitude by
grades 2 and 3. Our evidence implies that especially by grade 3, the 5 percentile
point impact of the Small class treatment is almost entirely due to the feedback
effect of the enhanced peer qualities due to the treatments in the earlier grades.
The evidence on the grade 2 effect is less sharp, although it does appear that
across various specifications, about half of the 5 percentile reduced form effect
is attributable to the peer feedback effect. For Grade 1, we should re-emphasize
the nature of our identification strategy implies we have much less power to
detect a feedback effect at the early stages of the experiment. With that in
mind, we find no evidence of an appreciable feedback effect for the first grade,
and so attribute all of the 7 percentile reduced form effect to the Small class
reduction per se. We do the same for Kindergarten, although that derives purely
from the design of our identification strategy. In summary, our results imply
that alternative policy structures, such as the tracking of children following the
grade 2 and 3 patterns of Project STAR without the Small class reduction, would
be expected to produce a similar set of outcomes from those derived by Project
STAR. The peer effects themselves appear to have ‘overtaken’ the pure resource
effects in the later grades of the experiment. That said, it is important to stress
that we rely on the experimental assignment to the Small class to produce a
‘boost’ in achievement in order for our peer effect identification strategy. We
do not read our results as implying class size reductions have no effect, but we
offer a more in depth investigation of the mechanisms by which such resource
alterations do have effects than have been offered by prior examinations of the
Project STAR data. Such a re-interpretation is a by-product of our interest in
utilizing the experimental STAR data to identify endogenous peer effects.

While the Project STAR data do offer some important advancements for the
empirical study of peer effects, it is important to note several of the pitfalls cited
by Manski (1993) have been held outside the scope of this paper. Foremost is
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our assumption that the relevant peer group is the Project STAR classroom in
the current year. The problem is that lacking such a strong assumption imposed
on the empirical work, making headway with these data is virtually impossible.
In the context of Project STAR, however, anecdotal and introspective evidence
suggests that early elementary classrooms do exert a powerful influence, more
powerful than any other readily identified peer group delineation observable
with our data. In that sense we are as comfortable as we can be about this
assumption with these data, and are rather fortuitous in having the elementary
school setting as the context for our data. As Manski discusses, absent such
an assumption of this type, the identification problem for the peer model is es-
sentially insurmountable. The second hurdle we have avoided altogether in this
paper is attempting to categorize the peer effects we do find into how they man-
ifest themselves. Manski (1993) offers three such categorizations: (i) preference
interactions (ii) constraint interactions and (iii) expectations interactions. The
theoretical work by Lazear (2000), for example, is related to the constraint inter-
action category. The model proposed by Akerlof (1997) might be thought of as
a mix of both preference and expectation interactions. Distinguishing between
such models does appear to matter greatly for the structure of policies designed
to capture the peer effect spillovers. However, the Project STAR data, while
quite good at allowing the measurement of the spillover effects, samples little
that would help us empirically distinguish between these alternative models of
how the peer effects manifest themselves. We hope the results of this paper
push researchers to turn their attention to empirically distinguishing between
these alternative models of the underlying mechanisms.
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7 Appendix - The Algebra of Instrumental Vari-
ables Estimation of the Endogenous Peer Ef-
fects Model

In this Appendix, we derive the properties of the instrumental variables esti-
mator for the empirical endogenous peer effects regression where the researcher
uses characteristics of the full group in the sample as either an instrument or re-
gressor (i.e. both the IV and OLS cases). For simplicity of exposition, we ignore
the presence of other covariates. Conditioning everything on a set of exogenous
covariates xgj does not change anything conceptually, although including them
may in fact mask some of the ‘mechanical’ problems with either IV or OLS that
we address here.

To start, consider the empirical specification for the endogenous effects model
as:

Yij = Y-i,i8 + € (37)

where the notation §_; ; is the ‘leave-out mean’ of the test scores for class-
room j. It is related to the usual sample mean of the of the class test scores
(denoted as g;) by:

1
Joig = 7 D Y (38)
J ki
so that: )
Iig = 3 (N3l — ) (39)
W TN 1 Y ij

In the case where the sample of the peer group includes the entire peer
group (which, purely by assumption, we assume to be the student’s immediate
classmates), then it makes sense to relate student i’s outcome to the outcomes
of the students in the class other than student i, hence the use of the ‘leave-out
mean’ as the relevant peer group measure.?6 The instrument that we propose in
this paper to extract the exogenous variation in the peer group measures §_; ; is
the fraction of the class previously randomly assigned to a Small class. We do not
include an additional subscript for the timing of the variables simply because
that is irrelevant to this discussion. Let d;; be a dummy variable indicator
for whether the student was previously a member of a Small class. Then our
instrumental variable is given by:

1

26In contrast, when the data contain only a sample of the peer group members, then use
of the ordinary sample mean g; is sensible. This is because individual i is representative of
other members of the class who may not have been included in the sample.
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A rewrite of the expression for the instrumental variable z;, the usefulness
of which will be apparent below, is:

—8; (41)

where S; = Zi\’:]l d;; is simply notation for the number of students in each
class previously randomly assigned to a Small class. This rewrite is useful
because since this is controlled experimental data, the number of students in
each class, N;, essentially does not vary across classes, and so the j subscript is
superfluous. The variation in the instrument z; therefore comes entirely from
variation in S; across classes - i.e. z; = %Sj.

The instrumental variables estimator for 8 in the empirical model given
above is, for a sample of NJ students in J classes is just:

J N
> j=1 2 i=1 95
7 N -
> i1 2aim1 Si¥-ig
(The number of students in each class, N, simply divides out of both the

numerator and the denominator.) Now we can make use of our relation of the
leave-out mean to the usual sample mean to re-write this as:

J N
Zj:l >_im1 S5Yij
] N _
Zj:l dic Sj[qu (N — vij)]
And now note that the only quantities left which are affected by the sum

over the ¢ subscripts are only the y;; terms in the numerator and denominator,
and so carrying those sums through, this simplifies to:

S S
Sy Sl (N — 3))]
This expression is easily seen to equal 1 in the absence of other covariates.
Notice this is not an asymptotic expression, but holds in the sample.

Furthermore, this algebra for the IV case shows that a coefficient of 1 will
also appear in the OLS case where the full group mean, g; is used as the peer
group measure, a coefficient of 1. That this is true can readily be seen by
inspection of equation (42), replacing S; with y;. The fact that both variables
vary only at the group level j implies the same algebraic simplifications will
hold, and the equation analogous to (44) will again be 1.

Of course, since the setup just discussed delivers a coefficient of exactly 1,
it is improbable a researcher would not realize his error, and opt for a different
estimation strategy. In this sense, the addition of covariates x;J may mask
this issue to the researcher, as now the coefficient will no longer be exactly 1
in the general case. Assuming that at least some elements of the vector vary

8= (42)

5= (43)

f= (44)
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at the individual (as well as the peer group) level, the OLS estimator is now
(using matrix forms, and M, being the idempotent projector into the subspace
orthogonal to the space spanned by the columns of the X matrix, Pg being the
idempotent matrix which averages to the group (j) level):

3 = [y PeM,Ppy] 'y’ P M,y (45)

If we assume, for exposition only, that the regressor vector consists of only a
signle non-constant regressor x;;, then some straightforward but tedious manip-
ulation allows us to write this as:

B=1-(yPpy) (@'z)"" — (¥ Ppx)’] "' (y' Ppz)(y' Q) (46)

where the idempotent matrix @ is the within (class) operator. Thus, in order
for the numerator of the second term to be non-zero, the regressor x must vary
within and between class, as well as being correlated with the outcome y in
both dimensions in the sample. If the regressor varies only at the group level
(in our context, this could be a teacher characteristic, for example) then again,
the sample estimate of the peer effect will be purely 1.

Note however, that now the reasons for why the coefficient deviates from
1 are not entirely meaningless. Intuitively, the more the regressor x explains
the within group variation in the outcome as compared to the between group
variation, the coefficient will be driven towards zero. In fact, substantially more
simplification on the expression above tells us the estimated peer effect will
attain zero when the following expression holds:

By (Rypys) = By (47)

In other words, when the OLS coefficient from a regression of y on x within and
between groups down-weighted by the R-squared from a regression of y on x
between groups (i.e. the squared sample correlation between the Between group
variation in y and z) equals the OLS coefficient obtained from the between group
regression of yy on x. As long as the Between regression coefficient By% lies above
this, however, the estimated peer effect will be non-zero. As we discussed in the
context of the ‘leave out mean’ estimators used in this paper, intuitively this is
because the covariate x influences the cross-group variation in the outcome y
than would be expected than if there were no ‘feedback’ effect of the covariate
x creating a spillover at the group (class) level as compared to its effect at the

individual-level, appropriately down-weighted.

7.1 The IV Estimator When the Peer Measure is Lagged

Since y and g are determined simultaneously, some researchers (e.g. Zimmer-
man (1999) and Sacerdote (2001) among others) have posited instead that the
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influence of one’s peers depends on their outcomes from some earlier period,
and thus estimate a modified regression of the one given above as:

Yijt = B Yija—1 + iy + € (48)

where the subscripts ¢t and ¢ — 1 denote the period for the individual outcome
and the peer effect respectively (the dating of the other variables is not essential
to this discussion and so omitted for simplicity). To cut down on the clutter
of notation, assume that the sample correlation between y;;+ and y;;,—1 net of
the regressor is the same at the individual and the group level and represented
by p. If we let the estimator for the lagged peer effect be denoted as BL , then
comparing this estimator to the one based on the contemporaneous peer measure
(i.e. B) we have that:

Bl = pp (49)

In other words, the peer estimator which is derived from a regression equation
using a lagged peer measure uses the same information as the one derived from
an equation using the contemporaneous measure, except it is ‘corrected’ by the
autocovariance properties in test scores. But this estimator is just as inherently
fragile as the one based the contemporaneous peer measure, but will mask the
tendency to estimate a coefficient near 1, due to the down-weighting by the
first-order autocorrelation coefficient estimate of test scores.
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Table 1
Mean Characteristics of Switchers, Stayers, and New Entrants,
Conditional on School Effects

First Grade Second Grade Third Grade
White .67 .65 .67
Switch to Small Class .67 .63 .65
[248] [192] [207]
Switch to Regular Class 74 .62 .67
[108] [47] [72]
Stay in Small Class .68 .66 .67
[1293] [1435] [1564]
Stay in Regular Class .68 .65 .67
[2867] [3375] [3570]
New Entrant, Small Class .63 .63 .68
[380] [339] [368]
New Entrant, Regular Class .65 .65 .67
[1904] [1246] [894]
Girl 48 48 48
Switch to Small Class 48 .50 .50
[248] [192] [207]
Switch to Regular Class .53 52 .55
[108] [47] [72]
Stay in Small Class 49 .50 .50
[1293] [1435] [1564]
Stay in Regular Class .50 49 A48
[2867] [3375] [3571]
New Entrant, Small Class 48 42 43
[383] [366] [373]
New Entrant, Regular Class 45 45 47
[1917] [1306] [908]
Free Lunch (status in 52 S1 S1
previous grade)
Switch to Small Class 47 Sl 47
[246] [192] [202]
Switch to Regular Class 48 A48 .52
[107] [45] [71]
Stay in Small Class 44 44 44
[1288] [1408] [1509]
Stay in Regular Class 45 48 48
[2858] [3284] [3410]
New Entrant, Small Class .69 .76 74
(status in current grade) [372] [357] [356]
New Entrant, Regular Class 71 72 77
(status in current grade) [1867] [1235] [844]
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Percentile Test Score 50.79 50.61 51.02
(In previous grade)

Switch to Small Class 51.18 52.61 51.42
[230] [188] [195]

Switch to Regular Class 51.63 57.59 51.06
[101] [45] [62]

Stay in Small Class 57.92 60.03 56.96

[1212] [1418] [1473]

Stay in Regular Class 52.26 53.36 51.17

[2706] [3330] [3339]

New Entrant, Small Class 42.95 43.71 40.31
(score in current grade) [357] [255] [276]
New Entrant, Regular Class 39.65 39.93 38.05
(score in current grade) [1823] [1017] [750]

Notes: Sample sizes of the relevant groups are in brackets. Regular size classes and regular/aide classes
have been collapsed into one group called “regular”. The sample sizes don’t match up within grades
across variables due to missing observations. For the time-varying characteristics (free lunch and
percentile test score), the switchers’ and stayers’ means are computed based on the previous grade, while
the new entrants’ means are based on the current grade.
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Table 2
Composition of Class Types in Each Grade
Number of Students Broken-Out by Random Assignment Status

Small Regular Total
Kindergarten
Randomly Assigned 1900 4425 6325
Total 1900 4425 6325
First grade
Previously Randomly Assigned 1293 2867 4160
New Entrants 384 1929 2313
Switchers 248 108 356
(from previous year) (248) (108) (356)
Total 1925 4904 6829
Second grade
Previously Randomly Assigned 1273 3402 4675
New Entrants 366 1313 1679
Switchers 377 109 486
(from previous year) (192) (47) (239)
Total 2016 4824 6840
Third Grade
Previously Randomly Assigned 1276 3567 4843
New Entrants 373 908 1281
Switchers 525 153 678
(from previous year) (207) (72) (279)
Total 2174 4628 6802

Notes: Regular and regular/aide students are grouped together. “Previously randomly assigned” refers to
students having been randomly assigned in an earlier grade to the class type column under consideration,
e.g. in the column for small classes, the previously randomly assigned students were randomly assigned
to a small class in their grade of entry. “Switchers” refers to students who were not in the class type, in
the relevant grade, to which they were randomly assigned. In parentheses under the switchers’ rows are
the number of students who switched class type from the previous year. The “total” column sums
horizontally across the small and regular class columns. The “total” rows sum vertically across rows
within each grade, not including numbers in parentheses.
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Table 3
OLS Estimates of the Experimental Effect on Individual Test Scores by Grade

Kindergarten First Grade Second Grade Third Grade

Small class 5.13 7.31 5.94 4.76
(1.25) (1.17) (1.27) (1.26)
Regular/aide class 22 1.57 1.64 -.51
(1.14) (.97) (1.07) (1.16)
White 9.38 8.39 8.00 7.15
(1.38) (1.19) (1.25) (1.45)
Girl 4.46 3.17 3.34 3.21
(.63) (.57) (.59) (.68)
Free lunch -13.03 -13.02 -13.24 -12.21
(.79) (.87) (.72) (.82)
White teacher -1.02 -4.13 1.08 1.23
(2.20) (1.98) (1.79) (1.79)
Master’s degree .76 .34 -.65 1.67
(1.13) (1.08) (1.12) (1.22)
Teacher’s experience 26 .04 .07 .05
(.11) (.06) (.07) (.06)
School fixed effects Yes Yes Yes Yes
R? 32 31 .30 24
Number of obs 5701 6437 5747 5816

Notes: Robust standard errors that allow for a correlation of the residuals among members of the same
class are in parentheses. A constant is included in all regressions.
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Table 4
OLS Estimates of Class Size and Peer Group Effects by Grade:
Dependent Variable is Individual Test Score

First Grade Second Grade Third Grade
Peers’ Mean Test Score .58 .58 57
(.04) (.04) (.04)
Small class 2.66 2.18 1.67
(.58) (.53) (.58)
Regular/aide class .54 49 -.30
(.43) (.45) (.51)
White 8.51 8.09 7.08
(1.17) (1.24) (1.43)
Girl 3.14 3.27 341
(.57) (.60) (.68)
Free lunch -12.97 -12.95 -12.28
(.86) (.70) (.81)
White teacher 211 .53 .14
(.82) (.74) (.78)
Master’s degree 26 .03 .61
(.48) (.47) (.52)
Teacher’s experience .02 .03 .02
(.03) (.03) (.03)
School fixed effects Yes Yes Yes
Number of obs 6437 5747 5816
Normalized Peer Effect 4.00 3.08 3.28
(.28) (.21) (.23)

Notes: Robust standard errors that allow for a correlation of the residuals among members of the same
class are in parentheses. A constant is included in all regressions. The normalized peer effect is
constructed by considering the thought experiment of moving a student from a regular size class to a
small class allowing the quality of the student’s peers to change, yet holding class size constant.
Formally, it is computed by multiplying the coefficient on peer’s mean test score by the difference in
mean peers’ test scores for small and regular classes. For example, in third grade, moving from a regular
class to a small class entails an increase in mean peers’ score from 49.14 to 54.90, yielding a normalized
peer effect of .57%(54.90 - 49.14) = 3.28 percentile points. This normalized peer effect can be compared
directly with the small class coefficient to shed some light on the relative magnitudes of each.

57


steve cacciola
57


Table 5
First Stage of Instrumental Variables Estimation:
Dependent Variable is Peers’ Mean Test Score

First Grade Second Grade Third Grade
Fraction of Peers Randomly 2.37 6.85 17.37
Assigned to a Small Class (3.56) (3.84) (3.81)
in Kindergarten
Fraction of Peers Randomly @ ———--- 4.46 3.20
Assigned to a Small Class (8.20) (9.10)
in First Grade
Fraction of Peers Randomly - coeemn -4.11
Assigned to a Small Class (8.00)
in Second Grade
Small class 6.39 2.44 -1.53
(2.50) (2.57) (2.23)
Regular/aide class 1.79 1.91 -.50
(.99) (1.09) (1.14)
White teacher -3.30 1.00 1.05
(2.04) (1.84) (1.84)
Master’s degree 14 -1.35 1.86
(1.09) (1.18) (1.19)
Teacher’s experience .04 .05 .05
(.06) (.07) (.06)
F-statistic for Joint Test 0.44 1.64 7.65
of Peer Variables (.509) (.197) (.0001)
(p-value)
School fixed effects Yes Yes Yes
R? .73 .70 .67
Number of obs 6437 5747 5816

Notes: Robust standard errors that allow for a correlation of the residuals among members of the same
class are in parentheses. A constant is included in all regressions, as are student characteristics (white,
girl, free lunch).
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Table 6
Instrumental Variables Estimates of Class Size and Peer Group Effects by Grade:
Peers’ Mean Test Score Instrumented by Random Assignment Status of Peers

First Grade Second Grade Third Grade
Peers’ Mean Test Score .30 .86 .92
(1.00) (.12) (.04)
Small class 4.91 38 -17
(7.94) (.78) (.32)
Regular/aide class 1.04 -.05 -.17
(1.92) (.30) (.19)
White 8.45 8.13 7.04
(1.19) (1.25) (1.44)
Girl 3.16 3.23 3.53
(.57) (.60) (.69)
Free lunch -12.99 -12.81 -12.32
(.87) (.71) (.82)
White teacher -3.07 .26 -51
(3.69) (.30) (.28)
Master’s degree .30 .36 -.02
(.78) (.27) (.20)
Teacher’s experience .03 .02 -.003
(.06) (.01) (.01)
School fixed effects Yes Yes Yes
Number of obs 6437 5747 5816
“Normalized Peer Effect 205 T 449 466
(6.77) (.63) (.20)

Notes: Robust standard errors that allow for a correlation of the residuals among members of the same
class are in parentheses. A constant is included in all regressions. The normalized peer effect is
constructed by considering the thought experiment of moving a student from a regular size class to a
small class allowing the quality of the student’s peers to change, yet holding class size constant.
Formally, it is computed by multiplying the coefficient on peer’s mean test score by the difference in
mean predicted peers’ test scores for small and regular classes. For example, in third grade, moving from
a regular class to a small class entails an increase in mean predicted peers’ score from 49.44 to 54.51,
yielding a normalized peer effect of .92*(54.51 - 49.44) = 4.66 percentile points. This normalized peer
effect can be compared directly with the small class coefficient to shed some light on the relative
magnitudes of each.
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Table 7
Instrumental Variables Estimates of Peer Group Effects by Grade:
Looking Within Class Type by Instrument Sets

First Grade Second Grade Third Grade
Instruments Are Percent of
Peers Randomly Assigned
To a Small Class:
Both Class Types .30 .86 92
(1.00) (.12) (.04)
Small Classes 1.72 1.01 .89
(.71) (.10) (.05)
Regular Classes .86 -.56 1.00
(.12) (4.66) (.09)
Instruments are Percent of
Peers Entering in Each
Grade:
Both Class Types .61 .68 72
(.16) (.08) (.05)
Small Classes -.81 .60 .65
(2.05) (.13) (.10)
Regular Classes .52 43 .39
(.27) (.21) (.22)
Instruments are Percent of
Peers Switching in Each
Grade:
Small Classes .93 .81 1.06
(.13) (.10) (.09)
Regular Classes .86 -.56 1.00
(.12) (4.66) (.09)

Notes: Each cell represents a separate regression. Robust standard errors that allow for a correlation
among members of the same class are in parentheses. A constant is included in all regressions, as are
student characteristics, teacher characteristics, and school fixed effects.
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Table 8
Non-Linearities in Peer Group Effects, Class Level Estimates:
Dependent Variable is Class Mean Test Score

First Grade Second Grade Third Grade

Percent of Kids Randomly ~ -——— w0
Assigned to a Small Class [214] [207] [200]
is Between 0 and 20%

Percent of Kids Randomly 57 1.14 1.49
Assigned to a Small Class (4.22) (4.60) (3.62)
is Between 20% and 40% [15] [10] [14]

Percent of Kids Randomly 5.37 5.64 2.19
Assigned to a Small Class (4.24) (4.07) (3.20)
is Between 40% and 60% [24] [34] [39]

Percent of Kids Randomly 3.85 4.75 8.72
Assigned to a Small Class (4.12) (4.06) (3.14)
is Between 60% and 80% [45] [39] [43]

Percent of Kids Randomly 2.23 5.07 10.98
Assigned to a Small Class (4.23) (4.04) (3.30)
is Between 80% and 100% [40] [40] [33]

Number of obs 338 330 329

Notes: Standard errors are in parentheses. Sample size of each group is in brackets. Additional
covariates in each regression are a constant, class type, white teacher, teacher has a masters, teacher’s
experience, and school dummies.
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Table 9
Non-Linearities in Peer Group Effects, Class Level Estimates Including
Constancy of Classmates:
Dependent Variable is Class Mean Test Score

First Grade Second Grade Third Grade

Percent of Kids Randomly -~ ——0
Assigned to a Small Class [214] [207] [200]
is Between 0% and 20%

Percent of Kids Randomly 1.01 2.13 1.88
Assigned to a Small Class (4.24) (4.59) (3.63)
is Between 20% and 40% [15] [10] [14]

Percent of Kids Randomly 5.98 3.69 2.11
Assigned to a Small Class (4.24) 4.11) (3.22)
is Between 40% and 60% [24] [34] [39]

Percent of Kids Randomly 4.79 2.83 8.48
Assigned to a Small Class (4.18) (4.07) (3.16)
is Between 60% and 80% [45] [39] [43]

Percent of Kids Randomly 5.64 1.87 9.84
Assigned to a Small Class 4.72) (4.13) (3.37)
is Between 80% and 100% [40] [40] [33]

Average Fraction of Class ~ —~——-  ——
Previously Together is [207] [48] [18]
Between 0% and 20%

Average Fraction of Class -.81 3.80 1.80
Previously Together is (1.90) (2.23) (2.96)
Between 20% and 40% [97] [106] [84]

Average Fraction of Class -.93 6.49 431
Previously Together is (3.25) (2.52) (3.16)
Between 40% and 60% [25] [85] (98]

Average Fraction of Class -11.42 8.71 4.00
Previously Together is (6.24) (2.87) (3.40)
Between 60% and 80% [5] [53] [88]
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Average Fraction of Class -11.28 7.09

Previously Together is (7.03) (3.11)
Between 80% and 100% [4] [38]
Number of obs 338 330

6.12
(3.64)
[41]

329

Notes: Standard errors are in parentheses. Sample size of each group is in brackets. Additional
covariates in each regression are the same as in Table 8: class type, white teacher, teacher has a masters,

teacher’s experience, and school fixed effects.

63


steve cacciola
63


Table 10
Between and Within Class Estimates:
Dependent Variable is Class Mean (or Individual) Test Score

First Grade Second Grade Third Grade

Between Class Estimates:

Fraction of Class Previously 1.53 4.26 13.77
Randomly Assigned to a (4.13) 4.17) (3.73)
Small Class

Small 6.48 2.87 -3.74

(3.01) (2.97) (2.63)

Regular/aide Class 1.71 1.28 -1.07

(1.33) (1.43) (1.49)
Fraction White 10.00 15.47 12.44
(10.31) (11.09) (11.18)
Fraction Girl 7.08 10.09 .96
(7.39) (7.67) (6.88)
Fraction Free lunch -12.90 -24.08 -16.96
(4.94) (5.85) (6.04)

Number of obs 336 320 322

Within Class Estimates:

Individual Previously 3.64 1.53 2.33
Randomly Assigned to a (1.09) (1.14) (1.08)
Small Class

White 8.25 7.81 6.84

(1.06) (1.15) (1.26)

Girl 3.06 2.97 342

(.54) (.57) (.60)
Free lunch -12.88 -12.75 -12.18

(.66) (.71) (.74)
Number of obs 6449 5829 5878
Implied Peer Coefficient -1.38 .64 .83

64


steve cacciola
64


Notes: Standard errors are in parentheses. A constant and school fixed effects are included in all
regressions. Teacher characteristics are included in the between class regressions. The implied peer
coefficient is calculated as 1 - (within coefficient)/(between coefficient).
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Appendix Table 1
Class Level Reduced Form Estimates Including Fraction of Class
Entering in Each Grade:
Dependent Variable is Class Mean Test Score

First Grade Second Grade Third Grade
Fraction of Kids Randomly -2.21 -2.19 10.31
Assigned to a Small Class (4.45) (4.69) (4.34)
in Kindergarten
Fraction of Kids Randomly @ - 9.87 5.89
Assigned to a Small Class (10.83) (11.29)
in First Grade
Fraction of Kids Randomly -~ -t 6.14
Assigned to a Small Class (10.22)
in Second Grade
Small class 7.12 2.30 -3.82
(3.01) (3.03) (2.63)
Regular/aide class 1.55 1.32 -1.50
(1.32) (1.41) (1.40)
Fraction of Class -11.87 -26.29 -19.15
Entering in First Grade (5.22) (7.87) (8.13)
Fraction of Class - -17.53 -21.21
Entering in Second Grade (5.02) (7.07)
FractionofClass ~ ce— e -28.89
Entering in Third Grade (6.16)
School fixed effects Yes Yes Yes
R? 73 .70 .70
F-statistic for Joint Test
of Peer Variables 0.25 0.57 2.19
(p-value) (.620) (.567) (.090)
Number of obs 338 330 329

Notes: Standard errors are in parentheses. A constant is included in all regressions. Additional
covariates include teacher characteristics.
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Appendix Table 2
Instrumental Variables Estimates of Class Size and Peer Group Effects by Grade:
Peers’ Mean Test Score Instrumented by Random Assignment Status of Peers,
Individual PRASC Included as a Covariate

First Grade Second Grade Third Grade
Peers’ Mean Test Score -23 .70 .83
(1.67) (.22) (.08)
Previously Randomly 1.12 -.37 81
Assigned to a Small Class (1.14) (1.04) (1.11)
Small Class Currently 7.54 44 -1.34
(13.36) (1.15) (.48)
Regular/aide class 1.98 13 -.46
(3.21) (.52) (.26)
Attended Kindergarten 4.47 6.00 6.63
(In a STAR school) (.93) (.72) (.69)
White 7.97 7.60 6.77
(1.23) (1.23) (1.43)
Girl 3.00 2.92 3.07
(.57) (.61) (.68)
Free lunch -12.43 -11.85 -10.90
(.89) (.70) (.84)
White teacher -4.95 58 -45
(6.21) (.51) (.42)
Master’s degree 43 24 14
(1.34) (.44) (.30)
Teacher’s experience .05 .03 .01
(.10) (.02) (.01)
School fixed effects Yes Yes Yes
Number of obs 6437 5747 5816
Normalized Peer Effect -1.56 3.57 4.11
(11.33) (1.12) (.40)

Notes: Robust standard errors that allow for a correlation of the residuals among members of the same
class are in parentheses. A constant is included in all regressions.
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Appendix Table 3
Individual Level Reduced Form:
Dependent Variable is Individual Test Score

First Grade Second Grade Third Grade

Individual Randomly 3.68 291 423
Assigned to a Small Class (1.01) (1.12) (1.15)
in Kindergarten

Individual Randomly - -4.07 -.94
Assigned to a Small Class (1.73) (2.13)
in First Grade

Individual Randomly - e .03
Assigned to a Small Class (1.68)
in Second Grade

Fraction of Peers Randomly -1.80 3.74 13.05
Assigned to a Small Class (3.46) (3.79) (3.75)
in Kindergarten

Fraction of Peers Randomly @~ -—--- 6.86 4.25
Assigned to a Small Class (8.05) (9.04)
in First Grade

Fraction of Peers Randomly @~ —— et -1.85
Assigned to a Small Class (7.49)
in Second Grade

Small class 6.03 2.07 -2.42

(2.38) (2.57) (2.15)
Regular/aide class 1.59 1.58 -.64
(.97) (1.06) (1.14)

F-statistic for Joint Test 0.27 0.75 7.65
of Peer Variables (.604) (.472) (.0001)
(p-value)

Number of obs 6437 5747 5816

Notes: Robust standard errors that allow for a correlation of the residuals among members of the same
class are in parentheses. A constant is included in all regressions, as are student characteristics, teacher
characteristics, and school fixed effects.
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