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Abstract 

In the aftermath of a natural catastrophe, there is increased demand for skilled reconstruc-

tion labor, which leads to significant increases in reconstruction labor wages and hence in-

sured losses. Such inflation effects are known as "Demand Surge" effects. It is important for 

insurance companies to properly account for these effects when calculating insurance premi-

ums and determining economic capital. We propose an approach to quantifying the Demand 

Surge effect and present an econometric model for the effect that is based on 191 catastrophe 

events in the United States. Our model explains more than 75% of the variance of the De-

mand Surge effect and is thus able to identify the key drivers of the phenomenon. 
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1 Introduction 

In recent decades, dramatic increases in the number and severity of catastrophes have been 

observed (Kunreuther/Michel-Kerjan, 2009). These developments are accompanied by a dras-

tic increase in catastrophe-related economic losses, which is of particular relevance because 

growth in catastrophe losses is expected to continue for the foreseeable future, at least if ef-

fective disaster mitigation efforts are omitted (Pielke, 2005; Pielke et al., 2008). 

The basis for economic losses is reconstruction costs, which must be raised after a catas-

trophe to restore the original state of buildings and infrastructure. To estimate future costs, 

however, it is not appropriate to apply the expected price level under normal conditions. Ra-

ther, it must be considered that, in the case of a catastrophe, there is increased demand for 

skilled labor and materials, which are necessary for reconstruction. Because this increase in 

demand is confronted with a constant supply of relevant goods and labor, significant price 

increases are expected, which in turn should be taken into account in the forecast of catastro-

phe losses. Such price effects are referred to as "Demand Surge" effects. According to the 

literature, “Demand Surge occurs when the demand for products and services exceeds the 

regional capacity to efficiently supply them. The additional costs for these products and ser-

vices are directly passed on to the consumer (and the insurer)” (EQECAT, 2005). Demand 

Surge is especially relevant for insurance companies because this effect may lead to signifi-

cant additional losses in the context of the adjustment of claims. For example, it is estimated 

that the Demand Surge effect due to Hurricane Katrina is in the range of 30% to 40% (Munich 

Re, 2006). 

Although Demand Surge is highly relevant for determining the economic damage of a ca-

tastrophe, there are only few contributions in the literature that address this phenomenon. This 

fact is even more surprising because it is a phenomenon that is neither new nor limited to a 

particular region or a particular type of catastrophe (Olsen/Porter, 2011a). Though, the scien-
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tific literature considers Demand Surge exclusively on a qualitative level or only for a specific 

catastrophe type or event; universally valid quantitative models for Demand Surge have not 

been published. In contrast, the three main catastrophe modeling companies, Applied Insur-

ance Research (AIR), EQECAT, and Risk Management Solutions (RMS), consider the De-

mand Surge effect within the framework of modeling direct catastrophe losses. However, the 

models of these companies are not publicly available. In particular, it is not clear which em-

pirical results underlie their models. 

Against this background, the present paper provides two main contributions. First, we pro-

pose an approach to quantify the Demand Surge effect. Second, we introduce the first econo-

metric model for the effect. In this way, the paper provides a basis for the quantitative as-

sessment of Demand Surge for future catastrophes, which, on one hand, is important for in-

surance companies when calculating insurance premiums and determining economic capital. 

On the other hand, such information is also relevant for investors of insurance stocks and is-

suers and investors of catastrophe-linked securities (such as Cat Bonds), who have to consider 

Demand Surge within the framework of security pricing. 

Our empirical study is essentially based on data for natural catastrophes from the EM-DAT 

database and pricing information for the construction sector from Xactware. The dataset of 

EM-DAT has comprised worldwide information on natural catastrophes since 1900, and 

Xactware has been the leading provider of pricing information in the construction sector for 

more than 460 economic areas in the US and Canada since 2002. Our proposed Demand 

Surge model is able to explain more than 75% of the variance of the Demand Surge effect. 

Regarding possible influencing factors, we find that the Demand Surge effect strongly in-

creases if the damage due to a catastrophe rises or if further catastrophes occur in close prox-

imity in terms of time in the same region. In addition, we identify a strong positive relation-

ship between the number of settled insurance claims for a catastrophe and Demand Surge, 

which indicates that the regulation policy of insurers is less restrictive if the total number of 
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claims is large. Furthermore, we show that the Demand Surge effect is particularly high if the 

construction sector is in a growth stage because in, such situations, there is little idle capacity. 

In contrast, we observe that a larger number of establishments in the construction sector leads 

to a decreasing Demand Surge effect because, in this situation, capacity adjustments can be 

conducted more easily. Finally, if we restrict the data to very severe catastrophes (i.e., damag-

es of more than 500 million US-$), we observe a saturation effect according to which the De-

mand Surge effect is reduced if wages for building services have already increased before a 

catastrophe. 

The remainder of this paper is structured as follows. In Section 2, we provide a brief litera-

ture review regarding the Demand Surge effect and the derivation of hypotheses on the basis 

of common assertions from the literature. In Section 3, we develop a measure for Demand 

Surge and explain the relevant exogenous variables of the model. Furthermore, we present 

descriptive statistics of the data set. In Section 4, we discuss the empirical analyses and relat-

ed robustness checks. In Section 5, we present our conclusions. 

2 Modeling of Demand Surge and Hypotheses Development 

2.1 Literature Review 

Only two decades ago, researchers started to develop models to describe Demand Surge 

(Olsen/Porter, 2010). Leading among them are models developed by the three main catastro-

phe modeling companies, Applied Insurance Research, EQECAT, and Risk Management So-

lutions. All three steadily improve their models but withhold details as intellectual property. 

Nevertheless, a brief description of an early model developed by EQECAT can be found in 

Olsen/Porter (2011a). 

So far, only two scientific publications exist that focus directly on the quantification of 

Demand Surge. Hallegatte et al. (2008) conduct an analysis of increasing reconstruction costs 

in the aftermath of the 2004 and 2005 hurricane seasons in Florida. It is noteworthy that they 
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focus only on wages, neglecting the price increases of building products. They propose a 

model based on the process of worker migration in response to price signals. However, the 

model results are not verified for other catastrophes. By contrast, Olsen/Porter (2011b) use a 

series of multilevel regressions to predict the cost changes of constructed baskets of repairs 

representing the total repair costs, material and labor components caused by Atlantic hurri-

canes. The model is based on data for nine hurricane seasons and fifty-two cities on the Atlan-

tic and Gulf coasts. In their analysis, they focus primarily on physical variables, such as wind 

speed, and not on the economic mechanisms that underlie Demand Surge. 

There are also a number of studies that consider a Demand Surge effect but mainly concen-

trate on estimating the total damages of catastrophe events (Florida International University, 

2009; Hallegatte, 2008). The Florida Public Hurricane Loss Model (FPHLM) (Florida Inter-

national University, 2009), which is restricted to hurricane events in Florida, estimates costs 

and probable maximum loss levels. All estimates therein refer to personal lines residential 

property. The incorporated Demand Surge module is affected by insurance coverage, the re-

gion of Florida and estimated statewide losses before applying the Demand Surge function. 

Hallegatte (2008) proposes an adaptive regional input-output (ARIO) model, which is used to 

simulate the economic consequences to the landfall of Katrina in Louisiana. Its innovations 

include the consideration of sector production capacities, forward and backward propagations 

within the economic system and the introduction of adaptive behavior. The ARIO model in-

cludes Demand Surge, which is defined by Hallegatte (2008) as price increases in the con-

struction sector for building products and services. Based on simulations, a Demand Surge 

effect of 13% is calculated, but the most important result is nonlinearity between direct losses 

and total economic losses. 

2.2 Impact on Labor and Material prices 

According to the definition of Demand Surge, increases in both labor and material prices 

could be relevant and lead to higher costs. However, objective reasons and historical time 
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series data lead to the conclusion that labor prices should be the center of attention. In general, 

labor is relatively immobile, and its markets tend to be strongly regional. In the case of a ca-

tastrophe, labor demand increases sharply and exceeds the regional capacity. As a conse-

quence, workers are stimulated to work overtime, which is associated with a premium. In ad-

dition, the import of labor is associated with extra costs for accommodations and travel. On 

the contrary, building materials are traded on global markets and can be transported to devas-

tated areas more easily, making them less volatile. Moreover, states that are frequently affect-

ed by catastrophe events often try to conduct agreements with large chain stores, such as 

Walmart, that offer them access to building products typically used for reconstruction purpos-

es at predefined conditions. As a consequence, the excess demand and the impact on material 

prices are less pronounced. Nevertheless, exceptions are possible. For example, regional ce-

ment prices rose significantly after the landfall of Katrina because cement was imported main-

ly through the harbor of New Orleans, which had a bounded capacity during that time (Hal-

legatte et al., 2008). 

Example labor and material price evolutions can be found in Figures 1 and 2. Figure 1 

shows labor price evolutions in West Palm Beach (Florida), Florida, and the US from 2003 to 

2009, which include the landfall of Hurricane Frances in Q3 2004. Figure 2 plots the respec-

tive material price evolution. Whereas a sharp increase in labor prices coincides with the land-

fall of Frances, the material prices react little, pointing again to the fact that labor prices 

should be the center of attention. 

[Figure 1] 

[Figure 2] 

In summary, typically, labor capacity seems to be the restrictive factor. As a consequence, 

the demand for building materials is distributed over a longer time period. Moreover, this ad-

ditional demand is predictable to some extent. Thus, the production capacity can be adapted to 

the change in demand, and the impact on material prices is less pronounced. This finding is 



 6 

supported by work conducted by Olsen/Porter (2011b) and AIR (2009). Olsen/Porter (2011b), 

for example, show that correlation between wind speed, as a proxy for damage, and material 

prices is low. 

2.3 Hypotheses 

In the literature, common themes of Demand Surge are discussed (Hallegatte et al., 2008; 

Olsen/Porter, 2011a) but have not yet been tested empirically. Most obvious is the potentially 

positive impact of damages on Demand Surge. More severe catastrophes lead to increasing 

costs and a stronger imbalance between demand and supply for construction labor. As a con-

sequence, labor prices rise, and the Demand Surge effect is more pronounced (Hallegatte et 

al., 2008; Krutov, 2010; Olsen/Porter, 2011a). Thus, we hypothesize the following: 

Damage Hypothesis (H1): 

The magnitude of the Demand Surge strongly increases with the total amount of repair 

work. 

 

It is important to mention that an isolated examination of a catastrophe is not adequate. A 

possible backlog from previous events worsens the situation, and the same effect is likely for 

subsequent damages from other events. For example, AIR (2009) aggregates some catastro-

phes into one single large event and assumes that reconstruction begins only after these events 

occurred. In addition, Hallegatte et al. (2008) simulate a cumulative Demand Surge level of 

37% in Florida for the 2005 season compared to 24% if no hurricane had occurred in 2004. 

Therefore, it is necessary to explicitly consider alternative catastrophes with close temporal 

and spatial proximity. Hence, in compliance with the literature, we expect the following: 

Proximity Catastrophe Hypothesis (H2): 

The magnitude of the Demand Surge increases with other catastrophes with close temporal 

and spatial proximity. 
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If the total number of claims per event rises, the procedure of insurance claims handling 

might suffer for two reasons. First, politics might put pressure on insurance companies to set-

tle claims quickly. As a consequence, claim adjusters spend less time for each assessment. 

Alternatively, insurance companies might install untrained claim adjusters. Both lead to poor-

er damage assessments and, typically, increased payments (Thomas, 1976). Secondly, in high-

ly competitive markets, insurance companies may be classified by the insured and the media 

according to the ways in which they settle their claims, which could have a significant impact 

on their future premium income (Olsen/Porter, 2010). For example, RMS (2000) finds that 

insurance companies did not verify claims under a given threshold in the aftermath of the 

1999 Windstorms Lothar and Martin in France. As a consequence, insurance companies 

might settle claims that are not attributable to the catastrophe itself due to fraud. In summary, 

both aspects lead to increasing reconstruction demand. Although a part of the uninsured dam-

age might be repaired even without insurance, the reconstruction work would be distributed 

over a longer time period. Thus, we hypothesize: 

Insurance Hypothesis (H3): 

A larger number of insurance claims per event lead to higher Demand Surge levels. 

 

If the economy in the construction sector is growing, idle capacities diminish, and the dise-

quilibrium between demand and supply results in labor price increases. In a simulation study, 

Hallegatte et al. (2008) show that the Demand Surge for the 2004 and 2005 hurricane seasons 

in Florida would have been much lower if the economy had been in a recession, as was the 

case during the landfall of Hurricane Andrew in 1992. Against this background, we expect: 

Growth Hypothesis (H4): 

In a stage of growth for the economy, Demand Surge levels are higher. 
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A larger number of establishments in the construction sector leads to competition and, con-

sequently, keeps labor prices low (Olsen/Porter, 2011a). Moreover, capacity adjustments are 

easier to conduct given an already large number of establishments in the construction sector 

because both equipment and organizational structures are already available. Therefore, we 

propose the contractor hypothesis: 

Contractor Hypothesis (H5): 

A larger number of contractors have a restraining effect on Demand Surge. 

 

If wage levels are already high due to a construction boom or a backlog from previous ca-

tastrophes, further labor price increases might be lessened. Thus, there could be saturation 

effects. With each additional price increase by a single US Dollar, a growing number of 

workers are addressed. Starting with workers who commute to work and are attracted by in-

creased labor prices in the catastrophe region, ongoing labor price increases attract additional 

workers who at least temporary transfer their residence. This second group is significantly 

larger than the first one and increases the possible labor supply substantially. Altogether, this 

leads to a new equilibrium state. Hallegatte et al. (2008) observe a similar effect regarding 

structural losses. Their simulated Demand Surge level increases with growing losses, but the 

slope decreases as losses become even larger. Another reason for saturation effects might be 

that, in the case of extended replacement cost coverage, insurance policy limits are generally 

capped between 20% and 25% in excess of the policy limit. As already mentioned in Section 

2.2, labor prices are the driving force behind the rising cost of reconstruction after catastro-

phes. If wage levels already increased in the past, cumulative price increases of more than 

20% to 25% compared to a baseline scenario are plausible. In this case, policyholders have to 

pay these extra repair costs on their own and might delay further repairs, reducing the overall 

demand. In a nutshell, we expect the following: 

Saturation Hypothesis (H6): 
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Higher wage levels in the construction sector lessen Demand Surge due to saturation ef-

fects. 

3 Data 

Subsequently, we first describe the construction of our measure for the Demand Surge ef-

fect. Then, we explain the measurement of relevant exogenous variables. Lastly, we present 

descriptive statistics of our data set. 

3.1 Quantifying Demand Surge 

3.1.1 Theoretical considerations and conversion into an empirical setting 

In the remainder of this article, we calculate the Demand Surge effect from an insurer’s 

point of view. In this case, an adequate calculation of Demand Surge can be represented as 

follows: 

 
endt

t=0

Demand Surge = p(t) claims(t) dt,⋅  (1) 

 cat no-catp(t) = p (t) - p (t),  (2) 

where tend denotes the date of the last settled claim related to the catastrophe under observa-

tion, p(t) is the difference between the cumulative relative change of the observed labor price 

evolution and the cumulative relative change of a baseline labor price level at time t that 

would have been observed in a no-catastrophe scenario, and claims(t) describes the timing of 

the claims settlement process with: 

 
endt

t=0

claims(t) dt = 1.  (3) 

Unfortunately some of these data are not available. This is the case for claims(t), tend, and 

the baseline price level component pno-cat(t) in p(t). Moreover, the composition of the labor 

price index p(t) is not known in advance and depends on the type of catastrophe. To simplify 



 10 

the calculation for the upcoming empirical analysis, we assume a uniform distribution for the 

claims settlement process: 

 
end

1
claims(t) = .

t
 (4) 

Regarding the choice of tend, we will test different values because the date of the last settled 

claim is not known publicly. McCarty/Smith (2005) analyze the 2004 hurricane season in 

Florida and find that, one year later, only 35% of the damaged units were totally repaired. 

Moreover, in 16% of the cases, reconstruction had not even been started, which might suggest 

that a time slot of one year and a corresponding value of tend = 1 might be too short for our 

purposes. In addition, Belasen/Polachek (2008) state that even damages from the largest ca-

tastrophes in the past were repaired within 2 years. However, catastrophe claims are generally 

considered to be short tailed (Harrington, 1997; Gron, 1994), and Gron (1994) argues that 

from 1977 to 1986, 95% of homeowners’ claims in the United States were paid within 3 

years. Against this background, we test three different values of tend, with tend = 1 being a low-

er bound, tend = 3 being an upper bound, and tend = 2 being our reference. 

The price index p(t) is modeled using the retail labor index of Xactware, a member of the 

Verisk Insurance Solutions Group. Xactware is the leading data provider for United States 

insurers, and the contained retail labor index is quite similar to building services chosen by 

AIR (2009) for reconstruction after storm losses. A detailed composition of the retail labor 

index is available in Table 1. We use the price evolution of building services in the United 

States for the baseline price level pno-cat(t). In the following Section, 3.1.2, a detailed descrip-

tion of our approach for measuring Demand Surge is given. 

[Table 1] 

3.1.2 Measurement of Demand Surge 

We measure Demand Surge in the following manner. First, we identify relevant catastro-

phes in the United States that are prone to Demand Surge. Secondly, we track labor price 
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changes in the respective catastrophe areas. Lastly, we subtract a baseline price level to nor-

malize the price evolution and obtain a Demand Surge measure. 

For this purpose, we use catastrophe data provided by EM-DAT.1 EM-DAT contains all 

natural and man-made catastrophes since 1900 that fulfill at least one of the following criteria: 

(1) 10 or more people reportedly killed, (2) 100 or more people reportedly affected, (3) decla-

ration of a state of emergency, or (4) call for international assistance (Scheuren et al., 2008). 

The database is composed of data filed by UN agencies, non-governmental organizations, 

insurance companies, research institutes and press agencies (Scheuren et al., 2008). All dam-

age values therein are expressed in US dollars at the time the events took place (current value) 

and are converted into 2005 US dollars using the United States’ Consumer Price Index (CPI) 

for comparison. Moreover, all these values refer to direct damage (Scheuren et al., 2008). 

Thus, indirect damages, i.e., the reduction of the total value added, are not contained (Hal-

legatte/Przyluski, 2010). Because small catastrophes are less likely to produce the increasing 

labor demand that creates Demand Surge effects, we use a cut-off value of 100 million US 

dollars for events in the sample. 

The labor price increase in each catastrophe area is determined using a database compiled 

by Xactware. Xactware offers pricing information in the construction sector for more than 

460 economic areas in the US and Canada and has published a retail labor index on a quarter-

ly basis since 2002 and on a monthly basis since 2009 for each of these areas (Xactware, 

2012). Obviously, the localizations in EM-DAT are usually not consistent with Xactware da-

ta. Because we are interested in the labor price increase in the center of each catastrophe re-

gion specified by EM-DAT, we retrieve the geographic coordinates in WGS84 (World Geo-

detic System, dating from 1984 and last revised in 2004) of all localizations in our EM-DAT 

sample and compute the closest Xactware localization available (the shortest distance between 

                                                 
1 EM-DAT: The OFDA/CRED International Disaster Database – www.emdat.be – Université Catholique de 

Louvain – Brussels – Belgium. 
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two points on the surface of a sphere) for each of them. Then, we retrieve the corresponding 

retail labor index time series for this Xactware localization. 

To measure the relative price increase due to a catastrophe, we calculate the cumulative 

relative change of the retail labor index for the catastrophe region starting at the time directly 

before the end of the catastrophe. As the price evolution of the retail labor index in the catas-

trophe region is affected by the general economic trend and cyclical variations, we have to 

normalize the retail labor index time series with a proxy for the unobservable price evolution 

for the hypothetical case that no catastrophe occurred (the counterfactual). We assume that 

both effects are contained in the US retail labor price index. Therefore, we additionally calcu-

late the cumulative relative change for the US retail labor price index and calculate the differ-

ence of both cumulative relative changes, assuming that the gap between both time series is 

fully attributable to Demand Surge. Finally, we compute the mean value of the difference 

over differing time periods of 1, 2, or and 3 years and use the result as our Demand Surge 

measure. An example calculation is shown in Figure 3. 

[Figure 3] 

3.2 Demand Surge Drivers 

For the direct damage caused by catastrophes, we rely on data from the EM-DAT database. 

These damages are reported on an event basis and not on the lower level of catastrophe re-

gions. However, regarding insured property losses, these data are available on the lower level 

of catastrophe regions. If we assume a constant insurance proportion of direct damages in the 

catastrophe-affected regions, it is possible to allocate the total direct damage to single catas-

trophe regions. For information regarding insured property losses, we use data from Property 

Claims Services (PCS), a unit of Insurance Services Office (ISO). PCS is a catastrophe loss 

index provider and an authority on insured property losses from catastrophes in the United 

States. Currently, PCS is the only source of United States insured losses of catastrophic 

events. For each recorded catastrophe, PCS provides information regarding the estimated in-
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surance payments and the number of claims in different lines of business, e.g., personal and 

commercial, on the state level. Moreover, their estimates are accepted as triggers in catastro-

phe-derivative instruments, such as Cat Bonds. On the state level, direct damages are allocat-

ed according to their relative share of estimated insurance payments. On the city/county level, 

these partial damages are uniformly distributed across all localizations. Because different lo-

calizations in EM-DAT regarding the same event may be mapped to the same Xactware local-

ization, a reassessment algorithm combines these entries and recalculates the direct damage, 

which is now the sum of the direct damages already calculated. 

To control for the effect of alternative catastrophes with close temporal and spatial proxim-

ity, we additionally calculate direct damages in a given radius of 450 km, including direct 

damages in the same state around each catastrophe region for different time intervals. In a 

preliminary analysis, we also tested alternative radii of 150 km, 300 km and 600 km. We ob-

served that radii of up to 450 km had a significant effect on Demand Surge whereas damages 

within a distance of 450 km to 600 km were not significant. Against this background, we as-

sume that the capacity of the construction sector in the catastrophe area can be represented by 

the number of establishments within a radius of 450 km and is reduced if alternative catastro-

phes occur with close temporal proximity. We consider catastrophes up to 3 years before or 

after the end date of each catastrophe, depending on the chosen value of tend. Because the 

availability of labor price data in Xactware starts in 2002, our sample of catastrophes spans 

the time period of 2002-2010. 

To test our Insurance Hypothesis (H3), we calculate the number of insurance claims for 

commercial and personal lines of business on an event basis using data from PCS. Each entry 

in EM-DAT was mapped to the corresponding entry in PCS. 

To incorporate the state of the economy in the construction sector, we calculate the relative 

change in the real GDP by state in the construction sector before the catastrophe occurred. 

However, the year in which the catastrophe occurred might already be affected by Demand 
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Surge. To avoid this effect, we calculate the relative change between two and one year before 

the catastrophe. To this end, we use data from the Bureau of Economic Analyses (BEA), 

which provides data on an annual basis for each state in the US. 

To reflect the supply side of the labor market, we measure the capacity of the construction 

sector as indicated by the number of establishments. These data were retrieved from the Quar-

terly Census of Employment and Wages (QCEW), which is compiled by the Bureau of Labor 

Statistics. Quarterly data are available for each county, metropolitan statistical area (MSA) 

and state within the US. 

Finally, possible saturation effects are measured by the relative change of the retail labor 

index of the catastrophe region in the foregoing 18 months before the catastrophe. This time 

period is chosen to cover preceding price increases due to possible events in the preceding 

hurricane season. In contrast, a smaller time period could possibly disregard the initial jump 

in the retail labor price index after a hurricane event and only capture the already high price 

level, which might show no further price increase. 

An overview of the set of exogenous variables used in the upcoming empirical analysis is 

shown in Table 2. 

[Table 2] 

3.3 Descriptive Statistics 

Summary statistics of our sample are presented in Tables 3 to 6. To provide some insights 

into the composition of the data, we show the distribution of the observations over the full 

time period of our sample, 2002-2010, along with the type of catastrophe in Table 3. It is 

worth noting that the number of observations is quite uniformly distributed across the years, 

excluding the unexpectedly high value in 2008. Although total losses during this year were 

quite moderate, the number of events was the highest since 1998 (Insurance Information Insti-

tute, 2009). 
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In Table 4a, we present details about the distribution of our set of exogenous variables for 

the full sample. After excluding all observations with damages of less than 100 million US-$, 

only 191 of 963 entries remain. The distribution of the damage is highly right skewed, with a 

mean value of 1.569 billion US-$, a median of 0.2490 billion US-$ and a maximum of 41.01 

billion US-$. For the calculation of subsequent and previous damages within a radius of 450 

km, we choose time intervals of half a year up to 2 years before or after the catastrophe and a 

one-year interval for the remaining time window of up to 3 years. In more than 50% of all 

cases, at least one further catastrophe can be observed in each time slot. Moreover, we find 

that the GDP change is negative in more than 75% of the cases, which indicates that at the 

time the catastrophes took place, the construction sector most likely had idle capacities. A 

maximum wage change of 49.11% during the previous 18 months corresponds to Hurricane 

Wilma in Naples (Florida) in October 2005. In this case, the foregoing 18 months include the 

landfalls of Hurricanes Charley, Frances and Jeanne in Florida, so it is likely that the current 

wage level was driven strongly by Demand Surge from previous events. With regard to map-

ping distance, a perfect matching could be achieved in 86% of the cases. In Table 4b, the 

number of observations is further limited. The sample now comprises 59 catastrophe regions, 

with minimum sustained damages of 500 million US-$. As a consequence, the mean value of 

the damage variable is significantly higher at 4.601 billion US-$ compared to Table 4a. The 

same observation is true for the number of claims. All other exogenous variables are quite 

similarly distributed. 

In Table 5, summary statistics are presented for each measure of Demand Surge, both for 

large (damage > 100 million US-$) and extreme catastrophes (damage > 500 million US-$). 

By definition, the maximum Demand Surge effect is larger than the average Demand Surge 

effect for the two-year time period. Furthermore, in every setting, the distribution is right 

skewed. For large catastrophes, the mean Demand Surge effect varies between 0.9% and 

1.8%, whereas for extreme catastrophes, the Demand Surge effect is more pronounced, vary-
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ing between 2.6% and 4.4%. The fact that the maxima remain the same both for large and 

extreme catastrophes points to the corollary that high Demand Surge effects correspond to 

high damages. 

Finally, in Table 6 the pairwise correlations between the above-described variables are pre-

sented for the full sample of observations. 

[Table 3] 

[Table 4a] 

[Table 4b] 

[Table 5] 

[Table 6] 

4 Empirical Analyses 

4.1 Demand Surge Effect for Large Catastrophes 

Subsequently, we test our hypotheses from Section 2.3, which refer to the impact of catas-

trophe-specific variables and macroeconomic conditions on Demand Surge. According to 

Section 3, we consider catastrophe events with damages of at least 100 million US-$ because 

it is unlikely that rather small events lead to a significant increase in the demand of building 

services and, consequently, increasing prices.2 We analyze the resulting 179 observations us-

ing OLS regressions with clustered standard errors, each cluster representing one catastrophe. 

The results are presented in Table 7. 

[Table 7] 

In model (A.1), we test the influence of the damage caused by the catastrophe on Demand 

Surge. Moreover, we analyze the impact of other catastrophe events that occurring in the 

same region less than 2 years before or after the considered event. We find that both effects 

                                                 
2 It would also be interesting to test whether the underlying economic mechanisms differ between different catas-

trophe types by splitting the data set into different sub-samples for each disaster type specified in Table 3. How-

ever, due to the small sample size, this is not reasonable and, hence, has to be left for future research. 
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are highly relevant and account for a major share of the variance of Demand Surge, which 

confirms the damage hypothesis (H1) and the proximity catastrophe hypothesis (H2). To be 

more specific, the prices of retail labor increase by approximately 2.2% if damages due to a 

catastrophe rises by 10 billion US-$. Furthermore, we find that large catastrophes that occur 

in the same region during the following 1.5 years or the preceding 0.5 years also lead to a 

significantly higher Demand Surge. Rather astonishingly, alternative catastrophes that occur 

12 to 18 months before the catastrophe seem to dampen the Demand Surge effect. An eco-

nomic reasoning could be that preceding price increases are often triggered by previous catas-

trophe events, leading to saturation effects for price levels. A closer analysis in Section 4.2 

confirms this assumption. Catastrophes that occurred more than 1.5 years after the considered 

events do not significantly influence the Demand Surge effect, which indicates that most of 

the repair work has already been finished when the new event occurs, so the events can be 

treated as independent when determining the Demand Surge effect. This finding is generally 

in line with the finding that catastrophe insurance is short tailed; that is, homeowners’ claims 

after catastrophes are usually paid quite promptly (Harrington, 1997). 

In model (A.2), we additionally include the number of insurance claims for a catastrophe. 

We find that a large number of claims lead to a significantly higher Demand Surge. At the 

same time, the coefficient of total damage is reduced slightly because a large number of 

claims usually come along with high total damage. This relationship is also confirmed by a 

correlation between total damage and the number of claims of 0.47 (see Table 6). However, as 

both variables are considered in (A.2), the number of claims does not represent the amount of 

damage; rather, the positive coefficient indicates that there is a higher chance that insurance 

claims are settled by insurers if the total number of claims is high. The underlying reason 

could be a less thorough investigation of claims by insurers due to limited resources. An al-

ternative reason is that there could be high pressure on insurers to quickly settle claims as a 

result of politics and the media. Either way, our insurance hypothesis (H3) is confirmed. 
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Moreover, we include the variable distance to consider that, in some cases, the measured price 

increase might underestimate the actual price increase because macroeconomic data are not 

available for the exact catastrophe location. However, the variable is not significant, showing 

that mapping seems to be appropriate. 

When we integrate macroeconomic variables in model (A.3), the effects of damage and 

number of claims remain basically unchanged. We find that an increase of the GDP in the 

construction sector in the previous year significantly contributes to Demand Surge. Not only 

is the effect statistically significant, with p<1%, but the economic effect is also substantial: If 

the GDP increases by 1% before a catastrophe, the resulting Demand Surge effect increases 

by approximately 0.25%. This finding confirms the growth hypothesis (H4), which states that 

Demand Surge is more pronounced if the construction sector is in a stage of growth and there 

is only little idle capacity. Moreover, if the number of establishments in the construction sec-

tor is high, we find that the Demand Surge effect is significantly smaller, which confirms the 

contractor hypothesis (H5). The rationale behind this result is that in such a situation, capacity 

adjustments can be performed quickly. 

In Section 2.3 we argued that there can be several reasons for saturation effects for De-

mand Surge. To test the saturation hypothesis (H6), we analyze if a wage increase for build-

ing services in a preceding period of 18 months reduces the Demand Surge effect. We find 

that the coefficient is indeed negative, but the effect is not statistically significant. 

In summary, most effects are very stable in terms of statistical significance and absolute 

size. Our results suggest that hypotheses H1-H5 are true. On the contrary, a cost increase of 

building services in the period before a catastrophe does not lead to a significant reduction in 

Demand Surge, so we cannot confirm hypothesis H6. However, it may be possible that satura-

tion is only relevant for even more severe catastrophe events. Furthermore, the adjusted R2 of 

up to 0.764 shows that Demand Surge can, to a large extent, be attributed to the considered 

effects. 
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4.2 Demand Surge Effect for Extreme Catastrophes 

As stated above, it is reasonable to assume that the Demand Surge effect is only relevant 

for large catastrophe events; thus, we only considered catastrophes with damages of at least 

100 million US-$. Nevertheless, this restriction is somewhat arbitrary, and, ex ante, it is un-

clear which barrier might be appropriate. To study the above-observed effects further, we sub-

sequently constrain the data set to events with damages of at least 500 million US-$. Due to 

the higher bound, the number of observations substantially decreases from 178 to 55. The 

consequence is a low number of degrees of freedom, which can easily lead to the problem of 

overfitting the data. To reduce this problem, we subsequently use a reduced number of ex-

planatory variables. To be more specific, we consider only variables where we found signifi-

cant effects on the larger data set. However, we make an exception for the variables Wage 

change and Previous Damage [1.5; 1). Whereas the variable Previous Damage [1.5; 1) con-

trols for the effect of alternative catastrophe events in the time period 12 to 18 months before 

a catastrophe, Wage change captures the effect of price increases for building services in the 

foregoing 18 months. However, both variables may measure the same economic effect be-

cause preceding price increases are often triggered by previous catastrophe events. We have 

two empirical observations suggesting that this is indeed the case. First, we find that the coef-

ficient of Previous Damage [1.5; 1) has a negative sign in model (B.1), which is in contrast to 

the findings for subsequent damages. This negative sign could be explained by saturation ef-

fects, resulting in a restraining effect for previous catastrophes on Demand Surge. Second, we 

find that the variables Wage change and Previous Damage [1.5; 1) are highly correlated, with 

a correlation coefficient of 0.43. Against this background, we only include the variable Wage 

change in model (B.2) to measure potential saturation effects. Moreover, because a saturation 

effect is most likely for catastrophes with very high damages, it is reasonable that this effect is 

more pronounced if we restrict the data to even more severe catastrophes. 

[Table 8] 
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The regression results for the subsample of extreme events are presented in Table 8. The 

first column is a repetition of model (A.4) to allow easier comparison of the results. Model 

(B.2) presents regression results for the full sample using a reduced number of explanatory 

variables to reduce overfitting the data. We find that the reduction of the number of variables 

leads to a slightly increased adjusted R² of 0.766, instead of 0.764. In model (B.3), we restrict 

the data set to the subsample of events with damages of at least 500 million US-$. We find 

that almost all of the considered variables remain statistically significant for the subsample of 

extreme events. Moreover, the coefficients of most of the considered variables have magni-

tudes similar to those for the larger data set. Thus, we find that even if the magnitude of De-

mand Surge is higher for extreme catastrophes, it seems that the cause-and-effect relationship 

is not very different from the findings based on the data set that includes smaller catastrophes. 

However, in contrast to the analyses of smaller catastrophes, we find that Wage change is 

significant, with p<5%. Concretely, a cost increase of building services in the preceding 18 

months of 10% dampens the Demand Surge effect by 1.6%. Thus, for extreme catastrophes, 

saturation effects cause that Demand Surge to indeed be less pronounced, which confirms the 

saturation hypothesis (H6). 

In summary, for extreme catastrophes with damages of at least 500 million US-$, hypothe-

ses H1–H3, H5 and H6 can be confirmed. Only the growth hypothesis (H4) cannot be con-

firmed. However, because the coefficient of the variable GDP change is high and similar in 

magnitude compared to the previous models (where it was highly statistically and economi-

cally significant), it should not be concluded that preceding GDP growth in the construction 

sector has no economically relevant effect because the insignificant result could simply be a 

consequence of the small data set. Moreover, the adjusted R2 of 0.860 suggests that, even if 

the set of explanatory variables is significantly reduced, Demand Surge can largely be ex-

plained by the considered economic effects. 
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4.3 Robustness Checks 

4.3.1 Average Demand Surge effect within differing time periods 

In Sections 4.1 and 4.2, we analyzed the effect of several influencing factors on the aver-

age Demand Surge after large catastrophes during the subsequent 2-year period. Even if this 

period is to some extent arbitrary, we believe that it should be appropriate. Our regression 

results show that other catastrophes that occur more than 1.5 years after or before the consid-

ered catastrophe have no significant effect on Demand Surge. Moreover, the general finding 

about catastrophe insurance is that claims are usually paid quite promptly (Harrington, 1997). 

However, as a robustness check, we additionally analyze the average Demand Surge within a 

3-year period after the event. Gron (1994) finds that during such a period, approximately 95% 

of homeowners’ claims are paid. Moreover, we examine whether the results change if we 

consider only one year after the catastrophe. 

The results regarding the average Demand Surge effect during the 3-year period are pre-

sented in Table 9. Because one additional year of data is required to calculate the dependent 

variable, we cannot compute the Demand Surge for catastrophes at the end of our observation 

period. As consequence, the number of observations is only 155 if we consider all events with 

damages of at least 100 million US-$ (instead of 179 observations for the 2-year period). 

Models (C.1), (C.2) and (C.3) contain the results for catastrophes with damages of at least 100 

million US-$; model (C.4) refer to the subset of extreme catastrophes with damages of at least 

500 million US-$. We find that the results are very similar to those of Sections 4.1 and 4.2, in 

terms of both statistical significance and the magnitude of the effects. According to the proce-

dure in Section 4.2, we restrict our set of explanatory variables in model (C.3) to variables 

where we found significant effects on the full model (C.2). Moreover, for the reason men-

tioned in the description of Table 8, we include the variable Wage change instead of Previous 

Damage [1.5; 1) in model (C.3). The adjusted R2 values of these models are even slightly 

higher compared to the analysis in Sections 4.1 and 4.2, with values of 0.797 instead of 0.764 
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for the larger sample and 0.890 instead of 0.860 if the data set is constrained to extreme catas-

trophes. 

[Table 9] 

Similarly, we present the results regarding a one-year period for the average Demand 

Surge effect in Table 10. Because the required observation period is shorter, we have 191 

available observations instead of 179. We find that most of the results are similar to the previ-

ous findings. However, the adjusted R2 is remarkably smaller compared to the previous anal-

yses. This result suggests that it might be more appropriate to measure the economic Demand 

Surge effect on the basis of a longer horizon, which could also be concluded from 

McCarty/Smith (2005), who find that, one year after the 2004 hurricane season, only 35% of 

the damaged buildings were repaired in full and 21% of the repair work had not even started. 

[Table 10] 

4.3.2 Maximum instead of average Demand Surge effect 

As described in Section 3.1.1, we measure Demand Surge as the average price increase of 

building services after a catastrophe, e.g., within 2 years. However, actual payments for repair 

work are not equally distributed in this period, as we assumed in equation 4. Even if the con-

crete distribution is not observable, it is reasonable to assume that more repair work is per-

formed when the price of building services is at the maximum level because the high demand 

causes the price increase. Thus, relying on the average Demand Surge leads to an underesti-

mation of the total costs. Against this background, we alternatively compute the maximum 

Demand Surge effect within 2 years following a catastrophe. However, because the entirety of 

repair work is not actually performed during the maximum Demand Surge, this leads to an 

overestimation of the increase in total costs. 

The results regarding the maximum Demand Surge effect are presented in Table 11. We 

find that the results are not substantially different from the analyses of the average Demand 

Surge effect in Sections 4.1 and 4.2, apart from the fact that the magnitude of Demand Surge 
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is larger, which is a direct result of the different definition of the dependent variable. Further-

more, the coefficients of determination are even higher than in the respective analyses of the 

average Demand Surge. The damage of the catastrophe and the damage of previous and sub-

sequent catastrophes in nearby locations still account for the major share of the variance of 

Demand Surge. Moreover, a larger number of establishments in the construction sector as 

well as a preceding wage increase for building services lead to a less pronounced Demand 

Surge, whereas a larger number of claims per event increase the Demand Surge effect. Thus, 

hypotheses H1-H3, H5, and H6 are supported by the results for the maximum Demand Surge 

effect. As in the analyses of the average Demand Surge effect, the effect of preceding GDP 

growth for the construction sector is only statistically significant if we analyze the larger data 

set (model (E.2) and (E.3)). However, the coefficients of all variables have the expected sign, 

and the magnitude of the coefficients is economically plausible and similar to the previous 

analyses, even in the cases where the coefficients are not statistically significant. Thus, it is 

quite possible that hypothesis H4 cannot be confirmed only because the data set is not suffi-

ciently large. Hence, this hypothesis should be re-tested if more data are available to achieve 

greater clarity. 

[Table 11] 

5 Conclusions and Implications 

In this paper, we propose an approach to quantifying the Demand Surge effect and provide 

the first econometric analysis of the effect. Our econometric model is able to explain more 

than 75% of the variance of the Demand Surge effect and is thereby able to identify the most 

important determinants of Demand Surge. According to the model, highly relevant drivers of 

Demand Surge are the amount of loss of a catastrophe and further catastrophes that occur in 

close proximity in terms of time in the same region. In concrete terms, a damage increase of 

10 billion US-$ will lead to a price increase in retail labor of approximately 1.8%. In addition, 
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further catastrophes that occur in the same region within the following 1.5 years or the pre-

ceding 0.5 years imply a significantly higher Demand Surge. The model also deduces a signif-

icantly positive relationship between the number of settled insurance claims for a catastrophe 

and the Demand Surge effect. Because a larger number of claims usually results from a higher 

total damage, the consideration of both variables in the model indicates that the regulation 

policy of insurers is less restrictive if the total number of claims is high. Furthermore, we see 

a positive relationship between the GDP of the construction sector and Demand Surge. If the 

GDP increases by 1% before a catastrophe, we find the Demand Surge effect to rise by ap-

proximately 0.25%. Consequently, the Demand Surge effect is more pronounced if the con-

struction sector is in a growth stage, which is associated with reduced idle capacity in this 

sector. Moreover, we find a strictly decreasing relationship between the number of establish-

ments in the construction sector and the Demand Surge because a larger number of establish-

ments implies a greater ability to adjust the capacity in the construction sector. In addition, if 

we restrict the data to damages of at least 500 million US-$, we observe a saturation effect, 

according to which a wage increase for building services before a catastrophe leads to a re-

duced Demand Surge effect. It must be emphasized that this effect is not statistically signifi-

cant if we consider smaller catastrophes because a saturation effect is most likely for catastro-

phes with very high damages. 

Our results have important implications for insurance companies and their investors as well 

as issuers and investors of catastrophe-linked securities. Insurance companies have to consid-

er the Demand Surge effect within the framework of the calculation of insurance premiums 

and the determination of economic capital. With respect to the determination of economic 

capital, it should be noted that, particularly if tail events (like great catastrophes) occur, con-

sidering or not considering the Demand Surge effect can be the difference between insolvency 

and solvency for an insurance company. For investors of insurance companies, estimates of 

Demand Surge effects are also highly relevant to assess the price reactions of insurance stocks 
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after catastrophes (see Gangopadhyay et al., 2010; Lamb, 1995; Marlett et al., 2000; Shelor et 

al., 1992). Finally, issuers and investors of catastrophe-linked securities have to determine the 

risk profile of catastrophe losses and the price reaction of these securities due to the occur-

rence of natural catastrophes. Thus, for all of these market participants, our results should be 

useful for appropriately assessing Demand Surge effects. 
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Table 1: Composition of the retail labor index 

Composition  

Carpenter – Finish, Trim/Cabinet Heating/A.C. Mechanic 

Carpenter – General Framer Insulation Installer 

Carpenter – Mechanic General Laborer 

Cleaning Technician Mason Brick/Stone 

Floor Cleaning Technician Plasterer 

Concrete Mason Plumber 

Drywall Installer/Finisher Painter 

Electrician Roofer 

Equipment Operator Tile/Cultured Marble Installer 

Flooring Installer  
 
 
 
 
 
Table 2: Variable definitions 

Variable Definition 

Damage Direct damage of the catastrophe (in US-$ billion). 

Subsequent damage (a; b] Direct damage of subsequent catastrophes that occurred in geographical and 
temporal proximity (in US-$ billion); (a, b] denominates the time period in 
years with respect to the considered event. 

Previous damage [a; b) Direct damage of previous catastrophes that occurred in geographical and 
temporal proximity (in US-$ billion); [a, b) denominates the time period in 
years with respect to the considered event. 

Claims Number of insurance claims (in millions). 

GDP change Real GDP growth of the construction sector in the affected state. 

Establishments Number of establishments of the construction industry in the affected  
county/state (in thousands). 

Wage change Relative change of wage in the construction sector during the 18 months 
before the catastrophe. 

Mapping distance Distance between the catastrophe (data from EM-DAT) and the assigned 
localization of economic variables (data from Xactware) (in km). 
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Table 3: Summary statistics - composition of the data set 

Obs. Percentage 

Panel A: Year 

 2002 13 6.81 

 2003 22 11.52 

 2004 19 9.95 

 2005 16 8.38 

 2006 18 9.42 

 2007 22 11.52 

 2008 45 23.56 

 2009 24 12.57 

 2010 12 6.28 

Panel B: Type of disaster   

 Flood 23 12.04 

 Storm 159 83.25 

  Local Storm 95 49.74 

  Tropical Cyclone 49 25.65 

  Extratropical Cyclone (Winter Storm) 2 1.05 

  Not further specified 13 6.81 

 Wildfire 9 4.71 
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Table 4a: Summary statistics – Demand Surge drivers (damage > US-$ 100 million) 
The sample comprises 191 catastrophe regions with a minimum damage of US-$ 100 million. The table shows 

descriptive statistics of our set of independent variables, which is defined in Table 2. 

 Obs. Mean Std. Dev. Min. q25 q50 q75 Max. 

Damage (US-$ billions) 191 1.569 5.153 0.1020 0.1529 0.2490 0.6083 41.01 

Subsequent damage (0; 0.5] 191 1.614 8.471 0 0 0.0634 0.3508 110.99 

Subsequent damage (0.5; 1] 191 0.9820 4.998 0 0 0.0392 0.2210 57.34 

Subsequent damage (1; 1.5] 191 0.8361 2.708 0 0 0.0594 0.4143 21.90 

Subsequent damage (1.5; 2] 191 0.3562 1.156 0 0 0.0667 0.2135 10.29 

Subsequent damage (2; 3] 191 1.856 6.488 0 0 0.1792 0.5821 62.48 

Previous damage [0.5; 0) 191 1.080 4.986 0 0 0.0439 0.2361 57.34 

Previous damage [1; 0.5) 191 0.8459 3.967 0 0 0.0795 0.2358 32.57 

Previous damage [1.5; 1) 191 0.3518 2.238 0 0 0.0574 0.1805 30.23 

Previous damage [2; 1.5) 191 0.3787 2.482 0 0 0.0074 0.1028 32.57 

Previous damage [3; 2) 191 1.162 4.979 0 0.0396 0.1764 0.4661 62.48 

Claims (millions) 191 0.2730 0.3668 0.0028 0.0560 0.1300 0.2894 1.385 

GDP change 191 -0.0385 0.0452 -0.2074 -0.0634 -0.0343 -0.0084 0.0630 

Establishments (‘000) 191 18.82 15.84 0.0500 8.163 12.55 26.71 79.90 

Wage change 190 0.0864 0.0625 0.0036 0.0518 0.0735 0.0997 0.4911 

Mapping distance (km) 191 4.520 14.35 0 0 0 0 84.19 
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Table 4b: Summary statistics – Demand Surge drivers (damage > US-$ 500 million) 
The sample comprises 59 catastrophe regions with a minimum damage of US-$ 500 million. The table shows 

descriptive statistics of our set of independent variables, which is defined in Table 2. 

 Obs. Mean Std. Dev. Min. q25 q50 q75 Max. 

Damage (US-$ billions) 59 4.601 8.569 0.5035 0.6777 1.587 4.558 41.01 

Subsequent damage (0; 0.5] 59 2.039 4.358 0 0 0.0685 1.751 21.90 

Subsequent damage (0.5; 1] 59 1.534 4.847 0 0 0.0439 0.5227 32.57 

Subsequent damage (1; 1.5] 59 1.685 4.595 0 0 0.0021 0.2069 21.90 

Subsequent damage (1.5; 2] 59 0.1131 0.2512 0 0 0 0.1220 1.574 

Subsequent damage (2; 3] 59 0.8244 2.871 0 0.0748 0.1582 0.4979 21.42 

Previous damage [0.5; 0) 59 1.985 4.728 0 0 0.1421 1.096 16.28 

Previous damage [1; 0.5) 59 1.487 5.638 0 0 0.1171 0.3538 30.23 

Previous damage [1.5; 1) 59 0.7112 3.929 0 0.0018 0.1033 0.1719 30.23 

Previous damage [2; 1.5) 59 0.1712 0.7074 0 0 0.0071 0.0692 5.140 

Previous damage [3; 2) 59 0.7724 1.558 0 0 0.1713 0.4661 5.617 

Claims (millions) 59 0.4786 0.4806 0.0180 0.0870 0.2710 0.6042 1.385 

GDP change 59 -0.0290 0.0548 -0.2074 -0.0634 -0.0287 -0.0057 0.0630 

Establishments (‘000) 59 20.25 17.73 0.0500 8.552 11.82 26.88 67.13 

Wage change 59 0.1047 0.0925 0.0036 0.0578 0.0760 0.1048 0.4911 

Mapping distance (km) 59 6.059 15.19 0 0 0 0 80.35 
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Table 5: Summary statistics – Demand Surge 
The table shows descriptive statistics of the average and maximum Demand Surge effect for different time peri-

ods after the catastrophes. In Panel A, data for the set of catastrophes with damage of at least 100 million US-$ is 

reported, Panel B refers to observations with damage of at least 500 million US-$. 

 
Obs. Mean Std. Dev. Min. q25 q50 q75 Max. 

Panel A: Large catastrophes (damage > $100 million) 

Avg. Demand Surge: 1 year 191 0.0094 0.0330 -0.0419 -0.0072 0.0011 0.0100 0.2190 

Avg. Demand Surge: 2 years 179 0.0133 0.0477 -0.0666 -0.0116 0.0012 0.0175 0.3119 

Avg. Demand Surge: 3 years 155 0.0180 0.0589 -0.0776 -0.0124 0.0064 0.0280 0.3466 

Max. Demand Surge: 2 years 179 0.0326 0.0660 -0.0119 -0.0003 0.0125 0.0403 0.4449 

Panel B: Extreme catastrophes (damage > $500 million) 

Avg. Demand Surge: 1 year 59 0.0260 0.0509 -0.0171 -0.0047 0.0030 0.0365 0.2190 

Avg. Demand Surge: 2 years 55 0.0354 0.0733 -0.0236 -0.0058 0.0102 0.0383 0.3119 

Avg. Demand Surge: 3 years 48 0.0440 0.0893 -0.0335 -0.0079 0.0152 0.0407 0.3466 

Max. Demand Surge: 2 years 55 0.0613 0.1033 -0.0068 0.0002 0.0263 0.0615 0.4449 
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Table 6: Table of Correlations 
The table presents the pairwise correlations of catastrophe specific and macroeconomic variables. 

 Dem. Surge Damage Claims GDP Est. Wage Dist. 

Avg. Demand Surge 1.00       

Damage 0.44 1.00      

Claims 0.32 0.47 1.00     

GDP change 0.42 0.16 0.17 1.00    

Establishments 0.02 -0.07 -0.03 0.01 1.00   

Wage change 0.07 0.33 0.27 0.36 0.01 1.00  

Mapping distance 0.14 0.17 0.12 0.17 -0.32 0.05 1.00 
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Table 7: Demand Surge for large catastrophes 
The table reports results of OLS regressions with clustered standard errors regarding influencing factors of De-

mand Surge. The data set comprises catastrophes with total damage of at least 100 million US-$. Demand Surge 

is computed as the average increase of the retail labor index in a 2-year period after the catastrophe. The other 

variables are defined in Table 2. We report t-statistics in parentheses. The symbols +, *, **, *** indicate statisti-

cal significance at the 10 %, 5 %, 1 %, and 0.1 % level, respectively. 

 (A.1) (A.2) (A.3) (A.4) 
Damage 0.0022*** 0.0017*** 0.0016*** 0.0018*** 
 (4.84) (4.47) (4.87) (4.94) 
Subsequent Damage (0; 0.5] 0.0012*** 0.0012*** 0.0012*** 0.0012*** 
 (6.95) (7.22) (7.87) (7.36) 
Subsequent Damage (0.5; 1] 0.0017*** 0.0016*** 0.0014*** 0.0013*** 
 (3.93) (3.68) (3.82) (3.63) 
Subsequent Damage (1; 1.5] 0.0090*** 0.0092*** 0.0087*** 0.0084*** 
 (5.28) (5.49) (5.30) (5.28) 
Subsequent Damage (1.5; 2] -0.0002 0.0003 0.0010† 0.0007 
 (-0.22) (0.43) (1.97) (1.38) 
Previous Damage [0.5; 0) 0.0022** 0.0021** 0.0020** 0.0020*** 
 (3.23) (3.35) (3.40) (3.60) 
Previous Damage [1; 0.5) -0.0002 -0.0003 -0.0007* -0.0003 
 (-0.73) (-1.34) (-2.01) (-0.82) 
Previous Damage [1.5; 1) -0.0009** -0.0010*** -0.0020*** -0.0014* 
 (-3.22) (-3.90) (-4.62) (-2.31) 
Previous Damage [2; 1.5) -0.0006 -0.0005 -0.0007 -0.0007 
 (-1.16) (-0.94) (-1.45) (-1.47) 
Claims  0.0146* 0.0132* 0.0136* 
  (2.65) (2.18) (2.41) 
GDP change   0.2496** 0.2564** 
   (3.34) (3.28) 
Establishments   -0.0003† -0.0003† 
   (-1.79) (-1.79) 
Wage change    -0.0482 
    (-0.98) 
Mapping distance  0.0001 -0.0000 -0.0001 
  (1.49) (-0.51) (-0.58) 
Constant -0.0036 -0.0076** 0.0085† 0.0125† 
 (-1.36) (-2.77) (1.83) (1.84) 
Observations 179 179 179 178 
Adjusted R2 0.717 0.726 0.764 0.764 
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Table 8: Demand Surge for extreme catastrophes 
The table reports results of OLS regressions with clustered standard errors regarding influencing factors of De-

mand Surge. The data set comprises catastrophes with total damage of at least 500 million US-$. Demand Surge 

is computed as the average increase of the retail labor index in a 2-year period after the catastrophe. The other 

variables are defined in Table 2. We report t-statistics in parentheses. The symbols +, *, **, *** indicate statisti-

cal significance at the 10 %, 5 %, 1 %, and 0.1 % level, respectively. 

 (B.1) (B.2) (B.3) 
Damage 0.0018*** 0.0019*** 0.0012*** 
 (4.94) (4.96) (3.84) 
Subsequent Damage (0; 0.5] 0.0012*** 0.0013*** 0.0049*** 
 (7.36) (7.92) (3.81) 
Subsequent Damage (0.5; 1] 0.0013*** 0.0013*** 0.0017* 
 (3.63) (3.58) (2.48) 
Subsequent Damage (1; 1.5] 0.0084*** 0.0082*** 0.0063*** 
 (5.28) (5.18) (4.47) 
Subsequent Damage (1.5; 2] 0.0007   
 (1.38)   
Previous Damage [0.5; 0) 0.0020*** 0.0021*** 0.0039*** 
 (3.60) (4.07) (3.91) 
Previous Damage [1; 0.5) -0.0003   
 (-0.82)   
Previous Damage [1.5; 1) -0.0014*   
 (-2.31)   
Previous Damage [2; 1.5) -0.0007   
 (-1.47)   
Claims 0.0136* 0.0136* 0.0213** 
 (2.41) (2.53) (3.25) 
GDP change 0.2564** 0.2409** 0.1905 
 (3.28) (3.33) (1.62) 
Establishments -0.0003† -0.0003† -0.0007** 
 (-1.79) (-1.90) (-3.02) 
Wage change -0.0482 -0.0888* -0.1555* 
 (-0.98) (-2.30) (-2.56) 
Mapping distance -0.0001   
 (-0.58)   
Constant 0.0125† 0.0140* 0.0212* 
 (1.84) (2.43) (2.11) 
Observations 178 178 55 
Adjusted R2 0.764 0.766 0.860 
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Table 9: Robustness check - Demand Surge in a 3-year period 
The table reports results of OLS regressions with clustered standard errors regarding influencing factors of the 

average Demand Surge effect in a period of 3 years after the catastrophe. Model (C.1), (C.2) and (C.3) refer to 

catastrophes with total damage of at least 100 million US-$, whereas the relevant barrier for model (C.4) is 500 

million US-$. The other variables are defined in Table 2. We report t-statistics in parentheses. The symbols +, *, 

**, *** indicate statistical significance at the 10 %, 5 %, 1 %, and 0.1 % level, respectively. 

 Damage ≥ 100 mio. $  Damage ≥ 500 mio. $ 
 (C.1) (C.2) (C.3)  (C.4) 
Damage 0.0023*** 0.0019*** 0.0021***  0.0015*** 
 (6.09) (7.07) (7.07)  (4.70) 
Subsequent Damage (0; 0.5] 0.0015*** 0.0015*** 0.0015***  0.0049** 
 (8.83) (10.60) (12.20)  (2.96) 
Subsequent Damage (0.5; 1] 0.0021*** 0.0017*** 0.0017***  0.0019* 
 (4.45) (4.49) (4.55)  (2.47) 
Subsequent Damage (1; 1.5] 0.0109*** 0.0095*** 0.0093***  0.0073*** 
 (5.16) (4.89) (4.86)  (4.39) 
Subsequent Damage (1.5; 2] -0.0006 0.0014    
 (-0.39) (1.44)    
Subsequent Damage (2; 3] 0.0006*** 0.0004* 0.0005*  0.0009† 
 (5.78) (2.11) (2.53)  (2.03) 
Previous Damage [0.5; 0) 0.0025* 0.0024** 0.0024**  0.0048** 
 (2.53) (2.82) (3.29)  (3.53) 
Previous Damage [1; 0.5) -0.0002 -0.0007    
 (-0.84) (-1.44)    
Previous Damage [1.5; 1) -0.0012** -0.0021**    
 (-3.40) (-2.85)    
Previous Damage [2; 1.5) -0.0006 -0.0008    
 (-0.96) (-1.55)    
Previous Damage [3; 2) -0.0001 -0.0002†    
 (-0.25) (-1.71)    
Claims  0.0106† 0.0104*  0.0153† 
  (1.92) (2.05)  (2.02) 
GDP change  0.4251*** 0.3867***  0.3011* 
  (5.25) (4.95)  (2.50) 
Establishments  -0.0003 -0.0002  -0.0006* 
  (-1.47) (-1.49)  (-2.24) 
Wage change  -0.0652 -0.1293**  -0.1937* 
  (-1.06) (-2.83)  (-2.80) 
Mapping distance  -0.0001    
  (-0.74)    
Constant -0.0049 0.0202* 0.0217**  0.0282* 
 (-1.52) (2.13) (2.87)  (2.41) 
Observations 155 155 155  48 
Adjusted R2 0.739 0.797 0.798  0.890 
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Table 10: Robustness check - Demand Surge in a 1-year period 
The table reports results of OLS regressions with clustered standard errors regarding influencing factors of the 

average Demand Surge effect in a period of 1 year after the catastrophe. Model (D.1), (D.2) and (D.3) refer to 

catastrophes with total damage of at least 100 million US-$, whereas the relevant barrier for model (D.4) is 500 

million US-$. The other variables are defined in Table 2. We report t-statistics in parentheses. The symbols +, *, 

**, *** indicate statistical significance at the 10 %, 5 %, 1 %, and 0.1 % level, respectively. 

 Damage ≥ 100 mio. $  Damage ≥ 500 mio. $ 
 (D.1) (D.2) (D.3)  (D.4) 
Damage 0.0024* 0.0024** 0.0023**  0.0012* 
 (2.38) (2.73) (2.78)  (2.53) 
Subsequent Damage (0; 0.5] 0.0009* 0.0010*** 0.0010***  0.0051*** 
 (2.28) (3.47) (3.50)  (4.32) 
Subsequent Damage (0.5; 1] 0.0016* 0.0010* 0.0010*  0.0005 
 (2.28) (2.12) (2.11)  (0.99) 
Previous Damage [0.5; 0) 0.0025* 0.0025** 0.0024**  0.0042*** 
 (2.04) (2.76) (2.79)  (4.80) 
Previous Damage [1; 0.5) -0.0004 0.0001    
 (-1.54) (0.28)    
Claims  0.0122** 0.0122**  0.0195** 
  (3.28) (3.26)  (3.53) 
GDP change  0.2353*** 0.2363***  0.2247** 
  (3.52) (3.59)  (2.85) 
Establishments  0.0001 0.0001  -0.0004† 
  (0.50) (0.57)  (-1.91) 
Wage change  -0.1727** -0.1696***  -0.2307*** 
  (-3.23) (-3.67)  (-4.79) 
Mapping distance  0.0000    
  (0.07)    
Constant 0.0003 0.0197** 0.0195**  0.0306** 
 (0.15) (2.71) (3.04)  (3.44) 
Observations 191 190 190  59 
Adjusted R2 0.459 0.582 0.586  0.764 
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Table 11: Robustness check – maximum Demand Surge 
The table reports results of OLS regressions with clustered standard errors regarding influencing factors of the 

maximum Demand Surge effect in a period of 2 years after the catastrophe. Model (E.1), (E.2) and (E.3) refer to 

catastrophes with total damage of at least 100 million US-$, whereas the relevant barrier for model (E.4) is 500 

million US-$. The other variables are defined in Table 2. We report t-statistics in parentheses. The symbols +, *, 

**, *** indicate statistical significance at the 10 %, 5 %, 1 %, and 0.1 % level, respectively. 

 Damage ≥ 100 mio. $  Damage ≥ 500 mio. $ 
 (E.1) (E.2) (E.3)  (E.4) 
Damage 0.0027*** 0.0022*** 0.0023***  0.0012* 
 (5.27) (4.71) (4.92)  (2.74) 
Subsequent Damage (0; 0.5] 0.0021*** 0.0021*** 0.0022***  0.0069** 
 (11.15) (11.32) (12.38)  (3.67) 
Subsequent Damage (0.5; 1] 0.0028*** 0.0024*** 0.0024***  0.0027* 
 (4.79) (4.66) (4.64)  (2.64) 
Subsequent Damage (1; 1.5] 0.0130*** 0.0122*** 0.0120***  0.0101*** 
 (4.70) (4.63) (4.62)  (5.36) 
Subsequent Damage (1.5; 2] 0.0001 0.0010    
 (0.14) (1.02)    
Previous Damage [0.5; 0) 0.0027* 0.0026** 0.0026**  0.0056** 
 (2.43) (2.70) (2.87)  (3.56) 
Previous Damage [1; 0.5) -0.0005* -0.0004    
 (-2.30) (-0.63)    
Previous Damage [1.5; 1) -0.0008* -0.0010    
 (-2.21) (-1.08)    
Previous Damage [2; 1.5) -0.0007 -0.0008    
 (-1.03) (-1.25)    
Claims  0.0159** 0.0160**  0.0244** 
  (2.97) (3.04)  (2.78) 
GDP change  0.2829** 0.2733**  0.1852 
  (3.10) (3.14)  (1.20) 
Establishments  -0.0003 -0.0003†  -0.0012** 
  (-1.54) (-1.76)  (-3.53) 
Wage change  -0.0932 -0.1272*  -0.1737* 
  (-1.25) (-2.61)  (-2.05) 
Mapping distance  0.0000    
  (0.33)    
Constant 0.0085** 0.0291** 0.0313***  0.0423** 
 (2.75) (3.16) (4.01)  (3.01) 
Observations 179 178 178  55 
Adjusted R2 0.767 0.800 0.804  0.877 
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Figure 1: Retail Labor Price Index 
The figure shows the price evolution of the retail labor price index for West Palm Beach (Florida), Florida and 

the entire US. 

 

 

 

Figure 2: Building Material Price Index 
The figure shows the price evolution of the building material price index for West Palm Beach (Florida), Florida 

and the entire US. 
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Figure 3: Demand Surge Measurement 
In this figure our measurement of Demand Surge is depicted. We compute the cumulative relative change of the 

retail labor price index in West Palm Beach (pcat) and the entire US (pno-cat) starting directly before the landfall of 

Hurricane Frances in West Palm Beach in Q3 2004. In a second step, we calculate the difference between both 

time series of cumulative relative changes defined as p(t). Finally, we calculate the mean value of p(t) over dif-

fering time periods of 1, 2 or 3 years. 
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