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Abstract
Researchers seldom find evidence of I(2) in exchange rates, prices, and other macroeconomics
time series when they test the order of integration using univariate Dickey-Fuller tests. In
contrast, when using the multivariate ML trace test they frequently find double unit roots in
the data. The paper demonstrates by simulations that this often happens when the signal-to-
noise ratio is small.
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1 Introduction

The global financial and economic crisis that began in 2007 has led to an increased
interest in the mechanisms that cause asset prices to undergo persistent swings
away and towards long-run equilibrium values. One important implication of the
recent theory of Imperfect Knowledge Economics (IKE) by Frydman and Goldberg
(2007, 2011) is that fully rational behavior under imperfect knowledge will show
such tendencies. While these wide swings are typical of most prices subject to
speculation, such as nominal exchange rates and stock prices, they also characterize
many variables in the real economy, for example unemployment rates, suggesting a
close two-way interrelationship between the financial market and the real economy.

The purpose of this paper is to discuss different econometric characterizations
of these persistent swings, in particular focussing on nominal and real exchange
rates in periods of currency float. Figure 1, upper panel, illustrates how the German
mark/US dollar nominal exchange rate has shown a tendency to move in long
persistent swings around its long-run purchasing power parity (PPP) value as
given by the price differential between the two countries. The graphs illustrate
that the longest swing took place from approximately 1976 to 1988, followed by
shorter swings. Figure 1, lower panel, shows the real exchange rate (measured as
p− p∗− s) together with the long bond rate differential. It appears that the long
swings in the real exchange rates (inherited from the nominal exchange rate) move
almost in parallel with the swings in the bond rate differential.

Given the assumption that purchasing power parity holds as a stationary con-
dition one would a priori expect relative prices and nominal exchange rates to be
I(1) and the real exchange rate to be I(0). However, econometric tests often find
many real and nominal exchange rates to be I(1) or even more persistent. For
example, Engel and Hamilton (1990) find that the random walk model is strongly
rejected in favor of a segmented-trends model for nominal exchange rates.1 Shocks
to a segmented-trends process display a high degree of persistence because the
segmented trends have a long-lasting impact on both the level and the first differ-
ence of the variable. This is in contrast to shocks to a random walk series which
1 Other studies that reject the random walk in favor of a segmented-trends model include Engel
(1994) and Cheung and Erlandsson (2005).
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Figure 1: The graphs of the (mean and range adjusted) German-US price differential, pp, and the
nominal exchange rate, s12 (upper panel), and the ppp = pp− s12 and the real bond rate differential
(lower panel)

is persistent only in the level. Also an I(2) process has a tendency to generate
longer-lasting swings similar to a segmented-trends process, because the shocks
have a persistent impact both on the levels and the first differences (Johansen, 1997,
2006a, Paruolo and Rahbek, 2007).

In line with this, nominal and real exchange rates have frequently been found
to be well approximated by an I(2) process (Juselius, 1995, 2006, Johansen et al.
2010) but only based on multivariate unit root tests. Based on univariate Dickey-
Fuller (D-F) tests they are usually found to be at most I(1). To explore why this is
the case, we have simulated data designed to replicate typical features of relative
prices and nominal exchange rates relying on results in Frydman and Goldberg
(2007). Under the assumption that economic actors make forecasts under imperfect
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information they show that real exchange rates are likely to have a small signal-to-
noise ratio. Our simulations suggest that univariate D-F tests have great difficulties
to detect a second unit root when the shocks to the drift term of the differenced
process are small compared to the shocks to the differenced process itself, i.e. when
the signal-to-noise ratio is small. This is in contrast to the multivariate tests which
almost always finds it provided the VAR model is a good approximation to the
underlying VARMA model.

We illustrate the results with a data set consisting of the German Mark/US
dollar exchange rate, German and US prices and interest rates (1975-1998). Based
on the multivariate tests we reject the null of an I(1) characterization against the I(2)
type characterization of the nominal and real exchange rate with high significance
levels. Based on the univariate D-F tests a double unit root was rejected.

2 Testing for a double unit root when the signal-to-noise ratio is small

We first introduce the baseline autoregressive model of order k and discuss the
augmented D-F model, the Engle-Hamilton segmented trends model and the IKE
model. We then simulate time series with double (near) unit roots and a small
signal-to-noise ratio using parameter values that closely replicate the characteristic
features of actual prices and exchange rates. To start with, one single case is used
to illustrate in detail why it is often difficult to discover a second unit root when the
signal-to-noise ratio is small. This case is used to illustrate the difference between
a random walk, a near I(2) and an I(2) process and to test the series using univariate
versus multivariate test procedures.

2.1 Univariate models

The pronounced persistence of many real exchange rates is often associated with a
unit root in the data and often tested using univariate D-F type models such as:

∆qt = µ−ρ1qt−1 +ρ11∆qt−1 + ...+ρ1k∆qt−k + εqt , (1)

where ∆ is the first difference operator, qt stands for the log of the real exchange
rate in a period of currency float, and εqt is an error term. The null of a unit root in
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qt is formulated as the composite null hypothesis (ρ1 = 0 and µ = 0) where the
second condition reflects the fact that one would not consider deterministic linear
trends in real exchange rates to be economically plausible. When the null cannot
be rejected we conclude that there is at least one unit root in the real exchange
rates. To test whether there is a double unit root (1) is respecified as:

∆
2qt =−ρ2∆qt−1 +ρ21∆

2qt−1 + ...+ρ2,k−1∆
2qt−k+1 + εqt , (2)

where ρ2 = 0 is the null. In this case, the real exchange rate would exhibit a very
pronounced persistence as its change is a unit root process and would be drifting off
in either positive or negative directions for extended periods of time. If, instead, ρ2
deviates from zero with a very small amount, then ∆qt would be mean-reverting, but
the mean-reversion would be very slow. In this case, moderately sized realizations
of qt could easily exhibit a similar persistence as an I(2) process and, for practical
purposes, would be difficult to distinguish from an I(2) process.

Another possibility is to model the long swings in real exchange rate as a
combination of unit roots and piecewise linear trends as in Engle and Hamilton
(1990) implying the following change in the specification of (1):

∆qt = µt +ρ11∆qt−1 + ...+ρ1k∆qt−k + εqt , εqt ∼ N(0,σ2
εq
), (3)

where µt = γ1 for t = t0, ..., t1,γ2 for t = t1, ..., t2, ... In this case the real exchange
rate is described by piecewise linear trends with shifting slope parameters γi. If the
shifts in the secular trends take place at ever smaller intervals, µt could instead be
modelled as a random walk

µt = µt−1 + εµt εµt ∼ N(0,σ2
εµ
), (4)

where εµt would describe the change in slope parameter from time t to t +1 and
the piece-wise linear trend specification (3) would converge to a double unit root
process.

The Imperfect Knowledge Economics (IKE) model described in Frydman and
Goldberg (2007, 2011) resembles the secular trends model but differs with respect
to the specification of µt :

µt = ρt µt−1 + εµt εµt ∼ N(0,σ2
εµ
) (5)
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where µt is a drift term measuring the change in the real exchange rate due to a
change in individuals’ forecasting strategies and in the underlying fundamentals.
When qt is in the neighborhood of the long-run benchmark value individuals change
their forecasts conservatively and we would expect ρt ' 1, whereas when qt is far
away from the benchmark, we would expect ρt < 1. Since the far-from equilibrium
period is likely to be much shorter than the "close-to-neighborhood" period, the
average value, ρ̄, of ρt for t = 1, ...,T is likely to be close to unity. This is in
particular so when T is sufficiently large to cover several long swings in the real
exchange rate.2 Another important feature of the IKE model to be subsequently
discussed is that the signal-to-noise ratio σ2

εµ
/σ2

εq
can be very small implying that

the second near unit root associated with (5) may not be easily detectable.
As one of the referees pointed out (see comments to this paper) the IKE model

(6)–(7) can be formulated as a state space model, in which (7) is the transition
equation for the state variable µt , and (6) is the measurement equation for ∆qt .
Harvey (1989) shows that this IKE model implies an ARMA(1,1) model for qt :

∆qt = ρ̄∆qt−1 + εt +θεt−1 (6)

where θ = 0 if σ2
εq
= 0 and as the signal-to-noise ratio σ2

εµ
/σ2

εq
decreases to zero θ

decreases monotonically to −ρ̄ .

2.2 Illustrating different degrees of persistence

Because the drift term (5) is unobservable in actual time-series, it is useful to simu-
late the persistency properties of processes described by (3) - (5) under different
assumptions of the drift term. For this purpose, we have generated time-series
according to:

∆qt = µt + εqt εqt ∼ N(0,1) (7)

and

µt = ρ̄µt−1 + εµt , εµt ∼ N(0,0.152) (8)

2 For varying sub-sample periods, the average value of ρt may of course vary to some extent.
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Figure 2: The graph of a near-I(2) variable together with a random walk (upper panel) and the same
near-I(2) variable together with an I(2) variable

where ρ̄ is {0.0, 0.95, 1.0} and lagged differences have been set to zero without
loss of generality. The length of the simulated sample is set to 500 corresponding
to roughly 40 years of monthly observations.

Figure 2, upper panel, illustrates swings that have been generated by a random
walk (ρ = 0) and a near I(2) process (ρ = 0.95). The lower panel compares the
same near I(2) process (ρ = 0.95) with an I(2) process (ρ = 1.00). The range
of variation of the near I(2) process is 50 compared to 40 for the I(1) process
and 220 for the I(2) process, which explains the difference in appearance of the
identical near I(2) variables in the two panels. To isolate the effect of the persistency
parameter ρ , all three series have been generated from an identical realization of
the random shocks εqt and εµt and the signal-to-noise ratio is 0.152 for the near
I(2) and the I(2) series. While both series in the upper panel exhibit persistent
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swings, they are much more pronounced for the near I(2) series compared to the
random walk. The two series in the lower panel exhibit persistent swings, but the
swings of the I(2) series are less bounded, signifying the absence of significant
mean reversion in the changes of an I(2) process. This becomes even more apparent
at the end of the sample illustrating that we often need a long sample period to
distinguish a near I(2) from an I(2) process.

A small, but persistent, drift term can be almost hidden for the eye when the
variance of the first difference is large and may not be easily detectable in a time
graph. A (sufficiently long) moving average of the original series will smoothen out
the highly volatile short-term movements and, therefore, can provide a first rough
indication of a persistent drift term in the data. To illustrate this, Figure 3 upper
panel, shows the graph of µt together with a 12 period moving average3 of ∆qt for
the simulated process (7) with ρ̄ = 0.95. While not identical, the moving average
component seems to provide a fairly good description of the near I(2) drift term µt .
But, as successive moving average values share 2k identical observations, a moving
average component is inherently a time dependent process. It is, therefore, likely
to exhibit swings also when there are no swings in the data. For example, when
qt is a random walk process, i.e. when µt = 0 and ∆qt is temporally independent,
its k length moving average, ∆qt = f (∆qt−k, ...,∆qt+k), is not independent. This
is illustrated in Figure 3, middle panel, showing the differenced random walk of
Figure 2 together with its 12 period moving average. As expected, the latter exhibits
persistent fluctuations but compared to the moving average of the differenced near
I(2) series they stay bounded within much more narrow bands around the mean.

To illustrate the difference between a small and a large signal-to-noise ratio,
the lower panel shows a differenced near I(2) series that was generated with a of
σεµ

/σεq = 0.95. The persistence of the drift term of this series is identical to that
of the near-I(2) series in the upper panel, i.e. both are generated with ρ = 0.95.
Hence the series in the upper panel and the lowest panel differ only in terms of
the signal-to-noise ratio, i.e. by the relative magnitude of the shocks εµt and εqt .
When the shocks to µt and ∆qt are of similar magnitude the difference is striking:
no moving average is needed to see the persistent drift in the data.

3 As one of the referees pointed out one could preferrably also obtain the optimal, and smoother,
(minimum mean-squared error) filter for this model from the Kalman filter.
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Figure 3: The graphs of ∆qt together with a 12 months MA when ρ̄ = 0.95 (upper panel), ρ̄ = 0
(middle panel) and ρ̄ = 1 (lower panel)
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Figure 4: Two different realization of a near I(2)and an I(2) process

Finally, Figure 4 illustrate how different realizations of εµ t and εqt can produce
series that look widely different. Both panels show a near I(2) (ρ = 0.95) and
an I(2) (ρ = 1.00) series with a signal-to-noise ratio of 0.152, so the difference
between the panels is only due to different stochastic realizations of the process.
The two series in the upper panel exhibit long swings around the zero line whereas
in the lower panel they show a much more pronounced tendency to move away
from the zero line. As expected, the I(2) series tend to drift away from the zero line
more persistently than the near I(2) series. Also, the divergence of the near I(2)
and the I(2) series tend to be much stronger at the end of the sample. As will be
demonstrated in Section 3 based on a simulation study of 5000 replications, a long
sample is often needed to be able to statistically discriminate between the two.

The "true" underlying process that have generated an observed economic
variable is of course much more complex than all the models discussed in Section
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2.1. The graphs of the simulated series suggest that a near I(2) process (with a
small signal-to-noise ratio) can reproduce the long swings behavior we often see in
actual real exchange rate data and that similar behavior also can (but need not) be
generated by an I(2) process for moderately sized samples. Whether these models
are sufficiently close approximations to allow us to make inference on the broad
features of the underlying data generating process will be studied by simulations in
Section 3.

Another issue to discuss is how the asymptotics of the I(2) inference is affected
when data are near I(2) rather than exactly I(2). It is useful to distinguish between
the case when a near unit root is treated as either stationary or nonstationary. In the
first case Johansen (2006b) showed by simulation that some inference (on steady-
state values) became very fragile when a near unit root was treated as stationary.
For example, up to 5000 observations were needed for the empirical distribution to
converge to Students t when the near unit root was 0.998.

In the second case, Elliot (1998) showed both analytically and by simulations
that the asymptotic distribution is no longer mixed Gaussian and that standard
asymptotic inference can be misleading. However, Corollary 1 in Johansen (1997)
can be used to show that inference on β and α in the I(2) model is consistent also in
the near I(2) case4. Since all results discussed in the subsequent sections have been
obtained by cointegration analysis in the I(2) model, the corollary result allows
us to attach some degree of confidence to our empirical findings. Nonetheless,
robustness is an important issue which needs to be further studied.

2.3 Univariate Dickey-Fuller Tests

The near I(2) and the I(2) series were all simulated for a fairly small signal-to-noise
ratio (0.152) and the drift term was not easily detectable as it was well hidden in the
very volatile first differences. Both processes contain two large characteristic roots,
one associated with a high error variance, σ2

εq
, the other with a small error variance,

σ2
εµ

. In this case, the ability of univariate unit root tests to detect the second (near)
unit root is likely to be low because the estimated residual is a function of εqt and

4 This is because the second reduced rank condition (which is associated with the I(2) model
property) does not affect the asymptotic efficiency of the ML estimator of β and α.
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Table 1: Testing the order of integration with a Dickey-Fuller test

DF tests of qt ∼ I(2), ρ̄ = 1.0 qt ∼ nearI(2), ρ̄ = 0.95 qt ∼ I(1), ρ̄ = 0.0
ρ̂i τ− ratio ρ̂i τ− ratio ρ̂i τ− ratio

σv/σε 0.15 0.15 -
I(1) : ρ1 = 0 0.007 5.57 -0.004 -0.93 -0.0008 -0.23
I(2) : ρ2 = 0 -0.31 -6.48 -0.72 -12.8 -0.96 -21.3
σv/σε 1.0 1.0
I(1) : ρ1 = 0 0.0006 1.96 0.0006 1.94
I(2) : ρ2 = 0 -0.021 -1.90 -0.031 -2.74

εµt . With a small signal-to-noise ratio, εqt will completely dominate εµt and the
small but persistent drift that is associated with the second large root becomes
hard to detect. This is because the moving average parameter θ in (6) becomes
large and negative in this case. To illustrate, we test the null of a unit root with the
augmented D-F test based on (1) for the three series depicted in Figure 2.

Table 1 presents the results of testing the null of a unit root in the levels (ρ1 = 0)
and first differences (ρ2 = 0) of the simulated series using D-F regressions.5 The
results in the upper part of the table are for the simulated I(2), near I(2) with
ρ = 0.95, both with a signal-to-noise ratio of 0.152, and for the I(1) series. The
lower part of the table, compare the results for similarly simulated I(2) and near
I(2) series but with a signal-to-noise ratio of 1.0. The results show that the null of
a second unit root is strongly rejected for both the I(2) and near I(2) cases when
σεµ

/σεq is small, whereas it cannot be rejected when σεµ
/σεq is large.

The results indicate that the univariate D-F test has great difficulty detecting
the large root in the persistent drift term µt when the signal-to-noise ratio is as
small as it is here (0.152): the null of a double unit root is strongly rejected both
when qt ∼ I(2) and near I(2). This is in line with Schwert (2002) who shows that
unit root tests based on an autoregressive approximation of the ARMA model with
a large negative θ tend to strongly over-reject the null hypothesis. In our case the
moving average parameter in (6) is θ = −0.875 when ρ̄ = 1.0 and θ = −0.85

5 The regressions for levels and first differences were ∆qt = ρ1qt−1 + ρ11∆qt−1 + ρ0 + εt and
∆2qt = ρ2∆qt−1 + εt , respectively.
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when ρ̄ = 0.95. This is exactly what our results in Table 1 show. In Section 3
these results will be studied based on a more comprehensive simulation study.

2.4 Multivariate I(2) trace tests

In a univariate model, it is straightforward to determine whether a variable has two
large roots (with a modulus that is large but less than one) whereas in a multivariate
model we can only determine the number of common stochastic trends in the
system and whether they are of first or second order. The classification of variables
according to their order of integration is, therefore, more involved in the latter case.
But, as shown in Section 4.3, the order of integration of the individual series can
be determined within the CVAR model provided that the rank indices r,s1 and s2
have been determined.6

To give the intuition for the basic issues we first use one set of simulations to
analyze a three-dimensional VAR model in detail and then improve the generality
of our findings based on a much larger simulation study.

The VAR model has two lags and is conveniently expressed in acceleration
rates, changes and levels:

∆
2xt = Γ∆xt−1 +Πxt−1 +µ0 +µ1t + εt (9)

where Γ,Π are p× p matrices, µ0,µ1 are p×1 vectors and εt is NID(0,σ2
ε ). The

matrices Γ and Π are variation free but µ0 and µ1 are restricted to exclude the
possibility of quadratic trends.

The hypothesis that xt ∼ I(2) is formulated as two reduced rank hypothesis:

Π = αβ
′ (10)

where α,β are p× r, with r the cointegration rank, and

α
′
⊥Γβ⊥ = ξ η

′ (11)

where β⊥,α⊥ are p× p− r orthogonal complements to β ,α, and ξ ,η are p− r×
p− r− s2. The number of common stochastic trends is p− r = s1 + s2 of which
6 For an extensive discussion and analysis of CVAR models, see Juselius (2006).
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s1 are integrated of order one and s2 of order two. If s2 = 0, (11) is a full rank
matrix and xt ∼ I(1). Thus testing whether xt ∼ I(2) amounts to testing s2 > 0.
See Johansen (1997) for a detailed exposition.

Paruolo and Rahbek (2007) suggested the following parameterization of (9):

∆
2xt = α(β ′xt−1 +δ

′
∆xt−1)+ζ τ

′
∆xt−1 +µ0 +µ1t + εt

where τ = [β ,β⊥1] , δ is a p× s2 matrix of polynomially cointegrating parameters,
such that (β ′xt−1 +δ ′∆xt−1)∼ I(0), and ζ is a p× p− s2 matrix of medium run
adjustment coefficients.

The three variables have been simulated to reflect typical time series properties
of the real exchange rate, qt , the interest rate differential between the two countries,
bt , and the long-term drift term, µt (measured for example by the change in nominal
exchange rate, ∆st). They are simulated in accordance with the IKE models (3)
and (5):

qt = qt−1 +µt + εq,t =
t

∑
i=1

i

∑
s=1

ρ̄
i−s

εµ,s +
t

∑
i=1

εq,i + ρ̄µ0

t

∑
i=1

ρ̄
i +q0

bt = bt−1 +µt + εb,t =
t

∑
i=1

i

∑
s=1

ρ̄
i−s

εµ,s +
t

∑
i=1

εb,i + ρ̄µ0

t

∑
i=1

ρ̄
i +b0

µt = ρ̄µt−1 + εµ,t =
t

∑
i=1

ρ̄
t−i

εµ,i + ρ̄
t
µ0

where σεq = 1.0,σεb = 0.2,qt , σεµ
= 0.15, and ρ̄ = 0.95. Thus, the variables qt

and bt share the same realization of µt . For an application to a problem with
similar characteristics, see Johansen et al. (2010). As in the univariate case, we
have generated 500 observations.

If the near unit root ρ̄ = 0.95 is approximated with a unit root in an empirical
CVAR application, then the results would be consistent with r = 1, s1 = 1, and
s2 = 1. In this case, qt and bt would share one common stochastic near I(2) trend
and

qt −bt =
t

∑
i=1

εq,i−
t

∑
i=1

εb,i +q0−b0 (12)
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Table 2: Determination of the two rank indices in the bivariate model

Rank Test Statistics
p− r r s2 = 3 s2 = 2 s2 = 1 s2 = 0

3 0 1169.66
[0.00]

727.76
[0.00]

375.24
[0.00]

334.49
[0.00]

2 1 366.12
[0.00]

28.42
[0.23]

17.33
[0.40]

1 2 7.92
[0.84]

3.69
[0.78]

The characteristic roots:
Unrestricted VAR 0.99 0.99 0.96 0.07
r = 1,s1 = 2,s2 = 0 1.0 1.0 0.96 0.07
r = 1,s1 = 1,s2 = 1 1.0 1.0 1.0 0.07

would be CI(2,1). Since the two I(1) trends in (12) cannot cancel by a linear
combination δ ′∆xt , (12) corresponds to the β ′⊥1xt relation (s1 = 1) which can only
become stationary by differencing. The polynomially cointegrated relation (r = 1)
corresponds to µt −δ1∆qt −δ2∆bt where δ1 +δ2 = 1.

Table 2 reports the results of the the multivariate rank test where the first
row shows the trace test for s2 = 3,2,1,0, given r = 0 and the second row for
s2 = 2,1,0, given r = 1. The hypothesis {r = 1,s2 = 1} cannot be rejected based
on a p-value of 0.23. It implies three unit roots in the characteristic polynomial.
The lower part of Table 2 reports the modulus of the four largest roots in the
characteristic polynomial. The unrestricted VAR contains two roots almost exactly
equal to one and a third root, 0.96, which is very close to the simulated value of
0.95. If we approximate the latter with a unit root then the highest unrestricted root
is 0.07 for the choice of {r = 1,s1 = 1,s2 = 1} . But if we ignore the possibility of
I(2) then the model would contain an unrestricted root of 0.96 for the choice of
{r = 1,s1 = 2,s2 = 0} . Such a large root is likely to jeopardize standard inference
on stationarity at least for some hypotheses (Johansen, 2006b).
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Table 3: The estimated values of β ,β⊥1,β⊥2 for the simulated I(2) process

qt bt µt t ∆qt ∆bt ∆µt 1
The polynomially cointegrated relation β ′xt +δ ′∆xt

β ′ −0.00
[−0.21]

−0.00
[−0.28]

1.00
[NA]

0.00
[1.69]

δ ′ −0.49 −0.46 −0.00 0.00

The medium run cointegrated relation β ′⊥1xt

β ′⊥1 −0.93 1.00 0.00 0.02

The non-cointegrating relation β ′⊥2xt

β ′⊥2 1.00 0.93 0.00

Table 3 report the estimates of β ,β⊥1,β⊥2. The hypothesis of the proportional-
ity of qt and bt , formulated as the hypothesis:

Hτ =

 1 0
−1 0
0 1

[ β ′xt

β ′⊥1xt

]

could not be rejected based on χ2(2) = 1.60[0.45] consistent with the true data
generating process.

To conclude the main difference between testing the order of integration based
on a univariate versus a multivariate model is that the former is generally unable
to detect a large root in µt when the signal-to-noise ratio is small, whereas the
multivariate trace test is able to do so. Also, approximating a root of 0.95 with
a unit root allows us to structure the data in terms of polynomial cointegration
and common trends of different order, thereby exploiting the different persistency
profiles of the data. Evidence of the second large root can also be found by checking
the characteristic roots of the multivariate model whereas such evidence is usually
not present in the roots of a univariate model, in particular when the signal-to-noise
ratio is small.
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3 A simulation study

We consider now the IKE model (7) - (8)

x1,t = x1,t−1 +µt + ε1,t (13)

x2,t = x2,t−1 +µt +0.2ε2,t (14)

µt = ρµt−1 +0.15εu,t . (15)

where x1,t represents the real exchange rate and x2,t the real bond rate differential.
They share the same drift term but differs in terms of the short-term volatility with
x1,t fluctuating much more than x2,t reflecting typical behavior of real exchange
rates versus real interest rate differentials. The drift term µt is assumed to be highly
persistent with ρ ∈ {0.95,1.0} and the signal-to-noise ratio between εu,t and ε1,t is
0.152. The model (13)-(15) represents the baseline model. Since µt is generally
not directly observable we have simulated three versions of the three-dimensional
process x′t = [x1,t ,x2,t ,x3,t ] which differs with respect to the choice of x3,t :

Case 1 : x(1)3,t = µt

Case 2 : x(2)3,t = µt +0.2ε4,t

Case 3 : x(3)3,t = µt + ε5,t

where εi,t ∼ NID(0,σ2
i ), i = 1, ...,5.

Table 4 reports the simulated results of testing the hypotheses (r,s2) for r =
0,1,2,3 and s2 = p− r, p− r− 1, ...,0 based on the multivariate rank test in a
CVAR model. The latter is estimated for the three cases S1 = (x1,t ,x2,t ,x

(1)
3,t ),

S2 = (x1,t ,x2,t ,x
(2)
3,t ), S3 = (x1,t ,x2,t ,x

(3)
3,t ) using two lags. S1 represents the case

when the drift term, µt , is known, S2 when it can be measured with a small error,
S3 when it is very imprecisely measured.
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Table 4: Simulated frequences of testing the cases (r = i and s2 = 3− i− j), i = 0,1,2,3 and
j = 3− i, ...,0

T = 50 T = 100 T = 250 T = 500
H(r,s2) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

An I(2) process ρ = 1.0
H(0,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H(0,2) 0.1 0.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H(0,1) 9.0 16.4 24.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
H(0,0) 2.6 3.4 4.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
H(1,2) 7.9 8.1 5.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
H(1,1) 72.1 62.8 48.6 93.4 89.6 61.4 94.4 90.0 48.7 94.8 89.2 45.1
H(1,0) 0.9 1.5 4.0 0.6 1.6 9.3 0.7 1.5 11.8 0.4 1.6 12.3
H(2,1) 5.0 5.3 9.0 4.1 5.5 17.6 3.2 5.2 23.1 3.0 5.4 24.0
H(2,0) 1.6 1.4 3.3 1.2 2.4 8.7 1.2 2.7 13.7 1.3 2.8 15.4
H(3,0) 0.6 0.8 1.4 0.7 0.9 2.5 0.5 0.7 2.6 0.5 1.1 3.2
A near I(2) process ρ = 0.95
H(0,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H(0,2) 0.1 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H(0,1) 9.5 17.2 26.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
H(0,0) 5.1 6.2 6.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
H(1,2) 7.7 7.6 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H(1,1) 70.1 60.6 46.0 94.2 89.8 55.7 89.6 73.4 14.5 69.6 28.7 0.2
H(1,0) 1.0 2.2 7.0 0.7 3.9 26.7 4.0 18.6 67.3 22.5 63.5 82.8
H(2,1) 5.2 4.7 6.9 4.0 5.4 14.6 3.8 6.0 14.7 3.7 5.1 13.6
H(2,0) 0.8 0.8 1.5 0.8 0.6 2.1 2.1 1.6 2.9 3.8 2.4 2.9
H(3,0) 0.5 0.4 0.6 0.2 0.3 0.5 0.5 0.4 0.6 0.5 0.3 0.5
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The results show that the multivariate I(2) test:

• rarely rejects cointegration, except when µt is imprecisely measured (S3),

• rarely accepts two or three cointegration relations and no I(2) trends,

• rarely rejects I(2) when T = 50 or 100 provided µt is either known (S1) or
measured with a small error (S2),

• rarely rejects the preferred hypothesis H(1,1) unless T is large(500) and µt

is imprecisely measured (S3),

• frequently fails to reject the hypothesis H(1,0) when T is large and µt is
imprecisely measured (S3), i.e. ρ̄ = 0.95 is found to be significantly different
from a unit root, and

• almost always rejects that the process is stationary.

In general, the larger the sample the smaller the standard errors and the greater
the ability of the test to discriminate between a root of 0.95 and 1.00. Thus, with
a sufficiently large sample size a tiny deviation from unity will be found to be
significant in spite of the drift term µt being highly persistent. Also, the more
imprecisely µt is measured, the more difficult it is to detect the large near I(2) root
in the model.

Table 5 reports simulated univariate augmented D-F tests of the hypothesis
x1,t ∼ {I(2), I(1), I(0)} based on two respective three lags for T = 50,100,250
and 500. Each case has been replicated 5.000 times. The simulations of x1,t are
identical to the ones being analyzed in Table 3 above. The upper part of the table
reports the results for ρ = 1.0 and the lower part for ρ = 0.95. The results show
that the ADF test

• rejects I(2) in essentially all cases independently of whether ρ = 1 or 0.95,

• fails to reject I(1) in the absolute majority of cases

Thus, the results suggest that the univariate D-F tests are seldom able to detect
a double unit root when the signal-to-noise ratio is small. The overall conclusion is
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Table 5: Simulated frequences for testing the order of integration based on the ADF

T = 50 T = 100 T = 250 T = 500
Lags 2 3 2 3 2 3 2 3
x1,t is an I(2) process
I(2) 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00
I(1) 0.94 0.83 0.95 0.95 0.91 0.91 0.76 0.76
I(0) 0.06 0.06 0.05 0.05 0.09 0.09 0.24 0.24

x1,t is an I(2) process (ρ = 0.95)
I(2) 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00
I(1) 0.94 0.83 0.95 0.95 0.95 0.95 0.95 0.95
I(0) 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.05

that the multivariate tests are less prone to this kind of size distortions in particular
when the underlying drift term is observed fairly precisely, i.e. when the VAR
model is well-specified. When the drift term is observed with a lot of noise as
in Case 3, the moving average effect is likely to be more pronounced and the
autoregressive approximation less good. The simulations show that this will tend
to distort the size of the multivariate unit root test, the larger the noise the larger
the distortion.

As pointed out by referee 1, residual autocorrelation in low-order VAR models
is often an indication that important variables are missing. Our results suggest that
in this case it would be preferable to extend the model with new variables (rather
than just increasing the lag length) if this leads to a model where the unobserved
drift is more precisely measured. In this case we should achieve more accurate unit
root inference.

However, that the multivariate test often fails to find the second unit root
when the drift term is imprecisely measured and the sample is large does not
necessarily mean that such a root goes undetected. As Table 2 shows, inspection
of the characteristic roots will often reveal a large unrestricted root when the I(1)
model is "incorrectly" chosen.
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4 Empirical illustration: the dollar Dmk rate

This section illustrates the test procedures based on actual real exchange data for
USA and Germany for a sample from May 1975 to December 1998 comprising the
post Bretton Woods period of currency float. Section 4.1 first reports the univariate
D-F test to determine the order of integration of the real and nominal exchange
rate, US and German prices and long-term interest rates. Section 4.2 then reports
the order of integration and cointegration based on the multivariate trace test in a
five-dimensional VAR model of x′t = [p1,t , p2,t ,s12,t ,b1,t ,b2,t ] where p1, p2 stands
for prices, s12 for the nominal dollar-Dmk rate, b1,b2 for long-term bond rates, and
the subscript 1 stands for USA and 2 for Germany. Finally Section 4.3 reports tests
of the order of integration of the individual series within the multivariate model.

4.1 Univariate Dickey-Fuller tests

Table 6 reports the D-F univariate tests of a single unit root based on (1), and of
a double unit root based on (2) for the five variables as well as for the following
transformations: real exchange, p1,t − p2,t − s12,t , the interest rate differential,
b1,t − b2,t and relative prices, p1,t − p2,t . The criterion for the choice of the lag
length k is that no significant residual autoregression is left in the model7. Because
the two prices and the relative price have been significantly trending over the
sample period, µ in (1) has been allowed to be nonzero for these variables but
otherwise has been set to zero.

The D-F test failed to reject the null of one unit root in all cases and failed
to detect a double unit root in almost all cases except for the US price and the
relative US-German price. This is interesting as consumer prices are not likely
to be subject to speculation to any significant degree and, hence, should not be
affected by the long swings drift term µt . Therefore, a double root in US CPI prices
suggests partly that shocks to the differenced log price, i.e. to US inflation rate,

7 The test of a double unit root in US prices was based on a mode with borderline significant
autocorrelation, probably because the autoregressive approximation of the moving average effect
was poor in this case. Other misspecification tests such as for normality, ARCH, nonlinearity, etc.
have been ignored as practitioners usually do not report such tests. The test results can be dowloaded
from the website.
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Table 6: Testing the order of integration with a Dickey-Fuller test

D-F tests of p1,t p2,t s12,t p1,t − p2,t

ρ̂i τ-ratio ρ̂i τ-ratio ρ̂i τ-ratio ρ̂i τ-ratio
I(1): ρ1 = 0 -0.001 -2.9 -0.003 -2.9 -0.01 -1.6 0.03 1.2
I(2): ρ2 = 0 -0.04 -1.6 -0.62 -8.9 -1.00 -16.7 -0.42 -3.0

qt = p1− p2− s12 b1,t b2,t b1,t −b2,t

ρ̂i τ-ratio ρ̂i τ-ratio ρ̂i τ-ratio ρ̂i τ-ratio
I(1): ρ1 = 0 -0.08 -1.8 -0.001 -0.6 -0.002 -1.1 -0.01 -1.3
I(2): ρ2 = 0 -1.04 -6.3 -0.93 -12.1 -0.65 -9.9 -0.96 -16.0

while not necessary large, have been persistent over this period and partly that the
signal-to-noise ratio is likely to be quite high in this case. That a second unit root
was not detected in the German price suggests that shocks to the German inflation
rate have been less persistent. For both the nominal and the real exchange rate a
double unit root was rejected.

Altogether, the results seem to confirm the results in Table 1 of the inability of
the univariate D-F test to detect a double unit root when the signal-to-noise ratio is
small.

4.2 Multivariate VAR based unit root tests

We estimate the VAR model (9) for x′t = [p1,t , p2,t ,s12,t ,b1,t ,b2,t ] augmented with
a few dummy variables, primarily to account for the German reunification as
explained in Johansen et al. (2010) and in Juselius (2012).

Table 7 reports the I(2) trace tests as well as the characteristic roots of the
model. Since all versions for r = 0 were strongly rejected, they are not reported
in the table. The estimated characteristic roots in Table 7 suggest a total num-
ber of five large roots in the unrestricted VAR, four of which are almost exactly
on the unit circle, while the fifth, while large (0.88), is not equally close to one.
Juselius (2012) shows that the case (r = 2,s1 = 1,s2 = 2) is theoretically consistent
with an IKE-based model. The first acceptable choice is {r = 1,s1 = 3,s2 = 1}.
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Table 7: Determination of the two rank indices

Rank Test Statistics
p− r r s2 = 5 s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0

4 1 489.2
[0.00]

291.6
[0.00]

149.5
[0.00]

84.1
[0.328]

77.19
[0.137]

3 2 140.4
[0.00]

56.96
[0.93]

42.85
[0.93]

37.22
[0.77]

2 3 36.7
[0.94]

17.4
[1.00]

15.3
[0.96]

Six largest characteristic roots:
Unrestricted VAR 0.99 0.99 0.98 0.98 0.82 0.50
r = 2, p− r = 3 1.0 1.0 1.0 0.96 0.96 0.50
r = 2,s1 = 2,s2 = 1 1.0 1.0 1.0 1.0 0.96 0.51
r = 2,s1 = 1,s2 = 2 1.0 1.0 1.0 1.0 1.00 0.51

Both the preferred and the first acceptable case are consistent with five unit roots
in the characteristic polynomial. Jensen (2013) derives a Likelihood Ratio test
for the choice between two non-nested models with equal number of unit roots,
LR{H (r−1,s1 +2) |H (r,s1)} . The test of H (1,3) against H (2,1) gives a
test statistic of 13.6 > Q(.95) = 13.3. Since H (2,1) is consistent with our theo-
retical prior we continue with this case {r = 2,s1 = 1,s2 = 2} . The largest non-unit
root given this choice is 0.51. If, instead, we had chosen s2 = 0 (and treated the
variables in the model as I(1)), our model would contain two large roots with a
modulus of 0.96. In this case, our statistical inference would not have been able to
discriminate between a highly persistent and a very stationary process.

To summarize: the case {r = 2,s1 = 1,s2 = 2} is supported by the data, is able
to account for all five large roots in the unrestricted VAR, and is consistent with
the economic prior.

4.3 Testing the order of integration of individual variables

As discussed above, the multivariate trace tests are informative about the order of
integration of the vector process but are generally uninformative about the order
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of the individual variables. It is, however, straightforward to formulate and test
hypotheses of the order of integration of these variables given the choice of r,s1
and s2. We first define τ =

{
β ,β⊥,1

}
. The hypothesis that a variable is I(1) in the

I(2) CVAR model can be formulated as a known vector b1 in τ = (b1,b1⊥ϕ) where
b1⊥ϕ defines the other vectors to be restricted to lie in the orthogonal space of
b1. For example b1 = [0,0,1,0,0,0,0] is a test of the hypothesis that the nominal
exchange rate, s12,t , is a unit vector in τ. If not rejected, it can be considered I(1),
otherwise I(2). See Johansen (2006a) and Johansen et al. (2010) for further details.

Since prices are generally subject to linear deterministic (as well as stochastic)
trends we need to test the hypothesis that the price as well as the trend-adjusted
price is I(1). As discussed in Johansen et al. (2010) this can be formulated as a

test on β = (H1ϕ1,H2ϕ2) . For example, H ′1 =
[

1 0 0 0 0 0 0
0 0 0 0 0 0 1

]
would

be a test of trend-adjusted US price being I(1). As the VAR model was specified to
allow for a change in the slope of the linear trend at the time of the reunification we
formulate the test to allow also for this possibility. Table 8 reports the Likelihood
Ratio test results. Except for the German bond rate, all hypotheses were strongly
rejected, indicating that the differenced processes are persistent enough to reject
the I(1) hypothesis in favor of an I(2)-type characterization.8

The empirical finding that pppt = ppt− s12,t is (near) I(2) may seem to contra-
dict the statement in the introduction that "the nominal exchange rate has shown a
tendency to move in long persistent swings around its long-run purchasing power
parity". This would clearly be the case with just one (near) I(2) trend whereas not
necessarily with two. In the latter case one of the near I(2) trends is likely to capture
the long persistent swings in nominal exchange rate while the other captures the
long persistent movements in the relative price (the long-run fundamental value of
the nominal exchange rate). Thus, while the latter trend is likely to be removed in
the pppt relation, the long swings trend is still there.

Whether the long swings in the nominal exchange rate is better approximated
by a near I(2) or a persistent I(1) process is very much dependent on the choice
of sample period. In some cases I(1) would be a better approximation and the

8 The inability to reject the I(1) hypothesis for the German bond rate with a p-value of 0.20 indicates
that the German bond rate has moved in a slightly less persistent manner than the other variables.
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pppt would then also be I(1) (as would also the interest rate differential). In other
cases (like in the present application) the swings are persistent enough to be best
approximated with I(2) and, hence, so are the real exchange rate and the interest
rate differential.

Another important question is whether the Likelihood Ratio test suffers from
size distortions when the process is near I(2) rather than I(2). Preliminary and
unpublished research seems to indicate that to get a correct size, the χ2 distribution
needs a correction which depends on the closeness of the ρ parameter to the unit
circle and the sample size. Using such a correction in the present application
might of course change the classification of some of the variables from being
approximately I(2) to a very persistent I(1) process. However, as argued above,
this does not affect the basic idea of associating variables/relations with a similar
persistency profile as a result of combining multivariate unit root testing with an
inspection of the largest unrestricted roots of the characteristic polynomial. If one
chooses the I(1) approximation when the model shows sign of I(2) persistence (a
double near unit root ), then the characteristic polynomial of the model will exhibit
a left over near unit root. In spite of the test results, the model has in this case not
been able to ’explain’ all persistent features in the data.

5 A concluding discussion

This paper has demonstrated by simulations that multivariate tests often find (near)
I(2) trends where univariate tests do not. In particular, this is the case when
the signal-to-noise-ratio is small and a finite-order VAR model is an accurate
approximation to the underlying unobserved components model. The fact that
VAR models in general imply ARMA models for the individual time series can
explain why size distortions implied by moving average dynamics are more likely
to occur in univariate than in multivariate models.

Macro-financial series typically exhibit very volatile short-run changes around
smooth persistent trends often due to momentum trading. This means that the
unobserved drift term of the differenced process is likely to be very persistent
with a small variance compared to the large variance of the short-run changes
describing a (near) I(2) process with a small signal-to-noise ratio. A priori we
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Table 8: Testing hypotheses of I(1) versus I(2)

p1,t p2,t s12,t b1,t b2,t t91 t χ2(v) p− val
Is the price differential I(1)?
H1 β ′1 1.0 -1.0 - - - - - 64.09 (4) 0.00
Is the nominal exchange rate I(1)?
H2 β ′1 - - 1.0 - - - - 23.6 (4) 0.00
Is the US trend-adjusted price I(1)?
H3 β ′1 1.0 - - - - * * 39.1 (3) 0.00
Is the German trend-adjusted price I(1)?
H4 β ′1 - 1.0 - - - * * 48.02 (3) 0.00
Is the bond rate differential I(1)?
H8 β ′1 - - - 1.0 -1.0 - - 11.2 (4) 0.02
Is the US bond rate I(1)?
H9 β ′1 - - - 1.0 - - - 12.4 (4) 0.01
Is the German bond rate I(1)?
H10 β ′1 - - - - 1.0 - - 5.5(4) 0.24
Is the real exchange rate I(1)?
H11 β ′1 1.0 -1.0 -1.0 - - - - 10.4 (4) 0.03

would expect near I(2) trends to be prevalent in asset prices strongly affected by
financial speculation, such as exchange rates, stock prices, and commodity prices.
Whether this pronounced persistence is likely to affect the real economy is a highly
relevant issue.

Assuming that the real economy and financial markets are strongly interde-
pendent, and all evidence points in this direction, one would expect to find a
similar near-I(2) persistence in many macroeconomic variables. For example, if the
nominal exchange rate is determined primarily by expectations in the speculative
part of the foreign currency market9 then the movements in the nominal exchange
rate would not necessarily reflect the movements in relative prices as illustrated
in Figure 1. When the movements in the relative price are very smooth while the
nominal exchange rate exhibit long persistent swings the result is real exchange

9 Only a few percent of the foreign currency transactions are related to the trade with goods
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rate persistence. This is likely to generate similar compensating movements in the
interest rate differential. When goods prices are not moving much and nominal
interest rates are very persistent, the real interest rate will inherit the persistence of
the nominal interest rate. See Juselius (2013, 2014) for a more detailed discussion.
Therefore, both the real exchange rate and the real interest rate, two of the most
crucial determinants of macroeconomic behavior, are likely to exhibit pronounced
persistence due to speculative financial behavior. This means that macroeconomic
variables such as unemployment rate, labor productivity, profit share, etc. are also
likely to drift off in long persistent swings around long-run equilibrium values.
Indeed, since the onset of worldwide financial deregulation in the mid eighties,
empirical applications based on the multivariate CVAR model have increasingly
found such pronounced persistence both in financial and macroeconomic variables.
Illustrations can for example be found in Johansen (1992), Juselius and Franchi
(2007) and Juselius and Ordonez (2008) (the latter two in this journal), Kongsted
(2003) and Juselius and Juselius (2014). This paper gives the rational for why such
near I(2) behavior has seldom not been detected by univariate D-F tests.

To model such near I(2) features of the data can of course be avoided by
choosing a less volatile sample period. But in this case one would give up the
possibility to better understand the mechanisms behind persistent booms and busts
in financial markets and how they transmit into the macro economy. The recent
financial crisis has strongly demonstrated the need for theory models that are able
to explain behavior in a crisis period and not just in normal periods when little
happens. Structuring the data according to their persistency properties such as I(0),
I(1) and I(2) is a very efficient way of learning about mechanisms during normal as
well as crisis periods. However, to make economic sense, it is important to avoid
treating a unit root as a deep structural economic parameter instead of a convenient
statistical approximation.
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