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Abstract

I analyze observed choice between lotteries from an outcome-oriented point of view in the
framework of choice between random variables. I characterize a choice maker. who faces a choice
situation between lotteries. by (1) a surmising process that associates. with a pair of lotteries,
a set of well-defined choice situations between random variables, and ( 2) a choice set that is a
collection of well-defined choice situations. I give a partial axiomatic foundation of the theory.

The theory is applied to explain the well-known paradoxes in expected utility theory.

Kevwords: Expected Utility Theory, SSA Representation, SSB Representation. Prospect Theory,

Choice under Uncertainty
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1 Introduction

In this paper, I develop a theory of choice among lotteries where choices satisfy neither transitivity
nor the independence axiom of expected utility theory. The theory developed explains well-known
empirical paradoxes in classical expected utility theory. Many researchers have developed other
theories that extend expected utility theory and are compatible with either the violation of the
independence axiom or the violation of the transitivity.! However, most of them are not compatible
with both, and fail to identify the origins of paradoxes.

In this paper, I start with a consideration of reasoning that results in a sensitive decision
process. I construct an axiomatic theory that yields the decision process. Then. I show that the
theory identifies the origins of well-known paradoxes in expected utility theory.

To illustrate a choice-maker’s reasoning that I believe to be natural. consider experiments in

which subjects are asked the following question.

Lottery 1 guarantees a probability p of winning a prize z. Lottery 2 guarantees a
probability ¢ of winning a prize y. You can take one of these but not both. Which one

do you choose?

Suppose that a choice maker answered, “I choose lottery 1.” Should we take this answer at face
value without second thought? My answer is no. It is not clear what subjects really choose.
Traditional expected utility theory assumes that they choose among probability measures on the
outcome space, but careful examination reveals that this may be inadequate. Subjects may be
suspicious of probabilities as sound objects of choice unless the way they are generated is common
knowledge to both subjects and the experimenter. Since subjects are not offered any particular kind
of random device, they do not know how the experimenter generates the probabilities. Since all
random devices that generates a pair of lotteries define pairs of random variables, I assume that the
objects of choice are random variables defined on a state space. I also assume that sub jects believe
that they know all kinds of random devices which the experimenter use to generate lotteries. Hence,

though such a state space is not given in the experimenter’s description. I can assume that there

"A list of such representation results is in [Machina, 87].



exists a universal state space, (2, that is common knowledge for both subjects and the experimenter.
Subjects must be informed of a probability on the universal state space so that they can compute
distributions induced by random variables. Hence, from subjects’ point of view. a well-described
choice situation for subjects is given by (f,g: P). where f and g are random variables defined on Q
and P is a probability on Q. (Subjects face choice between f and g. given probabilistic information
P. ) How subjects can obtain such random variables and probabilities when the experimenter does
not give any of them directly? My answer is, by guessing. The way this guessing is done is part
of subjects’ characteristics. Each subject conceives of a set of well-described choice situations from
the description given by the experimenter. Subjects are sure that they are facing one of these choice
situations, but they do not know which one. Finally, I interpret the statement, ~I choose lottery
1" as “For all well-described choice situations I can think of, I will choose the random variable that
induces the distribution on outcomes, p.” I summarize my points in the following monologue of a

subject.

I am confused. I do not think that choosing a probability measure is a good idea
because I do not know how it is generated. Assuming we both agree on a state space,
I believe that the objects of choice should be random variables on the state space.
For me. a well-described choice situation consistent with the description is given by
(f,g9; P) where f and g are random variables and P is a probability on the state space,
that satisfv p= Po f~! and ¢ = Q 0 g~'. In this way, I can see how you generate your
“lotteries.” I can think of a set H of such well-defined choice situations. I am sure that
you are suggesting that I am facing one of choice situations in H, but I do not know
which one I am really facing. But I can say, “I choose the lottery 1™ in the sensc that.
for any well-described choice situation in H, I will choose the random variable which

induces the distribution on outcomes, p.

The theory developed in this paper describes a choice maker exactly the way the monologue
suggests. Formally, I characterize a choice maker in the following way. Let Q be the universal state

space and Z be a set of outcomes. Also let the notation A refer, “the probability space on.” 1
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characterize a choice maker by (1) a correspondence.

I':A(Z) x A(Z) = {(f.9: P)|f.g are random variables on Q. and P € A(Q)}.

that satisfies, for all (f.g; P) € I'(p.q). Po f~! = p and Po g~! = ¢, and (2) a subset > of
{(f,9: P)|f, g are random variables on Q, and P € A(2)} that is called a choice set. The charac-
teristic (1) governs the selection of well-defined choice situations from the description of lotteries
in an obvious way. The characteristic (2) governs the choice when a choice maker is sure that she
is facing one well-defined choice situation. (f,g; P) €> if and only if f is chosen over g by a choice
maker when she is informed of a probability P on the state space €.

My trial for axiomatic foundation of the theory is not complete because I do not give any ax-
iomatic foundation for I'. However I give a set of axioms on > that yields an “outcome-oriented”
counterpart of SSA theory developed by Fishburn in [Fishburn, 89]. By “outcome-orientation™. I
mean generally that information that is directly associated with outcomes has priority over other
information in decision process. In this paper, “outcome-orientation™ means that a choice maker
concentrates on information about distributions on pairs of outcomes in the decision process. I
introduce five axioms and prove, under a domain restriction, that > allows an additive represen-
tation with a skew-symmetric function. Then, I introduce two additional axioms and extend the
result to the general case without domain restriction.

In application of the theory. I consider the following empirical paradoxes in expected utility
theory; (a) the Allais Paradox, (b) the common consequence effect, (c) the common ratio effect,
(d) the utility evaluation effect, and (e) preference reversal. Traditionally (a). (b), (c¢) and (d) are
explained as violations of the independence axiom in expected utility theory. while (e) is explained
as a violation of transitivity.?2 My theory is not only consistent with all of these paradoxes, but also

is useful to identify the origins of these paradoxes. My analysis may be summarized as follows.

?The survey paper, [Machina, 87), strictly follows this viewpoint.



1. Under some regularity on experiments, (a) and (c) happen if I' selects choice situations in
which two random variables are negatively correlated. The analysis of (c) also requires that

> exhibits increasing risk aversion (see 3).

™

(b) happens if the outcome space is the probability space A(R), a set of all probabilities
on money-prizes, and > exhibits a change of attitude toward risk. (The precise meaning
of “change of attitude toward risk” is given in the section 5. ) For this explanation to
make sense, probabilities on money-prizes must be common knowledge to subjects and an
experimenter. When the outcome space is A(R), we can no longer see (b) as a violation of
the independence axiom. The analysis of (b) with money-prizes as outcomes can be done
in a simple case. I show that, if the configuration of experiments satisfies some regularity

conditions, (b) happens when I' selects choice situations in which the two random variables

are negatively correlated.

3. Iregard (d) and (e) as violations of transitivity for ». They happen if > exhibits increasing
risk aversion. (In the section 3, I define a notion of “increasing risk aversion™ for >. ) The
fact that certainty equivalents are used in both experiments (d) and (e) is crucial for my
argument. The analysis of (e) requires that the configuration of experiments satisfies some

regularity.

All regularity conditions are derived in forms that can be checked by asking subjects.

I also apply my theory for criticizing properties imposed on a prospect function in
[Kahneman & Tversky, 79). I argue that it is hard to justify such properties, and the existence of
a prospect function itself, because there would be no “fixed base outcome™ in the decision process
of a choice maker. which is essential for their construction of a prospect function.

I comment briefly on other works about the extension of the expected utility theory related to
the one in this paper. Most researches on non-expected utility theory may be classified into three
categories; (A) objection to the reduction of compound lotteries, (B) objection to the independence

axiom, and (C) objection to transitivity. My theory belongs to both (B) and (C).



Though I take seriously researches about theory of choice between compounded lotteries in the
category (A) (cf. [Kreps & Porteus. 78], [Krantz. Luce. Suppes & Tversky. 90]). I leave them out
of scope in this paper, for there is no clear relationship between them and the theory developed
here.?

The first systematic approach for constructing non-expected utility theory that is consistent
with violation of the independence axiom, other than the pioneering work by Allais [Allais, 79],
appeared in [Kahneman & Tversky, 79]. In this paper. the authors advocated use of a prospect
function and a probability modification function. They call their theory prospect theory. The use
of prospect functions has been very controversial. On the other hand, the use of a probability
modification function has been welcomed by many researchers as the first solution for violation of
the independence axiom. The authors show that the “subcertainty”™ of the probability modification
function causes the Allais paradox while its “subproportionality” causes the common ratio effect.
However, these properties are not derived from axioms. It is also hard to find some natural inter-
pretation that gives these properties intuitive meaning. The authors also considered other empirical
paradoxes that are out of scope in this paper and tried to identify their causes.® Unfortunately,
their analysis depends heavily on properties of prospect functions that have been very controversial.
Based on my theory, I deny such properties of prospect functions. For their credit, prospect theory
characterizes a choice maker partly by an “editing phase.” In my theory. I" plays the role of their
“editing phase.”

Several researchers have worked on extension of prospect theorv. Most of them conjectured
that the weighting function may depend on outcomes. The first axiomatic theory that exhibits this
property is expected utility theory with rank-dependent probabilities by Quiggin. [Quiggin. 82].
He calls his theory anticipated utility theory. In this theory, a distribution modification function,

instead of a probability modification function, is used. For each lottery with a finite support, a

3Here I just note that the argument for the common consequence effect in this paper requires a careful consideration
about the reduction of lotteries.

4They also derive other properties of the probability modification function that are necessary to explain empirical
results. For example, the condition that the probability modification function overweights small probabilities has
been proposed to explain risk-taking behavior with small probabilities.

®(1) Preference for regular insurance over probabilistic insurance, (2) Increase of risk seeking by a negative trans-
lation of a choice. For details, see [Kahneman & Tversky, 79].



rank-dependent probability is constructed by the distribution function corresponding to the lottery
and a distribution modification function. Then. lotteries are ordered by “expected™ utilities with
respect to their rank-dependent probabilities. On axiomatic foundation, he introduces the first-
order stochastic dominance principle and a weak version of the independence axiom.® Properties
on the distribution modification function that are necessary for several paradoxes considered in this
paper can be found. I do not regard the first-order stochastic dominance as a compelling axiom,
since I design my theory for completely general outcome spaces.

In [Chew, 83], Chew introduces a weighting function on outcomes and uses it to describe a
modification process of lotteries in choice maker’s mind. He calls his theory weighted utility theory.
He introduces the weak substitution axiom, that replaces the independence axiom, and derives
a representation result such that the utility function in expected utility theory is replaced by a
weighted utility function. A weighted utility function is defined as a product of two functions
defined on outcomes. One of them is considered as a usual utility function. The other is called a
weight-of-utility function and used to describe a psychological modification process of lotteries. It
has been shown that this theory is consistent with violations of the independence axiom. including
the Allais paradox. It is not difficult to show that certain properties on weight-of-utility functions
imply those of the probability modification function imposed by Kahneman and Tversky. However,
they are not derived from axioms, and not particularly intuitive.

A very different approach was proposed by [Dekel, 86]. By introducing a very weak indepen-
dence axiom, called the betweenness axiom, he derived a representation function whose function
form is exactly the same as the one derived in this paper. Unfortunately. he assumes transitivity,
as do all works I have mentioned so far. This results in the use of certainty equivalents to order
lotteries. But, this procedure has an obvious conflict with the preference reversal. one of the well-
known paradoxes.” He assumed that a pair of lotteries induces a distribution over pairs of outcomes
by its product measure. This I do not assume. In my theory, the surmising process includes the

consideration of correlation among random variables. so that my theory is more general than his.

°The former axiom forces distributions to be sufficient statistics for choice.
‘It could be the case that discarding the transitivity from his set of axioms may result in a similar representation
result to the one in this paper.



The first contribution to axiomatic theory of choice without transitivity is SSB (Skew-Symmetric
Bilinear) theory developed by Fishburn [Fishburn, 82]. This theory is the first work which suggests
that, given a choice situation, a choice maker may not treat each alternative in it separately. The
theory assumes that a pair of lotteries in a choice situation induces a distribution over pairs of
outcomes by its product measure. This nature restricts the application of the theory. In particular.
it seems to me that SSB theory does not give a clear explanation of the Allais paradox. Fish-
burn [Fishburn, 89] refined SSB theory in the Savage setup. He called the resulting theory SSA
(Skew-Symmetric Additive) theory. It is a minimal additive extension of Savage's theory without
transitivity. It allows consideration of correlated random variables. On the other hand. since. in
SSA theory, a probability on the state space is a part of choice maker's characteristics. we can-
not apply SSA theory to solve empirical paradoxes in expected utility theory. My theary repairs
this shortcoming. My theory fills a gap between two different formations and solve paradoxes in
expected utility theory. In this sense, I regard the representation result for » in this paper as an
“outcome-oriented” version of SSA theory.

This paper is organized as follows. Section 2 introduces the model. Section 3 introduces five
axioms on the choice maker’s characteristics. Section 4 presents and proves the representation
result for finite-valued acts. The result is applied to solve various paradoxes in expected utility
theory in section 5. The representation result is extended for general acts in section 6. Section 7

concludes the paper.
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2 Model

The outcome space is given by a measurable space, which I denote by (Z.=Z). I assume that there
is a state space that is common knowledge for both experimenter and subjects. It is given by a
continuum measurable space. I denote it by (Q, 29). I call each random variable. a measurable

function from the state space to the outcome space, an act. I denote the set of all acts by A.

Definition 2.1 A well-described choice situation for subjects is an ordered pair of acts, ( f-9).

together wrth an atomless probability measure, P, on the state space. I denote it by (f.g;: P).

I denote the set of all well-described choice situations by B.

Definition 2.2 An intended choice situation by ezperimenter is an ordered pair of probabilities on

the outcome space. (p.q).

I denote the set of all intended choice situatjons by L.

Objects of choice for choice makers are acts. A choice maker is characterized by
1. T': L — 28 such that, for all (f,g;: P) € ['(p,q), Po f~! =pand Pog~! =g,
2. »CB.

I'call T a surmising process and > a choice set.

A surmising process describes a modelling process by a choice maker who is given an intended
choiee situation.

A well-described choice situation (f,g: P) is in the choice set > if and only if the choice maker

chooses the act f over the act g when the probability measure P is given.

Definition 2.3 Given an intended choice situation (p.q) € L, I say that a choice maker chooses p

over q if I'(p.q) C>.

In my axiomatic foundation, I leave the surmising process out of scope and concentrate on
the choice set. It is clearly desirable to give axioms that determines a (unique) structure of the

surmising process. This task is left for my future research.



3 Axioms for the Additive Representation

In this section, I introduce a simple set of axioms on the choice set  that guarantees the existence
and the uniqueness of its skew-symmetric additive representation.

The first axiom is called outcome-orientation. In general, outcome-orientation means that, in a
decision process, information directly associated with outcomes has priority over other information.
In this paper, it means that, given a choice situation. a choice maker cares only the induced
distribution over pairs of outcomes. To state this assumption formally. I take a quotient space of
B by equivalence of the induced distribution over ordered pairs of outcomes. I denote the resulting
quotient space by B* and an equivalence class with representative element (f,g: P) by < f.g: P >.
I call each class in B* an consequential class of choice situations. The first axiom essentially says
that > determines a unique subset >* of B*. Since B* is isomorphic to the space of all distributions
over pairs of outcomes, we can regard >* as a subset of the latter space. I will use this identification

freely in the rest of this paper.

Axiom 3.1 (Outcome-Orientation) If two well-described choice situations. (f,g; P) and (f'.¢'; P'),

are such that Po (f,g)™! = P' o (f',g')"!. then (f,g; P) € if and only if (f'.g'; P') €.

For the convenience of exposition, I define ~* by

~={< f.giP>|< f.g;P>¢>" and <g,f:P>¢>"}.

It will be used later in the proof.

The next axiom is asymmetricity.
Axiom 3.2 (Asymmetricity) If (f.g: P) €>~. then (g. f: P) &».

If the outcome-orientation axiom is satisfied. we can restate this axiom by replacing choice situations
by consequential classes of choice situations and > by »*. Suppose that is the case. In terms of
distributions over pairs of outcomes, this axiom simply claims that changing the order of coordinates

does not preserve the membership to »>°.



The other three axioms are essentially restrictions on the mixture operation on consequential
classes of choice situations. Since B* is isomorphic to the space of probabilities over ordered pairs
of outcomes, I can define a mixture operation on B* by the familiar weighted sum operation on
probabilities. For any given a € [0,1], the mixture operation %, : B* x B* — B* is defined as
follows.

<[ giP>3a< f.gd:P >=< f'.q":P" >.

where

P'o(f".g") " =aPo(f,g) +(1-a)P o(f.¢)".
A simple way to create a probability measure P” and a pair of acts (f”, g") is as follows.
1. Take any set E € 2 and assign the probability a to it.

2. On (E‘ ,2F ). construct a pair of random variables (fg,gr) and an atomless probabilitv mea-

sure Pg such that Pgo (fe,gg)~! = Po(f.g)"\.

3. On (Q — E 29%-E ), construct a pair of random variables (f,_ g, 9¢_g) and an atomless prob-

ability measure P,_p such that P,_g o (fo_p.g9h_g) ' =P o(f'.g')" .

4. Construct a pair of acts (f”,g") by the rule by

w), ifwekFE,
(o) = fe(w) ifwe
fo g (w) ifweQ-E,

and

" ge(w), ifweE,
g (w) =
go_plw), fweQ-FE.

5. Construct an atomless probability measure P” by

P"(F)=aPg(FNE)+ (1 - a)Py_g(FN(Q - E)).

10



Then < f",g": P" > is exactly < f.g;P > %, < f'.g: P' >. Note that this operation associates.
with a pair of well-described choice situations. a set of well-described choice situations. I use the
same notation @, to denote this correspondence. Since the state space is a continuum, the second
and the third step of this procedure are feasible.® I call these steps replication by miniatures.

The third axiom suggests that, if a choice maker cannot make a choice in choice situations,
(f,g;P) and (f',g'; P'), then she should not be able to make a choice in any mixture of these two
because a mixture of two choice situations is regarded as more complex than original two choice

situations. To state the axiom, I introduce an additional notationf I denote

{(f,9: P)I(f,9;: P) ¢~ and (g.f;P) &~} by ~.

Axiom 3.3 (Betweenness) If (f,g; P) € ~ and (f'.¢'; P') € ~. then (. g: P)&a (f',g:P)C~
for all a € [0,1].

The name of this axiom comes from the following observation. Suppose that the outcome-orientation
axiom is satisfied. Then I can restate the axiom by replacing choice situations by consequential
elasses of choice situations and ~ by ~*. I can regard that mixture operations {Bala € [0,1]}, ap-
plied to two consequential classes of choice situations, determine all consequential classes between
them. Then, the axiom is equivalent to the preservation of the membership to ~* between two
consequential classes of choice situations.

The forth axiom guarantees that there is no choice situation such that:
1. A choice maker cannot make a choice in it;

2. It affects the choice if it is mixed with some particular choice situation.
Axiom 3.4 (Substitution) If (f,g: P) q (¢', f'; P') ¢> for some a € (0.1), then (f.g: P) €»
implies (f'.g': P') €.

Finally I introduce an axiom that is a key to find a measurement tool in my theory. This axiom
is a natural counterpart of the Archimedian axiom in expected utility theory. When choice is not

necessarily transitive, a unitary measurement device (frequently called a “rod”) implied by the

8This is the reason why I restricted the probability on the state space to an atomless one.
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Archimedian axiom is replaced by a binary measurement device (which I call a “balance™) implied

by the following axiom.

Axiom 3.5 (Archimedian) If (f,g; P) €> and (f'.g'; P') €. then there is an o € (0,1) such
that (f,g; P) ®a (¢, f's P') C>.

'These are all axioms that I need to prove my representation result for consequential classes with
finite support.

Before going to the next section, I introduce an operation on B (and B*) other than the mixture
operation. The twisting operation, (.)”, on B is defined by (f,g; P)~ = (g. f; P). It introduces a
unique operation on B* as follows. Let T : Z x Z =+ Z x Z be defined by T(z,y) = (y,z). Then,
the twisting operation, (.)~, on B* is defined by P~ = P o T~1. (I used the identification of B*
and the space of probabilities on ordered pairs of outcomes. ) The twisting operation is used often

in the proof.

12



4 Representation of Choice over Finite-valued Acts
The following result is the representation formula for all consequential classes with finite support.

Theorem 4.1 (Skew-Symmetric Additive Representation : Finite Supports ) A choice set
> restricted on BF = {(f,g; P)|P o (f,9)~" has a finite support. } satisfies aziom 3.1. 3,2, 3.9. 8.4
and 3.5 if and only if there is a ¥ : (Z x Z,Z ® Z) = R such that:

1. ®(z,y) + ®(y,z) =0 for any z,y € Z;
2. (f,9;P) €~ nBF if and only if P&(f,g) > 0.

If the two function ® and &' satisfies 1 and 2, then there is an a > 0 such that ®'(z,y) = ad(z, y)
forallz,y€ Z.

The intuition behind this theorem is as follows. By the outcome-orientation axiom, I can
translate the statement of the theorem into the equivalent statement in AF(Z x Z, Z@ =) where A(.)
means “the set of all probabilities on” and the superscript “F” indicates finite support property. Let
=*" be theset {Q~ € A(Z x Z,E x ) |Q €>*}. The asymmetricity axiom says >* N »=*"= 0. The
substitution axiom says that >* is closed with respect to the mixture operation (or, “convex”), and
that ~* is not “thick”. At this stage, ~* starts to look like a part of hyperplane. The betweenness
axiom reinforces this intuition by saying that ~* is “convex.” The Archimedian axiom says that
the mixture operation is “>*-continuous,” and that a “balance” can be constructed. This balance
is a measurement device that, for each well-described choice situation and a choice of an act by
a choice maker, outputs a positive number if the choice is supported, a negative number if the
opposite choice is supported, and zero otherwise. The additivity of the balance is guaranteed by
the substitution axiom and the betweenness axiom.

I note the similarity of the intuition behind my result and that behind expected utility theory.
In the expected utility theory, each lottery is “plotted” on the real line. The procedure to do this
is as follows. At first, take two lotteries. They determine a unit rod. Then, measure each lottery

by the replication coefficient as a mixture of two lotteries in the unit rod. The choice order is

13



translated to the usual order on R. In my theory, each consequential class of choice situations is
“plotted” on the real line. The choice set »* is translated to the positive orthant of R and ~* is
translated to zero.?

I also note the relation between my theory and Fishburn’s theories. Fishburn's SSB theory
[Fishburn, 82] suggests that, without transitivity, a measurement tool should be a “balance”. Fish-
burn’s SSA theory [Fishburn, 89] proves skew-symmetric additive representation of chaice in the
Savage’s setup. In this setup, a probability on the state space is not given as information in any
choice situation. It is uniquely determined by characteristics of a choice maker. To do that, it
is assumed that a choice maker possesses detailed knowledge about the nature of the state space
when she makes a choice. In a choice between lotteries, the description of lotteries gives information
about possible probabilities on the state space. Moreover, since the state space is not explicitly
mentioned in the description of lotteries, a choice maker is likely to pay her attention to outcomes.
This suggests that a choice maker would not consider detailed information about states. Therefore,
Fishburn’s SSA theory cannot analyze paradoxes in expected utility theory.!® The formula of the
skew-symmetric additive representation in my theory is the same as the one in SSA theory. But,
my theory is made to explain choice between lotteries. In other words, my theory generalize the
expected utility theory of Milnor, not the Savage theory.

Now I start a formal proof. At first, I rewrite the statement of the theorem with »€ B to the
equivalent statement with »*€ A(Z x Z,=Z ® Z). It is possible, due to the outcome-orientation
axiom. To make statements simple, I use the usual mixture notation, instead of ®,. Since the

computation rule of mixture on A(Z x Z,=Z ® =) corresponds to the usual mixture notation, there

will be no confusion.

®For a general notion of representation as a construction of geometry, 1 refer to [Beja & Gilboa, 92].

%}t was reported in [Machina, 87] that some researchers applied SSA theory to explain several paradoxes in
expected utility theory. Readers should convince themselves that this cannot be done. [Loomes & Sugden, 82) gives
the formula equivalent to the one in this paper and analyze some paradoxes in expected utility theory. Since the
paper does not give any axiomatic foundation, the validity of the representation formula cannot be tested. In other
words, it does not conform a “theory.”
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Axioms 3.2, 3.3, 3.4 and 3.5 is rewritten as follows.
Axiom 4.1 (Asymmetricity) If Q €>*, then Q— ¢>*.
Axiom 4.2 (Betweeness) If Q,Q' € ~*, then aQ + (1 — a)Q' € ~* for all a € [0,1].
Axiom 4.3 (Substitution) If there is an a € (0,1) such that aQ+(1-a)Q'~ &-*, then Q €>*
implies Q' €>*.
Axiom 4.4 (Archimedian) If Q €>* and Q' €>*, then there is an a € (0,1) such that aQ +
(1-a)Q'~ ex".

The theorem 4.1 is equivalent to the following proposition on AF (Zx2,Z@=).

Propesition 4.1 (Skew-Symmetric Additive Representation on AF (Zx Z,=Z2Q®E)) Aziom
41, 4.2, 4.3 and 4.4 are satisfied on AF(Z x Z,Z® E) if and only if there is a function
®:(Zx Z,ZQE) = R such that:

1. ®(z,y) + ®(y,z) = 0 for any z,y € Z;
2. Q €x* NAF(Z x Z,Z® E) if and only if Q& > 0.

If the two function ® and @' satisfies 1 and 2, then there is an a > 0 such that &' (z,y) = a®(x,y)

forallz.y € Z.

It is easy to prove that the proposition and the theorem are equivalent. I omit a simple proof.
To prove the proposition, I prove a key lemma at first. This lemma suggests that a balance
can be constructed from >. I also derive several simple corollaries. In proofs, I use the idempotent

property, P~ = P,
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Lemma 4.1 (Cancellation) Assume that azioms 4.1, 4.2, 4.3 and 4.4 hold. If P.Q €>*, then

there ezists a unique @ such that 0P + (1 — 0)Q~ € ~*.

Proof:

Let © = {a €[0,1]jaP + (1 - a)Q~ €>"}. Since it contains 1, it is not empty.
By the Archimedian axiom, it also contains an o € (0.1). Ifa € © and 3 > a,
then 3 € © because, otherwise, it violates the substitution axiom applied to P and
[@P + (1 —a)Q7]". (I used the idempotent property Q'~~ = Q' here. ) Also, for any
a € 6, the Archimedian axiom applied to aP+(1-a)Q~ and Q guarantees the existence
of a 3 < a such that 3 € ©. Hence © is an open interval in [0.1] that contains 1 and does
not contain 0. Similar argument proves that © = {a € [0,1]|[aP + (1 — a)Q~]~ €=*}is
an open interval on [0, 1] that contains 0 and does not contain 1. By the asymmetricity
axiom, © N O = 0. Hence there must be a § € (0,1) such that 6 is contained in neither
© nor O. Clearly 6P + (1-60)Q~ € ~*. For any a > 6, the substitution axiom applied
to P and 6P + (1 — 0)Q~, and the asymmetricity axiom implies that o € ©. By using
the distributive law [aQ' + (1 — a)Q"]™! = aQ'~ + (1 — a)Q""!, a similar argument
shows that, if 3 < @, then 3 € ©. Hence 8 is uniquely determined.

é

Corollary 4.1 (Replication) Assume that arioms 4.1, 4.2, 4.8 and 4.4 hold. Then. for all Q,
1Q+1Q- e~
Proof:

If Q € ~*. the statement is obviously true by the betweenness axiom. Suppose that
Qex*. If1Q+ 3Q~ €>*, then. as we showed in the proof of the lemma, there must
be an a < % such that aQ + (1 — a)Q~ €>*. Also, since 1 —a > %, the argument
used in the proof of the lemma shows that (1-a)Q+aQ™ =[eQ+ (1-a)Q~ |~ €>".
This contradicts the asymmetricity axiom. A similar argument shows that assuming

[3@+ 2Q7]~ €~" leads to a contradiction to the asymmetricity axiom. Hence it must
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be the case that %Q + %Q‘ € ~".
®

Corollary 4.2 (Reduction of Effective Support) Assume that azioms 4.1, 4.2, 4.8 and 4.4
hold. Fiz z € Z. Let x,y € Z to be such that O(z.y) €-*. Then, for any o € [0.1], abiz) + (1 -

a)d(y.z) €>" if and only ifa > % and (2a — 1)d, ) + 2(1 — a)d; ) €>*.

Proof:

In the proof of the replication corollary, it was proven that Q = ad(,,) + (1 —
a)d(, ;) €-* if and only if a > 3. For such a, Q' = (2a - 1)d(z,y) +2(1 = a)dy. .) is well
defined and -‘_}Q + %Q" € ~* by the betweenness axiom. Hence, by the substitution
axiom, Q' €>"*.

®

Proof of the proposition:

If 6. y) €~ for all 2,y € Z, a simple induction using the betweenness axiom says that
~NAF(Zx2,2@=) = AF(Z x Z,ZQ®EX). Hence ®(z,y) = 0 is the unique function that satisfies
the claim of the proposition.

Hereafter I assume that there is a z,y € Z such that d(z,y) €>". I fix such a pair and denote it
by (zo.yo)-

I prove the existence of the representation function & by actually constructing it. For each
(z,y) 6 Z x Z such that §,,) €>*, the cancellation lemma guarantees the existence of unique
0(x,y) € (0.1)such that 0(z,y)d(z,y) + (1 —0(x.Y))(yq.,25) €~*. Then. I define &(x.y) by ®(r.y) =
5=d). For each (z,y) € Z x Z such that d, ,) € ~*, I define #(z,y) by ®(z,y) = 0. For each
(z.y) € Z x Z such that (y,z) €>*, I define &(z,y) by ®(z,y) = —®(y, z). By the asymmetricity
axiom and the nature of the construction, it is clear that & is skew-symmetric. Hence the only

matter I have to prove is the additive representation property.



Let Q € AF(Z x Z, =@ =). Then I can express () as

N
Q= Z @ib(z; 4)»

i=1

where a; > 0 for all i and ¥, a; = 1. I partition IV to three sets in the following way.

Ny = {i € gz, ) €°} .
N_ = {i € Nlfy,z €=}
No = {i € Nl ) €~}

If Ny = N_ =0, then an induction argument using the betweenness axiom shows that Qe~".
In this case, the construction of ¢ implies that %, a;®(z;,y;) = 0. If Nty #0 and N_ = 0,
then an induction argument using the substitution axiom and the asymmetricity axiom shows that
@ €>°. Also, by the construction of &, ¥, a;®(ri,y;) > 0. If Ny =@ and N_ # 0, then an
induction argument using the distributive law of the operator —, the asymmetricity axiom and the
substitution axiom proves that Q~ €>*. Again, by the construction of &, YN ai®(zi,y:) < 0.1

The only case left to prove is N # @ and N_ # 0. Pick any arbitrary i € Nyand jeN_. 1

rewrite the expression of Q as follows.

a; a;
Q = (ai +aj) [;;""_01'5(:"”‘) + a; _:aj‘s(zj',w)] + (1 -ai-aj) k;.aké(z‘“”")'
ij

By the cancellation lemma, there is a unique 6* € (0,1) such that 0%0(z;,y) + (1 = 6%)o(z, ) € ~".

I distinguish three different cases.

"' The steps in these induction arguments are almost exactly the same as the arguments used in the proof of the
cancellation lemma. Hence I do not reproduce the details here.
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Case 1 m_?i-'a_, > 6*.
By the substitution axiom, ﬁic._,-‘s(zi,ya) + a‘.—?@‘s(rj,w) €>*. Fix any z € Z. I will show
that there exists a 8 € (0,1) such that, if I define Qs by Qs = (a; + a;)[8d, 4,) + (1 —

B)o(z,5)] + (1 — ai — aj) Zk;ﬁ,j aid(z, y,)» then:

1. Q €>" if and only if Q3 €>*, Q~ €>"* if and only if Q5 €-" and Q € ~* if and only if
Qs €~

2. Q% = Qs8.

The task to find a 3 satisfying the first claim reduces to the task to find a 3 € (0,1) such
that

1 o; a;

2 m‘s(ze.m) + m‘s(z:‘vw)] + % [B‘s(y-'.n) +(1- ﬂ)tf(:'z)] €~

The reason is as follows. By using the replication corollary of the lemma, it is easy to show
that, for such 3, ;Q + %QE is a mixture of two probabilities in Af(Z x Z,Z ® Z)N ~* with
coefficient (a; + aj,1 — a; — a;). Hence %Q + %QE € ~* by the betweenness axiom. Then
the substitution axiom and the asymmetricity axiom implies 1 of the claim. To prove 2 of
the claim, I note at first the following simple fact. Since 0(z,z) € ~* by the asymmetricity
axiom, the substitution axiom implies that finding 3 satisfying the restriction stated above

is equivalent to finding a 8 € (0,1) such that

1 a; aj B .
14 ﬂ [a'- + aj 6(‘--%) a; + aj (z; :!b)] 1+ B (yi.zi) €

I determine 3 in this claim in the following way. By the Archimedian axiom, there exists a
unique 8 € (0.1) such that

R=6 [ﬁ‘a&(zi‘w) + ;i—";i-(;;a(,j,w)] +(1- 0)6(%.','.) € ~*. Then I define 3 by 3 = li! By
using the replication corollary, I can show that 6 > % Hence 3 € (0,1). Clearly my claim is

satisfied with this 3.
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Finally I have to show that Q® = Qg®. To prove this, at first I derive a formula of 8* in

terms of 6.

I note that the expression of R can be rewritten as

a'é 1-6

R=(a'0+(1-9)) [m‘s(z;,w) + m‘s(yi,z;)

} + 9(1 - O”)&(zj 95

where o’ = a—."_'-_'g Since R € ~*, the substitution axiom implies that
P= ?Efg‘:ﬁ‘s(znys) + ;ﬁf—_nqm,m €>". By applying the “reduction of effective support”
corollary, this is equivalent to the statement that o’ > 1 — 6 and P' = %}g—}ﬁ%ﬁ%&(zhw) +
ﬁ%é( z,z) €>". Moreover, by the betweenness axiom and the replication corollary, %P +
%P‘ €E~*. Let R =(a'60+(1-06))P' +0(1 - a')d(z; y;)- The betweenness axiom says that
%R + %R" € ~*. Since R € ~*, this implies, by the substitution axiom, that R’ € ~*. I can

rewrite the expression of R’ as

a'6 - (1-96) 6(1-a')
R = (20 -1) [Tl_a(zi'y‘) + Ti—a(,’.‘w)] +2(1 - 9)5(2'2).

Since R' € ~* and §(, ;) € ~*, the substitution axiom says that

a'6—(1—9) 8(1-a')

20 — 1 (ziwo) + —2'0_—15(3',' vj) € ~

l— _—
or, 0‘=°’02 _110 .

Next I compute a formula of §* in terms of ®(z;,y;) and ®(r;.y;). Let 6; and 6; to be

balancing coefficients such that

0i(z;,y;) + (1 = 0:)0(yy z,) € ~°,

0i0(z; ;) + (1= 6;)0(z040) € ~".

I take a mixture of these probability measures with coefficient

-6, 'y . . e
(m, zm'.lﬁ%:o;y) By the betweenness axiom, the resulting probability must be
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in ~*, and is expressed as

6:(1-6;) 6;(1-6;) 2(1-6;)(1-6;5) [1 1
11—3.-$+(1—3,-$6(z.-.y-') + Zl-d;jﬂl—?ﬂ‘s(zj,yj) + 1=6:)+(1-9;) [75(20..'/0) + ié(yo.:o)} :

Since %6(,0'%) + %J(yo,zo) € ~* by the replication corollary, the substitution axiom implies

that
0:(1 - 0;)

) 60(1—6:)
0:(1-96;)+0;(1-6;) (=i i

BT =0;) + 6;(1—6;) i) €~

)+

or, §* = mﬁ:—‘% By using the construction of ®, the right hand side of this equation

is rewritten as

0:(1 —6;) _ 1 _ 1
(1 — B (1 —80:) 1-6; 6; — D(zi.yi) °
6:(1 0])""01(1 6;) 1+T‘T:’;J'_ 1- 3(;:%

Now I can compare two formulas for 6*. After some computaiion, I get

§(2,‘, yi)

o= 1+ a)&(zi, ) + (1= a)(z;,y;)

Since 8 = l—"ﬁ, a tedious computation shows that

_ ' ®(zipi) + (1 — o) ®(zj,y;) ‘

B ®(zi,yi)

It is obvious that this implies Q® = Qz%®.

Case 2 ;:f'—*_i(!—j<0'.

By considering Q™ instead of @, I can apply the same argument as the one for the pre-

vious case. Hence, I can find a 8 € (0,1) such that

1. Q € if and only if Qg €>*, @~ €>" if and only if @5 €>* and Q € ~* if and only if
Qp €~

2. Q% = Qs%,

where Qg = (ai + a;j)[80(z;,4;) + (1 = B)0(z )] + (1 — @i — @j) Citi j OkO(z, 40)-
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Case 3 —'—a'.i'aj =06
In this Case, a; +a_, 6(3- Wi) + a.+a_, 6(31 i) € ~*
Let Q' = (a; + aj)(;;) + (1 —a; — a;) 2 k=ij @k0(z; y,)- Then, from %Q +3Q~ €~*,Ican
show that @ €>* if and only if Q' €>*, @~ €>* if and only if Q'~ €>* and Q € ~* if and
only if @' € ~*. As I already proved, 6* = 1, ~. Since §* = —,""—,—, a trivial computation
leads to ;Si—®(x;,yi) + 2 Q(z,,y,) =0. Hence. Q(I> Q3.

a;+a;

In any case, I proved that I can reduce the cardinality of N, and/or N_ by one without affecting
choice and value. I can continue this process until either Ny = @ or N_ = @ happens. I already
proved that, in these cases, the statement of the proposition holds. This completes the existence
part of the proof.

I still need to prove the uniqueness part of the statement. Suppose the uniqueness statement
is false. Then there are two representation functions,  and ®’, and two outcome pairs, (z,y) and

(v, w), such that:
1. 5(3‘!,) €>"* and J(v,w) €r*;
2. Ko =gl and = g2, then a < .

We can find a 6 € (0,1) such that 6%'(z,y) + (1 — )®'(w,v) = 0. By the representation result,
it must be the case that 0%(z,y) + (1 — 6)®(w,v) = 0. But the choice of (z,y) and (v.w) implies
that 0®(z,y) + (1 — 0)®(w,v) < 8ad'(z,y) + (1 — 6)ad’(w,v) = 0. This is a contradiction. Hence,
I get the uniqueness of the representation function up to scale.

This completes the proof.
[ )
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5 Applications of the Theory — Solving Various Paradoxes in
Expected Utility Theory —

5.1 Introduction

In this section,

1. I introduce three restrictions on the characteristics of a choice maker that causes the para-

doxes,

2. Iidentify the origin of each well-known empirical paradox in expected utility theory by using

the characterization of a choice maker in the model and the representation result, and

3. I criticize properties imposed on prospect functions in prospect theory by using the represen-

tation result.

This subsection is devoted to the task 1.

Finally, I explain three restrictions imposed on (I',>) in the analysis of paradoxes. The first
one is for I' and the rests are for >, or, more specifically, for its representation function &.

The first restriction is that I' associates, with each choice situation between lotteries, choice
situations in which the two random variables are negatively correlated. This is a form of regret.
Suppose that a subject is facing a binary choice situation between lotteries and that she focuses on
one of the lotteries. The lottery to which the subject pays more attention gets a priority in choice.
The other lottery represents a missed opportunity. Hence, it is plausible for a subject to have a
form of regret such that she pays more attention to bad prizes than good prizes in the lottery on
which she is focusing and vice versa for the other lottery. The symmetric consideration apply if
she focuses on the other lottery. As a result, the subject perceives that events in which bad prizes
from one lottery and good prizes from the other occur have relatively high probability.

The second restriction is that > exhibit increasing risk aversion.

To define “increasing risk aversion,” I need an order on lotteries induced by > given a money-

prize z. The construction of this order can be carried out for any outcome space. Hence I use the
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term “outcome” instead of “money-prize” in this paragraph. Fix an outcome z. Suppose that a
choice between simple lotteries, (p,q), is given. Let P be an atomless probability measure on the
state space and let E be an event such that P(E) = % (E exists because P is atomless. ) Let f to
be a random variable defined on E such that Pgo f~! = p, where Pg is the conditional probability
of P given E. Similarly, let g to be a random variable defined on Q — E such that Po_pogl=gq,
where Pq_g is a conditional probability of P given 2 — E. (Since P is atomless, such f and g exist.

) Next I define two random variables f and g as follows.

fw), fweeE,
T, fweN-F.

flw)=

_ z, fwekE,
§(w) =
gw), fweN-FE.

I define an ordering on simple lotteries, >, by the following rule: (p,q) €>* if and only if,
for any atomless probability on the state space, P, and random variables, f and g as described,
(f,3;P) €~. > is well defined, since > is outcome-oriented. Moreover, if > satisfies all the
axioms of sections 3, then >} is asymmetric and negative transitive. This can be verified easily by
using the representation of »*. It is also clear that > is represented by an expected utility with
von-Neumann Morgenstern utility function &(.,z). I call >: choice order on lotteries with base
r12

I define the increasing risk aversion as a property exhibited by a collection of orderings on
lotteries, {>;}. Roughly speaking, {>:} exhibit increasing risk aversion if >} becomes more risk-
averse with increase in the money-prize z. With the representation result for >*. I can formalize

this idea. Before giving the definition, I recall that, in expected utility theory, the absolute risk

aversion coefficient of a von-Neumann Morgenstern utility function, u, is defined by the formula

’
ull

1t is trivial to see that (1) f and g are uncorrelated, and (2) f and g are compared indirectly as prospects from
7. These are two important characteristics in the definition of >>. Since we can regard ®(., z) as a prospect function
with base z defined in [Kahneman & Tversky, 79, 1 could say that these characteristics give a foundation of the
prospect theory in my theory.
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Definition 5.1 Assume that > satisfies all the azioms of sections 3. Also assume that each >3
18 risk-averse, i.e., ¥(.,z) is increasing and concave. Let As(y,zx) to be the absolute risk aversion
coefficient of ¥(.,z) evaluated at y.'® Then, » ezhibit increasing risk aversion if, for any money-

prize y, Ao (y,z) is increasing with respect to z.

It is natural to assume the increasing risk aversion for >. Recall that, in expected utility theory,
we can regard the decreasing absolute risk aversion property of a von-Neuman Morgenstern utility
function, u, as a comparison of absolute risk aversion for two von-Neuman Morgenstern utility
functions, # and u. Both # and u are constructed from u to measure prospects from some base
money-prizes. The expected utility theory explains the base money-prize as choice-maker’s wealth.
The base money-prize of i is set higher than that of u, and u exhibits decreasing absolute risk
aversion if and only if, for any & and u constructed from u, the absolute risk aversion coefficient of
i is less than that of u in a neighborhood of 0. The increasing risk aversion property of {>}}. cp
is a counterpart of this decreasing absolute risk aversion property in expected utility theory. The
risk aversion increases because, in my theory, a base money-prize z represents an opportunity that
a choice maker misses, while a base money-prize in expected utility theory represents wealth that
the choice maker already has. The definition of increasing risk aversion is made global in order to
analyze paradoxes in expected utility theory.

Though the idea of increasing risk aversion comes from the expected utility theory, it is clear
that the expected utility theory cannot exhibit this property. This is because my theory internalize
the expected utility theory as a case in which &(z,y) = u(z) — u(y) where u is a von-Neumann-
Morgenstern utility function.

The third restriction is similar to the second one, but applied when the outcome space is the set
of all probabilities on money-prizes, A(R). I consider this case in analyzing one of parodoxes, called
the common consequence effect. The restriction is that > exhibits a change of attitude toward risk.

To explain this restriction, I define the notion of “risk-averter” and “risk-taker” when the

outcome space is A(R). For each € A(R), let > be as in the previous paragraph. It is clear that

13This coefficient is well defined almost everywhere because a concave function defined on real numbers is twice
differentiable almost everywhere. For simplicity, I assume that it is well-described everywhere.
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>, induces an order on the outcome space A(R) that is represented by a utility function &(., n).
Let >}, refer also to this order on A(R), and let (8,,£) to be a pair of probabilities on R such that
the mean of { is z. I say that >} is risk-averse (risk-taking) with respect to (4, &) if (42, €) €>y
(6.52) €3).

The change of attitude toward risk mentioned in the restriction is of the following type; for any
(6z,€) such that z is the mean of ¢, > is risk-taking when 7 is concentrated at bad prizes relative
to the support of £ and risk-averse when 7 is concentrated at good prizes relative to the support
of £. It is plausible that a fair bet would be more attractive to a choice maker who pays attention
to the possibility of bad prizes from missed alternatives. Hence, it is not unrealistic to impose this
restriction. Note that all notions involving risk are defined entirely on the outcome space. The
risk that I am describing in the current paragraph has nothing to do with lotteries, i.e., probability
measueres on the outcome space. In this sense, a peculiarity of the outcome space, A(R), causes
the change of attitude toward risk.!4

In the following examples, we show how these restrictions explain paradoxes in expected utility

theory. For descriptions of paradoxes, I follow [Machina, 87).

5.2 The Allais Paradox

Consider a choice between the following two lotteries.
Lottery 1 One million dollar for sure.

Lottery 2 Five million dollars with probability 10%, nothing with probability 1%. one million

dollar with probability 89%.

Experiments show that subjects tend to choose lottery 1 over lottery 2. Next consider a choice

between the following two lotteries.

4]t seems to me that another property is also natural. To explain this, note that A(R) can be partially ordered
by the first-order stochastic dominance. Then, > could be said to exhibit increasing risk aversion with respect to
(8+,&) if ®(5-,n) — ®(&, n) is increasing with respect to 7, where the outcome space, A(R), is ordered by first-order
stochastic dominance. It is plausible that, for any (d:,£) such that z is the mean of £, > exhibits increasing risk
aversion.

26



Lottery 3 Five million dollars with probability 10%, nothing with probability 90%.

Lottery 4 One million dollars with probability 11%, nothing with probability 89%.

Again experiments show that subjects tend to choose lottery 3 over lottery 4.

These experimental results contradict the expected utility theory. Let u to be the von-Neumann-
Morgenstern utility function of a subject, normalized so that u(0) = 0. Then the first choice
indicates that

u(1) > 0.1u(5) + 0.89u(1),

which is equivalent to
0.11u(1) > 0.1u(5).

Hence, a subject whose choice satisfies the axioms of expected utility theory must choose lottery 4
over lottery 3.

This empirical paradox in expected utility theory was found by M.Allais in the 1950’s. His
original paper, written in French and published in Econometrica, was translated in English in
[Allais, 79).

This paradox is considered as an evidence for the violation of the independence aziom of expected
utility theory. For any prize z, let 4, to be the lottery giving = million dollars for sure. Also, let
€ to be the lottery giving five mﬂﬁon dollars with probability {—? and nothing with probability TlT

Then, we have

Lottery 1 =46; = 1%156’ + %6,,
Lottery 2 = %E + %51,
and
Lottery 3 = i%{ + %50.
Lottery 4 = ilb%él + 1%%60,
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where the mixture operations on the right hand sides are defined in an obvious way. The indepen-
dence aziom says that, given a choice situation (a, 3), any mixture of this situation with a diagonal
choice situation (7,7) does not change a subject’s choice. It is clear that the independence axiom
is violated by the experimental result.

What causes this violation of the independence axiom in the experiment, then? Suppose that
all lotteries are induced by random variables on a state space on which a probability is specified.
I observe that random variables that induce lottery 1 and lottery 2 must be uncorrelated, but,
random variables that induce lottery 3 and lottery 4 can be correlated. The expected utility theotfy
cannot analyze this difference since, in it, correlation between objects of choice is out of scope and,
hence, does not have any influence on choice. On the other hand, in my theory, correlation between
objects of choice has a significant impact on choice.!®

In my theory, the surmising process, I', incorporates correlation. For illustrative purposes,
assume that T" selects a choice situation in which [5 million dollars for lottery 3 and nothing for
lottery 4] happens with probability 10%, [nothing for lottery 3 and 1 million ddllars for lottery 4]
happens with probability 11%, [nothing for the both lottery] happens with probability 79%. This
is the case of maximal negative correlation. The representation result says that a subject chooses

the lottery 3 over the lottery 4 if and only if the following inequality holds.

10 11
m§(5, 0) > m@(l, 0).

®Here, | want to point out that the expected utility theory does not allow a natural mixture operation that can
be considered in my theory, because it neglects correlation among random variables. Recall that, given a choice
situation between lotteries, (a, ), a surmising process, I', selects a set of well-described choice situations between
random variables, (f,g; P), such that « = Po f~! and 8 = Pog~!. Assume that P is atomless and f, g are
independent. That is, I' selects a choice situation that is consistent with the expected utility theory. For any given
weight w € (0, 1), we can choose an event E in the state space such that P(E) = w, and independent random variables
f' and g’ defined on E such that P o f'~! = a and Pg 0 g'~! = 3. Also, we can take a random variable h’ defined
on Q — E such that Pa_goh’~! = 4. Let f be the obvious concatenation of f’ and h’. Similarly, let § be the obvious
concatenation of g’ and h’. Then, (f,§; P) induces a distribution over pairs of prizes whose marginal distributions
are specified as ones in the independence axiom. This is a very intuitive mixture operation for random variables. In
my theory, the surmising process, I', may select it for a pair of lotteries, (wa + (1-w)y, w8+ (1—w)y). On the other
hand, in expected utility theory, the induced distribution on pairs of prizes by (f, §; P) cannot be considered because
f and § are clearly not independent. This illustrates that the expected utility theory is more restrictive about the
mixture operation than my theory.
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Next, consider choice between lottery 1 and lottery 2. According to the theory, a choice maker will

choose the lottery 1 over the lottery 2 if and only if the following inequality holds.

10

1
'ﬁo—@(fj, 1)< E'O'Q(l. 0).

Note that ®(5,0) appears in the first inequality whereas the ®(5,1) appears in the second inequality.
Hence, these two inequalities can be treated separately. If &(5,1) is significantly smaller than
#(5,0), these inequalities are compatible. For any subject who feels that earning one million
dollars is like a dream, this will be the case. This simple result suggests that the Allais paradox
happens when I' selects choice situations in which the two random variables show significant negative
correlation.

To see the importance of correlation, it helps to consider the case in which, given the choice
between lottery 3 and lottery 4, the surmising process selects a choice situation in which the
two random variables show maximal positive correlation. This choice situation is described by;
(5 million, 1 million) with probability 10%, (0,1 million) with probability 1% and (0,0) with prob-
ability 89%. (The first coordinate is the prize from lottery 3 and the second coordinate is that
from lottery 4. ) By comparing this description to the one for the choice between lottery 1 and
lottery 2, it is easy to see that the only difference is that the latter gives (0,0) a probability 89%
while the former gives (1,1) a probability 89%. Note that, since ® is skew-symmetric, &(z,z) = 0
for all z. Hence, this difference cannot affect choices of subjects in my theory. This shows that. in
my theory, the Allais paradox cannot happen if the surmising process associates, with the choice
between lottery 3 and lottery 4, a choice situation in which the two random variable show maximal
positive correlation.

To analyze the necessity of negative correlation more systematically, I introduce a simple index
of negative correlation, p € [0. ;—g]. It is the conditional probability of getting five million dollars
from lottery 3 given that lottery 4 gives nothing. It is trivial to see that p measures the degree
of negative correlation conveyed by choice situations in I'(lottery3,lottery 4). Given the choice

between lotteries 3 and 4, each well-described choice situation selected by the surmising process
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can be fully described in the following way with an adequate D,

e Given the information that lottery 4 gives nothing, the conditional probability of getting five

million dollars from lottery 3 is p and that of getting nothing from lottery 3 is 1 — p.

¢ The unconditional distributions of prizes from lottery 3 and lottery 4 are those specified in

the description of lottery 3 and lottery 4.

The distribution induced by the choice situation described as above is denoted by =[p]. It is given

by
({50} = o,
{00} = =(1-p),
B0 = 15 (35— 1m87)
mPl({B.0) = 35— o

According to the theory, the Allais paradox happens if
10 1
HQ(I,S) + H‘I’(I,O) >0,
and, for each choice situation in I'(lottery 3,lottery 4) that is described by p,
89 10 . 1
TP L(#(5,0) - 2(0.0) ~ (8(5,1) - #(0,1))] > 7$(1,5) + &(L.0)

The first inequality comes from the choice of lottery 1 over lottery 2. It is equivalent to choosing
the chance of getting 1 million dollars for sure over the risky opportunity of getting five million
dollars with probability -:—‘13 and nothing with probability 1—11- The second inequality comes from
the the choice of lottery 3 over lottery 4. I present it in this form to see the implication on two
prospect functions, ®(.,0) and $(.,1). At first, note that the right-hand side of this inequality is
positive if a subject chooses lottery 1 over lottery 2. Therefore, this inequality implies that the

increase of prospect given by the prize increase, from nothing to five millions, based on nothing
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must be bigger than that based on one million dollars. This condition and the first inequality
determine necessary conditions on @ for a subject to exhibit the Allais paradox. Secondly, if &
satisfies these conditions, the second inequality gives a lower bound, c(>), of indexes associated

with choice situations selected by the surmising process. By rewriting the second inequality, we get

10 108(1,5) + #(1,0)
P> 89108(1,5) + 10[2(5.0) — 3(L0)]"

The implication is that, in order to choose lottery 3 over lottery 4, the surmising process cannot
select any choice situations in which the two random variables show significant positive-correlation.!®
According to the uniqueness of representation up to scale that I have proved in section 4, c(>) is
uniquely determined by ». Since p cannot take a value higher than %, the following condition

must be satisfied.
10%®(1,5) + €(1,0)
10%(1,5) + 10[®(5,0) — ¥(1,0)]

di>)= <l

This gives another necessary condition on & for the Allais paradox, that is!”

108(5,0) > 11&(1,0).

The larger the difference 10$(5,0) — 11%(1,0) is, the lower is c(>).

What the analysis suggests is that, in my theory, the choice maker exhibits the Allais paradox
if and only if three strict inequalities for the function & are satisfied and the parameter p is above
a lower bound which depends also on ®. Three inequalities are verifiable by asking subjects. The
first inequality is verified in the experiment 1. To verify the second inequality, I prepare a box
and 30 balls. 10 balls are colored blue, other 10 balls are red, and the rest are white. The box is
carefully selected so that nobody can see its content. I offer the following procedure to subjects, in
which they have a chance to earn some money. I say that I will put all balls in the box and pick
up one ball from it. Before I pick a ball, I allow for each subject to choose either “red” or “blue.” I

'°If ¢(>) is less than 7, then the subject exhibits the Allais paradox even when random variables that generates
the lottery 3 and the lottery 4 are believed to be independent.

'"We already encountered this condition in the illustration with maximal negative correlation.
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declare that, if the subject chooses “red,” then the consolation color is “white,” while, if he chooses
“blue,” then the consolation color is “red.” I guarantee prizes as follows. If the color which the
subject has specified matches the color of ball I pick up, then I give five million dollars. If the color
of the ball I pick up is the consolation color for subject’s choice, then I give one million dollars.
Otherwise, I give nothing. The second inequality is equivalent to say that subjects cheoses “blue™
over “red” in the experiment. A similar experiment, without consolation colors, can be arranged
to verify the third inequality. I summarize these experiments (including an obvious one for the first

inequality) in the following tables.

B R B R w B R
B 1 1 B 5 1 0 B 5 0
v v v
R|5]° R| o 5 1 RO |
1 1 1 1 BTN
-,% v T T + 21 2
Tables 1

Note that choice according to the expected utility theory is inconsistent with the experimental

result in the second table, since both random variables in the table induce the same lottery.
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Proposition 5.1 Assume that > satisfies the azioms in the section 3. so that it is represented by
an additive formula with skew-symmteric function ® : R x R = R. Then, > ezhibits the Allais

paradoz if and only if:
1. > 13 consistent with the ezpertmental results in tables;

2. For any (f,g; P) € ['(lottery 3, lottery §) for which the correlation between f and g is indezed

by p,
10 ,
p> sgc(>-),

_ 109(1,5)+9(1,0 '
where ¢ (>) = 108(1,5)+10[(5,0)—$(1,0)] *

The trick of the Allais paradox is that the prizes, five million and one million dollars, are
carefully configured so that ®(5,1) is very small relative to probabilities of the event in which
(5,1) happens, while the difference between $(5,0) and ®(1,0) is not negligible. When ®(5,1) is
very small, the experimental results in the first two tables are likely to follow. When &(5,0) is
recognizably larger than ®(1,0), the experimental result in the third table is likely to follow and
c(»>) is likely to be low. It seems to me that the choice of unit as million dollars helps to accomplish
both of them.

To test my explanation, note that my theory says that subjects, who are inconsistent with the
experimental results in tables, does not exhibit the Allais paradox. Hence, if an experimenter could
collect many subjects who are inconsistent with at least one of experimental results in tables and

exhibits the Allais paradox, then my explanation should be rejected.

5.3 Common Consequence Effect

I specify two lotteries £ and ¢ as follows. I describe £ by (z),22;p,1 — p), meaning that the money-
prize z; is obtained with probability p and 2 is obtained with probability 1 — p. Similarly, I

describe £ by (2},25;p,1 — p), meaning that 2] is obtained with probability p and z} is obtained
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with probability 1 — p. I assume that z; > 2y, z| > 2, 2; > 2} and 22 > zj. In other words, I
assume that 7 stochastically dominates ¢ by the first order. Let r be a money-prize and 4, be a
“lottery” that gives x for sure. Also let £ be a lottery with finite support such that its support
contains prizes both greater and less than z and a subject is “indifferent” between §, and § or
chooses 6z over £. Finally let w € (0,1) be a weight to construct choice situations in experiments.

I define lottery 1 and lottery 2 as follows. Lottery 1 is constructed by wd, + (1 — w)f. Lottery
2 is constructed by w€ + (1 — w)f. If outcomes are money-prizes. these are two probabilities on R.
If outcomes are probabilities on R, then lottery 1 is described by (dz,6w,1 — w) and lottery 2 is
described by (§,4;w,1 — w). These are probabilities on A(R).

Next, I define lottery 3 and lottery 4 as follows. Lottery 3 is constructed by wé, + (1 — w)l.
Lottery 4 is constructed by w€ + (1 — w)¢. If R is the outcome space, these are two distributions on
R. If A(R) is the outcome space, lottery 3 is described by (4,,¢; w,1 —w) and lottery 4 is described
by (§,4w,1 — w). These are probabilities on A(R).

Results in several experiments suggest that there are configurations of z and £ such that subjects
show tendency to choose lottery 1 over lottery 2 and lottery 4 over lottery 3 when the weight w is
sufficiently bounded away from 0 and 1. This tendency is called common consequence effect. An
argument used in 5.2 suggests that we may regard the Allais paradox as a particular case of the
common consequence effect.

It is clear that the common consequence effect violates the independence axiom in expected
utility theory if outcomes are money-prizes. Traditional explanation about this paradox is formed
in terms of change of attitude toward risk. According to this explanation, a subject is risk-averse
when she is asked the choice between lottery 1 and lottery 2 and risk-taking when she is asked
the choice between lottery 3 and lottery 4. Hence a mixture with a sure outcome is chosen in the
former choice situation while a mixture with risky lottery is chosen in the latter choice situation.
Note that the analysis of the Allais paradox in 5.2 did not address such change of attitude toward
risk. Hence, if we regard the Allais paradox as a particular case of the common consequence effect,
we cannot justify the traditional explanation in my theory (or I have to analyze the Allais paradox

in an entirely different way).



This puzzle is solved by examining reduction of compound lotteries in experiments. In ex-
periments dedicated to the common consequence effect, an experimenter usually gives subjects
compound structure of lotteries. On the other hand, in experiments to examine the Allais paradox,
the experimenter does not mention anything about compound structure of lotteries. If subjects do
not reduce compound lotteries in experiments, then we can analyze these two paradoxes in totally
different way. Hence, the question is whether or not subjects reduce compound structure of lotteries
in experiments dedicated to the common consequence effect. I claim that, except in very simple
configurations, subjects do not reduce lotteries. The reason is as follows. It is natural to assume
that resources available to subjects (memory, computation device, experience in choice, etc.) are
bounded. I believe that most of subjects prefer a simple presentation of choice situations than a
complicated one because they do not want to consume much resources just to figure out problems
to which they are facing. I believe that they want to allocate more resources to solve problems.!8
Reducing compound lotteries may consume too much resources. Note that computation of reduced
lotteries is not trivial even when compound structure is fairly simple. Hence,} if the experimenter
offers choice with simple compound structure of lotteries, subjects would not have any incentive to
reduce lotteries.!?

I'show that, if subjects do not reduce compound lotteries, then my theory justifies the traditional
explanation. Without reduction of compound lotteries, the outcome space must be A(R). If
> exhibits change of attitude toward risk as explained in the introduction, then the common
consequence effect happens when £ is concentrated on good prizes relative to the support of £ and

£ is concentrated on bad prizes relative to the support of £.

'*Here I am concerned about model selection. A complete theory of choice requires characterization of a choice
maker to reveal a criterion for model selection. What I suggest in this paragraph is that such criterion would
maximize the possibility of solving a proposed problem. This is a form of outcome-orientation. There are other
important aspects that a criterion for model selection should reveal. For example, it should restrict natures of
acceptable solutions. Unfortunately, model selection is beyond the scope of my theory. At the current stage, | have
not found a good characterization of a choice maker including model selection.

®In general, it is possible for subjects to reduce a compound lottery to a probability on money-prizes. But,
the converse operation is impossible because there are multiple candidates as target. Hence, once we agree that
subjects do not reduce compound lotteries in experiments for the common consequence effect, we cannot re-
gard the Allais paradox as a special case of the common consequence effect. Some researchers (for example,
[Krantz, Luce, Suppes & Tversky, 90]) still regard the Allais paradox as a special case of the common consequence
effect. I believe that is wrong.
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To see the point formally, I describe each choice situation selected by the surmising process by
using a parameter r and r'. It turns out that r and r’ measures the degree of negative correlation.
Consider the choice between lottery 1 and lottery 2. Let r to be the conditional probability of getting
£ from lottery 2 given that lottery 1 yields 4. Each choice situation in I'(lottery 1,lottery 2) is

described in the following way:

¢ Given the outcome from lottery 1 is 4., the probability to get the outcome £ from lottery 2

is r and the probability to get the outcome ¢ from lottery 2 is 1 — r;

¢ The unconditional distribution of outcomes from lottery 1 is (8, w,1 — w) and that from

lottery 2 is (¢, 4;w,1 — w).

It is easy to verify that, with outcome-orientation, this description gives all relevant information
for choice. The range of r is [0, 1——-:}] . Next, consider the choice between lottery 3 and lottery 4.
Let r' to be the conditional probability of getting 4. from lottery 3 given that lottery 4 yields (.

Each choice situation in I'(lottery 3,lottery 4) is described in the following way:

® Given the outcome from lottery 4 is ¢, the probability to get the outcome 4, from the lottery

3 is r’ and the probability to get the outcome £ from lottery 3is 1 —r';

e The unconditional distribution of outcomes from lottery 3 is (62,4 w,1 — w) and that from

the lottery 4 is (§,fw,1 — w).

The range of r' is [0, l%’w-] . For simplicity, I assume that a subject is “indifferent™ between 8, and
€.

According to my theory, a subject chooses lottery 1 over lottery 2 if and only if, for any choice
situation in I'(lottery 1, lottery 2) that is described by r, w(1—r)®(8..€)+ wr®(8,. () +urd(i.£) >
0. Since ®(6;,£) = 0 is assumed, this is equivalent to ®(d,,f) > ®(£,f). Similarly, a subject
chooses lottery 4 over lottery 3 if and only if, for any choice situation in I'(lottery 3,lottery 4) that
is described by r', [w — (1 — w)r'|®(£,8;) + (1 — w)r'®(£,62) + (1 — w)r'®(£,£) > 0. Again this is

equivalent to ®(8,,£) < ®(£,£). Note that these conditions has nothing to do with the parameter
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r and r'. In the setup with the outcome space A(R), the common consequence effect has nothing
to do with the surmising process I' if £ is a fair bet with respect to x.2°

When subjects reduce compound lotteries, it is not clear whether the traditional explanation
can be supported in my theory. I analyze only a very simple case by assuming that the surmising
process selects a choice situation that shows the maximal negative correlation between the two
random variables. This restriction on the surmising process is effectively expressed by the following

simple statement;

Given the lowest prize from lottery to which a subject is paying attention, the

probability to get the lowest prize from the other lottery is 0.

I show that, if configuration of choice situations satisfies regularity conditions (just as in the Allais
paradox), the common consequence effect happens. This indicates that, if the surmising process
selects choice situations in which the two random variables are significantly negatively correlated,
then the common consequence effect is likely to happen. This explanation is consistent with the
one for the Allais paradox, as it must be.

At first I describe a simple case that I analyze. I believe that the only simple case like the one
here could be reducible. I assume that only three prizes £ < r < Z are available. ¢ is described
by (Z,2;9,1 — g). € is described by (%, z;p,1 — p). £ is described by (z,z;p,1 — p).2! By reducing
compound structure, lottery 1 is described by (Z,z; (1 — w)p,w + (1 — w)(1 — p)) and lottery 2 is
described by (Z,z,z; (1 — w)p + wq, (1 — w)(1 — p),w(1 — q)). The surmising process (obeying the
simple rule stated in the previous paragraph) determines a distribution 7 over pairs of money-prizes

as follows.

2%If we take £ to be a favorable bet, i.e., $(£,6:) > 0, or an unfavorable bet, i.e., ¥(£,82) < 0, then results are not
independent of the surmising process. The analysis for these cases are similar to the one for the case with fair bet.
Since results are not so illustrative, I omit them here. In any case, it is sufficient for the common consequence effect
to happen that subjects exhibits change of attitude toward risk with adequate strength.

*INote that the analysis is more complicated than that for the Allais Paradox because both £ and £ are not sure-
outcome lotteries. In particular, no simple index for negative correlation is available. This is the reason why I restrict
my analysis to the case in which the surmising process selects a choice situation showing maximal negative correlation.
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m(Z,z) = (1-w)p-w(l-g),
w(i‘,:t) = w(l -q)s
m(z,2) = wqg+(1-wp,

m(z,2) = w(l-g)+(1-w)(1-2p)

The restriction for the weight w is

2p—1< w___P .
l-q 7 1=-w~"1-¢

This restriction says that w must be sufficiently bounded away from 0 and 1. According to my

theory, a subject chooses lottery 1 over lottery 2 if and only if 4 :': < 1—q. Similarly, lottery 3 is de-
scribed by (z,z; w + (1 — w)p, (1 — w)(1 — p)) and lottery 4 is described by (Z, z, z; wq, (1 — w)p,w(1 — q)

The surmising process determines a distribution 7’ over pairs of money-prizes as follows.

7'(z,2) = (1-w)(1l-p)-—wg,
7'(z,2) = wyq,
*'(z,z) = w(l-g)+(1-w)(1l-p),

m'(z,x) = wg+(1- uQ)(2p -1).

The restriction on the weight w is

1—-2p< w <1—p.
g T l-w™ ¢

Again this says that w must be sufficiently bounded away from 0 and 1. According to my theory,

a subject chooses lottery 4 over the lottery 3 if and only if d ;:: <gq.
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Now we get the following inequalities,

¥(z,7)

gz - 7O
®(z,z) <
¥z,z) - !

Assuming that prospect functions are all concave, the first inequality gives the restriction on the
minimum curvature of the prospect function &(.,Z) and the second inequality gives the restriction

on the maximum curvature of the prospect function ®(.,z).

oY

.0 o

-

Diagram |

Both of these inequalities can be checked empirically by asking subjects, since the first in-
equality is equivalent to ((3:,5:), (2,2); 51—0, ;—:3)) €>* while the second inequality is equivalent to
(=), (2, 2); 15 7% ) €~

Finally, I note the following important fact. If the outcome space is A(R), then we cannot regard
the common consequence effect as a violation of the independence axiom. This is also pointed out

by [Krantz, Luce, Suppes & Tversky, 90)].
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5.4 Common Ratio Effect

Let y > z > 0 and p > q. The lotteryl is specified by (z,0;p,1 —p) and the lottery 2 is specified by
(y,0;9,1—gq). An experimenter asks subjects to choose between lottery 1 and lottery 2. The values
of p and q are adjusted so that a subject chooses lottery 1 over lottery 2. Then the experimenter asks
them to choose between lottery 3 and lottery 4, where lottery 3 is specified by (z,0;rp,1 - rp) and
lottery 4 is specified by (y,0;rg,1 —rg). Experiments shows that, for sufficiently small r, majority
of subjects choose lottery 4 over lottery 3. This result is called common ratio effect. The common
ratio effect violates the independence axiom because (z,0;rp,1 — rp) = r(z,0;p,1 — p) + (1 — r)dg
and (y,0;rq,1 — rq) = r(y,0;q,1 — p) + (1 — r)do. Hence, the common ratio effect gives another
paradox to the expected utility theory.

The popular explanation of this paradox is that subjects shift their attention, from probabilities
to prizes. More concretely, this explanation is described in the following way. When the choice
between lottery 1 and lottery 2 is asked, the experimenter fixes p and ¢ carefully so that subjects
take probabilities of obtaining positive prizes seriously. When the choice between lottery 3 and the
lottery 4 is asked, probabilities of obtaining positive prizes are scaled down, and so is the difference
of these probabilities. When the downscaling exceeds some degree, subjects no longer cares the
difference of probabilities and takes only the difference of prizes seriously, since the latter is far
more easily noticeable than the former.

Intuitively, this popular explanation should be related to the nature of surmising process. Con-
sider the choice between lottery 3 and lottery 4. Suppose that the surmising process selects a choice
situation in which the two random variables are significantly positively correlated. In this case,
a choice maker believes that pairs (z,y) or (0,0) happens with very high probability. Hence, the
difference of prizes would be relatively less noticeable (especially when r is close to y). Then, a
choice maker would be relatively more careful about probabilities of obtaining positive prizes. Ac-
cording to the popular explanation, this should not be the case. Next, consider the choice between
lottery 1 and lottery 2. Choosing lottery 1 over lottery 2 is a relatively easy task if the choice maker

does not pay much attention to the event in which (0,y) happens. This consideration leads to the



following guess; the strength of the tendency that the surmising process selects choice situations
showing negative correlation is increasing with respect to probabilities of obtaining the worst prize
from either of lotteries. It seems that this is a strong restriction.

Fortunately, I do not need this strong restriction on the surmising process if theconfiguration
of experiment satisfies some regularity conditions. What I require for characteristic of a choice
maker is a weak property that the surmising process does not select choice situations showing
significant positive correlation, and the increasing risk aversion as introduced in 5.1. In the rest of
this subsection, I assume these properties.

To illustrate my explanation formally, I describe choice situations selected in the surmising
process by using indexes of negative correlation. Consider the choice between lottery 1 and lottery
2. Let t be the conditional probability of obtaining y from lottery 2 given nothing from lottery 1.
The range of t is [0, 1—25] . It is easy to see that distributions over pairs of money-prizes induced
by choice situations in I'(lottery 1,lottery 2) are uniquely described by ¢t. Similarly, consider the
choice between lottery 3 and lottery 4. Let t' be the conditional probability of obtaining y from
lottery 4 given nothing from lottery 3. The range of # is [0, 1-:%] Distributions over pairs of
money-prizes induced by choice situations in I'(lottery 3,lottery 4) are uniquely described by ¢'.

In my theory, the common ratio effect happens if, for all choice situations in
I'(lottery 1,lottery 2) and I'(lottery 3,lottery 4) described with ¢ and #, the following inequalities
are satisfied.

£3(1 - p) [%Q(g, ) + %Q(:c, 0) + %«1»(0, y)] > p L%q»(y,z) + p—;;i@(()..r)] .

'3(1 - rp) [%‘I’(y,x) + %‘D(x,O) + %Q(O, y)] < rp-[%@(y,a:) + p—;gQ(()..r)] .

The first inequality corresponds to the choice of lottery 1 over lottery 2 and the second inequality
corresponds to the choice of lottery 4 over lottery 3. Suppose that the following conditions are

satisfied.

18(y,z) + E18(0,2) < 0 or ((z,y). (=,0); 2, 52) €x.
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It is not difficult to see that the increasing risk aversion implies that
1 1 1
-3-<I>(y, z) + EQ(I, 0)+ 5@(0, y) >0,

ie., ((z, y),(0,z),(y,0); %,%, %) €>*.22 By manipulating previous two inequalities, we get the

following implication for parameters ¢ and .23

3(1-p) 1&(y,z) + 18(z,0) + 12(0,y)’
y o ri-p_p _ 38(u.2)+5180.2)

1-rp 3(1-p) 19(y,z) + 5%(z,0) + $2(0,y)

The implication of these inequalities is as follows. In the first choice situation, a subject believes
small negative correlation relative to the set-up of prizes (r and y) and probabilities (p and g). In
the second choice situation, the subject believes relatively large negative correlation with respect
to r. The right hand side of the second inequality goes to 0 as r goes to 0. Hence, for very small
r, the restriction on I'(lottery 3,lottery 4) imposed by the second inequality is not strong. On the
other hand, the right hand side of the first inequality exceeds 1 if p is set close to 1. In this case,
the first inequality is satisfied trivially. Hence, my theory predicts for the common consequence
effect to happen.

More formal analysis goes as follows. The second inequality implies, in particular, that

S Hp b 0s). < g It is easy to see that this is equivalent to
r¥(z,0) < ¢¥(y.0),

i.e., ((0,17), (y,0); #, #) €>*. Combining this condition and the previous condition, we get

q%(y,0) > p®(z, 0} > q[®(y, z) + ¥(z,0)].

22A comprehensive consideration of the increasing risk aversion is presented in the next subsection. So we omit
details here.

23Note that the distribution over pairs of money-prizes in the condition corresponds to a choice situation between
lotteryl and the lottery 2 with maximal positive correlation.
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I summarize this condition into the following assumption.
Assumption 5.1 | assume

1. ((2,9), (2,0 2,251,) €»*, and

2. ((0,2), (4, 0); 555 525 ) €.

These assumptions determine a regularity required for experiments. They can be easily checked by
asking subjects. Next, I define a function F of the probabilities (5,3) of winning top prizes from

both lotteries by

1 §¥(y,z) + (P —q)%(0,x)
1- p Q(y, :t) + Q(z,O) + Q(O, y) )

F(p,q) =

Similarly, I define a function G by
G(Fhg) = 1_3-_;3‘

Finally, I regard the conditional probabilities of getting y from lottery with the highest prize y
given nothing from lottery with the highest prize x determined by I' as a correspondence of the
probabilities (p, ) of winning the top prizes in both lotteries. I denote it by #(p, ). The restriction
on the range of ' is rewritten as; t(rp,rq) < G(rp, rq) for all r € (0,1]. The two inequalities derived
in the previous paragraph are expressed as; (1) ¢(p,q) < F(p,q), and (2) t(rp,rq) > F(rp,rq) for all
sufficiently small r. It is clear that f(r) = F(rp,rq) is monotone increasing and lim,_,o f(r) = 0.%4
Hence, if the surmising processes of subjects do not select choice situations showing significant
positive correlation, my theory predicts that most of subjects choose lottery 4 over lottery 3 if r is
set close to 0. This means that the whole trick of the common ratio effect comes from the careful
specification of prizes (r and y) and probabilities (p and q) for which subjects choose lottery 1
over lottery 2. Since F(p,§) > 1 when p is close to 1, (1) is trivial in that case. Hence, if the
configuration of an experiment satisfies the assumption and p is set close to 1, my theory predicts

for the common ratio effect to happen.

*Note that our assumption implies that G(rp,rq) > F(rp, rq) for all r.
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5.5 Utility Evaluatiqn Effect

Let prizes ¥ and z be such that # > r. An experimenter selects a prize r for a subject so that
she cannot choose between lottery (7, z; %. %) and ;. Next., the experimenter selects a prize y for
the same subject so that she cannot choose between (:r, x: %, %) and 4,. Finally, the experimenter
selects a prize y’ for the same subject so that she cannot choose between (5:._ _z;;-%. %) and 6. In
expected utility theory, it must be the case that y = y'. But. empirical literatures suggest that
many subjects reveal y' > y.

Similarly, let Z, z and z be as specified in the previous paragraph. The experimenter selects
a prize z fo; the same subject so that she cannot choose between (:i T; -;—. %) and 4. Finally, the
experimenter selects a prize 2’ for the same subject so that she cannot choose between (1‘:, z; %, %)
and 4./. Again, the expected utility theory predict that z = 2. But, empirical literatures suggest
that many subjects reveal z > 2’.

These phenomena are called utility evaluation effect. The name comes from de Neufville who
interprets the phenomena as follows. Suppose the expected utility theory holds. Normalize the
von-Neumann-Morgenstern utility function u so that u(z) = 1 and u(z) = 0. By plotting all
certainty equivalents as in the diagram, de Neufville argues that the higher probability on the best

prize T inflates the value of the von-Neumann-Morgenstern utility function.



N
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It has been a convention that the utility evaluation effect is understood as a violation of the
independence axiom. On the other hand, the invol§ement of certainty equivalents in the experiment
suggests that this effect can be seen as a violation of transitivity (cf. 5.6). My explanation for
the utility evaluation effect regards it as a violation of the transitivity, not as a violation of the
independence axiom.

Before presenting the explanation in my theory, I should mention the traditional explanation.
It relies on the shift of attention by subjects, from probabilities to prizes. According to this expla-
nation, subjects pay their attention to probabilities when the experimenter tries to get certainty
equivalents while they compare risky lotteries with more attention on prizes. To illustrate this,
consider the experimental stage in which the experimenter tries to determine the prize r by ask-
ing subjects. At this stage. subjects focus on the consideration of distribution over money-prizes.
This makes risk-averse subjects select low x. Next, consider the difference between (1:, x; %, %) and
(i‘,.’_l‘_; R %) The second lottery has a chance to win the highest prize Z and the first lottery does
not. This makes subjects evaluate the second lottery higher than the first one.

There is a way to justify the traditional explanation in my theory. Note that, in the experiment,
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each subject knows that z is the certainty equivalent of lottery (i‘. Z; %, -%) . Hence. it is not impossi-
ble for a careful subject to recognize lottery (;i',;r_.; %, 2—) as a lottery on A(R). ((.r, x; § 2) 6, 5 -) %

Similarly, it is not impossible for a subject to recognize the lottery ( % l) as a lottery on A(R),

(Ji, (:i',g; %, %) ; %, %) Consider a choice situation between two lotteries on A(R), ((z x; % %), Oz % %)
and (6,,6,, 3 2) Assuming that preference reversal (see 5.6) does not happen in the experiment,
the utility evaluation effect suggests that the subject chooses the former lottery than the latter
one. Similarly, consider a choice situation between two lotteries on A(R), ((a: ;5 2, 2) 0z: 2, 2) and
(6,, 8z; 1 5 2) The utility evaluation effect suggests that the subject chooses the latter lottery than
the former one. We can clearly see that these suggestions correspond to the change of attitude
toward risk. The change of attitude toward risk is explained by the shift of attention in the fol-
lowing way. Suppose { is a fair bet with respect to a money-prize z. Suppose that n € A(R) is
concentrated on bad prizes relative to the support of £. Consider the situation in which a choice
maker compares J, and ¢ indirectly as prospects from 7. Since 7 is a very bad bet, it is plausible
that a choice maker pays attention to a chance to win good prizes. In other words, she pays her
attention to prizes. Hence she tends to be risk-taking. Next, suppose that 5 is concentrated on
good prizes relative to the support of £. In this case, good prizes from £ is not so attractive because
a choice maker obtains good prizes from the alternative bet, 5. Hence, it is plausible that a choice
maker is more careful about probabilities of obtaining good prizes than prizes themselves. This
makes a choice maker risk-averse.

Though this is clearly one way to interpret the utility evaluation effect. I find it unsatisfactory.
At first, this explanation assumes that preference reversal does not happen in experiments. As
we will see in 5.6, this may not be the case. For some configuration of lotteries, choice between
two risky lotteries and choice between their certainty equivalents may not be consistent. In 5.6, I
show that, if a configuration of the experiment satisfies a regularity condition, then the preference

reversal is likely to happen. It is not difficult to see that experiments considered in this subsections

5] admit that this is a very difficult argument to justify. Usually, identifying a compound structure from a reduced
lottery is empirically impossible. But, in the course of experiment, the lottery (z,z; %, 4) appears in the last stage.
With the knowledge that z is the certainty equivalent of the lottery (%,z; 3, 1), a subject may reahze, in the second
stage, that (Z,z: §, 2) can be obtained by substituting (Z,z; & 3. 3) into the place of z m lottery (z,z; ,, $) and reducing
it. Knowing this relationship, it is not impossible for the subject to identify (#,z; L 4, 4) as ( (Z,2; 5 z , 2) 553 3 2)
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are very likely to satisfy the regularity condition. Secondly, subjects may not be able to realize a
compound structure in a reduced lottery. It is possible to reduce a lottery on A(R) to a lottery on R,
but the operation to the other direction is impossible without any additional information. Though
this information is given by z being the certainty equivalent of (5:, x; %, %) in the experiments, the
use of such information for modeling requires a sophistication for subjects. I also warn that model
selection is beyond the scope of my theory. My theory does not explain the reason why such a
sophistication leads to recognize lottries on money-prizes as lotteries on A(R).

Hence, I look for the explanation that does not assume either lotteries on A(R) or the non-
existence of preference reversal. My explanation relies on the increasing risk aversion. More con-
cretely, I analyze restrictions on the curvature of three prospect functions, &(.,z), ®(.,z) and
®(.,Z), that the increasing risk aversion and the skew-symmetricity impose.2® I illustrate it in the

following diagram.

In the diagram, we have graphs of three prospect functions. These graphs are drawn as follows.
At first, draw a graph of the prospect function ®(.,z) freely. By skew-symmetricity, the graph of

%1t is also closely related to the explanation of de Neufville since the inflation of prospect index (after some
normalization) is the issue.
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the prospect function ®(.,Z) must go through (z,—®(%,z)) and (,0). By moving the graph of
®(.,z) downward so that (z,0) is identified with (z, —®(z,z)), we know that the moved graph of
®(.,z) must go through the same points as the grapgh of #(..#). Since both ®(.,z) and &¥(.,7)
are concave, the graph of &(.,%) on the domain (z, ) is either entirely above or below the moved
graph of ®(.,z), if they are not equivalent. By the increasing risk aversion. it cannot be below the
moved graph of ®(.,z). The reason is as follows. Suppose that is the case. Let c to be a prize in
(z, Z) such that the slope of the moved graph of &(.,z) is the same as that of the graph of &(.,z).2"
Then the coefficient of absolute risk aversion for &(.,z) evaluated at ¢ must be higher than that

for ®(.,Z) evaluated at c. This contradicts increasing risk aversion. Hence.
The graph of ®(.,#) must be entirely above the moved graph of ¥(.,z) on (z, #).

Now, draw the graph of ®(.,Z) so that it is entirely above the moved graph of ®{..z) on (z,%).
The certainty equivalent x is determined as the unique prize z such that &(z,z) = —®(x,7). A
consideration analogous to the one I presented gives the following information about the graph of

¥(.,x).

1. On (z,z), the graph of ®(.,z) must be entirely below the moved graph of ¥(.,#) which goes
through (z,0) and (z, —®(z, z)).

2. On (z,z), the graph of &(.,z) must be entirely above the moved graph of &(..r) which goes
through (z, —®(x,z)) and (z,0).

Finally, draw the graph of &(.,z) so that these conditions are satisfied.

The certainty equivalent y is plotted in the diagram so that &(y,z) = —®(y.r). From 2 of the
information for ®(.,z), it is clear that ®(y,z) — ®(y,z) = 2®(y,z) < ®(r.r). By an argument
similar to the one given in the previous paragraph, we can show that &(y.r) — ®(y.7) > P(x,z).
Hence, —®(y,z) > 3®(y,z). In fact, for any s < y, ®(z,z) > &(s,x) — ®(s.x) > 2&(s, ) and
®(s,z) — ®(s,7) > 2®(z,z). Hence, —®(s,%) > 3®(s,z) for all s € [z,y]. This implies that y' > y.

A similar argument can be applied to the second experiment. The certainty equivalent z is

plotted in the diagram so that &(z,z) = —®(2,%). For any s > z, 1 of the information for ®(.,z)

*"Such ¢ must exists by the intermediate value theorem when both concave functions are twice differentiable.
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says that ®(z,z) > ®(s,z) — ®(s,Z) > 29(z,s). Also, an argument using the increasing risk
aversion shows that &(s,z) — ®(s,z) > &(Z,z). This implies that &(s,z) > 3&(Z, s) for all s >z
Hence, 2’ < z.

I note that the utility evaluation effect is natural phenomenon in my theory. It does not require
any regularity of experiments. If a subject can be simulated by my theory and also exhibits the

increasing risk aversion, then she must exhibit the utility evaluation effect.

5.6 Preference Reversal Phenomena

An experimenter selects prizes X, z, Y, y so that X > z, ¥ > y and y < X < Y. Also he takes
probability weights p and g so that p > g. Using these prizes and probabilities, the experimenter
constructs two risky lotteries. One of them is (X, z;p,1 — p). I call it probability-bet. The other is
(Y,y:9,1 — q). I call it prize-bet. Prizes (X, z, Y and y) and probabilities (p and q) are carefully
configured so that subjects become aware of that the probability to win the higher prize is the main
attraction of the probability-bet while the relatively high best prize is the main attraction of the
prize-bet. The experimenter asks subjects to choose between the probability-bet and the prize-bet.
(To make choice situation serious, z and y are often set to small negative values. ) Next the
experimenter asks them to “value” these lotteries. Typically the experimenter gives subjects each
lottery and asks them a price at which they want to sell it. By using a simple version of auction
scheme, the experimenter can make subjects reveal their certainty equivalents. It is reported in
several literatures that majority of subjects choose the probability-bet when they are offered a
choice between the probability-bet and the prize-bet, while they value the prize-bet higher than
the probability-bet. There are many different variations of this experiment. Surprisingly. results
from these experiments suggest that this phenomenoﬁ is robust.

It is clear that the expected utility theory does not allow this to happen. More generally,
any transitive choice relation on lotteries does not allow this to happen. Hence, I regard this
phenomenon as a violation of transitivity.

The explanation by researchers who performed this experiment is as follows. Subjects pay their

attention to probabilities in the choice situation between probability-bet and prize-bet, while they
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pay their attention to prizes when they are asked to value lotteries.

In my theory, this explanation must be related to the nature of surmising process. In the
choice situation between probability-bet and prize-bet, the surmising process may take correlation
of lotteries seriously. On the other hand, the surmising process has no role to determine certainty
equivalents. Unfortunately, this direction of approach is not successful.

The analysis that I give in this subsection relies on the increasing risk aversion. The idea is
that the use of certainty equivalents is directly related to properties of prospect functions.

For simplicity, I assume that x = y, and denote it by z. I introduce an index r. It is the
conditional probability of getting Y from the prize-bet given the prize =z from the probability-bet.
The range of r is [0, min ( -I-E;, l)] . It is clear that any distribution over pairs of prizes consistent with
the descriptions of probability-bet and prize-bet is determined uniquely by r. Consider the choice
between the probability-bet and the prize-bet. A subject chooses probability-bet over prize-bet if,
for any choice situation in I'(probability-bet, prize-bet) whose distribution over prizes is determined
by r,

r(1 - p)[B(Y, X) + &(X,2) + 8(2,Y)] > ¢¥(Y, X) + (p — 9)®(3, X).

To see the implication of this inequality, I draw the graph of three prospect functions 4(., z), ®(., X)
and ®(.,Y). The procedure is exactly the same as that in the explanation of the utility evaluation

effect.
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By using the argument I presented in the analysis of the utility evaluation effect, I can easily
show that the increasing risk aversion implies that (Y, X) + ®(X, z) + #(z,Y) < 0. Hence, if a
subject chooses the probability-bet over the prize-bet, it must be the case that
q%(Y,X) + (p — ¢)®(2, X) < 0. Then I can rewrite the inequality as follows.

g ¥¥.X)+(2-1)8(:X)
1-pd(Y,X)+ 8(X,2) + 9(Y,z)"

Note that the right-hand side of this inequality exceeds 1 if p is close to 1. Hence, this inegality
does not impose any restriction on the surmising process if p is set close to 1. Also note that, if
p®(X.z) > q¥(Y,z2), then this inequality is trivially satisfied because r < I—E;. Hence, if this is
the case, the inequality does not impose any restriction on the surmising process. These are two
different regularity conditions on experiments that I adopt.

The certainty equivalent z* of the probability-bet is determined by
p®(z*. X) + (1 — p)®(z*,2) = 0. Let G to be such that §&(z*,Y) + (1 — §)®(z*,2) = 0. From the

diagram, it is clear that the certainty equivalent of prize-bet, y*, is higher than z* if and only if
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g > ¢. Since p > g, it is possible that the experimenter can take such g, especially when p is set
close to 1.

I summarize the analysis as follows. I introduce the following assumption.2®

Assumption 5.2 ((X,z),(z.Y); p-_%q, #) €x".

Proposition 5.2 Assume that assumption 5.2 holds. Also assume that » satisfies all azioms in
sections 3, and that it ezhibits increasing risk aversion. Then the preference reversal happens if

and only if ¢ > §, where § is determined by ((=*,Y),(2*,2);4.1 — q) €>".

Finally, I want to add a comment about non-transitivity of choice. There is no doubt that
preference reversal has been received coldly by researchers in economics, since it violates transitivity.
But, the original explanation of this paradox is at least very natural. It claims that the reason
why a subject chooses the probability-bet over the prize-bet is completely different from the reason
why a subject values the prize-bet higher than the probability-bet. There is no reason to justify
transitivity of choice when a subject reveals this type of non-monotonic reasoning. For this non-
monotonicity to disappear, a subject must be able to characterize all alternatives involved in choice
by an extensive list of characteristics and memorize it. Even a computer has a trouble to do so
because of memory restriction. In the real world, non-transitive choice prevails. (To apply the
transitivity, we need to restrict the domain very carefully. ) My theory is consistent with non-
transitivity. A drawback of my theory is that it hardly gives any insight about the mechanism to
create non-transitivity. To analyze such a mechanism, we clearly need a deep understanding of
non-monotonic nature in information processing, or, more fundamentally, in logic. My theory does

not have any contribution in this respect.

5.7 Kahneman-Tversky’s Prospect Function

Kahneman and Tversky proposed prospect theory in [Kahneman & Tversky, 79]. The idea of this

theory is that choice depends on a base outcome and prospects of alternatives measured from it.

?®Remember that, in the analysis of the common consequence effect, 1 assumed (basically) that

( (2, X), (Y, 2); ;-1—;, ;ﬁ) €>°. These assumptions say that configuration of experiments does matter.
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They argued that the “prospect function” from a base outcome, say z. is concave on [z,00) and
convex on (—0o,z]. In other words, they assumed that a subject is risk-averse on “gains” and

risk-taking on “losses”.?® In the diagram, a typical graph of their “prospect function” is drawn.

utility
[ ]
2 outcome
Disgram 5

It seems to me that Kahneman and Tversky regard a base outcome as either current wealth or
promised income. In modeling of a choice maker, [Kahneman & Tversky, 79] take such formation of
a base outcome as granted. I argue that the use of such fixed base outcome is misleading because of
the following reason. Consider the case in which a base outcome is specified by the current wealth
of a subject. In this case, the formation of the base outcome is exogenous to experiments. It is
independent of any particular choice that an experimenter asks. Then, is it plausible that subjects
take their wealth level into account when they are asked a choice? If that is the case, subjects are
paying attention to information that is not directly related to the description of alternatives given
by the experimenter. I believe that it is not likely. Since objective of a subject in a particylar choice
situation is to decide an alternative that she chooses, information about alternatives should have a

priority over any other information. Assuming that resources available for a subject is bounded and

*In this subsection, 1 use double-quotation mark when I refer to a prospect function defined by Kahneman and
Tversky. Without double-quotation mark, prospect function means the one defined in my theory.
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that processing information about alternatives is not a trivial task, it is likely that a subject never
realizes information that is not related to alternatives. In other words, I do not think that subjects
in experiments are aware of their wealth levels. Next, suppose that there is a mechanism, as a part
of subject’s characteristics, that forms a base outcome depending on a particular experiment. I
describe an experiment by a sequence of finitely many choice situations between lotteries. In this
case, the formation of a base outcome is endogenous to experiments. In the course of a particular
experiment, this mechanism creates a sequence of base outcomes. However, such base outcomes
would not be observable in experiments, since it is unlikely that subjects are aware of them clearly.
This complicates the task to estimate the mechanism because the experimenter would not get
outputs of the mechanism in data. This means that it is possible but very hard to estimate the
mechanism from the data collected in experiments.

My theory gives a way to explain how properties on “prospect functions” is derived. The ar-
gument relies on misspecification that “shifting” base outcomes are identified as a “fixed” base

outcome. See the following diagram.
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I get this diagram by gluing up graphs of prospect functions in my theory at zero-prospect level.

wtiiny ®z)

®l.2)
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I interpret the procedure in the following way. Suppose that the experimenter believes that =
is the fixed base outcome from which prospects of all outcomes are measured. Suppose also that
he is trying to determine the value of “prospect function” on z + x (x > 0). For simplicity, I
assume that each subject is “risk neutral”, i.e., prospect functions with different base outcomes
are constructed by vertical parallel shift of a concave function. The procedure to find a value of
“prospect function” is as follows. Let Z and z to be two prizes such that [z, Z] contains all = + z
that the experimenter concerns. At first, the experimenter normalizes the values of “prospect
function” on Z and z. Assume that they are 1 and -1. Next, the experimenter picks a particualr
value zr and show prizes, z + z, to a subject. Finally, the experimenter constructs lotteries with
support {Z,z} whose certainty equivalents for the subject are z + x and z — z. I represent these
lotteries by (Z,z;p+(),1 — p4+(x)) and (Z,z;p—(x),1 — p—(z)). According to the prospect theory
(without a probability modification function), the value of the “prospect function” on z +z (z —z)
is determined by 1.p,(z) + (=1).(1 — p+(z)) (1.p—(z) + (=1).(1 — p_(z))). This experiment is
repeated by increasing z gradually.

Now, I assume that the experimenter realizes, in the course of experiment, that the valuation of
Z and z by the subject is decreasing. Since the subject observes z 4+ r with increasing z, this may
happen. Then the normalization should be adjusted adequately. In other words, the experimenter
would use 1 — € and —1 — ¢, instead of 1 and -1, to compute values of “prospect function”. If the
experimenter plot the values computed with successive adjustment of normalization, then he would
get the graph similar to the first diagram in this subsection. My theory explains this by a shift of
base outcome to higher prizes. (See the diagram 7. ) If this happens in the course of experiment,
then I can describe the procedure of experiment by the diagram 6. The successive adjustment
of normalization corresponds to the misidentification of shifting base outcomes as the fixed base
outcome z.

I note that my theory does not oppose the use of “prospect™ to measure desirability of outcomes.
What I claim is that such prospect should not be measured based on a fixed base outcome. In the
case of binary choice situation, a choice maker knows that, in each state, there are two possible

outcomes, one from the first alternative and the other from the second alternative. Hence, it is
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natural to assume that the prospect of the outcome from the first alternative is measured based
on the outcome from the second alternative, and vice versa. This is the essence of SSA theory
developed by Fishburn, that is incorporated in my theory.

Finally, I point out that, when the outcome space is A(R), change of attitude toward risk
introduced in 5.1 is similar to properties on “prospect function™ imposed by Kahneman and Tversky.
The difference is explained as follows. In my theory, change of attitude toward risk is a concept
with shifting base outcomes. In the prospect theory, properties on “prospect functions” are based

on the presumption of a fixed base outcome.
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6 Extension for General Acts

Though analysis of paradoxes in expected utility theory is covered by the theorem 4.1, it is also
important to generalize the result to all choice situations in order to be a true generalization of
expected utility theory. The argument relies on the approximation of a choice situation by those
with finite supports, i.e., choice situations in BF .30

I introduce two additional axioms. The first of these additional axioms, called the topological
continuity aziom, guarantees that any consequential class of choice situations can be approximated

by those with finite supports.

Axiom 6.1 (Topological Continuity) {Q|Q = Po(f,g)"! €>

for some (f,g; P) € B.} C A(ZxZ,ZQZE) is open with respect to the topology of weak convergence.

The next axiom, called the Pareto principle aziom, is a simple localization principle. It says that,
if a choice situation (f, g; P) has a property that a choice maker chooses f over g no matter how
she restrict her attention on finite set of pairs of outcomes, then she should choose f over g when

she takes into account the entire support of the choice situation.

Axiom 6.2 (Pareto Principle) If (f,g;P) € B is such that
Supp(P o (£,9)™") € {(z,4) € Z x Zlb(z ) €=*}, then (f,g; P) €.

As I did in the section 4, if > satisfies the outcome-orientation axiom, I can rewrite these axioms

to equivalent statements in A(Z x Z,Z® ).

Axiom 6.3 (Topological Continuity) >*C A(Z x Z,Z®E) is open with respect to the topology

of weak convergence.
Axiom 6.4 (Pareto Principle) If {6(,'y)|(z,y) € Supp(Q)} C>*, then Q €>*.

At first I prove a lemma that guarantees the boundedness of ®. I introduce an additional

notation. I denote {Q € A(Z x Z.Z ® Z)|Supp(Q) is countable.} by A°(Z x Z,= ® ).

3°Compared with the straightforward intuition in our axioms in the section 3, the argument for the extension is
not sharp due to introduction of several structural assumptions. Intuitively, the extension is not essential in the sense
that it is very difficult for the experimenter to make subjects realize a probability measure with continuum support.
The argument adopted here is almost equivalent to those of Fishburn in [Fishburn, 70] and [Fishburn, 89}. I describe
the extension just for completeness.
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Lemma 6.1 (Boundedness) Assume that aziom 3.1, 3.2, 3.3, 8.4. 8.5, 6.1 and 6.2 hold on
B¢ = {(f,g; P)e B|Po(f,g) '€ A(Zx Z,Z® E)}. Then the representation function ® given

in the theorem 4.1 ts bounded.
Proof:

The proof is almost completely the same as the one given in [Fishburn, 70]. I repro-
duce it here just for completeness.

Suppose not. Then I can take a sequence of outcome pairs {(zn,yn)} such that
®(Zn,ys) > 2". Let Q € AC(Z x Z,Z ® E) to be such that Q((zn,yn)) > = for all n.
By the Pareto principle axiom, Q@ €>*. Take any 6, ,) €>"*. Then, by the Archimedian
axiom, there exists an a € (0,1) such that ad, ) + (1 — a)Q~ €>*. I define Qn
by QN = g TA=i #(zn ) Then {adzy) + (1= )@y}, _ weakly converges to
ad(; ) +(1—a)Q~. By the topological continuity axiom, ad, ,) +(1—a)Qy €>"* for all
sufficiently large N. But, for sufficiently large N, [ad(. ,) + (1 — a)QX]® = a®(z,y) +
1- 0)27%11—1 ,I,\=1 :}.T‘I’(ymxn) < a®(z,y) - (1 - a);?vli—lN < 0. This contradicts the
theorem 4.1.

é®

Next I prove the continuity of the representation function ®. To define the continuity, I need to
assume that Z is a topological space and = is a Borel o-field. I further assume that Z is a metric

space.

Lemma 6.2 (Continuity) Assume that aziom 3.1, 3.2, 8.3, 8.4, 3.5, 6.1 and 6.2 holds. Assume
also that Z is a metric space and = is the Borel o-field. Then the representation function & in the

theorem 4.1 1s continuous.
Proof:

In the proof of the theorem 4.1, I constructed a candidate for the representation
function explicitly. By the uniqueness up to the scale factor, it is sufficient to prove the

continuity for the one I constructed in the proof of the theorem 4.1. Fix (zo,yo) such

59



that 6, ,,) €>* and define 6: (Z x Z,= @ =) — (0,2) by the following rule. If (z,y)
is such that 6, ,) €>*, then I define 6(z,y) by

0(z, y)‘s(z,y) + (1 -6(z, y))‘s(yo,zo) €~".

If (z,y) is such that d, ,) €>*, then I define 8(x,y) by 2 — 8(y, z). If (=, y) is such that

d(z,y) € ~*, then I define 6(z,y) by 1. I remind that I constructed & by the following

1-6(=, .
7]7,,,}11» if 6z, €-",

formula.

®(z,y) =4 0, if 6,, €~°,
g_z. z;l’ if J!M-‘ ex".

Hence it is sufficient to show that 6(.) is continuous.

Suppose that 6(.) is not continuous. Then there is a sequence (z,, Yn)oz, such that
limp—yo0(Znsyn) = (,y) and limpyoo 8(Tn,yn) # 0(z,y). By the topological conti-
nuity axiom, I can assume, without loss of generality, that either (1) 0(z,y) €>* and
O(zn,yn) €>" for all n, or (2) O(zy) €~" and §(,, ,.) €>* for all n. In the case (1),
Qn = 0(Tn;, Yn)b(zp, o) + (1 — 6(zn;Yn))d(yo.zo) € ~* for all n and lim,40o Qn = Q =
[limy 00 8(n, yn)) O(z,y) + (1 = [limp—y00 8(Zn, Yn)]) 8(y,.2,) Where the limit is taken with
respect to the weak convergence. By the topological continuity axiom, ~* is closed with
respect to the topology of weak convergence. Hence Q € ~*. The replication corollary
suggests that 6 € (0,1) such that 64, ) + (1 — 6)d(,, »,) € ~* is uniquely determined.
Hence lim,,_yoc 6(zpn,yn) = 0(x,y). This is a contradiction. In the case (2), 8(z,y) = 1.
Since 0(zyn,yn) < 1 for all n, it must be the case that lim,_,o 9(_1',.,3/,.) < 1. Since
Q € ~* by the topological continuity axiom, this implies that d(z.y) €=". This contra-
dicts the assumption that §, ,) € ~*.

é

Finally I prove the representation theorem on the set of all choice situations.



Theorem 6.1 (Skew-Symmetric Additive Representation: General Case) Assume that the
outcome space Z 1s a metric space and = is the Borel o-field. Then aziom 3.1, 3.2, 8.8, 8.4, 3.5.

6.1 and 6.2 hold if and only if there is a bounded continuous function ® : Z x Z = R such that:
1. ®(z,y) + ®(y,x) =0 for allz,y € Z;
2. (f,9; P) €~ if and only if P®(f,g) > 0.

If ® and @' are both such representation functions, then there is an a > 0 such that %' = a®.

Proof :

By the theorem 4.1, the lemma 6.1 and 6.2, the only task left is to prove that the
representation property for (f,g; P) such that Supp(P o (f,g)™!) is infinite. To do this,
it is sufficient to show that Q € A(Z x Z,= ® =) such that Supp(Q) is infinite belongs
to >* if and only if Q& > 0.

Suppose that Supp(Q) is infinite and Q €>*. By the topological continuity axiom
and the fact that AF(Z x Z,Z ® Z) is dense in A(Z x Z,=Z ® Z) with respect to the
topology of weak convergence, I can take a sequence {Qn},in AF(Zx Z,2@3)n »*
such that limn,0 Qn = Q. Since Q,® > 0 and & is bounded continuous, Q® > 0
by the definition of weak convergence. To prove that Q® > 0, Take any Q' €>* such
that Q'® < Q®. Such Q' exists by the topological continuity axiom. By applying our
argument to @', we know that Q'® > 0. Hence Q& > 0.

Conversely, suppose that Q@ > 0 and Supp(Q) is infinite. By the topological conti-
nuity axiom and the fact that @ is bounded continuous, we can take a neighborhood of
Q. say Vg, such that @'® > 0 for all Q' € VerAF(Z XxZ,ZQZE). If @ ¢»>". then there
must exist a Q' € Vo NAF(Z x Z,Z® Z) such that Q'® < 0. This is a contradiction.
Hence Q €»*.

This completes the proof.

[ ]
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It is very annoying that the result depends heavily on structural assumptions, axioms 6.1 and
6.2. Though it is interesting to find a better approach, this generalization has nothing to do with
the previous analysis of paradoxes. So, it will not be very productive for me to concern about the

improvement of the theorem 6.1 in this paper.
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7 Conclusion and Remarks
In this paper, I suggested the following viewpoints.

1. T characterized a choice maker by (1) a surmising process that associates with each pair of
lotteries a set of well-described choice situations between random variables, and (2) a choice

set that is a subset of well-described choice situations between random variables.

2. Given a choice situation between lotteries (p,g) where p and ¢ are probability measures on
outcomes, a choice maker chooses the first lottery over the second lottery if and only if, for

any choice situation (f, g; P) selected by the surmising process, she chooses f over g.

3. The origin of Allais paradox and the common ratio effect is that the surmising process does
not select any choice situation in which the two random variables are significantly positively

correlated.

4. If probabilities on money-prizes are common knowledge to an experimenter and sub jects as
an outcome space, the origin of the common consequence effect is change of attitude toward

risk.

5. I regard the utility evaluation effect and the preference reversal as violations of transitivity.

The origin of these paradoxes is increasing risk aversion exhibited by a choice set.

Both the selection property by a surmising process and increasing risk aversion by a choice set
satisfying allow natural explanation as behavior of a choice maker. I explained change of attitude
toward risk in 4 as a peculiarity of the outcome space A(R). With A(R) as outcome space, the notion
of risk-aversion (and risk-taking) that I adopted is a comparison of outcomes. not a comparison
of probabilities on outcomes. I admit that whether probabilities on money-prizes become common
knowledge to an experimenter and subjects is a matter of debate. I believe that it depends on
the way a choice situation between lotteries is presented to subjects. I adopted a "bounded-
resource” argument, that difficulty to reduce compounded lotteries encourages subjects to adopt

probabilities on money-prizes as outcome space. Clearly this trade-off should be also a part of
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subjects’ characteristics regarding model selection. Model selection is bevond the scope of this

paper. Characterization of a choice maker including model selection is left to a future research.
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