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Abstract 
 

An extensive literature uses anthropometric measures, typically heights, to draw 

inferences about living standards in the past. This literature's influence reaches beyond 

economic history; the results of historical heights research appear as crucial components 

in development economics and related fields. The historical heights literature often relies 

on micro-samples drawn from sub-populations that are themselves selected: examples 

include volunteer soldiers, prisoners, and runaway slaves, among others. Contributors to 

the heights literature sometimes acknowledge that their samples might not be random 

draws from the population cohorts in question, but rely on normality alone to correct for 

potential selection into the sample. We use a simple Roy model to show that selection 

cannot be resolved simply by augmenting truncated samples for left-tail shortfall. 

Statistical tests for departures from normality cannot detect selection in Monte Carlo 

exercises for small to moderate levels of self-selection, obviating a standard test for 

selection in the heights literature. We show strong evidence of selection using micro-data 

on the heights of British soldiers in the late eighteen and nineteenth centuries. 

Consequently, widely accepted results in the literature may not reflect variations in living 

standards during a soldier's formative years; observed heights could be predominantly 

determined by the process determining selection into the sample. A survey of the current 

historical heights literature illustrates the problem for the three most common sources: 

military personnel, slaves, and prisoners. 

 
 
JEL Codes: I00, N3, O15, O47, C46, C52, C81 
 
Keywords:  self-selection, selection bias, heights, anthropometrics, standards of living, 
industrialization puzzle, long-run economic growth 
 



. . . the socio-economic composition of the institution studied might have varied over
time, even in the absence of explicit changes in the admission criteria. This might be
due both to supply and demand considerations. The willingness of individuals to en-
ter the military, for instance, might have varied over time. . . This problem is quite
intractable (Komlos (2004, note 44)).

1 Introduction

Anthropometric history came into its own in the 1980s, and now enjoys a prominent place in

quantitative economic history. The central idea of the heights literature is that, at the population

level, heights after maturity re�ect the net nutrition available to individuals during the growing

years. Thus a cohort might be unusually short because its members had less food, or gross nutrition;

because hard work during youth made greater caloric demands on gross nutrition, leaving less for

growth; or because disease made demands on gross nutrition.1 The heights literature often presents

the anthropometric approach as capable of capturing dimensions of economic well-being that the

real wage or GDP per capita cannot. This approach's appeal is obvious. Many historical sources

record heights. By studying direct measurements of the human organism researchers can hope

to achieve a broader picture of how economic growth and development a�ected human well-being.

Unfortunately, as we show in this paper, the sources used in this literature often su�er from selection

bias that cast doubt on its substantive conclusions.

Prominent researchers use height measures to gauge changes over time in the well-being of

populations, often referring to the historical literature or making use of the data generated by it.

Fogel's (1994) Nobel Lecture, for example, presented a theory of long-run development based in

important ways on the historical heights literature. Weil's (2007) detailed analysis of the e�ect of

health on economic growth assumes that compilations of historical heights accurately re�ect the

true distribution of heights in those populations. One of his estimates of the e�ect on height on

labor productivity depends crucially on an accurate measure of the average height in Great Britain

from the late 1700s. Crimmins and Finch (2006) link military samples generated by economic

1Most research on heights relies on sources that pertain to men only, such as soldiers. Some historical research uses
anthropometric measures other than heights. Our argument applies with equal force to any anthropometric measure
used to study human well-being; for brevity here we use the term �heights.� Some early papers in this literature
viewed height as a proxy for conventional measures of economic output such as GDP per capita. Brinkman, Drukker
and Slot (1988), for example, regress the heights of Dutch males on per-capita income in Holland in the period
1900-1940, and then use the resulting equation and measured heights to infer incomes in the nineteenth century.
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historians with age-speci�c mortality to estimate associations between long-run changes in height

and mortality. Deaton (2007), for modern Africa, and Bozzoli, Deaton and Quintana-Domeque

(2009), for modern Europe and the United States, attribute part of the lack of a substantively

meaningful height-income relationship to conclusions drawn from comparisons of the heights of

British and Irish volunteers to the East India Company in the 1800s. These and other important

papers on economic growth and development treat height measures from possibly non-random,

selected samples as if they accurately re�ect true measures of economic conditions. Our analysis

suggests one should be much more skeptical about the ability of such samples to provide useful

information.

Using historical heights forced scholars to contend with several peculiarities of these sources.

Militiary forces often recorded individual-level data on soldiers that include height, but many mili-

taries imposed a minimum height requirement. Military height samples are thus often left-truncated

at or near that minimum height. Truncation led to a number of approaches to estimating mean

height from truncated samples, most notably the Reduced-Sample Maximum Likelihood Estimator

(RSMLE) and the Quantile Bend Estimator. While there remain some debates about how this is

best done, most recent studies account for truncation using well-tried approaches.2

Unfortunately the historical literature has not satisfactorily confronted the consequences of a

potentially more serious problem; namely, that many if not most of the samples used are not random

draws from the population in question. Non-randomness is distinct from left truncation. For most

sources, an individual risks inclusion in the sample only if he or someone else made a decision

that led to their inclusion. Examples include soldiers and sailors in volunteer forces; prisoners;

runaway or manumitted slaves; slaves that entered into the international or interregional slave trade;

students at elite educational institutions; and passport holders.3 If the probability of inclusion in

the sample di�ers across individuals in ways that are correlated with height, then the sample height

distribution may not be an unbiased measure of the mean population height, even after adjustment

2The seminal reference is Wachter and Trussell (1982a). The Reduced-Sample Maximum Likelihood Estimator
(RSMLE), requires ex ante speci�cation of a (maximum) �xed truncation point. The Quantile Bend Estimator relies
on �tting a linear relationship between the expected and actual normality probability plots. Some studies discuss
another problem, which is �heaping� of heights. One would expect the distribution of heights to be continuous, but
measured heights often show both rounding (say, to 5'4� when the true height is 5' 4.1� inches) and a tendency to
cluster at certain heights, such as 5 feet. Our argument is distinct from both truncation and heaping.

3Section 7 discusses the heights literature in detail. Research relying on volunteer armies includes Floud,
Wachter,and Gregory (1990) and Komlos (1989); on prisoners, Nicholas and Oxley (1996); on the slave trade, Steckel
(1986, 1987); on students, Murray (1992); on passports, Sunder (2011).
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for possible left-truncation. More importantly, changes in observed heights over time may be driven

not only by changes in the actual heights of the population, but also by changes in the probability

that individuals of di�erent heights were di�erentially selected into the sample. Similarly, cross-

sectional di�erences in height within a selected sample may re�ect a particular variable's e�ect on

the probability of inclusion in the sample, rather than population di�erences in height correlated

with a given characteristic. Thus many heights studies could su�er from sample-selection bias

(SSB).4

We construct a simple Roy-style model of the decision to join the Army and use it to generate

two important conclusions. Even modest military-civilian di�erences in the returns to height can

generate (selected) military samples whose mean height is a poor estimate of the population mean

height. Simulations based on our Roy model show that statistical tests of normality have almost

zero power; they cannot detect departures from normality in selected samples. Thus the height

literature's standard approach to detecting selection does not perform well. In addition, both the

RSMLE and the QBE estimators rely crucially on the normality assumption. While we are not able,

using the data available, to estimate an econometric model of heights that corrects for the selection

problems, we report several exercises that when considered together provide strong evidence for

selection.

There is compelling evidence of di�erential selection into the modern U.S. military, which since

1973 has relied entirely on volunteers. Simon and Warner (2008), for example, �nd that the elasticity

of the supply of high quality recruits (those scoring 50 or higher on the AFQT) over the years 1996-

2005 with respect to state unemployment rates is 0.42; the elasticity for the overall supply of military

recruits is only 0.22. Warner and Asch (2001), also �nd the supply of high quality recruits to be

quite responsive to increases in the unemployment rate over the �rst 20 years since the end of the

U.S. military draft. They attribute much of the decline in high quality recruits during the 1990's to

declines in relative military pay and civilian unemployment rate over that decade. Warner, Simon,

and Payne (2000) estimated a 15,000 person annual decline in high quality recruits over that decade

due to the declines in unemployment rates. Kilburn and Klerman (1999) �nd that factors associated

4Extensive discussion of SSB in the economics literature dates to e�orts to estimate models of married women's
wages and hours of work. See Heckman (1979). Some sources used in the heights literature are themselves random
samples drawn from a larger source, for example, a random sample of men who joined a particular volunteer army.
We are not criticizing the method of drawing the sample; our argument is that the Army itself represents a selected
sample of men from that time.
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with increases in the returns to education reduce military enlistment. Asch, Hosek, and Warner

(2007) present a detailed review of how unemployment rates a�ect high-quality military enlistments;

all of the elasticities they report fall in the range of 0.11 to 0.77. If selection is important for modern

military recruitment, it was likely important for volunteer forces in the past as well.

Several papers in the historical heights literature recognize that their samples might not be

representative, but few have acknowledged that some of the most-discussed results in this literature

may be entirely an artifact of SSB.5 Our message is a critique, not a condemnation. We o�er a

warning against too-facile connections drawn between height and human welfare. The anthropomet-

ric approach retains its promise of o�ering much-needed insight into human welfare, but existing

interpretations need to be re-examined and tempered, given the implications of selection-bias in

many heights samples.

2 Declining heights in the presence of rising real wages

The sample-selection problems we discuss a�ect any study based on a choice-based sample of heights

in the past. To �x our ideas, however, we focus on perhaps the most extensive debate that relies on

height data, the changes in the standard of living that came with industrialization and after. (In

Section 7 we discuss the sample-selection issue as it arises in other heights research more broadly.)

Economic historians and others have studied how economic growth, and more speci�cally industri-

alization, a�ected human welfare in the past. The most famous version of this �standard of living

debate� focuses on the working classes during the British Industrial Revolution. A long debate that

goes back at least to Engels (1845/1897) divides �optimists,� who think the working classes bene-

�ted from early industrialization, from �pessimists,� who think they did not. The earliest literature

focused on conditions of work and life � sanitation, diet, disease and mortality � but in its modern

incarnation the literature has focused on conventional economic measures such as real wages, or

incomes or consumption per capita.6

5Pritchett and Chamberlain (1993) and Grubb (1999) discuss selection in speci�c contexts. Mokyr and Ó Gráda
(1996) is the only anthropometric study we know of that acknowledges that their result may be a consequences of
SSB. We read their conclusions as a precursor of what we say here. See also Ó Gráda (1996). Weir's (1997, p.175-7)
discussion alludes to SSB in the British Army data. We probably �rst developed the ideas presented in this paper
in conversation with Weir. Lamm (1988) addresses the question of di�erential record survival, which is potentially a
type of selection bias but not the topic of our paper.

6Feinstein's (1998) broadly-accepted estimates of real wages imply little increase until least the �rst decade of
the 19th century. Important references in the large literature on the standard of living during this period include
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Floud, Wachter, and Gregory's (1990) �nding that British soldiers grew shorter during the

British Industrial Revolution, and after, seemed a strong point for the �pessimist� case. Nicholas

and Steckel (1991) report similar evidence. The estimated mean height of English males declined

by about 1.5 inches during a period in which wages were at worst stagnant or, more likely, growing

slowly. If anything, this evidence seems stronger than conventional �pessimist� arguments: Feinstein

(1998) reports wage stagnation, not wage decline, and Allen (2007) reports slow real-wage growth

throughout the nineteenth century. But British soldiers apparently became signi�cantly shorter.

Something similar also occurred in the United States. During a period when the U.S. economy

experienced signi�cant real GDP growth, estimated mean height declined by more than one inch

(Weiss 1992). Growth in estimated heights did not recover until the end of the nineteenth century.

The heights literature and much of the profession has taken the �nding of rising incomes and shorter

people at face value. The US literature calls this negative correlation between heights and income

the �antebellum puzzle.� Komlos (1998) presents a list of possible explanations, including increas-

ing income inequality, increased income variability, changes in relative prices between nutritious

(meat and grains) and non-nutritious (co�ee and sugar) foods, transportation innovations and the

integration of the disease environment and intensi�cation of labor, among others.

The heights literature focuses on three of these e�ects. First, changes in the income distribution

might reduce net nutrition for the working classes, even if GDP per capita increased (Steckel (1983)).

This explanation is potentially related to the SSB problem. Changes in income distribution could

be a driving force behind di�erent types of selection into the military; if workers with particular sets

of skills saw wage declines, they might more readily enlist.7 A second explanation for the puzzle

focuses on an unhealthy environment. Cities grew with industrialization, and we know that cities

were comparatively unhealthy places to live until at least the late nineteenth century. Diarrheal and

other endemic infectious diseases common in cities drive a wedge between gross and net nutrition

(Fogel et al (1982)). A third explanation emphasizes the price and availability of important food

items. The relative price of nutritious, height-enhancing foods might have changed in ways that lead

to less consumption even with rising real wages. Komlos (1987), Bodenhorn (1999) and others have

Brown (1990), Crafts (1997), Feinstein (1998), Hobsbawm (1957), and Williamson (1984).Voth (2003) summarizes
the debate.

7Similarly, Steckel and Prince (2001, p. 291) appeal to the egalitarian practices of the Native Americans of the
Great Plains to explain their relatively tall stature.
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investigated this possibility, but translating food production into consumption estimates is di�cult.

Floud et al (1990, pp.233-243) doubted whether such studies could contribute much to the debate.

The puzzle provoked a host of studies that provide valuable insights into the standard of living,

but we are skeptical of the puzzle itself as a real phenomenon. To date, the negative correlation

of income and height only emerges in choice-based (selected) samples. Both the UK and the US

had volunteer Armies for most of the period in question. France, on the other hand, drafted men

according to lotteries so that all young men had an approximately equal chance of being called

for service. Consider Figure 1, from Weir (1997), which presents the heights of British and French

males over the same period. There is no French equivalent of the industrialization puzzle; French

men grow without interruption. A simple regression of the French �gures on a linear time trend

yields an R-square of about 0.97. What accounts for the di�erence between the US and British case

on the one hand, and the French, on the other? The heights literature focuses on France's slower

urbanization, which reduced the disease burden and thus the impediments to converting calories

into height. There may be something to these di�erences, but we think selection bias in the British

and U.S. heights samples o�ers a more satisfactory explanation.

The enormous variations in estimated mean heights of British soldiers re�ected in Figure 1 cannot

re�ect just short-term variations in the standard of living. Consider the cohorts that reached age

20 around 1810. Between 1804 and 1812, French heights �uctuate between 163.5 cm and 163.9 cm,

less than 0.5 cm, without obvious trend. British heights, after having already experiencing a 2 cm

(=0.79 inches) decline 20 years earlier, �rst decline by about 2 cm and then as quickly recover.

The heights of men potentially eligible for the French military do not oscillate as wildly as British

heights even though both militaries imposed minimum (but not common) height standards. We

return to this issue in Section 6 below.8

8Militia conscription records for Sweden for the period 1820�1965 cover nearly the entire male population, and,
like France, show no deterioration in heights (save for a .5 centimeter dip from 1835�40, which was made good
by 1845 (Sandberg and Steckel 1997, Table 4.1). Using the settled Army, which was apparently a volunteer force,
Sandberg and Steckel show a sharp decline in height for the cohort born in the 1840s (Sandberg and Steckel 1997,
p.135; Sandberg and Steckel 1988, Figure 1).
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3 Modeling Military Heights

We begin with a simple model in which an individual of given characteristics decides whether to

join the Army or remain a civilian. This model could be adapted to �t several other contexts that

generate height data. The model delivers expressions describing the degree of selection into the

Army, by height. In Sections 4 and 5 below we use the model to simulate height distributions for

speci�c parameters. Our model draws on Roy (1951), and resembles Heckman and Sedlacek's (1985)

two-sector occupational choice model. Each person's utility depends on his �wage� or material

compensation in the Army or in the civilian world. Each individual also has parameters that

describes his taste for military life and for civilian life. Thus two individuals with identical �wages�

can make di�erent decisions.

We treat both Army and civilian wages as (possibly) a function of the individual's height. This

assumption has two interpretations that are equivalent for our purposes. The �rst is that the Army

or some civilian occupations might reward height itself. Promotion might come faster to taller

soldiers, and in some military and civilian occupations a tall person might be more productive. A

second interpretation seems more natural, and more consistent with the basic tenets of the heights

literature. Height is correlated with a person's �biological standard of living� and with other aspects

of �health human capital� (Schultz 2002). The Army might reward a tall person not for being tall

per se, but because taller individuals are generally healthier and more productive than shorter

people. Similarly, the civilian world might reward a tall person for his health in addition to any

skills correlated with height.9

The military pays soldiers as a function of their height, h, and their observable set of productive

military traits:

ln (wM ) = αM + βMh+ γMεM.. (1)

where wM is military compensation, αM is a constant, βM is the return to height in the military,

and γM is the return to individual-speci�c productive traits. Those traits (εM ) can entail any trait

other than height, such as literacy or some speci�c skill such as the ability to shoot straight. In our

9The military might reward human capital and cognitive ability, though not necessarily at the same rate as
civilian markets. Komlos (1989, p.237) reports enlistment bonuses into the Hapsburg Empire's army, circa 1809.
These bonuses increase in heights, from 3 �. for soldiers just 5'-0� to 45 �. for soldiers 5'-5� and above. Persico et
al (2005) report nontrivial returns to height in civilian employment. Case and Paxson (2008) attribute part of that
return to cognitive abilities associated with health and height.
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model this trait can a�ect returns in either the military or the civilian world. Civilian wages are

given by:

ln (wC) = αC + βCh+ γCεM + δCεC . (2)

Where wC , αC , βC are de�ned for the civilian world by analogy to their military equivalents. γC is

the civilian sector's return to εM , δC is the civilian return to the individual characteristic εC that

is relevant only to the civilian sector. Note that both βM and βC might be zero. Table 1 sets out

all notation used here and in the simulations reported in Sections 4 and 5. Individuals di�er in

their tolerance for other features of military and civilian life, and we summarize those preferences

under τM and τC . An individual's utility is additive in the log-wage and his tastes for the military

or civilian life: U (M) = ln (wM ) + τM and U(C) = ln(wc) + τC. For the moment, we make

no assumptions about the relationship between height and other productive military traits (εM ).

Height and military productivity could be positively correlated (tall people might be better with a

ri�e) or negatively correlated (tall people might �nd it harder to �nd cover in combat). Height and

other military characteristics (εM ) might be valued by both the military and the civilian economy,

but another set of characteristics, εC , are valuable only in the civilian world. All productive traits

can be correlated. For simplicity we assume that tastes (the τ terms) are independent of the

productive traits (h and the ε terms). Relaxing this assumption only requires the introduction of

additional covariance terms in the following derivations.

We view this primarily as a static model of occupational choice. But one could interpret the

functions U (M) and U (C) in a dynamic context. U (C) could represent the expected utility from

choosing the civilian sector today when there is a possibility (option) that one might choose to enter

the military at some later date. However, throughout this analysis we assume that an individual has

just one opportunity to enlist in the military. Similarly, the military pay function could represent

�expected� lifetime payments that could include, in part, the expected increase in pay if the volunteer

were to be promoted at some later date from soldier to sergeant.

An individual enters the military if U (C) ≤ U (M), or (equivalently) if η ≤ (αM − αC) ,where

η = βh+ γεM + δεC + τ (3)
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and

β = (βC − βM ) , γ = (γC − γM ) , δ = δC , and τ = τC − τM . (4)

The decision to join the military in the model re�ects di�erences between features of the military

and civilian worlds. For example, if height is more highly rewarded in the civilian sector than in

the military sector, i.e., β = (βC − βM ) > 0, then taller individuals prefer the civilian sector over

the military sector, all else equal. Similarly, if the civilian sector's reward to the military trait εM

increases (i.e., γ or γC increases), then ceteris paribus those with higher values of εM will be less

likely to join the military.

Suppose that all productive traits follow standard normal distributions, not necessarily indepen-

dent of each other or of heights, and that the taste parameters follow mean zero normal distributions

independent of heights and productive traits.10 Then height h and �selection error� h follow a bi-

variate normal distribution with

E

 h

η

 =

 µh

0

 ;V ar (h) = σ2
h; (5)

V ar (η) = σ2
η = β2V ar (h) + γ2V ar (εM ) + δ2V ar (εC) + V ar (τ)

+2βγCov (h, εM ) + 2βδCov (h, εC) + 2γδCov (εM , εC) (6)

and

Cov (h, η) = σh,η = βV ar (h) + γCov (h, εM ) + δCov (h, εC) . (7)

Under these assumptions, we can derive the distribution of heights for those who prefer military

service. Integrating the bivariate normal distribution of (h, η) described above over the range of

η ≤ (αM − αC), and normalizing by the Prob (η ≤ (αM − αC)) yields11

10The unit variance assumption is innocuous, and the mean zero assumption for all of these factors only requires
simple rede�nitions of the intercepts in the two wage o�er equations. One could easily relax the independence
assumption for tastes.

11See Kotz et al (2000, p.316).
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fh|mil (h) = fh|η≤(αM−αC) (h) = fh (h)Z (h) (8)

where

Z (h) =
Φ
{

[(αM − αC − βµh) /ση − ρη,h (h− µh) /σh] /
√

1− ρ2
η,h

}
Φ [(αM − αC − βµh) /ση]

. (9)

Φ (·) is the standard normal cumulative distribution function, fh (h) is the unconditional (popu-

lation) distribution of heights, 1
σh
√

2π
exp

(
−1

2

(
h−µh
σh

)2
)
, and ρη,h = Cov(h,η)

σhση
is the correlation of

height and the population selection error η de�ned above. Z (h) summarizes the selection process

that generates the observed distribution of military heights from the underlying distribution of

population heights.12 Most historical studies of military heights infer the population height distri-

bution fh (h) from the observed military height distribution (fh|mil (h)). Accurate inferences about

the population distribution, however, depend on the properties of Z (h) . If Z(h) does not depend

on height, there is no selection problem. The dependence of Z (h) on height, however, could vary

over time (or in the cross-section) in a way that might be unrelated to variations in the population

height distribution. Observed variations in fh|mil (h) in this case would re�ect only variations in

Z(h), perhaps due to changes in the parameters determining wM and wC rather than variation in

the population height distribution fh (h).

Our model thus far ignores the minimum height many militaries imposed. The existence of

an exact and binding minimum height requirement implies that instead of the conditional height

distribution described above, we observe only its truncated analogue. Suppose the military enforces

a minimum height requirement that is completely non-binding above some height h∗. All observed

heights above h∗ can then be considered as random draws from the upper tail of this conditional

height distribution. This assumption underlies Wachter and Trussell's (1982a) reduced sample

maximum likelihood (RSMLE) and quantile bend estimators (QBE) (i.e., h∗ is above the extent of

the shortfall in their terminology).

12The model here focuses on the supply of soldiers to the military, which we think is the important issue for
selection bias. Appendix A extends the model to account for the military's optimization decisions. We show that
in constructing the least-cost military force, the Army might impose a minimum height restriction, as occured in
practice.
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This simple choice model highlights an important assumption in Watcher and Trussel's descrip-

tion of the process giving rise to observed military heights. They assume there is no selection process

operating for heights above h∗; individuals taller than h∗ choose to enter the Army based on a coin

�ip. Our model suggests an alternative process. Suppose the civilian sector rewards heights and

productive traits more than the military, and that the covariances of heights and productive traits

are positive, zero, or at most only slightly negative. Then the covariance (or correlation) of heights

and the selection term η is positive, and Z (h) approaches zero for taller individuals. This conclusion

is the central point of our critique, and has two, related implications. First, Wachter and Trussel's

approach implicitly rules out such a possibility. If there is selection, their estimation techniques

(whether RSMLE or QBE) generate biased estimators of the unconditional height distribution even

if the observed upper tail closely resembles that for a normal distribution. Second, our model pro-

vides a clear understanding of why the right-hand tail may have fewer taller individuals than one

would observe in a true normal distribution.

Wachter and Trussell's assumptions hold only under fairly extreme conditions. h∗ must lie above

the unconditional mean height. This implies that the military's height standard rejects at least half

the population. But their assumption has an additional implausible implication: for the assumption

to be compatible with the selection model requires that the correlation of height and the selection

error (ρη,h) must approach −1, which seems implausible.13

4 Simulating the Model

We use the Roy model to assess the ability of selected samples to yield accurate information about

the unconditional population height distributions. The simulations we discuss in this section use a

simpli�ed version of the model presented in Section 3. We abstract from the taste parameters (τ),

13Speci�cally, two sets of parameter values can satisfy the requirement that (ρη,h) must approach −1. (1) Assume
the civilian sector more strongly rewards productive traits than the military sector (β > 0). In this case, a large
negative correlation (ρη,h) arises only when the covariances of height with the productive traits εM and εC are large
and negative. Such negative correlations seem unlikely; one expects positive correlations of heights and other skills.
(2) Assume (implausibly) that the military rewards height and the relevant skills more strongly than does the civilian
sector. If heights and skills are positively correlated, and if the reward to the civilian sector speci�c skill, δC , is small,
then we obtain that the correlation of heights and the selection error is large and negative. Under these assumptions
Z (h) would not approach zero for taller people, and the selection operating on the upper tail would be weak or
non-existent. This second possibility implies that the military rewarded common skills more than the civilian sector
while the civilian sector pays at most a small premium for its sector-speci�c skill. If so, then the variance of wages
in the military would be larger than the variance of wages in the civilian sector, which seems contrary to fact.
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and assume that each individual has a given shock to his earnings in the civilian or military sector.14

We vary αM , αC , βM , and βC , as described below. As in any simulation exercise, results hinge

on an appropriate choice of parameter values. Apppendix B describes our approach to parameter

calibration and reports robustness checks.15 The simulations all assume that the population has

height normally distributed with mean 66 inches and standard deviation 2.5 inches. Our primary

interest is in the four behavioral parameters, αC , αM , βC and βM ; in this simpli�ed model only

the sectoral di�erences in the intercepts and in the slopes matter for the decision to select into the

military.16

Figure 2 reports the proportion of the population in the military and the mean heights of soldiers

for a range of returns to height in the civilian sector. We consider two values of αC . The vertical

line at βC = 0.02 marks the point at which the return to heights in the Army and civilian sector

are identical, and there is no selection on height. Consider �rst the results for the proportion in the

military. The constant terms shift the proportion of men who join the Army, but the shapes of the

two curves remain similar. As the di�erence in returns for the two sectors increases, the proportion

of the population in the military declines. Now consider the mean height of soldiers. At the point

βC = 0.02, at which there is no selection on height, the mean height in the military equals the

population mean value of 66 inches for both values of α. Above βC = 0.02, the region in which

the reward to the civilian height exceeds the reward to height in the military, the mean heights of

individuals willing to join the Army drops rapidly. When the return to height in the civilian sector

exceeds that in the Army by 2 percentage points (βC = 0.04), the average soldier is nearly one half

inch shorter than the population mean of 66 inches. When βC equals 0.06, so the return to civilian

height exceeds the return to military height by 4 percentage points, the volunteers are more than

one inch shorter than the population mean.

Figure 3 contrasts the density of heights for those in the �Army� and the population height

distribution for two di�erent returns to height in the civilian sector, namely 0.04 (left-hand graph)

and 0.06 (right-hand graph). These values correspond to the civilian labor market rewarding each

14That is, our simulation is based on equations (1) and (3), but we set γC=0, τC = 0,τM = 0,γM = 1, and δC = 1.
15An earlier version of this paper reported results from numeric simulations; here we drop the numeric simulations

and report evaluations of analytic expressions. The simulation programs used here (written in Stata) can be obtained
from the corresponding author.

16We re-parameterize the log-wage speci�cations as ln (w) = α + β ∗ (h− 56) + ε, which just makes the intercept
terms simpler to interpret.
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inch of height by two and four percentage points more than the military does. Figure 3 clearly

illustrates one of our principal contentions: the military height distribution unambiguously shifts to

the left, meaning the Army has relatively few of the tallest men and relatively more of the shortest

men. The measured standard deviation of the selected heights for those in the military is also smaller

than that in the population. Yet the distribution of heights in the Army �looks normal.� Moreover,

we know that the military densities reported there re�ect deliberate, non-random sampling schemes,

and the analytic density formula clearly rules out that military heights follow a normal distribution.

Figure 3 also reports the �adjustment terms� Z (h) (from equation (9)) for our simpli�ed Roy

model. The adjustment term for the 2 percentage point di�erential in the left-hand panel implies,

relatively, that �ve-foot tall individuals on average would be about twice as likely to prefer the mil-

itary sector as six foot tall individuals. The adjustment term for the 4 percentage point di�erential

is even more striking. Five foot tall individuals are some 5 times more likely to prefer the military

sector to the civilian sector. Those di�erences in selection, of course, are what cause the 0.45 and

1.1 inch mean height di�erentials of the selected military samples from the true population mean

height. These are substantively meaningful di�erences.

5 The power to reject normality in selected samples

Almost all researchers in the historical height literature accept the view that population height

distributions closely follow the normal distribution. Equation (8) shows that the analytic distribu-

tions of selected heights derived from the simple application of the Roy model do not follow normal

distributions when height di�erentially a�ects the rewards in the military and civilian sectors. This

implication suggests that a test of the null hypothesis of normality for an observed height distri-

bution, against the alternative hypothesis of observed heights not following a normal distribution,

constitutes a useful device for detecting the presence of sample selection bias. Scholars working in

the heights literature have used such tests to argue that their samples do not su�er from selection

problems. Nicholas and Steckel (1991, pp. 941-2), for example, have used the failure to reject

such a null hypothesis as a reason to dismiss concerns about selection biases.17 In this section we

demonstrate that such tests may have little power to uncover the existence of selection biases even

17This approach goes back to at least Soklo� and Vila�or (1982, p.469). See also Margo and Steckel (1982, p.533)
and Johnson and Nicholas (1997, p.206).
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when the magnitudes of the selection biases are substantively important.

If our model is a reasonable approximation to why individuals choose to enter the military,

then we have a puzzle: why does the upper tail of nearly every one of the height distributions

examined by Wachter and Trussel appear to follow a normal distribution? The answer follows

from the simulations in Section 4: for a wide variety of �reasonable� variances, covariances, and

reward structures, the distributions of the self-selected heights in the military follow distributions

that closely resemble the shapes of normal distributions even when there is selection built it into the

simulation model. This result highlights a serious statistical problem. Even with moderate-to-large

sized samples by cliometric standards, standard skewness-kurtosis tests have limited power to reject

normality for the forms of selection modeled here.18

It is vital, therefore, to evaluate the ability of standard tests for normality to detect deviations

from normality in this case. A failure to reject normality would provide some reassurance about the

representativeness of the observed data only if the power of the normality tests were large enough

to reject interesting alternative distributions. To evaluate this we use a test that examines devia-

tions of estimated measures of skewness and kurtosis in an observed sample from their theoretical

counterparts derived from a normal distribution with the same mean and variances as estimated in

the observed sample.19 We use our model to generate samples of between 100 and 50,000 soldiers,

assuming a 4 percentage-point di�erential in the return to heights between the military and civilian

sectors. These sample sizes correspond to the range of sample sizes found in the literature. This

speci�cation of the data generating process implies a 11.34% unconditional probability of preferring

the military sector to the civilian sector. For each population size, we draw 1000 samples, and

for each of these samples we apply the selection model to obtain the �military� subsample. We

then calculate whether the test would reject the normal distribution assumption for the selected

�military� subsample. Figure 4 reports power functions (as a function of sample size) for these

tests. The results imply that this approach cannot detect selection. For tests at the 5% level, even

18Self-selected samples of heights do typically di�er from normal height distributions in the variance of the observed
height. The selected height distributions, even though they appear to be almost normally distributed, typically have
standard deviations for heights well below those in the underlying population. Many of the estimated standard
deviations in Floud et al's (1990) Table 4.8, especially for the 1800s, seem quite small, suggesting a strong degree of
selection into the military consistent with this simple extension of the Roy model.

19For most sample sizes considered here, the Shapiro-Wilk (for N ≤ 2000) and Shapiro-Francia (for N ≤ 5000) tests
performed similarly. Discussion in the text is restricted to the skewness-kurtosis test implemented in Stata (�sktest�).
There are many di�erent tests for normality; Appendix C reports similar exercises for a wider range of tests.

16



for military subsamples as large as 50,000 persons, one would correctly reject the null hypothesis

only about 5% of the time. At the 10% level, one would reject only about 10% of the time. Even

for the largest sample sizes in these two �gures (samples that are large relative to those found in

the historical literature), the tests have virtually zero power (above the tests' size/level) to reject

the assumption that the selected samples come from a normal distribution.20 This happens even

though we know that they are not normally distributed.

We can see the reason for the poor performance of these tests by examining Z (h) in the dis-

tribution of the selected heights sample. We compare Z (h) to �rejection sampling,� in which one

samples from an �instrumental distribution,� and randomly accepts each draw from that instru-

mental distribution as if it were from the target distribution. If this rejection sampling rate is

proportional to the ratio (density of the target distribution)/(density of the instrumental distribu-

tion), then the random draws selected in this way follow the distribution of random samples from

the target distribution.21 The right kind of rejection sampling from a true normal distribution can

yield another normal distribution. Suppose the target distribution is a normal distribution with

mean and variance equal to the mean and variance for the non-normal selected height distribution.

Denote this distribution fnor@mil (h). Let the population height distribution, f (h), be the instru-

mental distribution. When drawing from the population height distribution acceptance probabilities

proportional to fnor@mil (h) /f (h) will yield samples following those that would be drawn from the

selected height distribution because

ˆ
f (h)

(
fnor@mil (h)

f (h)

)
dh =

ˆ
fnor@mil (h) dh. (10)

A comparison of this relative acceptance probability, q (h) = fnor@mil (h) /f (h), to the Z (h)

function (in equation (8)) reveals why the non-normal selected height distribution so closely resem-

bles a normal distribution. Figure 5 provides such a comparison for the case when the reward to

height di�ers by four percentage points in the two sectors and the selected mean height di�ers from

20Some studies do recognize the low power of these tests. See, for example, Sokolo� and Villa�or (1982, p.457).
21To make this analogy to rejection/acceptance sampling precise, we need to assume that the height distributions

only have positive support over �nite subset of the real line, say for adult heights in the range 46 to 86 inches (e.g.,
the mean plus or minus eight standard deviations). The ratio of the target to the instrumental distribution needs to
be bounded at all relevant values such that ftarget (h) < Mfinst (h) for some �xed, �nite value of M ; this need not
be satis�ed for normal distributions with unbounded support. To simplify the notation, throughout this discussion
we assume that M = 1, satis�es this criteria; allowing M to be larger than 1 only complicates the notation.
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the population mean height by over one inch. The two di�erent �adjustments� to the normal pop-

ulation height distribution are nearly identical, even though one adjustment, q (h), yields a normal

distribution exactly and the other, Z (h), yields a selected distribution that clearly does not follow

a normal probability model. Moderate amounts of selection can generate selected populations that

di�er substantively from the unconditional population distribution in terms of the �rst two mo-

ments, but tests for normality would be unlikely to provide any evidence of selection biases because

of the similarity of the selected distribution to a normal distribution.22

5.1 Which selection mechanism?

So far we have shown that it is di�cult to distinguish selected height distributions from truly normal

distributions. Now we show that it is also di�cult to distinguish among a wide variety of selection

mechanisms that can give rise to an observed selected height distribution. Consider as a baseline

military sample the one generated by the parameters appearing in the �rst column of Table 2. While

the �population� has a mean height of 66 inches, the �observable� military height distribution has

a mean height of 64.9 inches, more than one inch below the true population mean height. Columns

(2) though (6) in Table 2 report alternative normal population height distributions and selection

mechanisms that yield approximately the same distribution of observable military heights. These

scenarios vary greatly in mean population height (from 64 inches to 68 inches) and in the form of

the selection, from positive selection into the military based on height to negative selection and

no height-related selection.23 Figure 6 displays the population height distributions for the �rst

�ve models as well as the distribution of observable military heights generated by these population

distributions and their associated selection mechanisms. Substantively di�erent population height

distributions combined with substantively di�erent selection mechanisms give rise to approximately

identical selected height distributions.

To demonstrate how nearly identical these di�erently selected distributions appear to be, we

generated a sample of military heights from a (Monte Carlo) population of 20 million observations

22Earlier we noted that the RSMLE and QBE estimators require an assumption of normality, which is not satis�ed.
Here we show that the selected distributions are so close to normal distributions that standard tests for normality
cannot detect the di�erence. Note that this latter result does not rehabilitate the estimators; in a selected sample,
they still estimate the wrong mean and variance.

23Model 6 is just a normal distribution with mean and variance given by the selected height distribution generated
by the baseline model.
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using the baseline model reported as column (1) of Table 2. Applying the selection model, we

obtained nearly 1.6 million observed military height outcomes from this baseline speci�cation. For

each of these observed heights, we constructed the value of the conditional height probability dis-

tribution function for each of the six models described in Table 2 (columns 2-7). For a variety of

di�erent sample sizes, we drew random samples from these observed heights (without replacement

within each sample size) and determined which of the six models had the highest log-likelihood

value for each sample when evaluated at each model's true parameter values. Table 3 contains sum-

mary information from these experiments. Most surprisingly, this criterion seldom selects the true

data-generating model (model 1) as the best-�tting model.24 If one were to rely upon a likelihood

criterion to select a model as having generated the observed sample, one would often select as �best

�tting� a model that implies a population height mean well above or below the true mean. And

in a large fraction of cases (19%-26%) one would select a model with no selection on height as the

best �tting model.

The simulations indicate that researchers cannot rely on the selected height data alone to make

informative statements about the distribution of heights in the population. Identi�cation issues arise

mostly from the fact that in this exercise we are attempting to uncover the process determining

selection into the military based solely on a sample of heights for those in the military. A key piece of

missing information is the fraction of the population that enlists in the military. If researchers had

that information and understood the determinants of how selection into the military and civilian

sectors operated over time, it might be possible to better discriminate among these models. Without

such knowledge, we must rely upon arbitrary assumptions about how individuals end up in the

military to tell a story of how birth cohorts heights varied over time. The above analysis indicates

that it will be nearly impossible to discriminate among alternative sets of assumptions that can

yield substantively di�erent stories about how mean height in the population varied over time when

we use just the information typically employed by heights researchers, the heights of those in the

military. However, as we demonstrate in the next section, just adding a single piece of information,

the fraction of the population that enlists in the military, would make it much easier to discriminate

24When we used all 1,573,488 observations as one sample, model 6 (incorporating no selection on height) had the
highest value of the log-likelihood function. The true model's log likelihood, however, was only smaller by 0.6 points
which is likely within computer round-o� error. The p-value for the null hypothesis of normality for this full sample
using the Doornik-Hansen test was 0.068 (Stata's sktest also had a p-value of 0.068.)
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among thse models.

5.2 Identi�cation when additional information is available

The preceding analysis demonstrates the severity of the identi�cation problem for heights re-

searchers: a single observed military height distribution, to a close approximation, can be generated

by a wide variety of self-selection mechanisms, including a mechanism with no self-selection at all.

But the situation is not without hope. Appendix D extends our discussion to the case where the

researcher has available covariates that a�ect the relative desirability of the military sector. Even

with this additional information, if the dataset contains only observed military heights then one can

expect severe problems when trying to uncover the population distribution of heights from a selected

subsample. However, if we also observe the fractions of the population entering the military, then

it is possible to overcome this severe identi�cation problem.

Here we brie�y describe this extension and our results, referring the reader to Appendix D

for details. For this exercise we generated a Monte Carlo sample of 20 million observations from a

population quite similar to the one we just examined. The new speci�cation assumes that exogenous

shifters a�ect population mean height and the relative attractiveness of the civilian sector arising

from observable explanatory variables. While these variables do not appear in many of the main

sources used by the heights literature, they are often, in principle, available. For example, one can

proxy the relative attractiveness of the civilian sector using data on macroeconomic conditions at

the time the individual enlisted (see Section 6). Otherwise the model we employ here is similar

to that introduced in Section 3. We assume that observed shocks to height and to the desirability

of Army life are symmetric about zero and independent of each other. Under this data-generating

mechanism, approximately 8.15 percent of individuals prefer the military to the civilian sector.

After imposing minimum height standards of 63 and 65 inches (equally probable and independent

of all other covariates), our Monte Carlo dataset includes 1,004,410 observations (5.02 percent of

the total) who prefer the Army and are acceptable to the Army. In all estimations we use only

information on the integer portion of heights; we adjust each likelihood function to integrate over

the continuous heights that would imply the integer portion of height. This is nearly identical to

a Heckman selection model, except we assume only integer heights within the selected sample, and

impose a binding upper bound on the military height restriction.
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Our results (summarized in Appendix Table D.1) imply that many estimates currently found in

the literature are biased (as we argue in Section 3 and Section 4) and not identi�ed. Estimating

the RSMLE model using our Monte Carlo dataset, we obtain a mean height estimate one full inch

less than the true value. We then consider a more general model that conditions on selection into

the military, but that makes no use of information drawn from individuals who do not join. This

model does not converge easily, suggesting it is not well-identi�ed, and it yields a variety of biased

estimates of mean height that are sensitive to starting values. Finally, we consider an unconditional

selection model that uses information on the entire population. This model converges well and

its parameter estimates adhere closely to the moments built into the simulation. Again, this last

model requires additional information not typically used by researchers in the heights literature.

But information analogous to what we introduce in the �nal model may be available, namely, the

fraction of each birth cohort joining the military at each point in time. This o�ers the chance to

obtain estimates of mean height that are relatively free from selection bias.25

6 Econometric analysis of selection in the British military data

Our theoretical and simulation analysis demonstrates that studies based on volunteer armies and

similar sources may su�er from serious selection problems. We now ask whether a closer look at

the sources might have identi�ed the problem. Note the central di�culty: we are asking whether

we can identify selection bias from the selected alone. That said, we show in this section that there

is discernible evidence of selection bias in at least one well-known study. Scholars rightly consider

Floud et al (1990) a central contribution to the historical heights literature. Their discussion of

living standards in Britain in the period 1750�1980 relies heavily on three distinct samples that are

all �military.� The Royal Army and the Royal Marines recruited adult men to serve in the forces.

Floud and his co-authors also use samples of younger males to study age-patterns of growth. We

use two of their �adult� data sources to show that the observed heights of soldiers in these sources

are consistent with the importance of selection.26

In all models we have two types of regressors, which we call �cohort� and �current conditions�.

25This information is quite useful in this static model of sector choice. In more realistic situations, when individuals
have multiple opportunities to enlist, it should be also provide key information to help control for self-selection.

26The military data used in this section underlie the estimates reported by Floud et al (1990) and used by Weil
(2007) and others.
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The �rst is a series of dummy variables for the years in which the individuals were born. These vari-

ables should, under the �standard of living� interpretation, a�ect height, because they characterize

the individual's experience as a child and young adult. Everyone born into similar socioeconomic

circumstances in 1820 faced a similar biological standard of living.27 The �current conditions� vari-

ables re�ect not the standard of living for a person's birth-cohort, but conditions obtaining at the

time he joined the Army. Consider two men, both born in 1820. One joins the Army in 1842

and other in 1843. The heights literature gives no reason to think the former should be taller or

shorter, assuming both have stopped growing by the time they joined. We might think, however,

that if economic conditions in 1843 were relatively bad, then men from relatively more privileged

backgrounds will be more likely to join than were similar men in 1842. If there is no selection

on height, then no current-conditions variable should explain the heights of current Army recruits

who have reached their �nal height. The �current conditions� variables we employ here enter with

signs that make sense in the way just outlined. But we should stress that any current-conditions

variable that a�ects conditional mean height, whether positively or negatively, suggest a problem

of selection. If the heights of current soldiers yield an unbiased estimate of the heights of the entire

male population, then no current conditions variables should enter the regression with meaningful

magnitude or statistical signi�cance. On the other hand, the estimation discussed in this section

does not re�ect an adequate e�ort to model the selection problem. What follows are diagnostics,

not models of the selection process.

We use two datasets pertaining to the Royal Army, which we call �Army� and �AMD� (Army

Medical Department, whose reports underlie that source).28 We experimented with a number of

di�erent measures of current economic conditions, and also with di�erent cut-o�s for both height

and age. The age cut-o� is important because younger men might still be growing when they enlist,

and the height cut-o� is important to be sure we are above h*, the minimum height standard for

enlistment. (Floud et al (1990) do not always report the lower truncation point they use, but in

one example (the birth cohort of 1806-1809), they use a truncation of 65 inches (Table 3.13)). We

27More precisely: in studies such as Floud et al (1990), the main variable a�ecting height is birthyear. In this case
the birth cohort (b) is the only determinant of heights. For those enlisting at date t, in the absence of selection biases
E[h|a<h<c,b,z(t)]=f(a,c,b) and P[(a<h<c|b,z(t)]=g(a,c,b). In other studies more information about the person's
background is known and used. Appendix G provides a more formal justi�cation for the diagnostics reported in this
section.

28Appendix F discusses the sources, provides descriptive statistics, and also reports the full models presented in
this section.
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have direct reports on the minimum height from Spiers (1980) and the AMD reports, and, with the

exception of 1861, the cut-o�s were always 65 inches or less for the periods we use. Table 4 pertains

to the Army data. Here we report the tests for the null hypothesis that di�erent sets of variables

have no e�ect on height. Appendix F reports the full models. All models have single-year birth-year

dummies for all years of birth. Column (1) shows that we reject the null that ages do not a�ect

height; they should not, in the absence of selection. This simple diagnostic performs the same way

in all speci�cations in Table 4. In Column (2) we add a set of �macroeconomic� variables as well as

the age dummies, and obtain an even stronger result. The macro variables are somewhat sensitive

to cut-o�s for age and height, at least for the Army data. The most �exible and robust approach

is reported in Column (3): we add to the birth-year dummies a full set of dummies for the year

of enlistment. This relaxes the implicit restriction imposed by the age dummies (that a given age

has the same e�ect for all periods) and captures the same information as the macro variables, but

more �exibly. Exclusion of the recruitment-year variables is rejected for all of the subsamples we

consider. Table 5 reports a similar exercise for the AMD data using OLS models and the RSMLE

model. Here the results are uniformly stronger, in part because the AMD data create much larger

sample sizes. Appendix F discusses results for this approach using the RSMLE estimator.

7 Treatment of sample-selection bias in the historical heights liter-

ature

The scienti�c study of the human physical growth � auxology � emerged in the 1830s, with studies

by European scientists, including Louis-René Villermé, Adolphe Quetelet and Eduoard Mallet,

who gathered information on the heights of army recruits in France, Belgium and Switzerland

respectively (Staub et al. 2011). Villermé drew a connection between height and health; Quetelet

introduced the normal distribution to the study of practical scienti�c questions, including human

growth; Mallet noticed a modest urban height advantage and attributed it to Geneva's relative

prosperity. A half-century later Danson (1881) published his statistical study of English prisoners,

which showed that males did not reach their terminal heights until after age 22. He concluded that

armies should eschew 18-year old recruits because slightly older men who had already reached their

terminal height would prove to be hardier soldiers. The thread that connects these studies is their
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belief that height re�ected well being. The thread that connects them to the modern literature,

besides their concerns with human height and well-being, is that they relied on readily available

convenience samples subject to unknown selection. Selection was an issue at the dawn of statistical

anthropometrics and, as we argue below, remains an underappreciated issue in the literature. In this

section, we review how selection issues have shaped the discussion of three principal sources of height

data: military recruits, slaves, and prisoners. With the exception of a fruitful, but underappreciated

debate about height-based selection into the slave trade, concerns with selection and how it might

a�ect the interpretation of results have not received su�cient attention.

7.1 Soldiers, military recruiting, and military school students

Fogel et al (1982, pp.29-30) were the �rst to call attention to the industrialization puzzle, namely that

the positive correlation between height and per capita income observed in modern cross sectional

studies did not hold in the time series for adult white males in the late antebellum United States.

They postulated that the decline in heights was concentrated in the urban-born population. Rapid

urbanization, poor public sanitation and more pronounced urban income inequality meant the

conditions of city life deteriorated during industrialization. Urbanites were shorter as a consequence.

Several subsequent studies report remarkably similar patterns. Komlos (1989) reports a late

eighteenth-century decline in the heights of adult male Hapsburg recruits. The mid-eighteenth

century peak was not attained again for nearly 150 years. Floud et al (1990) �nd a general secular

increase in English heights during the Industrial Revolution, with a sharp reversal for cohorts born in

the 1840s and 1850s. Komlos (1993) reworks the English �gures and argues that that English heights

declined between 1770 and 1830. Subsequently Komlos and Küchenho� (2012) push the onset of

English height decline back to the 1750s, a secular decline that persists to 1850. A'Hearn (2003)

reports a 3cm decline in Italian heights between 1740 and 1800, and attributes it to Malthusian

pressures. The era of early industrialization was an era of shrinking men.

Studies of U.S. soldiers generate similar results. Komlos (1987) and Coclanis and Komlos (1995,

�g. 3, p.101), use military school students to demonstrate long height cycles. The mean height of

19-year old West Point cadets falls by a half-inch in the late antebellum era, but recovers by the end

of the Civil War. The mean height of 19-year old Citadel cadets is stable up to 1900 and increases
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by about 2.5 inches up to the 1930s.29 Steckel (1995) links several independently constructed series

of US soldier heights, from the French and Indian War (1754-1763) through the Second World War

(1941-1945). His widely-reproduced diagram demonstrates a decline in terminal adult heights for

cohorts born between the 1830s and the 1880s.

Once the industrialization puzzle was found in the time series, it was quickly uncovered in the

cross-section as well. Komlos (1989) �nds that Hapsburg Empire army recruits from the most

economically developed regions within the empire were the shortest, while recruits from the least

developed regions were among the tallest. Similar patterns emerged elsewhere in Europe. Mokyr

and Ó Gráda (1996) report that poor Irish recruits into the English East Indian Company (EIC)

army were taller than less poor English recruits. Moreover, Irish EIC recruits from relatively wealthy

Ulster were shorter than recruits from elsewhere in Ireland. Sandberg and Steckel (1988) �nd that

mid-nineteenth century Swedish soldiers from the less developed north and east were taller than

recruits from the more developed west. Urban Italians paid a height �penalty� relative to their rural-

born peers (A'Hearn 2003). In the United States, Union Army troops from less developed Kentucky

and Tennessee were taller than troops from the Old Northwest who were taller than troops from

industrializing New England (Johnson and Nicholas 1997, p. 208). Among Pennsylvanian recruits,

men from less developed and less commercially-oriented regions were taller than men from the

industrializing southeast region of the state (Cu� 2005, p.207). Margo and Steckel (1982) also

found that ex-slave recruits into the Union Army from the less commercialized inland areas were

taller than those from the more commercialized coastal regions.

Explanations of both the time-series and the cross-section puzzles build on those o�ered by

Fogel et al (1982). The resolution of the industrialization puzzle o�ered in the literature focuses on

the decline in net nutrition that occurred in the early stages of industrialization. According to this

view, the underlying sources of decline were: (1) increasing income inequality; (2) increasing income

variability; (3) increases in the price of food relative to manufactured goods; (4) increasing distance

between the production and the consumption of food, with the consequent spoilage waste and loss of

nutrients; (5) increased work e�ort; and (6) increased infection rates and disease incidence (Komlos

and Coclanis 1997, p.455). The di�culty lies in accounting for many or most of these e�ects,

29Several studies attempt to estimate per capita food consumption (or disease incidence) and link it to birth cohort
heights, but the exercise of recreating diets is fraught with assumptions, judgment calls and error (Floud et al. 1990).
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which, in the end, are more commonly asserted than shown to be the cause of height trends.30

Coclanis and Komlos (1995, p. 92), in fact, insist that any residual controversy concerning the

industrialization puzzle centers on the �nature and causal connections of height cycles� because the

existence of heights cycles, �is no longer questioned.� We beg to di�er. While we do not reject

the possibility that heights cycled prior to the long secular increase in heights observed in the

twentieth century in the developed world, we remain skeptical about the existence and existing

interpretations of eighteenth- and nineteenth-century cycles because the literature has not taken

the selection problem (as opposed to the truncation problem) seriously.

Much as the literature follows Fogel et al (1982, p.42-45) in documenting the puzzle; it follows

them, too, in its discussion of selection issues. They write:

Much of our work during the past four years has been devoted to assessing the

quality of the data .... Volunteer armies, especially in peacetime, are selective in their

admission criteria and often have minimum height requirements. Consequently, even if

information on rejectees exists, there is the question of the extent to which applicants

are self-screened... There is clearly evidence of self-selection bias in volunteer armies.

Persons of foreign birth and from cities are overrepresented. Native-born individuals

living in rural areas are underrepresented...

Their concerns with the nativity and urban-rural composition of their samples do not address height-

based selection into the sample; rather it re�ects selection on other observable characteristics within

the sample. They then turn their attention to left-tail shortfall and their approach to correct for the

nonnormality of the data that followed from the military's minimum height standard. More than

two decades later, the discussion is hardly changed. After a brief discussion of existing methods for

dealing with left-tail shortfall, A'Hearn (2003, p.359) turns his attention to selection:

A second complication concerns selection e�ects. Whatever method is used [to correct

for left-hand tail shortfall], the legitimacy of comparisons across groups depends on

constant selectivity above the truncation point... [T]here is reason to worry about this

30Several studies attempt to estimate per capita food consumption (or disease incidence) and link it to birth cohort
heights, but the exercise of recreating diets is fraught with assumptions, judgment calls and error (Floud et al. 1990)
See Haines, Craig and Weiss (2003), Komlos (1987), and Bodenhorn (1999) for examples. Gallman (1996) and Haines,
Craig and Weiss (2003) express skepticism concerning antebellum nutritional decline.

26



for the sample at hand. In the eighteenth century, especially before 1770, it seems likely

that recruiters did not get a random sample of individuals exceeding 63� in height...[But]

it seems likely that selection disproportionately emphasizes heights in the immediate

neighborhood of the statutory minimum.

From there, the discussion returns to the truncation issue, and A'Hearn lets pass an opportunity to

explore the implications of selection on heights throughout the distribution of heights; instead, he

focuses on selection in the immediate neighborhood of the minimum height standard.

Our survey of the literature uncovered only a few instances in which the selection problem dis-

cussed above is recognized and given careful consideration and explored in any meaningful way.

Floud (1984, p.12) acknowledges that recruits into volunteer armies represented a self-selected sam-

ple that may not be representative of the population. He continues, however, that any selection

is �unlikely� to be �large enough to vitiate comparisons over time and between... countries.� Weir

(1997, p.174-5) disagrees. He recognizes if recruiter selection manifests as a strict exclusion only of

those below the truncation point, the methods, such as RSMLE and QBE may correct for it, but

if selection is continuous across the entire distribution of heights, these estimators fail to generate

accurate estimates of mean height. Meier(1982, p.297), in his comment on the original Wachter and

Trussell (1982a) paper introducing the RSMLE and QBE estimators, pointed out that �recruitment

e�ort� and �disparagement of shorter individuals� might vary continuously over a range of heights

and could yield a selected military height distribution with a nearly normal shape. Wachter and

Trussell (1982b, p.302), in their rejoinder, agreed that some scenarios for recruitment and volunteer-

ing could yield �spuriously normal observed distributions whose failure to represent the underlying

population would be undetectable from internal evidence.�

In his critique of Komlos' (1987) study of West Point cadets, Gallman (1996, p.194) not only

refuted Komlos' claim of nutritional decline but raised serious concerns about selection. If Komlos'

contention that average cadet height actually declined were true, it would only be interesting �if

cadets can be taken to be a random sample of some larger, more interesting group � say all young

white men in the United States. That, of course, cannot be.� Not everyone was eligible for West

Point and, of those who were, young men who attended were interested in either a military or

engineering career. Despite the unrepresentative nature of the sample, Gallman (1996, p.194) notes
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that it might �still have wide meaning if the pool of candidates retained an unchanging character

across the full period of this study � that is, if the same segments of the society continued to supply

candidates, in roughly the same relative numbers. But is that likely to have been so?� Gallman

observes that cohorts born after the early 1840s and interested in a military career would have faced

the prospect of serving in an army with a large permanent class of lieutenants, captains and majors

who had gained battle�eld experience in the U.S. Civil War. This surely pushed many otherwise

promising cadets into non-military pursuits.

A stylized fact of the European industrialization puzzle literature is Mokyr and Ó Gráda's (1994;

1996) �nding that poor Irish recruits into the English East India Company (EIC) army were taller

than similarly situated English recruits. A number of possible explanations have been o�ered for

this counterintuitive insight, including the relatively nutritious Irish diet of milk and potatoes and

�epidemiological isolation� (Nicholas and Steckel 1997). Mokyr and Ó Gráda (1994, p.42) o�er an

alternative explanation: because incomes were lower in Ireland than England, the relative quality

of Irish recruits was higher. The poor Irish appear to be taller in the record than they really were

because the EIC drew a larger proportion of recruits from better-o� families. The taller Irish were

not really taller and, therefore, biologically better o� than the English. Faced with less attractive

civilian employment opportunities for a given height, taller Irish men were disproportionately more

willing to enlist than were English men. The tall Irish recruits, they note, were a supply-driven

rather than a demand-driven selection phenomenon.

The remarkable feature is not that Irish men presenting themselves for service in the EIC were

taller than their English counterparts; the remarkable feature is that the �tall-but-poor� Irish result

is widely repeated in the literature absent Mokyr and Ó Gráda's repeated concern that the result is

chimerical.31 Two of the more outspoken critics of the military heights literature have been largely

ignored. Ó Gráda (1996) argues that the English East Company's Irish military recruit data is

subject to changing selection on height across the business cycle and with military events. When

civilian labor demand was weak or when the EIC army was likely to see action, recruit heights fell

31Nicholas and Steckel (1997), Johnson and Nicholas (1997), Komlos (1998, p. 780), Deaton (2007), and Bozzoli,
Deaton, and Quintano-Domeque (2009), among others, discuss the tall-but-poor Irish without referring to selection
concerns. Mokyr and Ó Gráda (1994, p.50) also doubt the time series evidence. The 1810-1814 (birth) cohort of
recruits was taller than the 1802-1809 cohort not because the biological standard of living had changed noticeably,
but because labor market conditions changed enough for adults that the EIC had greater success attracting taller
Irish recruits.
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dramatically. Grubb (1999, p. 140) rightly notes that �heroic assumptions about the randomness

in height� of unmeasured potential recruits and about the nature of self-selection into the military

are necessary to draw inferences about the population from samples of volunteer armies.

Our reading of the historical heights literature that makes use of military samples, which rep-

resents a plurality, if not an outright majority of the studies, reveals that the potential for sample

selection bias is underappreciated. When the issue does arise, it is given passing notice and attention

turns to left-tail shortfall or truncation bias (see Komlos (2003, pp. 166-167) for a recent example).

Given our theoretical and empirical discussion above, the failure to take sample selection bias seri-

ously raises substantive concerns about the existence of and explanations for the industrialization

puzzle.

7.2 Slavery and the slave trade

Given that one of the principal contributions of the modern heights literature is the demonstration

that income and wealth inequality manifests itself in human height-at-age, it is not surprising

that historians were intrigued by the anthropometric consequences of slavery. Relatively deprived

children are consistently shorter at age than relatively well-o� children, and it is hard to imagine

a more potentially deprived population than slaves. Economic historians have produced several

notable studies of slave heights, which have led to two general results. First, slave children were

�extraordinarily small� (Steckel 1995, 1923). The mean height of slave children generally fell below

the �rst percentile of modern stature until about their tenth year. These kinds of heights are

sometimes observed in developing countries today, but are practically unheard of in the developed

world. As Steckel (1987) observes, a modern American pediatrician would be alarmed if presented

with such short children. Second, the growth of slaves in adolescence was remarkably vigorous;

adult slaves attained nearly the 20th percentile of modern stature. Such recovery growth generated

relatively tall adult slaves. Although they were shorter, by about one inch, than contemporary

white Americans, measured adult slaves were taller than many contemporary European populations,

especially low-income Europeans. But it is not clear whether the conclusions � recovery growth and

relative well-being � are real or the consequence of selection into the sample.

Economic historians have constructed plausible explanations for these two features of slave

heights. Poor medical knowledge and even poorer practice led to high infant mortality rates, which
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is probably indicative of high morbidity rates from both acute and endemic (gastrointestinal and

diarrheal) infections.32 Because diarrheal infection interferes with the nutrient-growth nexus, per-

sistent endemic infection will lead to stunting. If nutrition is simultaneously low, the negative

consequences on growth are magni�ed. Slave children, according to this literature, survived on a

poor diet of hominy and pork fat. Growth recovery began around age 10 because the typical slave

child entered the plantation labor force around that time. Normally, the demands of heavy work

expected of slaves would have further interfered with growth, but once children entered the labor

force they received shoes, which reduced the extent of fecal-based gastrointestinal infection, as well

as more and better food, perhaps as much as one-half pound of pork per day. The increased meat

ration for working slaves was further supplemented by vegetables and legumes, which contributed

to the apparent catch-up growth of North American slaves.

Although information on US slave heights comes from a host of sources � �contraband� or

runaway slaves that joined the Union Army in the 1860s (Margo and Steckel 1982), notarized

certi�cates of good behavior �led with New Orleans' courts (Freudenberger and Pritchett 1991),

manumission and freedom papers (Komlos 1992; Bodenhorn 2011), and runaway advertisements

(Komlos 1994), among others � the principal source of information are the data recorded in the

coastwise manifests �led by slave traders (Steckel 1979; Steckel 1987). To enforce the prohibition on

international slave trading, slave traders moving slaves in the seaborne, interregional, domestic trade

were required to provide shipping manifests that included the name, age, sex, color and height (in

feet and inches) of the slave, as well as the name and residence of the slave trader. Tens of thousands

of slaves were recorded on manifests.

The issue of whether selection bias a�ects the observed pattern of height-at-age and growth

velocity is not discussed in either Steckel (1979) or Steckel (1987), but is given two paragraphs in

Trussell and Steckel (1978, 550-551), who use the data to con�rm their estimates (drawn from other

32Infant survival may create its own self-selection bias in that the ability to resist certain infections, which may
manifest itself as vigorous growth capacity in adolescence, may be partly responsible for the observed pattern of
slave growth. Instead of recognizing this possibility, vigorous adolescent growth is attributed to di�cult to document
changes in the slave child's work regimen, disease environment and food allotments. Rees et al (2003) develop a
dynamic optimization slave owner model linking planter pro�t maximization with the pattern of slave growth. A
related literature arose around the question of whether smallpox reduced the height of survivors. Voth and Leunig
(1996) claim that the near eradication of small pox in nineteenth century England is responsible for about one-third
of the reported increase in average heights between 1770 and 1873. Voth and Leunig's �nding brings attention to
potential survivor bias and the e�ects it may have on recorded heights over time. See Razzell (1998) and Oxley (2003)
for critiques of the Voth-Leunig hypothesis.
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sources) of age at menarche and age at �rst birth among slave women. They discuss two possible

selection e�ects: a downward bias due to a lemon's market in slaves, in which only below-average

height slaves entered the interregional trade; or, an Alchian-Allen (1964) �shipping the good apples

out� market in which a �xed shipping cost represented a smaller fraction of the higher price received

for taller slaves making taller slaves more likely to enter the interregional trade. They contend that

age at peak growth velocity (onset of adolescent growth spurt) would not be much a�ected by either

e�ect and do not further pursue the issue of potential sample-selection bias.

Higman's (1979; 1984) studies of Caribbean slaves provide some empirical evidence that selec-

tion may be driving Steckel's adolescent recovery �nding. Unlike the heights of US slaves, which

was recorded only if slaves entered into the coastwise trade, the British government required uni-

versal registration of slaves in anticipation of general emancipation. Registers of Trinidadian slaves

were open for public inspection and government o�cials visited plantations to con�rm their va-

lidity, making corrections when necessary. Caribbean slaves demonstrate less adolescent recovery.

Height di�erences between US and Caribbean slaves may be due, of course, to di�erences in genetic

potential, disease incidence, work load or diet (Steckel (1995, p. 1925), in fact, attributes them

to fetal-alcohol syndrome due to substantial and growth-retarding rum allowances on Caribbean

plantations). But we need not turn to di�cult-to-prove conjectures when the di�erences were quite

possibly driven by height-based selection into the US coastwise-trade sample and near-universal

coverage in the Caribbean sample.

Freudenberger and Pritchett (1991), Pritchett and Freudenberger (1992), and Pritchett and

Chamberlain (1993) systematically explore the sample-selection bias problem of the coastwise man-

ifest sample. They argue that the manifest sample is subject to substantial selection on height of

the �shipping the good apples out� type. That is, when a �xed transportation cost is applied to

similar goods, the high-quality, high-priced good (a taller slave in this instance) becomes relatively

less expensive in the destination market. Four features are needed for the good-apples e�ect to hold:

(1) transport costs must be non-negligible; (2) transportation costs are not proportional to price at

the source; (3) the goods are close, but not perfect substitutes; and (4), the elasticity of substitution

between each of the two goods in question and a composite third good (say, free or indentured labor)

not be substantially di�erent (Borcherding and Silberberg 1978). Pritchett (1997) and his coauthors

provide evidence on transportation costs that supports conditions (1) and (2). Conditions (3) and
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(4), they contend, are defensible: tall and short slaves are (imperfect) substitutes in production;

and free or indentured labor, as the historical record shows, were substitutable for slaves, whether

tall or short.33

Moreover, Pritchett and his coauthors show that the e�ect will be more pronounced for younger

than adult slaves. One prediction of the good-apples slave model is that prices will be a positive,

but declining function of age (Pritchett 1997, p.73 note). Because buyers were willing to pay

more for taller slaves, traders faced incentives to select taller slaves for the coastwise market. The

incentives to select taller slavers for the coastwise market were also stronger, the longer the slave's

expected lifetime � that is, the younger the slave. Calomiris and Pritchett (2009) �nd that slave

children shipped with their mothers were shorter than children of the same age shipped alone. This

result is puzzling absent selection on height. The available evidence is consistent with the model's

prediction; the height di�erential between slaves traded with their mother and those traded without

their mother were most pronounced in childhood, declining in adolescence and largely disappearing

among adults.

The conclusion to draw from the exchange between Pritchett and his coauthors and Komlos and

Alecke (1996) is that �slaves shipped coastwise were not representative of the general population� of

North American slaves (Pritchett 1997, p. 83). In this instance, the consequence of sample-selection

bias works in favor of one of existing interpretations. Pritchett and his co-authors argued that

because selection on height was stronger for younger slaves than for adult slaves, Steckel's coastwise

sample includes proportionately more tall children than tall adults than would be observed in a true

random draw of the general slave population. This means that the much-discussed recovery growth

of adolescent slaves is underestimated. It is likely that young slaves were even more pathologically

short than they appear in the manifest sample.

Unfortunately, we cannot provide as sanguine a conclusion about the second result of the slave

height literature. Pritchett's statement of the good-apple model predicts that selection will be less

pronounced at older ages and lowest among adults, but it does not predict the absence of selection.

Higman's (1979) study of Caribbean slaves, in fact, provides some evidence of selection on height for

inter-island trade. The mean height of native-born Trinidadian adult males (25-40 years) measured

33See Komlos and Alecke's (1996) response to Pritchett's evidence. The substitutability of slave and indentured or
free labor is discussed in Galenson (1981) and Grubb (1994; 2001).
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in 1813 was 165.6cm. The mean height of Creole male slaves, or those born in the New World,

and imported into Trinidad from sugar islands was signi�cantly taller at 167.3cm (t=2.15). Creole

slaves imported from non-sugar islands were taller still at 170.6cm (t=4.42). Imported females, too,

were signi�cantly taller than native-born Trinidadian female slaves.

The available evidence, although not de�nitive, points toward good-apples selection in the in-

terregional slave trade. This type of selection need not be revealed by (non)normality of height

distributions, or heaping on height or age, or left-tail shortfall. That the selection process is not

readily revealed does not, of course, imply that it is unimportant. Unrepresentative selected samples

will yield incorrect inferences when selection is correlated with the variable of interest. Pritchett's

concerns with slave samples are well-founded, and it is unfortunate that his contributions have not

had more in�uence on the literature.

7.3 Criminals and prisoners

The anthropometrician's concern with the condition of the working classes during industrialization,

in combination with the wide availability of data, led scholars to study the heights of incarcerated

or transported criminals. Scholars making use of prisoner data readily acknowledge that prisoner

samples are not representative of the underlying population; the professional and middle classes and

farmers are underrepresented, and unskilled laborers and other low-wage groups are overrepresented

(Nicholas and Steckel 1991; Riggs 1994). In one of a series of studies of nineteenth-century US

prisoners, Carson (2008, p.591) attempts to recast the selection vice as a virtue:

The prison data probably selected many of the materially poorest individuals, al-

though there are skilled and agricultural workers in the sample. While prison records

are not random, the selectivity they represent has its own advantages in stature studies,

such as being drawn from lower socioeconomic groups, who were more vulnerable to

economic change. For the study of height as an indicator of biological variation, this

kind of selection is preferable to that which marks many military records � minimum

height requirements.

In other words, prisoner heights are preferable to soldier heights because prisoners are not subject

to left-tail shortfall.
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Although Carson labors to recast a vice as a virtue, it remains a vice if the purpose of the

historical anthropometric literature is to speak to the average standard of living. Several studies

(which are not without their own selection biases) have shown that the heights of the middle and

upper classes in the nineteenth-century United States did not mirror the height cycles of the lower

classes (Sunder 2004; Sunder 2011; Lang and Sunder 2003). Thus, if lower-class heights are more

responsive to economic changes than middle- and upper-class heights, samples in which the lower

classes are overrepresented are likely to overstate any real changes in population heights. More-

over, inferences about changes in the average biological standard of living may re�ect changes in

the sample composition, which may be pronounced over the business cycle or during long-run sec-

ular changes in rates of economic growth. Using a small subset of the available samples, Sunder

and Woitek (2005), in fact, show that co-movements between economic and height cycles are most

pronounced for American blacks (predominantly unskilled labor), relatively pronounced for Aus-

trian soldiers and Ohio National Guardsmen (relative overrepresentation of laboring classes), less

pronounced for late nineteenth-century registered voters, and virtually nonexistent for middle- and

upper-class women.

The potential for compositional changes in the heights of individuals selected into prisons to drive

estimated temporal height changes has not gone unnoticed. Nicholas and Oxley (1996), Johnson and

Nicholas (1997) and others have considered how the relative under- or over-representation of certain

groups, which may change over time, may in�uence estimated versus the true changes in population

heights and biological well-being. But their discussions often fail to appreciate the subtleties of

selection on height. Nicholas and Steckel (1991, p.949), for example, o�er the following:

Although there is no single powerful test of selectivity bias, the various tests reported

hereafter put at risk the hypothesis that the decline in heights was an artifact of our data.

Almost one-third of our convicts were tried in a county other than that in which they

were born, but it is not possible to know whether the move occurred during childhood,

adolescence, or after maturity. Assuming that all convicts tried in the same county as

their place of birth were nonmovers, �ve-year moving averages of height for rural- and

urban-born nonmovers showed the same pro�le as that for the entire sample.
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This argument is irrelevant to the issue of selection into their sample; it merely shows that there is

no apparent selection into mover and non-mover groups. The issue is whether cohorts, in response to

changing economic conditions, di�erentially selected into criminal activity and were apprehended,

tried, convicted, and imprisoned conditional on characteristics correlated with height. Evidence

from nineteenth-century US prisons shows that prisoners were short compared even to soldiers (Bo-

denhorn, Moehling and Price 2012). The issue is whether selection into prison, conditional on

selecting into crime, followed from height, which seems likely. Persico, Postlewaite and Silverman

(2005) and Case and Paxson (2008) �nd evidence that height is positively correlated with labor mar-

ket outcomes (employment and wages), mediated through cognitive abilities and the accumulation

of more human capital by taller youth and adolescents. Because taller individuals face relatively

better legitimate labor market opportunities than shorter individuals, criminal activities are less

attractive to taller people. Prisons are thus populated by short, relatively low-income people.

Researchers using prison samples take solace in the fact that their samples are Gaussian but, as

we have demonstrated above, apparent normality alone need not reveal selection even in the presence

of selection. The issue that concerns us is whether selection on height was likely to change in a way

that would generate the counterintuitive results reported in the historical heights literature, whether

those changes are evident in the research, and whether the explanations are consistent. The Roy-

type model developed above predicts that better economic conditions are consistent with shorter

prisoners in both the cross section and the time series. If legitimate labor market opportunities are

conditioned, at least in part, on height, economic expansions will create more and better legitimate

opportunities and short individuals who may have selected into crime in bad times will select into

legitimate activities in good times. While criminals will exhibit a distribution of heights, they will

be disproportionately drawn from the left-hand tail of the population distribution and even more

so as economic conditions improve. If we use the heights of prisoners as indicators of the biological

standard of living, it will appear that biological times are tough when economic times are good and

vice-versa. In fact, what we are observing in this instance is di�erential selection on height into the

subset of the criminal class that gets caught and convicted.

Consider Riggs's (1994) study of Scottish prisoners. He claims the sample is representative of

Scottish working-class heights because �in a society of heavy drinkers ... many workers were at risk

of being arrested and thus having their physical stature preserved in the historical record� (Riggs
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1994, p.64). While his results are in general agreement with the industrialization puzzle, he �nds

the �curious� result that the heights of those arrested in the 1840s actually increased markedly.

Riggs (1994, p.70) considers this curious because the 1840s, known as the �hungry forties,� were

�notorious for hardship and hunger.� When considered in light of our Roy model, the result is not

so curious. If the e�ect of food shortages and unemployment was that men moved from legitimate

to criminal activities, the deterioration in legitimate opportunities would draw di�erentially more

men into crime from the right-hand than the left-hand tail of the height distribution because men

in the left-hand tail were already disproportionately in the criminal market prior to the downturn.

Moreover, if right-tail entrants into the crime market have relatively little criminal human capital,

they were probably more likely to have been apprehended and imprisoned. Thus, heights apparently

increase during a sharp economic downturn when the �intuitive� connection between the biological

and economic standard of living would suggest otherwise.

In a series of studies, Nicholas and co-authors study the heights of late-eighteenth and early

nineteenth-century English and Irish prisoners. They acknowledge that their sample is unrepresen-

tative in that the lower classes and the young are overrepresented, but one feature recurs: the Irish

are taller than the English, a feature discussed earlier in reference to military heights. Nicholas

and Steckel (1991) �nd that male Irish convicts are taller than male English convicts. Nicholas

and Oxley (1996) �nd that the heights of rural-born English convicts decline while the heights of

Irish-born women rise. Johnson and Nicholas (1997) use the Irish as a �control� group against which

to compare English women because no Industrial Revolution occurs in Ireland. Yet, Irish women

are tall relative to the English. They are �con�dent that there are no obvious selection biases...�

that would generate their results. Their contention is puzzling in that they cite and discuss Mokyr

and Ó Gráda's (1994; 1996) result without acknowledging the Mokyr and Ó Gráda conjecture that

the Irish height advantage results from the army being more attractive to taller people in a poor

economy. Is it not also likely that criminal activity is relatively more attractive to taller people in

a poor economy?

Finally, studies of American prisoners yield results similarly at odds with the industrialization

puzzle. Komlos and Coclanis (1997) �nd that the heights of black men born into slavery did not

decline in the 1830s and 1840s; Sunder (2004) reports that heights of Tennessee prisoners were

stable in the late-antebellum era; Carson (2008) �nds no evidence of the antebellum puzzle among
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Missouri's prisoners. These studies then attempt to reconcile stable or rising stature with the

antebellum puzzle. Komlos and Coclanis (1997, p.452) contend that slaves were insulated from the

market and �ate all they were allotted;� Sunder (2004) argues that Tennesseans raised hogs and did

not sell meat in the interregional market so that they had plentiful access to protein; and Carson's

(2008, p.603) explanation turns on the relatively tall stature of the low-income Ozark Missourians

due, in large part, to their reliance on dairy (a variation of the tall-but-poor Irish explanation),

whereas wealthier northern Missourians grew less protein-rich grains.34 Alternatively, our Roy

model predicts a south to north Missouri prisoner height gradient that is consistent with a north to

south wealth gradient. The relatively less attractive legitimate market opportunities in the Ozarks

drew relatively taller men into the criminal market; better opportunities in northern Missouri drew

men of comparable height, conditional on other characteristics, into the legitimate labor market.

We acknowledge that we have o�ered selection-based criticisms of several prominent studies

without returning to and using our diagnostic test to analyze the data underlying those studies to

determine, to the extent we could, whether selection drives the results. In future work, we will

explore the consequences of potential selection bias in some commonly used data sets. The purpose

of the review is to show how a Roy model provides a set of internally consistent predictions rather

than ad hoc reconciliations of evidence inconsistent with the industrialization puzzle. Military and

prisoner heights rise in bad economic times because alternative employments � military service and

criminal activity � become relatively more attractive to the legitimate civilian labor market. Some

tall men who would �nd remunerative legitimate civilian employment in a good economy turn to

the military or crime in a bad one. Alternatively, some short men who would not have attractive

legitimate market opportunities in bad times will be drawn into the civilian market in good times.

The result is an observed, but not actual countercyclical pattern of biological well being.

8 Conclusions

The heights literature is now a large and important component of economic history and development

economics. We agree that the central issues of interest in this literature, long-term changes in the

34Rees et al (2003) provide a dynamic optimization model of slave owner behavior consistent with the �remarkable�
catch-up growth uncovered by Steckel (1986; 1987), which o�ers some insight into care and feeding of slaves in
response to changes in the market price of slaves. The Rees et al (2003) model presumes substantial market-oriented
responses rather than �insulation� from the market.
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standard of living, should occupy a prominent place in the agenda of economists. Unfortunately,

much of the current literature that uses heights as an indicator of living standards probably su�ers

from selection bias. Most of these sources are selected in some way, and the biases that arise because

of the selection issues are pernicious and quite possibly could account for many of the interesting

�facts� the heights literature claims to have identi�ed.

Our message may seem entirely negative, but that is not how we intend it. First, we do not

advocate rejection of the heights literature, its themes or basic approaches. We do think that taking

selection into account will require tempering of some of the broader claims made. We also hope

that attention to selection will guide the literature away from complicated, ad-hoc explanations

of surprising �ndings; as we note, some of these might re�ect little more than selection. Second,

and more importantly, we hope that careful attention to selection issues will allow these sources to

speak in new and interesting ways. The nature of selection into the British Army (for example) is

a statistical problem for those who want to use soldiers' heights to infer changes in the standard

of living standards during the Industrial Revolution. But the selection process itself can yield rich

insights into the nature of labor markets at the time: what led some young men into the Army, and

what does this tell us about working-class life and the opportunities o�ered by an industrializing

economy? Taking selection seriously, instead of assuming it away, promises yet more insights from

an already mature literature.
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Appendix A: The military's decision to accept a recruit

The occupational choice model developed in Section 3 implicitly assumes that the Army accepts

everyone who wants to volunteer. We know this assumption to be false; the most obvious restriction

was the minimum height requirement that generates the need for estimators such as the RSMLE

and the QBE. Here we extend our model to allow the military, too, to be an optimizing agent, one

that can reject for military service some individuals who volunteer.

We assume the Army produces a service called �security� using a constant-returns-to-scale pro-

duction function that depends on the sum of security services provided by all current soldiers.35

Each individual soldier produces a security service that is a function of his height h and a set of

military abilities εM . Again, we are agnostic on whether height per se makes a better soldier, or

whether height is simply correlated with characteristics that make men better soldiers. The Army

pays each soldier in the manner described earlier. The Army must also pay additional �xed costs

for each serving soldier over and above what that man receives as a �wage.� These costs include

uniforms and training. The net security value (security value minus costs of hiring) of a soldier with

height h and military abilities εM is S (h, εM ). One would expect S (h, εM ) to be positive, but one

can imagine soldiers who cost more than they are worth.

Now abstract from our log-linear formulation of the utility of being a civilian and the utility of

being a solider. The civilian economy values these same two traits along with a third trait that is

speci�c to the civilian sector, εC . Civilian wages are given by

wC (h, εC , εM ) . (11)

Suppose the military can pay soldiers a wage that is a function of all three characteristics. Assuming

the military can observe h, εC , and εM , let

wM,h,C,M (h, εC , εM ) (12)

be the wage that the military pays a soldier. We continue to assume that each individual has

35In our model, di�erent types of soldiers can produce di�erent amounts of security, but there are no externalities
or spillovers; a good (bad) soldier does not increase (decrease) the e�ectiveness of other soldiers.
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preference parameters for the civilian and military life τC and τM .

This implies that a man joins the Army if

wM,h,C,M (h, εC , εM ) + τM ≥ wC (h, εC , εM ) + τC (13)

or

τ ≤ wM,h,C,M (h, εC , εM )− wC (h, εC , εM ) (14)

where τ = τC − τM .

Let fh,M,C,τ (h, εM , εC , τ) be the joint distribution of the three characteristics that can be re-

warded, as well as relative tastes, and assume that the military minimizes the cost of producing

any particular level of total security. The total population eligible for military service is N. The

military's objective is to choose a wage payment function wM,h,C,M (h, εC , εM ) to minimize the cost

of producing a given amount of security S, or

min
wM,h,C,M (h,εC ,εM )

Cost =

N

ˆ ∞
0

ˆ ∞
−∞

ˆ ∞
−∞

ˆ wM,h,C,M (h,εC ,εM )−wC(h,εC ,εM )

−∞
wM,h,C,M (h, εC , εM ) fh,M,C,τ (h, εM , εC , τ) dτdεCdεMdh

(15)

subject to providing some speci�c level of security

S = N

ˆ ∞
0

ˆ ∞
−∞

S (h, εM )

ˆ ∞
−∞

ˆ wM,h,C,M (h,εC ,εM )−wC(h,εC ,εM )

−∞
fh,M,C,τ (h, εM , εC , τ) dτdεCdεMdh

(16)

Let λ be the Lagrange multiplier corresponding to the security constraint. Assuming interior solu-

tions, for each combination of (h, εC , εM ) the military will set the wage, wM,h,C,M (h, εC , εM ), such

that

N

ˆ wM,h,C,M (h,εC ,εM )−wC(h,εC ,εM )

−∞
fh,M,C,τ (h, εM , εC , τ) dτ

+ NwM,h,C,M (h, εC , εM ) fh,M,C,τ (h, εM , εC , wM,h,C,M (h, εC , εM )− wC (h, εC , εM ))

= λNS (h, εM ) fh,M,C,τ (h, εM , εC , wM,h,C,M (h, εC , εM )− wC (h, εC , εM )) . (17)
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The left hand side of this expression is the marginal cost of paying soldiers with productive traits

equal to (h, εC , εM ) each one more penny; it is the sum the Army must pay each soldier already in

the military (conditional on having this particular set of traits) plus the cost of expanding the Army,

that is, paying for additional soldiers with those same traits. The right hand side of the expression

measures the marginal bene�t of the increased security provided by the additional soldiers (with

these traits) induced into the military by the higher wage. For interior solutions, the ratio of the

marginal costs of soldiers with di�erent sets of characteristics should equal the ratio of their marginal

bene�ts.

This formulation implies that the military can extract some surplus from those enlisting in the

military. That is, the optimal military function may depend on observed characteristics that have

no impact on a potential recruit's ability to provide military services. To see this, consider two sets

of individuals whose military-relevant characteristics are identical, but who di�er in characteristics

valued by civilian jobs, εC . Assume the military enlists some positive fraction from both groups.

Because they di�er in their εC values, these groups have di�erent potential earnings in the civilian

sector. If they are equally represented in the population, then the �rst order conditions will be

satis�ed as long as the military keeps the military-civilian pay di�erential constant for the two

groups. The military will pay the group with the lower valued civilian sector trait, εC , less than it

would pay enlistees from the group with the civilian sector trait that is more highly valued, even

though this trait has no impact on their performance as a soldier.

For a variety of reasons, the military may not be able to use such �ne details to make pay o�ers.

Suppose, for the moment, that the military can only observe height, h, and so it can only base its

pay policy on this one characteristic. In this case wM,h,C,M (h, εC , εM ) = wM,h (h), and the �rst

order conditions become

N

ˆ ∞
−∞

ˆ ∞
−∞

ˆ wM,h(h)−wC(h,εC ,εM )

−∞
fh,M,C,τ (h, εM , εC , τ) dτdεCdεM

+ NwM,h (h)

ˆ ∞
−∞

ˆ ∞
−∞

fh,M,C,τ (h, εM , εC , wM,h (h)− wC (h, εC , εM )) dεCdεM

= λN

ˆ ∞
−∞

S (h, εM )

ˆ ∞
−∞

fh,M,C,τ (h, εM , εC , wM,h (h)− wC (h, εC , εM )) dεCdεM . (18)

The left hand side of this �rst order condition is the expected cost of increasing the military pay
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by one penny for all people with height h. It consists of two components. The �rst is the additional

penny paid to all individuals of height h who would have joined the military even without the higher

pay. The second term is the expected full cost of the marginal enlistees with height h. The right

hand side again measures the expected marginal bene�t from the new enlistees with height h who

enter the military because of this increased level of pay.

Note that both of these military pay formulations place no a priori restrictions on the sign or

magnitude of the military pay for any observed set of characteristics. For some characteristics,

(h, εC , εM ), S (h, εM ), could be negative. This would imply that the recruit has to pay the Army

for the privilege of being a soldier. We know of no such practice and think it is a principal reason

for minimum height requirements.

More realistically, military compensation schedules during the eighteenth and nineteenth cen-

turies usually did not include explicit height gradients. But they usually had a minimum height

requirement in addition to a �xed level of compensation. To incorporate these features into the cost

minimization model, we allow the military to choose a non-varying level of pay and to restrict mili-

tary service to those above some optimally-chosen minimum height threshold D. Now the military's

cost minimization problem can be written as

min
wM ,D

Cost = wMN

ˆ ∞
D

ˆ ∞
−∞

ˆ ∞
−∞

ˆ wM−wC(h,εC ,εM )

−∞
fh,M,C,τ (h, εM , εC , τ) dτdεCdεMdh (19)

subject to the speci�ed security level

S = N

ˆ ∞
D

ˆ ∞
−∞

S(h, εM )

ˆ ∞
−∞

ˆ wM−wC(h,εC ,εM )

−∞
fh,M,C,τ (h, εM , εC , τ) dτdεCdεMdh. (20)

The two �rst order conditions are, in this instance

N

ˆ ∞
D

ˆ ∞
−∞

ˆ ∞
−∞

ˆ wM−wC(h,εC ,εM )

−∞
fh,M,C,τ (h, εM , εC , τ) dτdεCdεMdh

+N wM

ˆ ∞
D

ˆ ∞
−∞

ˆ ∞
−∞

fh,M,C,τ (h, εM , εC , wM − wC (h, εC , εM )) dεCdεMdh

= λN

ˆ ∞
D

ˆ ∞
−∞

S (h, εM )

ˆ ∞
−∞

fh,M,C,τ (h, εM , εC , wM − wC (h, εC , εM )) dεCdεMdh (21)
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and

−wMN
ˆ ∞
−∞

ˆ ∞
−∞

ˆ wM−wC(D,εC ,εM )

−∞
fh,M,C,τ (D, εM , εC , τ) dτdεCdεM

= −λN
ˆ ∞
−∞

S (D, εM )

ˆ ∞
−∞

ˆ wM−wC(D,εC ,εM )

−∞
fh,M,C,τ (D, εM , εC , τ) dτdεCdεM . (22)

Consider the �rst of the two �rst-order conditions (21). The �rst term on the left hand side is

the marginal cost of paying each soldier not at the margin of joining the military an extra penny,

and the second term in that left hand side is the full cost of paying the marginal soldier who enters

the military at the wage wM . Their sum is the cost of inducing an additional �expected� soldier

into the military at this wage. The right-hand side of that �rst �rst-order condition is the expected

marginal value of the security services provided by the marginal soldier induced into the military

at this wage.

The second �rst-order condition (22)describes how the minimum height threshold is set when

the optimal military wage is given. The left hand side is the expected cost savings gained by

requiring the marginal soldier to be one inch taller, and the right hand side is the loss in security

from excluding this marginal soldier from the military. Rearranging the second �rst order condition

yields:

ˆ ∞
−∞

[λS (D, εM )− wM ]

ˆ ∞
−∞

ˆ wM−wC(D,εC ,εM )

−∞
fh,M,C,τ (D, εM , εC , τ) dτdεCdεM = 0. (23)

The military will set the minimum height requirement to the level where the expected value of

the military service for a soldier of height D, given the military wage and the occupational choice

decision, just equals the expected wage payments to the individuals of minimum height D choosing

to enter the military. Note that this truncation argument re�ects the Army's limited information

on potential enlistees. If the Army could observe S (·) perfectly it would not need to have a the

minimum height standard, at least for this reason.

We observe changes over time in the mean height of soldiers as the Army expands and contracts.

This �uctuation in heights is evidence of selection and can be derived from our choice model.

Changes in the demand for military services due to the outbreak of war increase the Army's target

level of security, S. Since the military is a cost minimizer, one would expect an increase in S to
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result in a higher marginal cost of military service, so the multiplier λ would increase. This would

result in the right hand side of the �rst order conditions to increase, ceteris paribus, and this could

be o�set by the military increasing its pay o�er and relaxing the minimum height requirement,

thereby increasing the size of the military and the level of military services provided in these more

demanding times.
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Appendix B: Calibration of the simulations

The simulation exercises reported in Section 4 show that moderate values of di�erences in returns to

height (βc−βm) imply the selection problems that are the subject of our paper. Like any simulation

exercise, ours requires care that we are not generating implausible results by inappropriate choice

of parameter values. This appendix discusses our calibration strategy, showing that the message

of our simulation comes through for most reasonable sets of values. We approach this problem in

three ways. First, where possible, we try to match empirical moments. The most important is the

fraction of men in a cohort who join Army; Floud et al (1990, Table 2.8) report values that range

from 6.4 to 17 percent of a cohort of 18 year-olds for the period 1862-1902. We keep the simulation

parameters to values that imply this range. We assume αC ≥ αM ; this restriction implies that ceteris

paribus, men prefer the civilian sector or are indi�erent between the two sectors at short heights

and/or absent any height-reward di�erential. Second, economic logic implies some restrictions on

parameters. For example, the way militaries determined pay and the operation of civilian labor

markets suggests sd(εC) ≥ sd(εM ). Similarly, we assume Corr(εM , εC) ≥ 0, as the military and

civilian worlds would value some traits in common.We also limit our attention to cases where the

military return to height does not exceed the civilian return (βC ≥ βM ).

The Army's relative size and these parameter restrictions provide considerable guidance, but not

enough. We further focus our attention by considering the economic implications of the relationship

between the deterministic and stochastic parameters. The decision to join the Army re�ects the

di�erence between the military and civilian log-wage. De�ne D as the di�erence between the military

and civilian valuations for an individual of a given height and realization of the ε terms. We can

write:

D = wm − wc = αM + βM (h− hL) + εM − αC − βC(h− hL)− εC (24)

where hL=56, the value used to normalize heights in Section 3. We can write the of variance of D

as:

V ar(D) = V ar(αM − αC + (βM − βC) ∗ (h− hL) + εM − εC) (25)

Since the α terms are constants and we assume height is independent of the ε terms, (25) can
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be rewritten

V ar(D) = (βM − βC)2V ar(h) + V ar(εM ) + V ar(εC)− 2 ∗ Corr(εM , εC) ∗ sd(εM )sd(εC) (26)

Analogous to a linear regression equation, we can de�ne theR2 for this equation as the proportion

of the variance in D explained by height. This R2 provides an intuitive check on our parameter-value

selections; very high values of R2 are implausible, as one woud not expect di�erences in height to

explain most of the di�erence between military and civilian wages. On the other hand, if R2 is close

to zero, then we are assuming parameter values that cannot imply much selection, because with

those parameter values, height has little role in the decisions to join the Army. Since the variance

of the explained portion of Var(D) is (βM − βC)2V ar(h),

R2 =

[
(βM − βC)2V ar(h)

(βM−βC)2V ar(h) + V ar(εM ) + V ar(εC)− 2 ∗ Corr(εM , εC) ∗ sd(εM )sd(εC)

]
(27)

The important quantities for our simulation exercises are the variances and standard deviations of

εM and εC as well as their correlation, as well as their di�erences in returns to height (β). (Our

value for the variance of the population height comes from the estimates reported in the literature;

because Floud et al (1990) report standard deviations in the range of 2.5 inches, we assume a value

of 6.25 for the variance.)

Table B.1 reports R2 values computed from (28) for a number of scenarios that �t the criteria

outlined above. Example 6 corresponds to the �baseline� used in Sections 3 and 4 above. Examples

1-5 and 7-10 were constructed to illustrate the implications of varying the relevant parameters.

Figures B.1-B.3 graph �ve of these examples, illustrating graphically the implications of di�ering

parameter values. Figure B.1 shows that doubling Corr(εM , εC) does not dramatically alter our

results; the slightly higher R2 in Example 6 implies only slightly stronger selection in the form of a

steeper Z(h). Figure B.2 illustrates the role of changing β. Values that imply βC − βM = .06 (as in

Example 10) reach the upper limit of plausibility; given the other parameter values, that example

implies that height di�erences can explain more than one-quarter of the variation in returns to the

military and civilian sectors. But Example 3, which assumes the very modest βM − βC=.02, still
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implies an Army almost a full inch shorter than the population.

Note the shape of Z(h) in Example 3: its slope is very shallow, yet even that degree of selection

produces the di�erences in mean heights. Example 3 implies an R2 of .038. We do not need to

assume that heights explain much of the decision to join the Army for the selection process to

matter. Figure B.3 shows the e�ect of doubling sd(εC). The implied R2 in Example 5 is less than

half that of Example 6, and the mean military height in the �rst case is 1.3 inches taller than in

the second. This is a signi�cant change when the population standard deviation is 2.5 inches. On

the other hand, even the parameter values used in Example 5 imply considerable selection; Z(h)

declines from about 5 percent at a height of 56 inches to nearly zero by 72 inches, and the implied

military height is a full inch shorter than in the population.
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Appendix C: Alternative tests of normality

Section 5 uses two common tests of normality to show that such tests cannot e�ectively detect

sample-selection. This appendix extends the results reported there to consider a wider range of

tests for normality. We report tests for two situations. We �rst construct an extreme example of

selection, assuming βC − βM = 0.1 and αC − αM =-0.3. Thus 7 percent of men join the military,

yielding a mean military height of 63.47 inches when the population mean is 66 inches. These

parameter values imply that nearly all shorter men will prefer the military, while few taller men

will. Our second example has more modest selection, as in the text and Appendix B. We assume

βC − βM = 0.04, and αC − αM = 0.1. The military has 11 percent of the population and the

mean military height is 65 inches.36 Figures C.1 and C.2 report results. For each example, we use

expected sample sizes ranging up to 50,000 persons, and report results for two di�erent test sizes.

In Figure C.1, which assumes extreme selection, we see that virtually all of the tests have rejection

probability no larger than the test size for samples of fewer than about 2000 individuals, and even

for the larger samples, the rejection probability remains modest. A sample of 2000 is not unknown

in the heights literature, but such a large number is not common. Figure C.1 simply reinforces the

text Section 5: researchers working in this literature should not think that standard normality tests

will help them detect selection bias in historical height samples. Even when that bias is extreme,

the resulting height distributions can be apparently normal. Figure C.2, which reports results for

the case of less extreme selection bias, not surprisingly implies the same conclusion. Even the best

test rarely does better than the assumed test size in this case.37

36For both the �extreme� and the �modest� selection examples, the population has a mean height of 66 inches with a
standard deviation of 2.5 inches, as in all our simulations. We measure the return to height by the di�erence between
height and 56 inches. The standard deviation of εM = 0.1,the standard deviation of εC = 0.4,and Corr(εM ,εC)=0.1.

37The �sktest� is a test for skewness and kurtosis with an adjustment due to Royston (1991). The �sktest, noadjust�
is the same test without Royston's adjustment, and is described in D'Agostino, Belanger, and D'Agostino (1990).
�swilk� and �sfrancia� are Stata's implementation of two forms of the Shapiro-Wilk W test. swilk (the W test) is
appropriate for 4 through 2000 observations, while sfrancia (the W' test) is appropriate for 5 through 5000 observa-
tions. The Doornick-Hansen omnibus test is a skewness-kurtosis test with a transformation to assure independence.
Doornick and Hansen (2008) also propose an asymptotic form of this test, but view it as �unsuitable, except in very
large samples.� (p.928). The Henze-Zirkler (1990) test uses transforms of skewness and kurtosis to better approximate
a χ2distribution. The computation time for this test increases with the square of the number of observations. We
perform the Doornick-Hansen tests using the Stata module �omninorm� (C.F. Baum and N.J. Cox, 2007. �Omninorm:
Stata module to calculate omnibus test for univariate/multivariate normality.�). The other tests are part of Stata.
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Appendix D: Identi�cation of selection with additional information

Section 5.2 describes an exercise that explores the conditions under which one can estimate a model

of heights taking account of possible selection into the Army. This appendix decribes the model

and results in detail. The empirical models follow exactly from the speci�cation of the selection

model in the data generating process as outlined in Section 5.2. Let h be observed height, xi be

a height mean shifter, and zi be the variable measuring the relative attractiveness of the civilian

sector, holding height rewards constant. De�ne I* as a latent variable measuring preferences for

the civilian sector over the military sector. The statistical model for heights and selection into the

military is given by:

hi = µ+ γxi + ui (28)

I∗i = α∗ + β∗hi + δ∗zi + vi (29)

We assume all error terms follow mean-zero, homoscedastic normal distributions. An individual

enters the military if I∗i < 0. The relative attractiveness of the civilian sector can vary by the

individual's height, as in the selection model discussed above. For simplicity we assume that the

error terms ui and vi are independent normal random variables. We begin with the most common

situation, that we only observe heights for soldiers. For civilians we substitute the �expected height�

(28) into the latent variable equation that descibes preferences for the Army (29). Normalizing the

resulting error in the latent outcome equation to have variance one yields

hi = µ+ γxi + ui (30)

Ii = α+ β[µ+ γxi] + δzi + εi (31)

where a = (a∗/sv∗); b = (b∗/sv∗); d = (d∗/sv∗);ei = (vi + b∗ui)/sv
∗; and sv∗ =

√
(V ar(v) + b2V ar(u)).

We observe hi if and only if Ii < 0. These assumptions imply a correlation of the height error

and the re-speci�ed selection error of r = (b∗svh)/sv∗, where svh is the standard deviation of u. In
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all following estimations we allow the Army to impose a minimum height standard. Let Mini be

the known military height standard in e�ect for observation i. We observe an individual in the

military if and only if hi ≥ Mini and Ii < 0. Using the above joint distribution of h and I, let

P [Mili] = Pr[hi ≥Mini, Ii < 0] be the probability that we observe a given individual as a soldier.

P [Mili] is a function of x, z, and the parameters de�ning the bivariate normal distribution of u and

e.

We consider three estimation models. The �rst model is Wachter and Trussell's (1982a) reduced

sample maximum likelihood estimator (RSMLE). This model uses only the heights of those in the

military and relies upon the assumption of no correlation between the height and selection error

terms. Thus an individual's height does not a�ect the choice of sector, or r = 0.

The second model relaxes the restriction of zero error covariance, but retains the assumption

that we only observe height for soldiers. The likelihood in this case is the distribution of an ob-

served soldier's integer height conditional on entering the military. We call this the �Conditional on

Military� (COM) selection model, and its likelihood is f(xhiy|Mili = 1]) or:

´ l̄i
−∞
´ li
−∞ f(ε, u; ρ)dudε-

´ l̄i
−∞
´ li−1
−∞ f(ε, u; ρ)dudε´ l̄i

−∞
´∞
Mi−(µ+γxi)

f(ε, u; ρ)dudε
(32)

Where l̄i = −(α+ β[µ+ γxi]) and li = xhiy+ 1− (µ+ γxi). This expression is just the conditional

distribution of heights for those who prefer the military, taking into account the restriction hi≥Mini.

For ρ = 0 equation (32) simpli�es to the likelihood function for the RSMLE with integer heights.

Note that if r = 0, the joint distribution factors into the product of the two marginal distributions;

the probability of preferring military service cancels out in the numerator and the denominator.

In this case, we cannot possibly identify any of the parameters describing one's preferences for the

military because we only observe individuals in the military and their observed heights provide no

information about how strongly they prefer military service.

The third model we consider (�REP�) assumes we have a representative sample of the entire

population. We assume that we have the xi and zi variables for all observations, but only observe

heights for those who join the military. This is not necessarily an unrealistic assumption. The

xi, variables can be functions of birth cohort, which most sources include. The zi, variables could

measure macroeconomic factors such as the employment opportunities in the civilian sector at the
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time of the enlistment decision. Assume that we have the sample of observed military heights as

well as the proportion of each birth cohort joining the Army, in addition to year of enlistment

macro economic data. The likelihood function for this REP speci�cation is f(xhiy,Mili|xi, zi)=[
P 1
i

]Mili [1− P 2
i

]
1−Mili where P1

i is equal to the numerator in equation (32) and P2
i is the denomi-

nator in (32).

We estimate the three models using the 20 million-observation Monte Carlo dataset derived from

the data-generating progress described above. Appendix Table D.1 reports descriptive statistics and

summarizes our attempts to estimate the three models. Column (1) reports parameter information

and summary statistics when the data are evaluated at the true parameter values. About eight

percent of individuals prefer military service to the civilian sector, but because of the minimum

height restrictions only �ve percent actually enlist in the military. The parameter values used

to generate these data imply a 0.24 correlation between the height error and the selection error.

Column (1) also reports the value of the log-likelihood function at the true parameters for the two

models that are consistent when r 6= 0.

Column (2) provides information about the estimation of the RSMLE when only the variable

directly in�uencing height (the x variable) is used to model the observed heights. Not surprisingly,

its log-likelihood function value is much lower (by almost 220 points) than that for the correct model

evaluated at the true parameter values. The estimated parameters here imply a mean population

height more than one inch shorter than the true mean height in the population. The height mean

shifter's impact is slightly underestimated. Column (3) reports estimates from the RSMLE model

where we allow the selection variable z to also enter (linearly) the function determining mean height.

Controlling for this �selection� variable barely changes the incorrect estimate of the mean height in

the RSMLE in Column (2). The log-likelihood function improves by 220 points with the estimation

of just one additional parameter. Surprisingly, this model ��ts� the observed data better than the

true data generating process (conditional on only observing those in the military) evaluated at the

true parameter values.

Columns (4) through (8) summarize results obtained from the Conditional on Military Selection

(COM) model using a variety of di�erent starting values and parameter constraints. The results

echo our �ndings for the RSMLE model: there are severe identi�cation issues in a model of the

population height distribution that relies on data drawn only from soldiers. The model can barely
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distinguish among a wide variety of di�erent candidate population height distributions. The log-

likelihood function values are nearly identical for the �ve models reported in columns (4) through

(8), even though the estimated mean height varies between 62 and 68 inches. In some cases, the log-

likelihood value is slightly less than the one from the RLMS model including the selection covariate

(3), and other cases they are slightly larger. The estimated impact of height on selection varies

considerably, from large positive to large negative values, and in none of these �ve models is it

close to the true value of 0.094 reported in column (1). The estimated e�ect of the height shifter x

also exhibits considerable variability. The fact that we could not bring the models to convergence

without constraining the value of the error covariance also indicates a potentially severe identi�cation

problem. These estimates suggest that it might be nearly impossible to obtain accurate inferences

about the population height distribution if one only has access to data from subsamples that might

be selected on the basis of height.

The estimates in column (9), imply something more positive: incorporating information on the

proportion of individuals actually joining the military can resolve nearly all of these identi�cation

issues. The only additional information we used for these estimates is the fraction of individuals

joining the military for each combination of the xiand zi, a total of 25 combinations here. The

only height information comes from the military subsample. This stunning improvement in esti-

mation model performance re�ects a simple fact. With information only on military enrollees, it

is impossible to assess whether an increase in a particular �taste� variable (zi) makes military ser-

vice more desirable, less desirable, or neither more nor less desirable. Once one can observe how

military enrollments �uctuate with variations in the exogenous variables xi and zi, it is possible to

pin down the parameters of the selection model. Given this identi�cation of the selection process,

it is relatively simple to distinguish between shifts in observed military heights due to changes in

selection variables zi from changes in the mean population height due to xi.
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Appendix E: Sources for econometric estimates

In Section 6 we report OLS models of mean height using two distinct sources that pertain to

the British Army in the 18th and 19th centuries. Here we provide further information on those

samples. We augmented the information on soldiers with annual series that provide an indication

on the civilian economy and recruiting conditions. We also summarize those series here.

The �Army� data consists of soldiers included in the public-use sample Floud et al (1990) created

in connection with the study discussed in some detail in Section 2.38 This sample includes enlistees in

both the Royal Army and the Royal Marines, but we use only the Army (the soldiers). Royal Marines

were recruited on a di�erent basis, and Komlos (1993) and others argue that combining them for

analysis is inappropriate. Because some younger enlistees might still be growing, we use only those

aged 22-27 at the time of enlistment; thus our estimation sub-samples are much smaller than the

total sample. To contend with minimum height restrictions, we exclude individuals who were less

than 65 inches tall (in some speci�cations) and less than 67 inches tall (in other speci�cations). We

also exclude individuals who enlisted in 1861, because in that year the minimum height was shifted

to 68 inches. These restrictions produced a sub-sample of the men underlying the OLS regressions

in Table 4. Appendix Table E.1 provides descriptive statistics for this sample, and Appendix Table

E.2 provides full regression results for the models summarized in Table 4.

The Army Medical Department (AMD) published annual reports summarizing the heights of

men inspected for potential for Army service starting in the 1860s. (Floud et al (1990) also used

this information, but did not include it in the public use sample, so we tabulated them separately

on our own). The AMD reports tabulate the heights of recruits, by age, in cells one-inch wide. Men

72 inches and taller are �top-coded,� so we only know they are at least 72 inches tall. We use the

reports starting in 1879. We again limit the regression sub-sample to men aged 22-27 who were at

least 67 inches tall when they enlisted. Appendix Table E.3 provides descriptive statistics for the

AMD data, while Appendix Table E.4 reports the full regressions summarized in Table 5.

The regressions also include information on current conditions when men enlisted in the Army.

One group of such variables is simply the men's ages, which come directly from the military sources.

In addition, we use two variables that pertain to current military conditions. WAR is a dummy

38The �les are available from the UK Data Archive. The full record can be found here:
http://discover.ukdataservice.ac.uk/catalogue/?sn=2131&type=Data%20catalogue
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equal to one if the U.K. was at war when a man enlisted. We code WAR from Floud et al (Table

2.7); it takes a value of one from 1775-1783, then from 1793-1813, then from 1855-6 and �nally from

1899-1902. DEFENSE is total nominal UK expenditure on domestic defense, in billions of pounds

sterling. GDP is nominal GDP per capita in current pounds sterling. (This is a period of price sta-

bility, so there is little di�erence between nominal and real series; in any case, the identi�cation here

is o� year-to-year variation, so using real series makes little di�erence.) We obtained DEFENSE

from the website www.ukpublicspending.co.uk, but the series was originally reported in Mitchell

(1988). We obtained GDP from www.measuringworth.com. Indoor relief is the estimated propor-

tion receiving indoor relief, using Williams (1981, Table 4.5). Unemployment is Feinstein's (1972,

Table 57) series. The Feinstein index is based on the Board of Trade estimates of unemployment

among trade-union members. Boyer and Hatton (2002) provide an alternative unemployment series

that better-represents the British working classes; trade unionists were a relative elite, and worked

disproportionately in industries facing high variance in unemployment rates. We prefer the Fein-

stein series to Boyer and Hatton for our speci�c purpose because we also employ the indoor-relief

series, which MacKinnon (1986) argues is the best single indicator of unemployment for unskilled

workers. (In other circumstances the Boyer-Hatton series is probably preferable). Thus we hope

our unemployment series and our indoor-relief series capture the labor-market conditions for two

di�erent types of workers. Neither the relief nor the unemployment variable are available for the

entire period covered by the Army source, so for this period we use Clark's estimate of the real

wages for building laborers.39

39We obtained the wage series from http://gpih.ucdavis.edu/Data�lelist.htm#Europe.
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Appendix F: Selection diagnostics with the RSMLE model

The regressions discussed in Section 6 above are only an approximation to the model most heights

studies have in mind. To get closer, we estimate the RSMLE model Floud et al (1990) use for the

AMD data only. Note the complication here; the RSMLE is only correct under the assumption

that the distribution above the truncation point is free of any selection. We have shown this not

to be true. So while our RSMLE estimates replicate and expand upon those reported by Floud

et al (1990), they are not �correct,� because the statistical assumptions upon which they rest are

violated. But the same observation applies to the Floud et al (1990) estimates.

Following Wachter and Trussell (1982a), we assume heights are normally distributed conditional

on a set of covariates x, where the covariates can in�uence either or both the mean and the standard

deviation of heights. The AMD source reports heights in integers. For each observation i, de�ne the

mean conditional on x and standard deviation conditional on x as µi = x′iπM and σi = exp (x′iπσ).

The likelihood function for the integer values of heights, conditional on height being at or above a

possibly person speci�c lower limit Li, is given by

N∏
i=1

Φ
(
xhiy+1−µi

σi

)
− Φ

(
xhiy−µi

σi

)
1− Φ

(
Li−µi
σi

)
1(hi≥Li)

(33)

where 1 (·) is the indicator function and x·y is the �oor function that extracts the integer portion of

the height. Columns (7) and (8) of Table 5 in the text reports the results of exclusion restriction tests

similar to those discussed above for the OLS estimates. (Full model results are found in Appendix

Table F.1.). Again we �nd that the �current condition� variables have an important impact on the

heights of soldiers, which would not be the case if soldier heights were a random sample of the

population height distribution. In this case, we only consider the constraint on the mean; if we also

consider the analogous restriction on the standard deviation, the results are even stronger.
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Appendix G: The logic of the selection diagnostic

This appendix provides a more formal justi�cation for the selection diagnostics reported in Section

6. Suppose we draw a random sample from the distribution of heights at time t only for those

observations taller than an arbitrary minimum height thresholdHm. We hold this threshold constant

across birth cohorts by choosing a �xed level of Hm to be above the maximum observed threshold

for any year t. (Thus Hmcorresponds to Wachter and Trussell's h*). Suppose this distribution can

vary by birth cohort b, so the distribution function for observed heights is f(h;b). The expected

value of height conditional on birth cohort, time period t, and height being Hm or greater is given

by:

Ef (hb,t|h ≥ Hm, b, t) =

´∞
Hm

hf(h; b)dh´∞
Hm

f(h; b)dh
= a(b) (34)

Thus a(b) is implicitly a function of the minimum height threshold, but does not depend on time

period t as this expression (34) is assumed to be a random sample from the distribution of heights

Hm and greater in the birth cohort. In general, a(b) is a function of both the birth-period-speci�c

unconditional mean height and the unconditional standard deviation of the birth-period-speci�c

height distribution. By the de�nition of the conditional expected value, if we estimate a regression

function for heights of people Hm and taller on a set of birth cohort dummies, the coe�cients on

the dummy variables would measure the mean height of each birth cohort b for those at least as tall

as Hm. This approach corresponds to the implicit assumptions used by researchers who rely upon

height data from samples with minimum height restrictions. It allows us to use information on the

functions a(b) to make inferences about variations in macroeconomic conditions for birth cohorts

provided they have reached full adult height.

Suppose there are year t variables that could a�ect the relative attractiveness of the military to

persons of di�erent heights. A labor market with a high unemployment rate, for example, might

make the military relatively more attractive to a tall person than a short person in such a year when

compared to a year with a low unemployment rate. In this instance, the distribution of heights to

the military would no longer be independent of variables measuring economic conditions at the time

of enlistment. Let g(h; b,t) be the height distribution of those willing to enter the military. The

expected value of height conditional on birth cohort, time period t and height being Hm or greater
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is given by:

Eg(hb,t|h ≥ Hm, b, t) =

´∞
Hm

hg(h; b)dh´∞
Hm

g(h; b)dh
= c(b, t) (35)

Without explicit assumptions about how variables contemporaneous to military enlistment a�ect

selection into the military by height, it would be nearly impossible to separate how variations

in �childhood growth� periods (as measured by b) could be separated from the e�ects of factors

in�uencing the desirability of military enlistment at time t by examining a regression function of

observed military heights on birth cohort dummies and time of enlistment explanatory variables.

A comparison of these two expected values, however, can provide a test of whether there is no

non-height related selection into the military. Consider the following regression model for those

individuals at least as tall as height Hm:

hi|h≥Hm = a(b) + r(b, t) + ηi (36)

Under the null hypothesis of no di�erential selection by height into the military due to economic

factors at time of enlistment, the function r(b,t) should equal zero and should not depend on date

t variables. As a simple test of this hypothesis, we approximate the above regression model by

hi|h≥Hm = h(b) + q(t) + ξi (37)

A rejection of the null hypothesis H0: q(t) = 0 versus the alternative that it is not zero can be

interpreted as a rejection of the null hypothesis of no di�erential selection into the military by

height in response to changing economic conditions. Note, however, that estimates of h(b) from

this regression cannot be considered to be estimates of the true mean hight by birth cohort for those

Hm or taller. None of the above derivations would be substantively altered if we assumed heights

were observed only falling in a set of ranges. In addition, the logic carries through even if there is

an exact censoring of heights above some upper cuto� point.

57



58 

 

References 

 

A’Hearn, Brian. 2003. “Anthropometric Evidence on Living Standards in Northern Italy, 

1730-1860.” Journal of Economic History 63(2): 351-381. 

 

A’Hearn, Brian, Franco Peracchi, and Giovanni Vecchi, 2009. “Height and the Normal 

Distribution: Evidence from Italian Military Data.” Demography 46(1): 1-25. 

 

Alchian, Armen A, and William R. Allen. 1964. University Economics. Belmont, Cal.: 

Wadsworth Publishing Company, 1964. 

 

Allen, Robert C. 2007. “Pessimism Preserved: Real Wages in the British Industrial 

Revolution.” Oxford University Department of Economics Working Paper 314. 

 

Angrist, Joshua D. and Jörn-Steffen Pischke. 2009. Mostly Harmless Econometrics: An 

Empiricist’s Companion. Princeton and Oxford: Princeton University Press. 

 

Asch, Beth J., James R. Hosek, and John T. Warner, 2007, “New Economics of 

Manpower in the Post-Cold War Era.” Handbook of Defense Economics, Vol. 2. Todd 

Sandler and Kweith Hartle (eds.): 1077-1140.  

 

Baum, C. F. and N. J. Cox. 2007. “Omninorm: STATA Module to Calculate Omnibus 

Test for Univariate/Multivariate Normality.”  

 

Bodenhorn, Howard. 1999. “A Troublesome Caste: Height and Nutrition of Antebellum 

Virginia’s Rural Free Blacks.” Journal of Economic History 59(4): 972-996. 

 

Bodenhorn, Howard. 2011. “Manumission in Nineteenth-Century Virginia.” Cliometrica 

5(2): 145-164. 

 

Bodenhorn, Howard, Carolyn Moehling and Gregory N. Price. 2012 (forthcoming). 

“Short Criminals: Stature and Crime in Early America.” Journal of Law & Economics 

55(2).  

 

Borcherding, Thomas E. and Eugene Silberberg. 1978. “Shipping the Good Apples Out: 

The Alchian and Allen Theorem Reconsidered.” Journal of Political Economy 86(11): 

131-138. 

 

Boyer, George R. and Timothy J. Hatton. 2002. “New Estimates of British 

Unemployment, 1870-1913.” Journal of Economic History 62(3): 643-675. 

 

Bozzoli, Carlos, Angus Deaton, Climent Quintana-Domeque. 2009. “Adult Height and 

Childhood Disease.” Demography 46(4): 647-669. 

 



59 

 

Brinkman, Henk Jan, J.W. Drukker, and Brigitte Slot, 1988. “Height and Income: A New 

Method for the Estimation of Historical National Income Series.” Explorations in 

Economic History 25: 227-264 

 

Brown, John C., 1990. “The Condition of England and the Standard of Living: Cotton 

Textiles in the Northwest, 1806-1850.” Journal of Economic History 50(3): 591-614. 

 

Calomiris, Charles and Jonathan Pritchett. 2009. “Preserving Slave Families for Profit:   

Traders’ Incentives and Pricing in the New Orleans Slave Market.” Journal of Economic 

History 69(4): 986-1011. 

 

Carson, Scott Alan. 2008. “Inequality in the American South: Evidence from the 

Nineteenth Century Missouri State Prison.” Journal of Biosocial Science 40(4): 587-604. 

 

Carson, Scott Alan. 2009. "Health, Wealth and Inequality: A Contribution to the Debate 

about the Relationship between Inequality and Health." Historical Methods 42(2): 43-56. 

 

Case, Anne and Christina Paxson. 2008. “Stature and Status: Height, Ability, and Labor 

Market Outcomes.” Journal of Political Economy 116, 499-532. 

 

Coclanis, Peter A. and John Komlos. 1995. “Nutrition and Economic Development in 

Post-Reconstruction South Carolina.” Social Science History 19(1): 91-115. 

 

Crafts, N. F. R. 1997. “Dimensions of the ‘Quality of Life’ during the British Industrial 

Revolution.” Economic History Review 50(4): 617-639. 

 

Crimmins, Eileen and C. E. Finch. 2006. “Infection, Inflammation, Height, and 

Longevity.” Proceedings of the National Academy of Sciences 103(2): 498-503. 

 

Cuff, Timothy. 2005. The Hidden Cost of Economic Development: The Biological 

Standard of Living in Antebellum Pennsylvania. Burlington, Vt.: Ashgate Publishing 

Company. 

 

D’Agostino, Ralph B., Albert Belanger, and Ralph B. D’Agostino, Jr. 1990. “A 

Suggestion for Using Powerful and Informative Tests of Normality.” American 

Statistician 44(4): 316-321. 

 

Danson, J. T. 1881. “Statistical Observations on the Growth of the Human Body (Males) 

in Height and Weight from Eighteen to Thirty Years of Age, as Illustrated by the Records 

of the Borough Gaol of Liverpool.” Journal of the Statistical Society 44(4): 660-674. 

 

Deaton, Angus. 2007. “Height, Health and Development.” Proceedings of the National 

Academy of Sciences 104.33, 13232-13237. 

 

Doornik, Jurgen A. and Henrik Hansen. 2008. “An Omnibus Test for Univariate and 

Multivariate Normality.” Oxford Bulletin of Economics and Statistics 70(S1): 927-939. 



60 

 

 

Engels, Friedrich. 1945/1987. Condition of the Working Class in England. New York: 

Viking Penguin. 

 

Feinstein, Charles. 1972. National Income, Expenditure, and Output of the United 

Kingdom, 1855-1965. Cambridge: Cambridge University Press. 

 

Feinstein, Charles. 1998. “Pessimism Perpetuated: Real Wages and the Standard of 

Living in Britain during and after the Industrial Revolution.” Journal of Economic 

History 58(3): 625-658. 

 

Fogel, Robert W. 1994. “Economic Growth, Population Theory, and Physiology: The 

Bearing of Long-Term Processes on the Making of Economic Policy.” American 

Economic Review 84(3): 369-395. 

 

Fogel, Robert W., Stanley L. Engerman, Roderick Floud, Richard H. Steckel, T. James 

Trussell, Kenneth W. Wachter, Kenneth Sokoloff, Georgia Villaflor, Robert A. Margo, 

and Gerald Friedman. 1982. “Changes in American and British Stature since the Mid-

Eighteenth Century: A Preliminary Report on the Usefulness of Data on Height for the 

Analysis of Secular Trends in Nutrition, Labor Productivity, and Labor Welfare.” NBER 

Working Paper No. 890.  

 

Floud, Roderick. 1984. “The Heights of Europeans since 1750: A New Source for 

European Economic History.” NBER working paper 1318.  

 

Floud, Roderick, Kenneth Wachter and Annabel Gregory, 1990. Height, health and 

history: Nutritional Status in the United Kindgom, 1750-1980. Cambridge: Cambridge 

University Press. 

 

Freudenberger, Herman and Jonathan B. Pritchett. 1991. “The Domestic United States 

Slave Trade: New Evidence.” Journal of Interdisciplinary History 21(3): 447-477. 

 

Galenson, David W. 1981. White Servitude in Colonial America: An Economic Analysis. 

Cambridge: Cambridge University Press.  

 

Gallman, Robert E. 1996. “Dietary Change in Antebellum America.” Journal of 

Economic History 56(1): 193-201. 

 

Grubb, Farley. 1994. “The End of European Immigrant Servitude in the United States: 

An Economic Analysis of Market Collapse, 1772-1835. Journal of Economic History 

54(4): 794-824. 

 

Grubb, Farley. 1999. “Lilliputians and Brobdingnagians, Stature in British Colonial 

America: Evidence from Servants, Convicts, and Apprentices.” Research in Economic 

History 19: 139-203. 

 



61 

 

Grubb, Farley. 2001. “The Market Evaluation of Criminality: Evidence from the Auction 

of British Convict Labor in America, 1767-1775.” American Economic Review 91(1): 

295-304. 

 

Haines, Michael R., Lee A. Craig, and Thomas Weiss. 2003. “The Short and the Dead: 

Nutrition, Mortality, and the ‘Antebellum Puzzle’ in the United States.” Journal of 

Economic History 63(2): 382-413. 

 

Heckman, James J., 1979. “Sample Selection Bias as a Specification Error.” 

Econometrica 47(1): pp. 

 

Heckman, James J. and Guilherme Sedlacek. 1995. “Heterogeneity, Aggregation, and 

Market Wage Functions: An Empirical Model of Self-Selection in the Labor Market.” 

Journal of Political Economy 93(6): 1077-1125. 

 

Henze, N. and  B. Zirkler.  1990. “A Class of Invariant Consistent Tests for Multivariate 

Normality.” Communications in Statistics: Theory and Methods 19(10): 3595-3617.  

 

Higman, Barry W. 1979. “Growth in Afro-Caribbean Slave Populations.” American 

Journal of Physical Anthropology 50(3): pp. 373-385. 

 

Higman, Barry W. 1984. Slave Populations of the British Caribbean, 1807-1834. 

Baltimore: Johns Hopkins University Press.  

 

Hobsbaum, E. J. 1957. “The British Standard of Living, 1790-1850.” Economic History 

Review 10(1): 46-68.  

 

Johnson, Paul and Stephen Nicholas. 1997. “Health and Welfare of Women in the United 

Kingdom, 1785-1920.” In Health and Welfare during Industrialization, 201-250. Richard 

H. Steckel and Roderick Floud (eds.). Chicago: University of Chicago Press. 

 

Kilburn, Rebecca M., and Jacob Klerman. 1999. Enlistment Decisions in the 1990s: 

Evidence from Individual Level Data. MR -944-OSD/A RAND, Santa Monica, CA.  

 

Komlos, John. 1987. "The Height and Weight of West Point Cadets: Dietary Change in 

Antebellum America." Journal of Economic History 47(4): 987-927. 

 

Komlos, John. 1989. Nutrition and Economic Development in the Eighteenth-Century 

Hapsburg Monarchy: An Anthropometric History. Princeton, N.J.: Princeton University 

Press.  

 

Komlos, John. 1992. “Toward an Anthropometric History of African-Americans: The 

Case of the Manumitted Slaves of Maryland.” In Strategic Factors in Nineteenth-Century 

American Economic History: A Volume to Honor Robert W. Fogel, 297-329. Edited by 

Claudia Goldin and Hugh Rockoff. Chicago: University of Chicago Press. 

 



62 

 

Komlos, John, 1993. “The secular trend in the biological standard of living in the United 

Kingdom, 1730-1860.” Economic History Review 46(1): 115-144. 

 

Komlos, John. 1994. “The Height of Runaway Slaves in Colonial America, 1720-1770.” 

In Stature, Living Standards, and Economic Development: Essays in Anthropometric 

History, 93-116. Edited by John Komlos. Chicago and London: University of Chicago 

Press. 

 

Komlos, John, 1998. “Shrinking in a Growing Economy? The Mystery of Physical 

Stature during the Industrial Revolution.” The Journal of Economic History 58(3): 779-

802. 

 

Komlos, John. 2003. “An Anthropometric History of Early-Modern France.” European 

Review of Economic History 7: 159-189.  

 

Komlos, John, 2004. “How to (and How Not to) Analyze Deficient Height Samples – an 

Introduction.” Historical Methods 37(4): 160-173. 

 

Komlos, John and Bjorn Alecke. 1996. “The Economics of Antebellum Slave Heights 

Reconsidered.” Journal of Interdisciplinary History 26(3): 437-457.  

 

Komlos, John and Peter Coclanis. 1997. “On the Puzzling Cycle in the Biological 

Standard of Living: The Case of Antebellum Georgia.” Explorations in Economic History 

34(4): 433-459. 

 

Komlos, John and Helmut Küchenhoff. 2012. “The Diminution of the Physical Stature of 

the English Male Population in the Eighteenth Century.” Cliometrica 6(1): 45-62.  

 

Kotz, Samuel, N. Balakrishnan and Norman L. Johnson. 2000. Continuous Multivariate 

Distributions, Volume 1, (second edition). New York: John Wiley & Sons, Inc. 

 

Lamm, Doron. 1988. “British Soldiers of the First World War: Creation of a 

Representative Sample.” Historical Social Research/Historische Sozialforschung 13(4): 

55-98. 

 

Lang, Stefan and Marco Sunder. 2003. “Non-parametric regression with BayesX: A 

Flexible Estimation of Trends in Human Physical Stature in 19
th

 Century America.” 

Economics and Human Biology 1(1): 77-89. 

 

MacKinnon, Mary. 1986. “Poverty and Policy: The English Poor Law, 1860-1910.” 

Journal of Economic History 46(2): 500-502. 

 

Margo, Robert A. and Richard H. Steckel. 1982. “The Heights of American Slaves.” 

Social Science History 6(4): 516-38. 

 



63 

 

Margo, Robert A. and Richard H. Steckel. 1983. “Heights of Native-Born Whites during 

the Antebellum Period.” Journal of Economic History 43(1): 167-174. 

 

McLynn, Frank. 1989. Crime and Punishment in Eighteenth-Century England. London 

and New York: Routledge. 

 

Meier, Paul. 1982. “Estimating Historical Heights: Comment.” Journal of the American 

Statistical Association 77(378): 296-297. 

 

Mokyr, Joel and Cormac Ó Gráda. 1994. “The Heights of the British and the Irish c. 

1800-1815: Evidence from Recruits to the East India Company’s Army.” In Stature, 

Living Standards, and Economic Development: Essays in Anthropometric History, 39-59. 

Edited by John Komlos. Chicago and London: University of Chicago Press. 

 

Mokyr, Joel and Cormac Ó Gráda, 1996. “Height and health in the United Kingdom 

1815-1860: evidence from the East India Company army.” Explorations in Economic 

History 33(2): 141-168. 

 

Murray, John. 1997. “Standards of the Present for People of the Past: Height, Wight, and 

Mortality among Men of Amherst College.” Journal of Economic History 57(3): 585-

606. 

 

Nicholas, Stephen and Deborah Oxley. 1996. “Living Standards of Women in England 

and Wales, 1785-1815: Evidence from Newgate Prison Records.” Economic History 

Review 49(3): 591-599. 

 

Nicholas, Stephen and Richard H. Steckel, 1991. “Heights and living standards of 

English workers during the Early Years of Industrialization, 1770-1815.” Journal of 

Economic History 51(4): 937-57. 

 

Nicholas, Stephen and Richard H. Steckel, 1997. “Tall but Poor: Living Standards of 

Men and Women in pre-Famine Ireland.” The Journal of European Economic History 

26(1): 105-134. 

 

Ó Gráda, Cormac. 1991. “Heights in Tipperary in the 1840s: Evidence from the Prison 

Records.” Irish Economic and Social History 18: 24-33. 

 

Ó Gráda, Cormac. 1996. “Anthropometric History: What’s In It for Ireland?” Historie & 

Mesure 11(1-2): 139-166.  

 

Oxley, Deborah. 2003. “’The Seat of Death and Terror’: Urbanization, Stunting, and 

Smallpox.” Economic History Review, New Series 56(4): 623-656. 

 

Persico, Nicola, Andrew Postlewaite, and Dan Silverman. 2005. “The Effect of 

Adolescent Experience on Labor Market Outcomes: The Case of Height.” Journal of 

Political Economy 112, 1019-1053. 



64 

 

 

Pritchett, Jonathan B. 1997. “The Interregional Slave Trade and the Selection of Slaves 

for the New Orleans Market.” Journal of Interdisciplinary History 28(1): 57-85. 

 

Pritchett, Jonathan B. and Richard M. Chamberlain. 1993. “Selection in the Market for 

Slaves: New Orleans, 1830-1860.” Quarterly Journal of Economics 108(2): 461-473. 

 

Pritchett, Jonathan B. and Herman Freudenberger. 1992. “A Peculiar Sample: The 

Selection of Slaves for the New Orleans Market.” Journal of Economic History 52(1): 

109-127. 

 

Razzell, Peter. 1998. “Did Smallpox Reduce Height?” Economic History Review, New 

Series 51(2): 351-359. 

 

Rees, R., John Komlos, Ngo. V. Long, and Ulrich Woitek. 2003. “Optimal Food 

Allocation in a Slave Economy.” Journal of Population Economics 16(1): 21-36. 

 

Riggs, Paul. 1994. “The Standard of Living in Scotland, 1800-1850.” In Stature, Living 

Standards, and Economic Development: Essays in Anthropometric History, 60-75. Edited 

by John Komlos. Chicago and London: University of Chicago Press. 

Robert, C.P. and G. Casella. 2004. Monte Carlo Statistical Methods (second edition). 

New York: Springer-Verlag. 

Roy, A. D. 1951. “Some Thoughts on the Distribution of Earnings.” Oxford Economic 

Papers 3(2): 135-146. 

Sandberg, Lars G., and Richard H. Steckel, 1988. “Overpopulation and Malnutrition 

Rediscovered: Hard Times in 19
th

-Century Sweden.” Explorations in Economic History 

25:1-19. 

 

Sandberg, Lars G. and Richard H. Steckel, 1997. “Was Industrialization Hazardous to 

your Health? Not in Sweden!” in Steckel and Floud (1997). 

 

Schultz, T. Paul. 2002. “Wage Gains Associated with Height as a Form of Health Human 

Capital.” American Economic Review 92(2): 349-353. 

 

Simon, Curtis H., and John T. Warner. 2008. “Youth Attitudes and Military Recruiting 

During Operation Iraqi Freedom.”  Working paper, Clemson University. 

 

Sokoloff, Kenneth and Georgia Villaflor. 1982. "The Early Achievement of Modern 

Stature in America." Social Science History 6(4): 453-481. 

 

Spiers, E. M. 1980. The Army and Society, 1815-1914. London: Longman.  

 



65 

 

Staub, Kaspar, Frank J. Rühli, Barry Bogin, Ulrich Woitek, and Christian Pfister. 2011. 

“Eduoard Mallet’s Early and Almost Forgotten Study of the Average Height of Genevan 

Conscripts in 1835.” Economics and Human Biology 9(): 438-442. 

 

Steckel, Richard H. 1979. “Slave Height Profiles from Coastwise Manifests.” 

Explorations in Economic History 16(4): 363-380.  

 

Steckel, Richard H. 1983. “Height and Per Capita Income.” Historical Methods 16(1): 1-

7.  

 

Steckel, Richard H. 1986. “A Peculiar Population: The Nutrition, Health, and Mortality 

of American Slaves from Childhood to Maturity.” Journal of Economic History 46(3): 

721-741. 

 

Steckel, Richard H. 1987. “Growth Depression and Recovery: The Remarkable Case of 

American Slaves.” Annals of Human Biology 14: 111-132. 

 

Steckel, Richard H., 1995. “Stature and the Standard of Living.” The Journal of 

Economic Literature 33(4): 1903-1940. 

 

Steckel, Richard H., 1998. “Strategic Ideas in the Rise of the New Anthropometric 

History and their Implications for Interdisciplinary Research.” The Journal of Economic 

History 58(3): 803-821. 

 

Steckel, Richard H., 2009. “Heights and Human Welfare: Recent Developments and New 

Directions.” Explorations in Economic History 46(1): 1-23. 

 

Steckel, Richard H. and Roderick Floud, eds, 1997.  Health and welfare during 

Industrialization.  Chicago: University of Chicago Press. 

 

Steckel, Richard H. and Joseph M. Prince, 2001. “Tallest in the World: Native Americans 

of the Great Plains in the Nineteenth Century.” American Economic Review 91(1): 287-

294. 

 

Sunder, Marco. 2004. “The Height of Tennessee Convicts: Another Piece of the 

‘Antebellum Puzzle.’” Economics and Human Biology 2(1): 75-86. 

 

Sunder, Marco. 2011. “Upward and Onward: High-society American Women Eluded the 

Antebellum Puzzle.” Economics and Human Biology 9(2): 165-171. 

 

Sunder, Marco and Ulrich Woitek. 2005. “Boom, Bust, and the Human Body: Further 

Evidence on the Relationship between Heights and Business Cycles.” Economics and 

Human Biology 3(3): 450-466. 

 

Trussell, James and Richard H. Steckel. 1978. “The Age of Slaves at Menarche and their 

First Birth.” Journal of Interdisciplinary History 8(4): 477-505.  



66 

 

 

Voth, Hans-Joachim. 2003. “Living Standards during the Industrial Revolution: An 

Economist’s Guide.” American Economic Review 93(2): 221-226. 

 

Voth, Hans-Joachim and Timothy Leunig. 1996. “Did Smallpox Reduce Height? Stature 

and the Standard of Living in London, 1770-1873.” Economic History Review, New 

Series 49(3): 541-560. 

 

Wachter, Kenneth W. and James Trussell, 1982a. “Estimating Historical Heights.” 

Journal of the American Statistical Association 77(378):279-293 

 

Wachter, Kenneth W. and James Trussell, 1982b. “Estimating Historical Heights: 

Rejoinder.” Journal of the American Statistical Association 77(378):301-303. 

 

Warner, John T., and Beth J. Asch. 2001. “The Record and Prospects of the All-

Volunteer Military in the United States.” Journal of Economic Perspectives 15(2): 169-

192.  

 

Warner, John T., Curtis J, Simon, and Deborah M. Payne. 2000. “ Enlistment Supply in 

the 1990s: A Study of the Navy College Fund and Other Enlistment Incentive Programs.” 

Draft Final Report for the Office of the Undersecretary of Defense for Personnel and 

Readiness. Arlington, VA: Defense Manpower Data Center.  

 

Weil, David N. 2007. “Accounting for the Effect of Health on Economic Growth.” 

Quarterly Journal of Economics 122(3): 1265-1306. 

 

Weir, David R., 1997. “Economic Welfare and Physical Well-Being in France, 1750-

1990.” In Steckel and Floud (1997) 

 

Weiss, Thomas J. 1992. “U.S. Labor Force Estimates and Economic Growth, 1800-

1860.” In American Economic Growth and Standards of Living before the Civil War, 19-

78. Edited by Robert E. Gallman and John J. Wallis. Chicago: University of Chicago 

Press. 

 

Whitwell, Greg, Christine de Souza, and Stephen Nicholas, 1997. “Height, Health, and 

Economic Growth in Australia, 1860-1940.” In Steckel and Floud (1997). 

 

Williams, Karel, 1981. From Pauperism to Poverty. London: Routledge & Kegan Paul. 

 

Williamson, Jeffrey G. 1984. “Why Was British Growth So Slow during the Industrial 

Revolution?” Journal of Economic History 44(3): 687-712. 
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Figure 5: Rejection sample compared to Z(h) derived from Roy model 
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Table 1: Summary of main symbols in the occupational choice model, and their assumed values in 
simulation model 

Symbol Meaning 
 

h Height 
N Number of observations in simulated population 
  
wC Potential civilian pay 
wM Potential military pay 
  
μ Mean of heights in population 
σ Standard deviation of heights in population 

 
αC Intercept for civilian log-wage equation at height 56 inches 
αM Intercept for military log-wage equation at height 56 inches 

 
βC Slope (return to one inch in height) for civilian log-wage equation 
βM Slope (return to one inch in height) for military log-wage equation 

 
εC Skill (unobserved) affecting civilian log-wage equation  
εM Skill (unobserved) affecting military and civilian log-wages  

 
γC Return to military skill in civilian sector log-wage equation 
γM Return to military skill in military sector log-wage equation 

 
δC Return to civilian skill in civilian sector log-wage equation 

 
τC Taste for the civilian sector 
τM Taste for the military sector 

 
σCM Correlation of (εM, εC ) 
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Table 2 

 
Model 1 Model 2  Model 3  Model 4  Model 5 Model 6 

 
(baseline) 

    

(no height 
selection) 

        
Population mean 66 64 65 67 68 64.9 
Population s.d. 2.5 2.48 2.45 2.65 2.87 2.44 
 
αM 0.4 

     βM 0.02 
    

            0 
αC 0.6 1.26 0.96 0.25 -0.07 0.99 
βC 0.06 -0.013 0.024 0.092 0.12             0 
εM 0.1 

     εC 0.4 
     

       Military mean height 64.9 64.9 64.9 64.9 64.9 64.9 
Military sd height 2.44 2.44 2.44 2.44 2.44 2.44 
Fraction in military 0.079 0.079 0.077 0.077 0.075 0.076 
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Table 3 
 
Percent of Times Each Model Selected as Best Fitting Model 
 
(Model 1 is the true model)  

   

Sample Size 
 

   
 

500 1,000 2,500 5,000 10,000 25,000 50,000 
Number of 
samples 3146 1573 629 314 157 62 31 

        Model 
       1 2.26 2.54 3.02 6.05 7.64 8.06 9.68 

2 21.23 19.96 20.51 20.7 21.66 20.97 9.68 
3 17.48 19.14 19.71 21.02 20.38 24.19 29.03 
4 0.45 1.02 2.7 4.78 8.28 12.9 16.13 
5 39.89 38.65 34.34 28.66 23.57 16.13 9.68 
6 18.69 18.69 19.71 18.79 18.47 17.74 25.81 

 
100 100 99.99 100 100 99.99 100.01 
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Table 4: Summary of OLS estimates of height, using Army data 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 

Ages included 22-27 22-27 22-27 22-27 22-27 22-27 23-27 23-27 23-27 
 

Heights included (inches) 
 

65-72 65-72 65-72 67-72 67-72 67-72 67-72 67-72 67-72 

Test: all age dummies zero 
 

18.21 
(0.0) 

[5, 13752] 

13.23 
(0.0) 

[5,13748] 
 

 2.84  
(0.01) 
[5,9108] 

3.40 
(0.0) 
[9, 9104] 

 3.01 
(.02) 
[4,6098] 

3.38 (.01) 
[4,6094] 

 

Test: all recruitment-year dummies zero 
 

  6.76 
(0.0) 

[118, 13639] 
 

  2.79 
(0.0) 
[118,8995] 
 

  5.24 (0.0) 
[117,5985] 
 

Test: all “macro” variables zero 
 

 4.79 
(0.0) 

[5,13748] 
 

  1.03 
(.39) 
[4,9104] 

  2.74 
(.03) 
[4,6094] 

 

Test: ages and macro variables jointly zero 
 

 12.10 
(0.0) 

[9,13748] 

  2.10 
(.03) 
[9,9104] 

  2.93 
(0.0) 
[8,6094] 

 

Number of observations used 13895   9224   6232 
 

  

 

Note: Figures reported are F-statistics for the null hypothesis that the variables noted are collectively zero, with p-values in parentheses. Figures in 
[] are the degrees of freedom associated with the test. The regressions use robust standard errors. The full regression estimates are reported in 
Table E.2 
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Table 5: Summary of OLS estimates of height, using AMD data 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Estimation model 
 

OLS OLS OLS OLS OLS OLS RSMLE RSMLE 

Ages included 22-25 22-25 22-25 22-25 22-25 22-25 22-25 22-25 
 

Heights included (inches) 65-72 65-72 65-72 67-72 67-72 67-72 67-72 67-72 
 

Test: all age dummies zero 35.73 
(0.0) 
[3, 

186408] 

22.81 
(0.0) 
[3, 

186403] 

 5.16 
(0.0) 

[3,102165] 

2.68 
(0.05) 

[3,102165] 

 6.40 
(.09) 
[3] 

 

Test: all recruitment-year dummies zero   11.73 
(0.0) 

[32,186379] 

  3.12 
(0.0) 

[32,102141] 
 
 

 91.31 
(0.0) 
[32] 

Test: all “macro” variables zero  14.6 
(0.0) 

[5,186403] 

  5.44 
(0.0) 

[5,102165] 
 

 26.14 
(0.0) 
[5] 

 

Test: ages and macro variables jointly 
zero 

 22.83 
(0.0) 

[8,186403] 

  5.38 
(0.0) 

[8,102165] 

 36.35 
(0.0) 
[8] 

 

Number of observations used         
 

Note: Columns (1) through (7) pertain to OLS estimates; columns (8) and (9) are from RSMLE models. Figures reported are F-statistics for OLS 
and Wald statistics for RSMLE, with p-values in parentheses.  Figure in square brackets [] is  the degrees of freedom for the test. The regressions 
use robust standard errors. The full regression estimates are reported in Tables E.3 and E.4 
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Figure B.3: Implications of civilian wage shocks
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Appendix Table B.1: Example values of differences-in-returns R2 

Example βC Corr(εC,εM) sd(εM) sd(εC) R2 

 
1 .02 .1 .2 .2 .0335 
2 .02 .1 .2 .4 .0134 
3 .02 .2 .2 .2 .0376 
4 .04 .1 .2 .2 .1219 
5 .04 .1 .2 .4 .0515 
6 .04 .2 .2 .2 .1351 
7 .04 .2 .2 .4 .0562 
8 .06 .1 .2 .2 .2381 
9 .06 .1 .2 .4 .1089 
10 .06 .2 .2 .2 .2601 
 

All examples assume βM=0 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  RMSLE model Conditional on Military Selection (COMS) model  

  

Truth 
(evaluated at 
observed 
sample) 

Without 
selection 
controls 

With selection 
controls in 
mean height 

250 iterations, 
start at true 
values 

 250 
iterations, 
start at true 
values 

250 iterations, 
start at various 
values 

250 iterations, 
start at true 
values, except 
rho=-0.1 

250 iterations, 
start at true 
values, except 
rho=-0.30 

Unconditional 
Selection 
Model (two 
iterations, start 
at true values) 

Mean height 66.00 64.92 64.90 67.02 67.85 68.09 64.80 62.01 66.03 

Height shift 
effect 1.00 0.95 0.95 1.01 0.97 0.91 0.95 1.57 1.00 

Height effect in 
selection 0.094 NA NA 0.139 0.034 -0.051 -0.132 -0.510 0.093 
Pred. frac. 
prefering 
military 0.0815 NA NA 1.04E-06 1.0100E-06 1.1083E-03 0.2637 0.0031 0.0814865 

Pred. frac. in 
mil. (prefer mil 
& H>=min ht) 0.0502 NA   6.05E-07 6.2700E-07 7.1300E-04 0.1638 0.0023 0.0502208 

Selection and 
height error 
correlation 0.2357 NA NA 0.1697 0.2357 0.3645 -0.0146 -0.3259 0.2409 

Correlation 
estimated or 
constrained  constrained NA NA estimated constrained estimated estimated estimated estimated 

Convergence? 
(yes or no) 

Evaluated at 
truth yes yes no yes no no no yes 

log-likelihood 
conditional on 
military sample -1816557.024 -1816775.594 -1816555.059 -1816555.098 -1816555.076 -1816555.049 -1816553.853 -1816554.119   
log-likelihood in 
entire sample 
(N=20,000,000) -5722678.54               -5722676.178 

 

Table D.1: Identification of selection with additional information
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Table E.1: Descriptive statistics for Army sub-samples used in Table 4

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Height 67.45 1.71 65.00 72.00 68.39 1.28 67.00 72.00 68.38 1.29 67.00 72.00

War 0.43 0.50 0.00 1.00 0.45 0.50 0.00 1.00 0.49 0.50 0.00 1.00

Defence 2.14 1.02 0.37 5.02 1.99 1.02 0.37 5.02 2.05 1.03 0.37 5.02

GDP 47.65 35.60 10.37 116.30 41.86 33.66 10.37 116.30 41.40 34.06 10.37 116.30

Wage 27.89 9.43 13.42 50.92 26.09 9.23 13.42 50.92 26.17 9.33 13.42 50.92

Age at recruitment 23.58 1.50 22.00 27.00 23.52 1.46 22.00 27.00 24.26 1.23 23.00 27.00

Year recruited 1825.75 34.01 1760.00 1879.00 1819.48 34.02 1760.00 1879.00 1819.01 34.05 1760.00 1879.00

Birth year 1802.16 34.16 1733.00 1857.00 1795.96 34.14 1733.00 1857.00 1794.74 34.17 1733.00 1856.00

Columns (1)-(3) Columns (4)-(6) Columns (7)-(9)
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Table E.2: OLS estimates for model summarized in Table 4

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Col. in Table 4 c1 c2 c3 c4 c5 c6 c7 c8 c9

War -0.151 0.0194 0.295

(0.0750) (0.0765) (0.102)

Defence -0.0715 0.0141 -0.0487

(0.0315) (0.0325) (0.0411)

GDP 0.00285 0.0203 0.0101

(0.00995) (0.0106) (0.0147)

Wages 0.000280 -4.31e-05 0.0260

(0.0161) (0.0178) (0.0244)

age_23 -0.0942 -0.0927 -0.0518 -0.0714

(0.0400) (0.0411) (0.0404) (0.0414)

age_24 0.0539 0.0502 0.0867 0.0487 0.134 0.126

(0.0432) (0.0483) (0.0430) (0.0479) (0.0468) (0.0491)

age_25 -0.142 -0.146 -0.0210 -0.0737 0.0513 0.0256

(0.0530) (0.0612) (0.0524) (0.0598) (0.0558) (0.0630)

age_26 -0.419 -0.428 -0.0546 -0.129 0.0142 -0.0287

(0.0645) (0.0787) (0.0678) (0.0804) (0.0713) (0.0852)

age_27 -0.437 -0.448 -0.123 -0.216 -0.0643 -0.119

(0.0683) (0.0863) (0.0714) (0.0870) (0.0764) (0.0977)

ry_1760 3.593 1.555 1.645

(1.009) (0.891) (1.418)

ry_1761 4.157 1.959 2.188

(1.012) (0.904) (1.444)

ry_1762 3.417 1.105 1.261

(1.006) (0.898) (1.471)

ry_1763 4.204 1.825 1.794

(0.982) (0.868) (1.383)

ry_1764 4.230 1.868 1.544

(0.971) (0.857) (1.364)

ry_1765 3.766 1.549 1.285

(0.962) (0.845) (1.349)

ry_1766 4.080 1.684 1.355

(0.958) (0.839) (1.351)

ry_1767 4.388 2.047 1.795

(0.989) (0.874) (1.341)

ry_1768 4.147 1.925 0.969

(0.940) (0.832) (1.270)

ry_1769 4.102 1.838 0.998

(0.927) (0.816) (1.263)

ry_1770 2.604 0.976 -0.0577

(0.901) (0.801) (1.238)

ry_1771 3.896 2.217 1.676

(0.903) (0.788) (1.159)

ry_1772 3.218 1.128 0.738

(0.799) (0.719) (1.070)

ry_1773 3.408 1.157 0.427

(0.692) (0.632) (0.984)

ry_1774 3.842 1.867 1.339

(0.678) (0.623) (1.003)

ry_1775 3.320 1.519 1.369

(0.657) (0.602) (0.939)

ry_1776 3.085 1.611 2.001

(0.647) (0.588) (0.938)

ry_1777 2.382 0.809 1.065

(0.615) (0.560) (0.897)

ry_1778 1.170 0.303 0.463
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(0.613) (0.556) (0.888)

ry_1779 1.959 0.745 0.878

(0.608) (0.553) (0.889)

ry_1780 1.913 0.986 1.200

(0.608) (0.552) (0.871)

ry_1781 2.275 1.106 1.263

(0.609) (0.554) (0.861)

ry_1782 2.115 1.208 1.536

(0.580) (0.530) (0.842)

ry_1783 1.990 1.196 1.396

(0.594) (0.536) (0.847)

ry_1784 2.577 1.347 1.371

(0.535) (0.485) (0.786)

ry_1785 2.890 1.609 1.328

(0.516) (0.470) (0.763)

ry_1786 3.327 1.940 1.881

(0.506) (0.469) (0.748)

ry_1787 2.589 1.337 1.280

(0.472) (0.440) (0.724)

ry_1788 2.799 1.731 1.692

(0.461) (0.428) (0.720)

ry_1789 2.115 1.148 1.612

(0.426) (0.389) (0.641)

ry_1790 1.850 0.968 0.717

(0.348) (0.329) (0.559)

ry_1791 0.486 0.177 0.746

(0.944) (0.958) (0.945)

ry_1792 0.379 -0.189 -1.100

(0.529) (0.474) (0.454)

ry_1793 0.757 0.0339 0.0973

(0.262) (0.254) (0.340)

ry_1794 0.00854 -0.0305 0.0976

(0.251) (0.241) (0.324)

ry_1795 -0.104 -0.0794 -0.125

(0.233) (0.219) (0.314)

ry_1796 -0.0430 -0.301 -0.286

(0.216) (0.213) (0.286)

ry_1797 -0.0556 0.120 0.0401

(0.234) (0.231) (0.312)

ry_1798 0.610 0.178 0.0574

(0.248) (0.241) (0.284)

ry_1799 0.242 0.188 0.121

(0.209) (0.190) (0.222)

ry_1801 -0.0223 -0.133 -0.120

(0.182) (0.172) (0.211)

ry_1802 -0.337 0.0181 -0.132

(0.277) (0.309) (0.306)

ry_1803 -0.515 -0.367 -0.162

(0.188) (0.194) (0.263)

ry_1804 -0.339 -0.207 0.0107

(0.237) (0.234) (0.318)

ry_1805 -0.677 -0.217 0.00800

(0.209) (0.212) (0.295)

ry_1806 -1.071 -0.326 -0.0678

(0.267) (0.269) (0.365)

ry_1807 -0.826 -0.402 -0.0340

(0.262) (0.252) (0.341)

ry_1808 -0.548 -0.432 -0.251

(0.306) (0.297) (0.392)

ry_1809 -0.834 -0.229 -0.227
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(0.321) (0.320) (0.422)

ry_1810 -1.304 -0.537 -0.435

(0.315) (0.308) (0.412)

ry_1811 -1.937 -0.573 -0.387

(0.321) (0.348) (0.457)

ry_1812 -1.478 -0.548 -0.590

(0.316) (0.316) (0.426)

ry_1813 -1.789 -0.472 -0.411

(0.324) (0.332) (0.445)

ry_1814 -1.955 -0.521 -0.613

(0.362) (0.370) (0.492)

ry_1815 -1.846 -0.645 -0.755

(0.342) (0.346) (0.473)

ry_1816 -1.702 -0.635 -0.917

(0.345) (0.357) (0.491)

ry_1817 -1.877 -0.820 -1.057

(0.353) (0.364) (0.500)

ry_1818 -1.690 -0.519 -0.786

(0.369) (0.373) (0.506)

ry_1819 -0.623 -0.0706 -0.465

(0.428) (0.424) (0.562)

ry_1820 -1.170 -0.144 -0.608

(0.431) (0.429) (0.574)

ry_1821 -1.404 -0.325 -0.703

(0.492) (0.520) (0.690)

ry_1822 -0.935 0.180 -0.264

(0.519) (0.556) (0.792)

ry_1823 -1.117 -0.0540 -0.424

(0.500) (0.517) (0.707)

ry_1824 -1.609 -0.363 -0.884

(0.500) (0.529) (0.715)

ry_1825 -1.360 0.145 -0.489

(0.531) (0.556) (0.754)

ry_1826 -1.834 -0.178 -0.901

(0.518) (0.547) (0.746)

ry_1827 -1.755 -0.472 -1.370

(0.557) (0.584) (0.780)

ry_1828 -0.549 0.113 -1.030

(0.631) (0.651) (0.880)

ry_1829 -0.652 0.343 -0.356

(0.822) (0.851) (1.548)

ry_1830 -1.224 0.629 -0.491

(0.665) (0.710) (1.046)

ry_1831 -2.182 -0.0441 -1.123

(0.602) (0.648) (0.898)

ry_1832 -1.684 0.215 -1.021

(0.676) (0.721) (0.966)

ry_1833 -1.579 0.350 1.273

(0.854) (0.850) (1.041)

ry_1834 -0.855 1.008 0.999

(0.916) (0.869) (1.161)

ry_1835 -2.159 0.417

(1.082) (1.063)

ry_1836 -2.440 0.113 -0.800

(1.087) (1.063) (0.532)

ry_1837 -2.809 0.00248 -1.066

(1.111) (1.098) (0.875)

ry_1838 -2.729 0.117 -0.746

(1.139) (1.125) (0.949)

ry_1839 -3.409 -0.239 -1.345
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(1.137) (1.123) (0.989)

ry_1840 -2.523 0.0906 -0.537

(1.182) (1.177) (1.132)

ry_1841 -1.807 0.0979 -0.460

(1.200) (1.197) (1.292)

ry_1842 -1.358 0.467 0.134

(1.226) (1.220) (1.403)

ry_1843 -1.637 0.743 0.0882

(1.344) (1.335) (1.540)

ry_1844 -0.432 1.118 -0.245

(1.518) (1.514) (2.115)

ry_1845 -2.166 -0.308 -1.848

(1.446) (1.428) (2.654)

ry_1846 -3.063 -1.402 -2.239

(1.447) (1.412) (2.603)

ry_1847 -3.314 -1.386 -1.567

(1.571) (1.534) (2.704)

ry_1848 -3.417 -1.762 -2.958

(1.515) (1.471) (2.647)

ry_1849 -4.021 -1.647 -2.922

(1.608) (1.560) (2.794)

ry_1850 -3.459 -1.372 -1.003

(1.719) (1.714) (2.811)

ry_1851 -3.328 -1.810 -4.336

(1.610) (1.596) (2.866)

ry_1852 -4.220 -2.147 -4.493

(1.574) (1.559) (2.794)

ry_1853 -4.351 -2.146 -4.420

(1.589) (1.574) (2.820)

ry_1854 -5.136 -2.321 -4.537

(1.584) (1.570) (2.818)

ry_1855 -5.049 -1.998 -4.151

(1.584) (1.570) (2.816)

ry_1856 -5.141 -1.880 -4.114

(1.587) (1.574) (2.822)

ry_1857 -5.802 -2.260 -4.437

(1.591) (1.579) (2.826)

ry_1858 -5.004 -2.158 -4.235

(1.592) (1.579) (2.826)

ry_1859 -5.694 -2.361 -4.624

(1.594) (1.583) (2.829)

ry_1860 -5.991 -2.461 -4.944

(1.595) (1.584) (2.830)

ry_1862 -6.037 -2.630 -5.213

(1.608) (1.596) (2.863)

ry_1863 -6.105 -2.529 -5.416

(1.608) (1.600) (2.860)

ry_1864 -6.327 -2.813 -5.620

(1.610) (1.596) (2.868)

ry_1865 -5.418 -2.279 -5.017

(1.612) (1.601) (2.876)

ry_1866 -6.473 -2.493 -4.997

(1.623) (1.617) (2.895)

ry_1867 -6.114 -1.995 -3.964

(1.642) (1.665) (2.989)

ry_1868 -6.176 -2.460 -4.626

(1.631) (1.639) (2.954)

ry_1869 -5.698 -2.004 -4.038

(1.637) (1.645) (2.961)

ry_1870 -5.404 -1.620 -3.420
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(1.634) (1.642) (2.959)

ry_1871 -6.198 -2.041 -3.928

(1.636) (1.645) (2.962)

ry_1872 -6.085 -2.198 -4.071

(1.638) (1.647) (2.964)

ry_1873 -6.071 -1.882 -3.420

(1.643) (1.655) (2.971)

ry_1874 -5.833 -1.753 -3.621

(1.641) (1.650) (2.967)

ry_1875 -5.306 -1.581 -3.381

(1.645) (1.657) (2.972)

ry_1876 -5.757 -1.655 -3.300

(1.648) (1.661) (2.979)

ry_1877 -5.826 -1.771 -3.190

(1.654) (1.686) (3.005)

ry_1878 -5.034 -0.923 -1.867

(1.668) (1.698) (3.013)

ry_1879 -4.855 -1.035 -1.924

(1.669) (1.700) (3.023)

by_1733 2.020 2.125 -3.197 0.958 1.429 -0.716 1.030 1.651 -1.338

(0.550) (0.617) (1.242) (0.551) (0.628) (1.161) (0.559) (0.701) (1.672)

by_1734 1.729 1.846 -3.809 0.646 1.105 -1.234 0.714 1.337 -1.938

(0.273) (0.388) (1.147) (0.272) (0.405) (1.061) (0.285) (0.506) (1.614)

by_1735 2.197 2.306 -3.108 1.216 1.654 -0.554 1.277 1.882 -1.240

(0.426) (0.503) (1.165) (0.408) (0.499) (1.084) (0.417) (0.578) (1.622)

by_1736 1.661 1.754 -3.635 0.744 1.184 -0.984 0.820 1.407 -1.564

(0.259) (0.367) (1.125) (0.254) (0.381) (1.036) (0.268) (0.478) (1.574)

by_1737 1.132 1.217 -4.148 0.848 1.275 -0.921 0.921 1.495 -1.470

(0.431) (0.498) (1.139) (0.279) (0.395) (1.034) (0.291) (0.482) (1.572)

by_1738 1.536 1.616 -3.545 0.704 1.107 -0.937 0.859 1.420 -1.419

(0.285) (0.374) (1.121) (0.287) (0.390) (1.032) (0.372) (0.540) (1.556)

by_1739 2.140 2.183 -3.255 1.222 1.651 -0.498 1.329 1.863 -0.732

(0.258) (0.358) (1.096) (0.254) (0.372) (1.012) (0.288) (0.480) (1.537)

by_1740 1.926 1.976 -3.302 1.062 1.473 -0.527 1.383 1.904 -0.763

(0.245) (0.339) (1.105) (0.238) (0.353) (1.020) (0.275) (0.457) (1.551)

by_1741 1.823 1.840 -3.523 0.977 1.394 -0.753 1.101 1.601 -0.928

(0.212) (0.318) (1.082) (0.206) (0.331) (0.995) (0.232) (0.431) (1.521)

by_1742 1.404 1.408 -3.959 0.714 1.127 -1.064 0.716 1.207 -1.241

(0.258) (0.349) (1.085) (0.216) (0.334) (0.994) (0.245) (0.434) (1.500)

by_1743 1.817 1.819 -3.434 1.007 1.422 -0.731 1.207 1.698 -0.480

(0.257) (0.347) (1.072) (0.247) (0.355) (0.991) (0.312) (0.484) (1.462)

by_1744 1.681 1.676 -3.630 1.135 1.546 -0.672 1.268 1.749 -0.438

(0.297) (0.374) (1.086) (0.258) (0.361) (0.980) (0.312) (0.481) (1.444)

by_1745 2.093 2.083 -3.122 1.376 1.775 -0.449 1.576 2.044 0.0994

(0.257) (0.340) (1.072) (0.241) (0.343) (0.986) (0.277) (0.440) (1.452)

by_1746 2.178 2.167 -2.742 1.475 1.864 -0.194 1.350 1.813 0.131

(0.261) (0.342) (1.051) (0.252) (0.349) (0.975) (0.297) (0.453) (1.448)

by_1747 1.390 1.379 -3.404 0.899 1.278 -0.743 0.776 1.235 -0.330

(0.250) (0.328) (1.048) (0.218) (0.319) (0.965) (0.373) (0.501) (1.400)

by_1748 0.877 0.872 -3.314 0.589 0.968 -0.685 0.788 1.230 -0.997

(0.310) (0.378) (0.981) (0.265) (0.353) (0.926) (0.341) (0.472) (1.314)

by_1749 1.664 1.676 -3.152 1.125 1.505 -0.488 1.144 1.537 -0.386

(0.458) (0.512) (0.958) (0.373) (0.444) (0.892) (0.444) (0.551) (1.226)

by_1750 2.070 2.104 -2.480 1.535 1.914 0.234 1.728 2.102 0.192

(0.325) (0.385) (0.883) (0.271) (0.363) (0.819) (0.282) (0.442) (1.189)

by_1751 0.916 1.047 -2.969 0.810 1.188 -0.270 0.742 0.939 -1.044

(0.279) (0.362) (0.820) (0.253) (0.353) (0.796) (0.308) (0.482) (1.165)

by_1752 0.874 1.029 -2.858 0.391 0.759 -0.625 0.301 0.473 -1.385

(0.211) (0.316) (0.799) (0.199) (0.322) (0.775) (0.218) (0.419) (1.148)

by_1753 0.833 1.012 -2.548 0.399 0.755 -0.405 0.370 0.537 -1.203
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(0.204) (0.310) (0.797) (0.195) (0.316) (0.772) (0.215) (0.408) (1.145)

by_1754 0.769 0.951 -2.582 0.274 0.616 -0.560 0.215 0.380 -1.276

(0.192) (0.297) (0.793) (0.184) (0.304) (0.768) (0.205) (0.396) (1.140)

by_1755 0.536 0.724 -2.572 0.160 0.490 -0.540 0.234 0.412 -1.173

(0.184) (0.288) (0.788) (0.175) (0.295) (0.763) (0.206) (0.397) (1.131)

by_1756 0.201 0.400 -2.605 0.262 0.586 -0.360 0.625 0.814 -1.119

(0.214) (0.305) (0.791) (0.206) (0.313) (0.766) (0.285) (0.448) (1.126)

by_1757 0.488 0.696 -2.834 0.0793 0.403 -0.900 0.246 0.451 -1.688

(0.208) (0.302) (0.778) (0.200) (0.309) (0.756) (0.249) (0.422) (1.105)

by_1758 0.459 0.672 -2.875 0.173 0.492 -0.943 0.340 0.554 -1.680

(0.225) (0.312) (0.775) (0.203) (0.310) (0.752) (0.243) (0.409) (1.102)

by_1759 0.946 1.127 -2.599 0.624 0.947 -0.648 0.666 0.937 -1.437

(0.262) (0.333) (0.765) (0.244) (0.331) (0.748) (0.279) (0.420) (1.092)

by_1760 1.081 1.244 -2.404 0.773 1.086 -0.482 1.115 1.504 -0.834

(0.246) (0.316) (0.758) (0.227) (0.317) (0.741) (0.300) (0.434) (1.079)

by_1761 1.423 1.485 -2.425 0.897 1.225 -0.535 1.053 1.496 -0.981

(0.227) (0.300) (0.730) (0.207) (0.299) (0.714) (0.228) (0.378) (1.044)

by_1762 1.920 1.951 -2.052 1.317 1.637 -0.172 1.643 2.082 -0.467

(0.210) (0.282) (0.726) (0.197) (0.288) (0.707) (0.247) (0.392) (1.030)

by_1763 1.861 1.875 -2.149 1.231 1.552 -0.289 1.112 1.526 -0.918

(0.214) (0.289) (0.701) (0.200) (0.292) (0.693) (0.252) (0.397) (1.008)

by_1764 1.750 1.730 -2.342 1.022 1.343 -0.579 0.927 1.329 -1.064

(0.206) (0.281) (0.697) (0.199) (0.288) (0.694) (0.236) (0.377) (1.019)

by_1765 1.427 1.405 -2.360 0.734 1.046 -0.670 0.878 1.279 -1.283

(0.189) (0.265) (0.681) (0.182) (0.274) (0.682) (0.269) (0.398) (1.007)

by_1766 1.695 1.678 -1.981 0.990 1.298 -0.478 0.475 0.861 -1.454

(0.242) (0.305) (0.659) (0.234) (0.311) (0.660) (0.297) (0.421) (0.921)

by_1767 1.272 1.318 -1.550 0.530 0.841 -0.264 0.488 0.696 -0.508

(0.243) (0.309) (0.644) (0.235) (0.313) (0.636) (0.329) (0.452) (0.847)

by_1768 0.428 0.560 -1.651 0.236 0.542 -0.148 -0.189 -0.0492 -0.823

(0.233) (0.304) (0.574) (0.220) (0.303) (0.590) (0.246) (0.399) (0.790)

by_1769 0.802 0.985 -0.777 0.262 0.560 0.313 0.332 0.437 -0.264

(0.225) (0.303) (0.566) (0.214) (0.304) (0.584) (0.228) (0.376) (0.782)

by_1770 0.624 0.821 -0.836 0.381 0.664 0.452 0.431 0.527 -0.170

(0.212) (0.286) (0.559) (0.197) (0.284) (0.576) (0.216) (0.359) (0.774)

by_1771 0.352 0.563 -1.163 0.219 0.485 0.238 0.267 0.373 -0.300

(0.215) (0.283) (0.558) (0.207) (0.286) (0.578) (0.244) (0.370) (0.776)

by_1772 0.247 0.481 -1.061 0.165 0.421 0.209 0.373 0.478 -0.143

(0.216) (0.280) (0.552) (0.207) (0.281) (0.571) (0.239) (0.361) (0.767)

by_1773 0.161 0.425 -1.204 0.00800 0.264 0.00353 0.0880 0.189 -0.524

(0.210) (0.275) (0.535) (0.202) (0.277) (0.557) (0.240) (0.365) (0.742)

by_1774 -0.0977 0.169 -1.491 -0.110 0.138 -0.0633 0.134 0.220 -0.512

(0.216) (0.273) (0.538) (0.217) (0.281) (0.566) (0.273) (0.374) (0.752)

by_1775 0.157 0.429 -1.241 -0.0947 0.146 -0.156 -0.0770 -0.00855 -0.688

(0.217) (0.273) (0.529) (0.213) (0.276) (0.554) (0.248) (0.355) (0.731)

by_1776 -0.0883 0.165 -1.390 -0.00703 0.234 0.0123 -0.00457 0.0426 -0.574

(0.218) (0.272) (0.520) (0.212) (0.271) (0.548) (0.233) (0.335) (0.725)

by_1777 0.331 0.582 -0.889 0.242 0.472 0.274 0.242 0.275 -0.310

(0.209) (0.261) (0.512) (0.202) (0.260) (0.538) (0.229) (0.327) (0.710)

by_1778 -0.273 -0.0218 -1.335 -0.265 -0.0374 -0.140 -0.282 -0.294 -0.819

(0.190) (0.242) (0.495) (0.182) (0.240) (0.521) (0.214) (0.312) (0.687)

by_1779 0.0521 0.306 -0.851 0.0831 0.312 0.271 0.0939 0.0598 -0.469

(0.215) (0.261) (0.495) (0.211) (0.261) (0.523) (0.246) (0.333) (0.685)

by_1780 0.276 0.528 -0.437 0.293 0.519 0.539 0.253 0.192 -0.325

(0.217) (0.261) (0.490) (0.211) (0.260) (0.513) (0.212) (0.298) (0.675)

by_1781 -0.207 0.0454 -0.792 -0.330 -0.116 -0.0114 -0.211 -0.288 -0.771

(0.200) (0.242) (0.480) (0.184) (0.233) (0.500) (0.213) (0.298) (0.662)

by_1782 0.162 0.421 -0.421 0.0240 0.228 0.290 0.0936 0.00269 -0.499

(0.208) (0.248) (0.476) (0.197) (0.242) (0.499) (0.221) (0.300) (0.657)

by_1783 0.0288 0.303 -0.432 0.0469 0.240 0.358 -0.0401 -0.141 -0.484
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(0.212) (0.250) (0.466) (0.211) (0.251) (0.497) (0.259) (0.331) (0.653)

by_1784 -0.313 -0.0270 -0.595 -0.0284 0.163 0.364 0.0257 -0.0949 -0.411

(0.214) (0.255) (0.455) (0.200) (0.243) (0.484) (0.225) (0.303) (0.638)

by_1785 -0.0952 0.200 -0.329 -0.119 0.0683 0.290 0.0980 -0.0240 -0.164

(0.210) (0.250) (0.449) (0.204) (0.246) (0.481) (0.243) (0.315) (0.629)

by_1786 -0.123 0.189 -0.162 0.0456 0.226 0.468 0.134 -0.00419 -0.114

(0.222) (0.264) (0.440) (0.213) (0.258) (0.466) (0.246) (0.327) (0.612)

by_1787 -0.610 -0.281 -0.404 -0.296 -0.125 0.181 -0.303 -0.461 -0.438

(0.204) (0.251) (0.426) (0.197) (0.246) (0.453) (0.215) (0.303) (0.598)

by_1788 -0.595 -0.252 -0.214 -0.358 -0.200 0.186 -0.282 -0.452 -0.363

(0.193) (0.242) (0.418) (0.193) (0.245) (0.446) (0.215) (0.304) (0.586)

by_1789 -0.364 -0.0244 0.116 0.0309 0.175 0.585 0.205 0.0705 0.191

(0.199) (0.245) (0.416) (0.200) (0.250) (0.445) (0.231) (0.311) (0.580)

by_1790 -0.252 0.0726 0.161 -0.0177 0.114 0.542 0.0124 -0.0789 0.0633

(0.206) (0.247) (0.411) (0.212) (0.254) (0.440) (0.246) (0.312) (0.564)

by_1791 -0.428 -0.140 0.0673 -0.291 -0.168 0.273 -0.162 -0.169 0.0516

(0.188) (0.228) (0.398) (0.182) (0.227) (0.425) (0.217) (0.279) (0.551)

by_1792 -0.470 -0.248 0.0595 -0.252 -0.127 0.422 -0.179 -0.148 0.138

(0.199) (0.231) (0.399) (0.206) (0.238) (0.428) (0.226) (0.279) (0.550)

by_1793 -0.383 -0.191 0.0988 -0.298 -0.182 0.330 -0.157 -0.0954 0.138

(0.199) (0.229) (0.391) (0.195) (0.229) (0.419) (0.221) (0.270) (0.541)

by_1794 -0.179 -0.0656 0.231 -0.273 -0.163 0.314 -0.195 -0.171 0.0346

(0.199) (0.224) (0.388) (0.198) (0.225) (0.415) (0.237) (0.273) (0.536)

by_1795 -0.204 -0.165 0.190 -0.108 0.000414 0.426 0.230 0.241 0.294

(0.231) (0.246) (0.395) (0.235) (0.251) (0.420) (0.294) (0.317) (0.547)

by_1796 -0.261 -0.244 -0.0421 -0.118 -0.0217 0.254 0.459 0.480 0.441

(0.266) (0.275) (0.402) (0.254) (0.266) (0.430) (0.417) (0.426) (0.559)

by_1797 -0.0766 -0.0643 -0.161 -0.0782 0.00307 0.108 -0.0784 -0.0600 -0.0436

(0.265) (0.270) (0.328) (0.274) (0.281) (0.365) (0.302) (0.315) (0.447)

by_1798 0.141 0.150 0.0752 -0.0390 0.0141 0.0611 0.0378 0.0750 -0.0566

(0.236) (0.239) (0.259) (0.240) (0.242) (0.266) (0.271) (0.275) (0.296)

by_1799 0.293 0.300 0.347 0.0304 0.0564 0.155 0.237 0.261 0.166

(0.242) (0.244) (0.268) (0.241) (0.243) (0.269) (0.311) (0.313) (0.353)

by_1801 -0.370 -0.377 -0.116 -0.346 -0.383 -0.233 -0.188 -0.215 -0.0294

(0.206) (0.207) (0.211) (0.206) (0.207) (0.216) (0.240) (0.242) (0.258)

by_1802 -0.134 -0.144 0.319 0.0309 -0.0380 0.235 0.239 0.181 0.485

(0.227) (0.229) (0.241) (0.234) (0.236) (0.250) (0.278) (0.282) (0.312)

by_1803 -0.359 -0.370 -0.0161 0.0154 -0.0815 0.0777 0.0226 -0.0540 0.413

(0.239) (0.244) (0.272) (0.235) (0.241) (0.276) (0.265) (0.274) (0.330)

by_1804 -0.332 -0.351 0.224 -0.258 -0.406 -0.119 -0.000546 -0.110 0.465

(0.218) (0.228) (0.267) (0.211) (0.222) (0.271) (0.313) (0.336) (0.469)

by_1805 0.390 0.369 0.788 0.587 0.382 0.708 0.947 0.812 1.285

(0.375) (0.384) (0.431) (0.420) (0.427) (0.469) (0.590) (0.605) (0.702)

by_1806 0.116 0.0833 0.431 0.249 0.00472 0.121 0.268 0.112 0.462

(0.336) (0.357) (0.444) (0.345) (0.368) (0.483) (0.433) (0.474) (0.676)

by_1807 -0.0659 -0.104 0.591 0.00998 -0.272 -0.0764 0.0684 -0.105 0.512

(0.280) (0.309) (0.441) (0.263) (0.298) (0.470) (0.292) (0.351) (0.607)

by_1808 -0.0541 -0.0953 0.553 -0.0624 -0.365 -0.312 -0.204 -0.379 0.211

(0.224) (0.265) (0.411) (0.208) (0.257) (0.453) (0.249) (0.325) (0.592)

by_1809 -0.425 -0.468 0.477 -0.258 -0.585 -0.266 -0.0646 -0.216 0.101

(0.220) (0.268) (0.406) (0.232) (0.283) (0.452) (0.508) (0.547) (0.766)

by_1810 0.335 0.298 0.724 -0.0121 -0.331 -0.313 -0.0635 -0.233 -1.945

(0.256) (0.297) (0.551) (0.243) (0.291) (0.562) (0.446) (0.496) (0.838)

by_1811 0.625 0.583 0.850 0.351 0.0126 -0.186 1.066 0.887 -0.593

(0.293) (0.332) (0.732) (0.278) (0.324) (0.698) (0.563) (0.614) (1.071)

by_1812 1.162 1.101 1.488 0.573 0.189 -0.119 0.299 0.0798 -0.0931

(0.371) (0.414) (0.879) (0.345) (0.397) (0.832) (0.445) (0.529) (0.896)

by_1813 0.251 0.182 1.598 -0.269 -0.680 -0.390 -0.251 -0.543 0.107

(0.313) (0.367) (0.979) (0.315) (0.377) (0.945) (0.385) (0.475) (1.024)

by_1814 -0.260 -0.331 1.230 -0.236 -0.666 -0.284 -0.165 -0.452 0.202
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(0.224) (0.299) (1.002) (0.230) (0.314) (0.967) (0.273) (0.397) (1.152)

by_1815 -0.612 -0.685 1.257 -0.314 -0.774 -0.227 -0.358 -0.662 0.203

(0.226) (0.315) (1.028) (0.256) (0.347) (1.004) (0.307) (0.456) (1.230)

by_1816 -0.529 -0.605 1.306 -0.111 -0.610 -0.0593 -0.0600 -0.360 0.470

(0.225) (0.326) (1.041) (0.240) (0.347) (1.014) (0.298) (0.460) (1.248)

by_1817 -0.415 -0.488 1.356 0.408 -0.0862 0.477 0.510 0.258 0.394

(0.257) (0.352) (1.059) (0.284) (0.373) (1.055) (0.349) (0.471) (1.406)

by_1818 0.280 0.221 1.112 0.352 -0.113 0.180 0.524 0.229 0.175

(0.244) (0.330) (1.098) (0.225) (0.328) (1.081) (0.290) (0.416) (1.502)

by_1819 0.351 0.296 0.767 0.158 -0.297 -0.125 0.409 0.0967 -0.367

(0.225) (0.308) (1.119) (0.209) (0.306) (1.103) (0.245) (0.386) (1.586)

by_1820 0.321 0.270 0.450 0.186 -0.279 -0.348 0.832 0.510 0.352

(0.267) (0.342) (1.150) (0.248) (0.334) (1.128) (0.797) (0.856) (1.852)

by_1821 0.884 0.829 1.230 0.549 0.0423 -0.121 0.476 0.163 0.752

(0.359) (0.429) (1.293) (0.344) (0.423) (1.280) (0.994) (1.084) (2.669)

by_1822 1.503 1.439 0.972 0.828 0.273 -0.134 -0.906 -1.243 0.658

(0.308) (0.402) (1.443) (0.302) (0.409) (1.433) (0.327) (0.526) (2.754)

by_1823 0.281 0.210 1.872 0.0486 -0.580 1.048 -0.564 -0.912 0.940

(0.533) (0.610) (1.455) (0.517) (0.610) (1.393) (0.450) (0.632) (2.732)

by_1824 0.524 0.458 2.611 0.0406 -0.627 1.620 0.0855 -0.263 1.908

(0.514) (0.603) (1.463) (0.488) (0.596) (1.400) (0.657) (0.803) (2.773)

by_1825 -0.132 -0.196 2.169 -0.429 -1.102 1.153 -0.246 -0.608 2.315

(0.369) (0.487) (1.494) (0.377) (0.505) (1.455) (0.606) (0.770) (2.868)

by_1826 0.0631 0.00352 2.535 -0.0573 -0.762 1.710 0.0944 -0.285 2.886

(0.476) (0.580) (1.514) (0.468) (0.586) (1.450) (0.751) (0.892) (2.908)

by_1827 -0.235 -0.310 2.653 -0.511 -1.239 1.431 -0.367 -0.767 3.110

(0.368) (0.507) (1.514) (0.367) (0.530) (1.492) (0.429) (0.680) (2.902)

by_1828 -0.197 -0.162 3.056 -0.235 -1.004 1.727 -0.170 -0.725 3.505

(0.249) (0.435) (1.518) (0.236) (0.447) (1.494) (0.259) (0.586) (2.898)

by_1829 -0.0408 -0.00229 3.293 0.238 -0.565 2.292 0.270 -0.266 3.984

(0.237) (0.437) (1.517) (0.243) (0.460) (1.496) (0.269) (0.602) (2.910)

by_1830 -0.255 -0.220 3.418 0.0609 -0.763 2.213 0.108 -0.480 3.850

(0.192) (0.427) (1.511) (0.193) (0.450) (1.488) (0.215) (0.602) (2.909)

by_1831 -0.567 -0.495 3.193 -0.111 -0.970 1.991 -0.0403 -0.692 3.615

(0.186) (0.436) (1.514) (0.191) (0.460) (1.492) (0.221) (0.622) (2.910)

by_1832 -0.361 -0.284 3.539 -0.147 -1.039 1.950 0.00400 -0.663 3.573

(0.179) (0.444) (1.513) (0.177) (0.468) (1.491) (0.208) (0.642) (2.911)

by_1833 -0.407 -0.283 3.537 0.0868 -0.838 2.122 0.190 -0.386 3.852

(0.184) (0.461) (1.515) (0.181) (0.486) (1.493) (0.219) (0.677) (2.915)

by_1834 -0.295 -0.158 3.763 0.171 -0.798 2.226 -0.0904 -0.616 3.771

(0.204) (0.490) (1.520) (0.206) (0.517) (1.499) (0.265) (0.702) (2.921)

by_1835 -0.690 -0.724 3.651 -0.187 -1.152 2.079 -0.104 -0.665 3.766

(0.217) (0.504) (1.524) (0.216) (0.527) (1.503) (0.249) (0.705) (2.921)

by_1836 -0.674 -0.733 3.618 -0.405 -1.389 1.892 -0.173 -0.785 4.096

(0.209) (0.504) (1.524) (0.202) (0.525) (1.502) (0.279) (0.746) (2.927)

by_1837 -1.037 -1.103 3.575 -0.243 -1.274 2.189 0.143 -0.467 4.709

(0.240) (0.537) (1.532) (0.308) (0.598) (1.525) (0.454) (0.858) (2.977)

by_1838 -1.133 -1.191 3.529 -0.609 -1.684 1.907 -0.644 -1.278 4.041

(0.200) (0.539) (1.530) (0.195) (0.567) (1.509) (0.222) (0.778) (2.951)

by_1839 -0.680 -0.740 3.964 -0.816 -1.934 1.714 -0.742 -1.393 3.877

(0.240) (0.572) (1.545) (0.214) (0.595) (1.519) (0.229) (0.798) (2.953)

by_1840 -0.533 -0.602 4.279 -0.0146 -1.155 2.559 0.135 -0.549 4.874

(0.290) (0.596) (1.550) (0.368) (0.670) (1.541) (0.411) (0.882) (2.969)

by_1841 -0.219 -0.300 4.368 -0.110 -1.296 2.325 -0.0394 -0.733 4.474

(0.214) (0.588) (1.542) (0.208) (0.621) (1.521) (0.237) (0.852) (2.967)

by_1842 -0.421 -0.513 4.188 -0.283 -1.496 2.078 -0.133 -0.844 4.183

(0.206) (0.600) (1.544) (0.195) (0.633) (1.524) (0.220) (0.866) (2.971)

by_1843 -0.387 -0.486 3.975 -0.161 -1.423 1.995 -0.0509 -0.913 3.215

(0.205) (0.613) (1.548) (0.202) (0.641) (1.530) (0.341) (0.898) (3.030)

by_1844 -0.757 -0.858 4.076 -0.467 -1.769 1.725 -0.373 -1.227 3.174
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(0.207) (0.628) (1.561) (0.221) (0.664) (1.562) (0.251) (0.900) (3.051)

by_1845 -0.514 -0.623 4.143 -0.280 -1.636 1.795 -0.189 -1.124 3.289

(0.203) (0.655) (1.566) (0.205) (0.696) (1.568) (0.228) (0.954) (3.045)

by_1846 -0.366 -0.488 4.195 -0.0593 -1.472 1.909 0.132 -0.882 3.149

(0.187) (0.677) (1.565) (0.186) (0.724) (1.565) (0.210) (1.009) (3.046)

by_1847 -0.486 -0.631 3.942 -0.00727 -1.491 1.785 0.0615 -0.996 3.027

(0.193) (0.717) (1.567) (0.192) (0.756) (1.567) (0.214) (1.047) (3.048)

by_1848 -0.545 -0.700 3.881 0.0308 -1.497 1.757 -0.0714 -1.248 3.062

(0.188) (0.739) (1.568) (0.189) (0.785) (1.568) (0.230) (1.108) (3.050)

by_1849 -0.941 -1.109 3.838 -0.260 -1.868 1.692 -0.145 -1.360 2.901

(0.193) (0.770) (1.570) (0.218) (0.831) (1.575) (0.222) (1.129) (3.053)

by_1850 -0.924 -1.096 3.712 -0.545 -2.196 1.344 -0.395 -1.677 2.547

(0.194) (0.787) (1.572) (0.191) (0.839) (1.574) (0.229) (1.168) (3.056)

by_1851 -0.888 -1.065 3.621 -0.250 -1.932 1.476 0.0140 -1.289 2.911

(0.207) (0.804) (1.576) (0.228) (0.865) (1.581) (0.264) (1.195) (3.060)

by_1852 -1.153 -1.328 3.375 -0.534 -2.249 1.184 -0.532 -1.854 2.222

(0.194) (0.822) (1.576) (0.210) (0.881) (1.581) (0.258) (1.210) (3.064)

by_1853 -0.805 -0.976 3.546 -0.160 -1.896 1.437 -0.0981 -1.459 2.403

(0.217) (0.839) (1.582) (0.223) (0.896) (1.588) (0.277) (1.225) (3.074)

by_1854 -0.696 -0.853 3.559 -0.0100 -1.752 1.357 0.0646 -1.351 1.908

(0.230) (0.856) (1.589) (0.253) (0.919) (1.614) (0.280) (1.251) (3.092)

by_1855 -0.672 -0.809 3.258 -0.469 -2.203 0.682 -0.345 -1.743 0.987

(0.199) (0.838) (1.596) (0.207) (0.895) (1.622) (0.236) (1.214) (3.106)

by_1856 -1.029 -1.162 2.683 -0.422 -2.169 0.543 -0.341 -1.734 0.924

(0.207) (0.853) (1.603) (0.224) (0.913) (1.628) (0.298) (1.235) (3.117)

by_1857 -0.572 -0.694 3.096 -0.308 -2.052 0.731

(0.234) (0.853) (1.610) (0.265) (0.919) (1.640)

Constant 67.62 67.62 68.80 68.37 67.75 68.36 68.23 67.30 68.89

(0.158) (0.453) (0.509) (0.154) (0.494) (0.534) (0.175) (0.679) (0.721)

Observations 13,895 13,895 13,895 9,244 9,244 9,244 6,232 6,232 6,232

R-squared 0.158 0.159 0.192 0.094 0.094 0.119 0.090 0.092 0.120
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Table E.3: Descriptive statistics for AMD sub-samples used in Table 5

Mean SD Min Max Mean SD Min Max

Height 67.02 1.72 65.00 72.00 68.26 1.34 67.00 72.00

Unemployment 5.20 2.42 2.00 10.20 5.14 2.37 2.00 10.20

GDP 151.95 27.26 114.09 206.54 153.07 27.51 114.09 206.54

Defense 4.91 2.76 2.65 12.68 4.96 2.75 2.65 12.68

Indoor relief 6.32 0.53 5.60 7.80 6.34 0.55 5.60 7.80

War 0.16 0.36 0.00 1.00 0.16 0.36 0.00 1.00

Age at recruitment 23.17 1.05 22.00 25.00 23.19 1.05 22.00 25.00

Year of recruitment 1892.16 9.61 1879.00 1911.00 1892.56 9.70 1879.00 1911.00

Birth year 1868.99 9.63 1854.00 1889.00 1869.37 9.73 1854.00 1889.00

Columns (1) - (3) Columns (4) - (6)
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Col in Table 5 (1) (2) (3) (4) (5) (6) (7) (8) (9)

ue_feinstein -0.0138 -0.00383 0.00333

(0.00299) (0.00314) (0.00482)

defence -0.00871 -0.0132 -0.0140

(0.00418) (0.00434) (0.00634)

id_relief -0.0602 -0.0162 -0.000760

(0.0332) (0.0346) (0.0499)

war -0.107 -0.0361 -0.0520

(0.0272) (0.0283) (0.0398)

gdp -0.00215 0.00105 0.00376

(0.00201) (0.00210) (0.00300)

age_23 0.0457 0.0537 0.00977 0.00918

(0.0104) (0.0117) (0.0110) (0.0124)

age_24 0.107 0.126 0.0425 0.0423 0.0380 0.0300

(0.0109) (0.0153) (0.0114) (0.0162) (0.0118) (0.0144)

age_25 0.0928 0.144 0.0302 0.0447 0.0398 0.0309

(0.0143) (0.0226) (0.0149) (0.0237) (0.0155) (0.0228)

ry_1879 -1.126 -0.360 -0.473

(0.117) (0.122) (0.218)

ry_1880 -1.161 -0.392 -0.475

(0.116) (0.120) (0.216)

ry_1881 -1.297 -0.326 -0.451

(0.115) (0.119) (0.214)

ry_1882 -1.088 -0.323 -0.415

(0.113) (0.117) (0.210)

ry_1883 -1.122 -0.292 -0.305

(0.112) (0.115) (0.207)

ry_1884 -1.061 -0.295 -0.320

(0.110) (0.114) (0.204)

ry_1885 -1.078 -0.347 -0.344

(0.109) (0.112) (0.202)

ry_1886 -0.917 -0.309 -0.288

(0.107) (0.110) (0.199)

ry_1887 -0.737 -0.268 -0.306

(0.105) (0.108) (0.195)

ry_1888 -0.699 -0.225 -0.266

(0.102) (0.105) (0.187)

ry_1889 -0.589 -0.238 -0.265

(0.0963) (0.0986) (0.176)

ry_1890 -0.516 -0.157 -0.213

(0.0911) (0.0931) (0.167)

ry_1891 -0.587 -0.165 -0.139

(0.0850) (0.0874) (0.154)

ry_1892 -0.468 -0.170 -0.185

(0.0792) (0.0810) (0.145)

ry_1893 -0.452 -0.118 -0.172

(0.0742) (0.0758) (0.135)

ry_1894 -0.260 -0.0239 -0.0434

(0.0689) (0.0701) (0.124)

ry_1895 -0.0878 -0.0193 0.0116
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(0.0621) (0.0630) (0.110)

ry_1896 0.0235 0.0182 -0.109

(0.0549) (0.0559) (0.0940)

ry_1897 0.0817 0.0945 -0.0450

(0.0433) (0.0448) (0.0744)

ry_1898 0.120 0.0800 0.0957

(0.0355) (0.0365) (0.0508)

ry_1899 0.0761 0.0786 0.0597

(0.0321) (0.0332) (0.0413)

ry_1901 -0.0560 -0.0612 -0.0700

(0.0307) (0.0323) (0.0411)

ry_1902 0.0422 -0.0293 0.00605

(0.0339) (0.0356) (0.0488)

ry_1903 0.106 0.0113 0.0613

(0.0397) (0.0415) (0.0610)

ry_1904 0.204 0.00685 0.0900

(0.0470) (0.0486) (0.0737)

ry_1905 0.224 0.0328 0.0883

(0.0523) (0.0542) (0.0832)

ry_1906 0.326 0.172 0.322

(0.0608) (0.0623) (0.0973)

ry_1907 0.310 0.198 0.338

(0.0686) (0.0699) (0.112)

ry_1908 0.383 0.319 0.464

(0.0752) (0.0769) (0.126)

ry_1909 0.412 0.400 0.579

(0.0834) (0.0850) (0.142)

ry_1910 0.592 0.506 0.711

(0.0947) (0.0960) (0.160)

ry_1911 0.688 0.553 0.649

(0.103) (0.104) (0.177)

by_1854 0.0266 -0.288 1.212 -0.142 -0.203 0.212 -0.120 -0.0210 0.366

(0.0592) (0.152) (0.131) (0.0615) (0.159) (0.136) (0.0635) (0.222) (0.230)

by_1855 0.0114 -0.280 1.215 -0.0954 -0.150 0.275 -0.0632 0.0291 0.422

(0.0324) (0.136) (0.121) (0.0344) (0.142) (0.126) (0.0380) (0.205) (0.224)

by_1856 0.0143 -0.272 1.217 -0.132 -0.190 0.231 -0.0949 -0.0158 0.371

(0.0290) (0.127) (0.120) (0.0304) (0.133) (0.124) (0.0344) (0.192) (0.222)

by_1857 -0.0522 -0.336 1.138 -0.112 -0.173 0.227 -0.0968 -0.0348 0.354

(0.0271) (0.121) (0.118) (0.0289) (0.127) (0.123) (0.0360) (0.180) (0.220)

by_1858 -0.144 -0.430 1.047 -0.144 -0.215 0.186 -0.0670 -0.0157 0.346

(0.0282) (0.114) (0.117) (0.0302) (0.119) (0.121) (0.0387) (0.175) (0.217)

by_1859 -0.145 -0.412 1.041 -0.136 -0.206 0.158 -0.125 -0.0912 0.221

(0.0284) (0.108) (0.115) (0.0301) (0.114) (0.119) (0.0367) (0.164) (0.213)

by_1860 -0.0955 -0.330 1.017 -0.122 -0.184 0.173 -0.103 -0.0784 0.216

(0.0280) (0.105) (0.113) (0.0296) (0.110) (0.117) (0.0359) (0.160) (0.210)

by_1861 -0.130 -0.334 0.965 -0.146 -0.197 0.153 -0.117 -0.0891 0.206

(0.0274) (0.102) (0.112) (0.0290) (0.107) (0.116) (0.0350) (0.160) (0.208)

by_1862 -0.143 -0.346 0.883 -0.0769 -0.124 0.220 -0.0729 -0.0355 0.235

(0.0275) (0.101) (0.111) (0.0296) (0.106) (0.114) (0.0360) (0.159) (0.206)

by_1863 -0.127 -0.332 0.828 -0.0821 -0.131 0.209 -0.0300 0.00603 0.249

(0.0283) (0.0986) (0.110) (0.0303) (0.104) (0.113) (0.0376) (0.153) (0.203)

by_1864 -0.0303 -0.260 0.797 -0.0518 -0.110 0.206 0.0367 0.0537 0.315
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(0.0311) (0.0964) (0.108) (0.0332) (0.101) (0.111) (0.0464) (0.146) (0.197)

by_1865 0.00153 -0.259 0.691 -0.0810 -0.162 0.139 -0.0462 -0.0428 0.204

(0.0360) (0.0918) (0.104) (0.0373) (0.0961) (0.107) (0.0506) (0.141) (0.187)

by_1866 0.0364 -0.238 0.665 -0.0305 -0.123 0.156 0.00707 -0.00453 0.228

(0.0377) (0.0882) (0.0993) (0.0392) (0.0924) (0.102) (0.0491) (0.133) (0.177)

by_1867 0.0773 -0.181 0.650 0.0255 -0.0666 0.197 0.0831 0.0625 0.257

(0.0378) (0.0840) (0.0934) (0.0397) (0.0882) (0.0960) (0.0505) (0.129) (0.164)

by_1868 0.0678 -0.164 0.605 -0.0765 -0.159 0.0677 -0.0720 -0.0969 0.0907

(0.0352) (0.0810) (0.0871) (0.0364) (0.0846) (0.0893) (0.0444) (0.124) (0.154)

by_1869 0.00628 -0.204 0.515 0.0116 -0.0659 0.137 0.0736 0.0506 0.232

(0.0346) (0.0773) (0.0832) (0.0366) (0.0814) (0.0852) (0.0449) (0.122) (0.147)

by_1870 0.0101 -0.190 0.418 -0.0326 -0.109 0.0585 0.0402 0.0105 0.135

(0.0336) (0.0744) (0.0783) (0.0354) (0.0779) (0.0800) (0.0454) (0.114) (0.137)

by_1871 0.0554 -0.144 0.358 0.0325 -0.0479 0.0718 0.0836 0.0385 0.103

(0.0345) (0.0695) (0.0732) (0.0363) (0.0727) (0.0748) (0.0474) (0.102) (0.125)

by_1872 0.112 -0.0913 0.253 0.0258 -0.0638 0.0101 0.0619 0.00496 0.0932

(0.0354) (0.0618) (0.0674) (0.0364) (0.0642) (0.0685) (0.0473) (0.0922) (0.111)

by_1873 0.136 -0.0749 0.148 0.0150 -0.0826 -0.0316 0.123 0.0505 0.172

(0.0358) (0.0562) (0.0596) (0.0370) (0.0584) (0.0611) (0.0481) (0.0835) (0.0944)

by_1874 0.170 -0.0223 0.117 0.0331 -0.0665 -0.0484 0.0609 -0.0181 0.0256

(0.0353) (0.0491) (0.0496) (0.0363) (0.0510) (0.0514) (0.0449) (0.0734) (0.0765)

by_1875 0.0359 -0.0929 0.0295 -0.0223 -0.0985 -0.0757 -0.0295 -0.0775 -0.0538

(0.0290) (0.0400) (0.0343) (0.0304) (0.0419) (0.0361) (0.0355) (0.0616) (0.0553)

by_1876 0.0488 -0.0241 0.0524 0.0113 -0.0347 -0.0197 0.0340 0.0198 0.0517

(0.0298) (0.0333) (0.0335) (0.0314) (0.0352) (0.0353) (0.0376) (0.0498) (0.0483)

by_1877 0.0716 0.0615 0.0727 0.0624 0.0484 0.0445 0.0508 0.0587 0.0673

(0.0299) (0.0311) (0.0316) (0.0314) (0.0327) (0.0333) (0.0379) (0.0423) (0.0422)

by_1879 -0.000475 0.0257 -0.0306 -0.0521 -0.0396 -0.0462 -0.0220 -0.0565 -0.0719

(0.0319) (0.0342) (0.0337) (0.0338) (0.0362) (0.0357) (0.0416) (0.0435) (0.0454)

by_1880 0.0313 0.0383 -0.0756 -0.114 -0.122 -0.131 -0.0759 -0.167 -0.157

(0.0313) (0.0375) (0.0369) (0.0326) (0.0391) (0.0385) (0.0408) (0.0524) (0.0567)

by_1881 0.188 0.155 0.0166 0.0279 -0.0147 -0.0243 0.0572 -0.0678 -0.0769

(0.0337) (0.0451) (0.0436) (0.0347) (0.0468) (0.0450) (0.0431) (0.0640) (0.0697)

by_1882 0.213 0.177 -0.0229 0.0762 0.0101 -0.0133 0.155 0.00497 -0.0696

(0.0356) (0.0532) (0.0508) (0.0366) (0.0551) (0.0523) (0.0475) (0.0774) (0.0832)

by_1883 0.222 0.204 -0.0510 -0.00693 -0.0800 -0.159 0.0456 -0.126 -0.308

(0.0359) (0.0610) (0.0575) (0.0366) (0.0634) (0.0589) (0.0465) (0.0864) (0.0978)

by_1884 0.208 0.209 -0.122 0.0396 -0.0340 -0.210 0.129 -0.0474 -0.295

(0.0374) (0.0671) (0.0655) (0.0385) (0.0697) (0.0666) (0.0507) (0.0952) (0.114)

by_1885 0.199 0.222 -0.162 0.0266 -0.0436 -0.294 0.112 -0.0541 -0.425

(0.0377) (0.0722) (0.0728) (0.0385) (0.0750) (0.0740) (0.0497) (0.0949) (0.128)

by_1886 0.237 0.252 -0.203 0.0367 -0.0343 -0.374 0.113 -0.0623 -0.526

(0.0390) (0.0730) (0.0798) (0.0400) (0.0759) (0.0812) (0.0547) (0.103) (0.145)

by_1887 0.241 0.246 -0.271 0.0829 0.00376 -0.399 0.184 -0.00467 -0.507

(0.0424) (0.0795) (0.0888) (0.0434) (0.0826) (0.0903) (0.0635) (0.112) (0.166)

by_1888 0.293 0.292 -0.354 0.109 0.0231 -0.450 0.239 0.0360 -0.437

(0.0521) (0.0881) (0.102) (0.0531) (0.0914) (0.103) (0.0801) (0.128) (0.187)

by_1889 0.285 0.290 -0.437 0.204 0.115 -0.385

(0.0628) (0.0988) (0.117) (0.0659) (0.104) (0.119)

Constant 66.96 67.94 66.99 68.29 68.38 68.32 68.26 67.77 68.28

(0.0222) (0.436) (0.0285) (0.0234) (0.457) (0.0300) (0.0288) (0.643) (0.0511)
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Observations 186,447 186,447 186,447 102,209 102,209 102,209 67,832 67,832 67,832

R-squared 0.005 0.006 0.007 0.003 0.003 0.004 0.004 0.004 0.005
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Log-likelihood: -153723.67 Wald(67): 143.37, p=0 N=102209

Estimates of mean Estimates of log(sigma)

Est SE Est SE

Birth-year dummies

by_1854 -1.081 1.9345 by_1854 0.1953 0.1785

by_1855 0.577 0.7073 by_1855 0.0406 0.0731

by_1856 0.759 0.6403 by_1856 -0.0080 0.0655

by_1857 0.229 0.6585 by_1857 0.0613 0.0651

by_1858 -0.250 0.7205 by_1858 0.0973 0.0688

by_1859 0.630 0.6213 by_1859 -0.0292 0.0665

by_1860 0.360 0.6211 by_1860 0.0189 0.0646

by_1861 0.171 0.6404 by_1861 0.0335 0.0652

by_1862 0.072 0.6387 by_1862 0.0829 0.0649

by_1863 0.575 0.6119 by_1863 0.0113 0.0675

by_1864 -0.402 0.7588 by_1864 0.1347 0.0767

by_1865 0.519 0.6369 by_1865 -0.0181 0.0783

by_1866 0.427 0.6726 by_1866 0.0066 0.0856

by_1867 -0.265 0.7687 by_1867 0.1236 0.0886

by_1868 0.114 0.6113 by_1868 0.0047 0.0793

by_1869 0.247 0.5960 by_1869 0.0236 0.0768

by_1870 0.115 0.5541 by_1870 0.0013 0.0732

by_1871 0.099 0.5383 by_1871 0.0122 0.0739

by_1872 0.424 0.4626 by_1872 -0.0782 0.0701

by_1873 -0.701 0.6632 by_1873 0.0797 0.0825

by_1874 -0.648 0.5477 by_1874 0.0659 0.0733

by_1875 -0.641 0.4532 by_1875 0.0533 0.0635

by_1876 -0.775 0.5211 by_1876 0.0992 0.0680

by_1877 0.040 0.4148 by_1877 0.0154 0.0618

by_1879 -1.884 0.7977 by_1879 0.2055 0.0846

by_1880 -1.536 0.6622 by_1880 0.1284 0.0766

by_1881 -0.890 0.5819 by_1881 0.1093 0.0746

by_1882 -0.696 0.5552 by_1882 0.0876 0.0750

by_1883 -1.337 0.6836 by_1883 0.0966 0.0829

by_1884 -1.506 0.6310 by_1884 0.0949 0.0791

by_1885 -2.337 0.7791 by_1885 0.1551 0.0872

by_1886 -2.881 0.8504 by_1886 0.1802 0.0892

by_1887 -1.541 0.6078 by_1887 -0.0172 0.0803

by_1888 -3.109 1.1049 by_1888 0.1790 0.1220

by_1889 -2.594 1.0537 by_1889 0.1502 0.1225

_cons 0.9242 0.0464

Recruitment-year dummies

ry_1879 -1.158 0.4600

ry_1880 -1.295 0.4551

ry_1881 -1.013 0.4476
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ry_1882 -1.037 0.4388

ry_1883 -0.915 0.4321

ry_1884 -0.934 0.4251

ry_1885 -1.137 0.4174

ry_1886 -1.003 0.4100

ry_1887 -0.863 0.3985

ry_1888 -0.690 0.3828

ry_1889 -0.775 0.3647

ry_1890 -0.457 0.3411

ry_1891 -0.481 0.3169

ry_1892 -0.514 0.2915

ry_1893 -0.332 0.2743

ry_1894 -0.017 0.2491

ry_1895 0.016 0.2384

ry_1896 0.080 0.2098

ry_1897 0.370 0.1693

ry_1898 0.319 0.1417

ry_1899 0.285 0.1197

ry_1901 -0.244 0.1231

ry_1902 -0.064 0.1296

ry_1903 0.040 0.1586

ry_1904 0.064 0.2018

ry_1905 0.166 0.2220

ry_1906 0.686 0.2499

ry_1907 0.786 0.2802

ry_1908 1.263 0.3115

ry_1909 1.618 0.3451

ry_1910 2.030 0.3827

ry_1911 2.142 0.4094

_cons 66.396 0.3225
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