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IntrodutionWhen do asset pries exeed the fundamental value of the underlying asset? This phe-nomenon of a so-alled asset bubble has long been studied in the literature. Numerouspapers provide onditions under whih bubbles are ompatible with rational, fully in-formed investors and study their onsequenes for the real eonomy. A ommon featureof almost all these studies, however, is that they employ a deterministi framework. Themain ontribution of the present paper is to study asset bubbles in stohasti eonomieswhere the prodution side is subjeted to random produtivity shoks. Using methods fromdynamial systems theory, we derive onditions under whih asset bubbles exist in a broadlass of suh eonomies. As the formal approah to be developed seems appliable also inother and more general situations, the paper also o�ers a methodologial ontribution.A natural framework to study asset bubbles and their equilibrium impliations is the lassof overlapping generations (OLG) models on whih the present paper will exlusively fous.A �rst lass of models in this literature studies monetary bubbles orresponding to valued�at money in models of pure exhange. Early studies of deterministi exhange eonomiesmay be found in Gale (1973), Okuno & Zilha (1983), or Beneviste & Cass (1986). Thesepapers show that monetary bubbles an only exist if the non-monetary equilibrium is non-optimal. The results were generalized, e.g., in Koda (1984), Manuelli (1990), or Aiyagari& Peled (1991) to stohasti exhange eonomies where inomes follow exogenous randomproesses and onsumers may have aess to an intertemporal storage tehnology. Theanalysis to be presented in this paper will show that the existene onditions in Manuelli(1990) are struturally similar to the ones for a stohasti prodution eonomy.Coneptually, most of the previous and related approahes fous on stationary equilibriafor whih they o�er abstrat existene results. Issues suh as dynami stability and therole played by initial onditions are typially not studied. A notable exeption is Rohon& Polemarhakis (2006) who extend the deterministi OLG model with pure exhange toinlude a �nanial setor that issues money in exhange for debt and ondut a full-edgedanalysis of the resulting dynamis. The present paper attempts to ondut a study in thesame spirit for a stohasti eonomi environment.A seond lass of models inludes an expliit desription of the prodution proess and theaumulation of apital. This permits to study the impat of asset bubbles on produtionand investment in the eonomy. For these eonomies, Tirole (1985) showed that assetbubbles our if and only if the bubbleless equilibrium is ineÆient due to an overau-mulation of apital. In situations where the bubbleless equilibrium does not su�er fromover-aumulation, bubbles may still exist in the presene of fritions. Mihel & Wigniolle(2003) study a monetary OLG model with prodution where onsumers hold money due toash-in advane onstraints. They show that temporary bubbles may exist even if the mon-eyless equilibrium fails to exhibit overaumulation of apital. Similarly, Kunieda (2008)shows that asset bubbles an emerge in eonomies with overaumulation where onsumersfae borrowing onstraints. Below we will disuss how the deterministi results in Kunieda(2008) extend to the stohasti setting of this paper.An issue losely related to the emergene of a bubble is the sustainability of governmentaldebt whih may be viewed as a bubble rolled over from generation to generation. Thedi�erenes between debt and bubbles are thoroughly exhibited in de la Croix & Mihel(2002, p.212). Starting with the seminal paper by Diamond (1965), several papers fous1



on the sustainability and optimality of government debt, see de la Croix & Mihel (2002)for a survey. Typially, however, theses studies are also plaed in a deterministi setting.An exeption may be found in Bertohi (1994), who studies a stohasti OLG eonomywith government debt o�ering a safe return. Her model onstitutes a speial ase of theframework to be developed in this paper and we will omment on her �ndings below.To aount for aggregate utuations of the type observed over the business yle, mostmaroeonomi models inorporate random shoks, in partiular produtivity shoks. ForOLG prodution eonomies, suh a setup was introdued in Wang (1993) and furthergeneralized, e.g., in Wang (1994), Morand & Re�ett (2007), MGovern et al. (2013), orHillebrand (2014). Extending the previous studies of bubbles to suh a random environmentseems important not only to inorporate business yle utuations, but also beause theresults for deterministi eonomies indiate that bubbles are relatively fragile and theiremergene is subjet to initial onditions. Thus, it seems important to analyze whetherthe deterministi �ndings are robust and ontinue to hold in a random setting.To the author's best knowledge, a general study of bubbles in OLG eonomies with randomprodution and endogenous apital aumulation is still missing in the literature. Fillingthis gap is therefore the primary ontribution of this paper. While the fundamental side ofthe eonomy will be similar to Wang (1993), we will argue below how and why the resultsand methods should also arry over to more general lasses of eonomies. Coneptually, thepaper develops and applies a dynamial systems approah suitably adapted to a randomenvironment. This preserves the main strength of Tirole (1985) whose existene onditionsare essentially based on the dynami properties of the equilibrium mapping. In partiular,the saddle-path towards the bubbly steady state de�nes the maximum sustainable bubbleunder whih the state dynamis remain bounded in Tirole's model. In the stohasti asestudied here, matters are onsiderably more ompliated as the equilibrium bubble mustbe sustainable under any sequene of shoks. For this reason, the existene onditionsderived in this paper are based on the dynami properties of an entire family of equilib-rium mappings parameterized in the shok. This struture provides a natural extensionof the deterministi dynamial system in Tirole (1985) to the present stohasti setting.As a onsequene, the existene onditions derived below beome natural and intuitivegeneralizations of the ones in Tirole (1985) whih an be reovered as a speial ase.From a purely methodologial standpoint, the paper analyzes equilibria whih are gener-ated by randomly mixing a family of mappings eah of whih possesses an interior �xedpoint whih is saddle-path stable. This is a situation that arises in many maroeonomimodels (for example, in the stohasti neolassial growth model in state-spae form) andthe approah to be developed delivers simple and geometrially intuitive onditions underwhih suh a system generates bounded dynamis and possesses stable, self-supportingsets. Using the stable manifold theorem (f. Niteki (1971)), the key ingredient is a om-plete haraterization of the regions in the state spae in whih eah mapping generatesstationary dynami behavior. Thus, great are is plaed on a lean mathematial har-aterization of these regions (f. Lemma 3.4 in Setion 3). The methods to be employedseem appliable also in other and more general situations and ould, therefore, be of somegeneral methodologial interest quite independent of the partiular theme of this paper.The analysis of this paper unfolds as follows. In a �rst step, we impose restritions underwhih bubbly equilibria are generated by randomly mixing a family of dynami mappingson a suitably de�ned state spae. This struture provides the basis for applying dynamial2



systems theory to study bubbly equilibria. In a seond step, we haraterize the dynamiproperties of eah member of this family and whether it displays expansive or stationarybehavior. This permits to ompletely haraterize the model's dynami behavior underarbitrary sequenes of shoks and for di�erent initial onditions. In partiular, it will allowus to derive neessary and suÆient onditions for bubbly equilibria to exist and derive anupper bound on the maximum initial bubble that an be sustained over time under anysequene of shoks. Essentially, our existene onditions require the state dynamis to beexlusively generated by stationary dynami mappings eah of whih generates boundeddynamis on a ertain subset of the state spae. The intersetion of these ranges de�nesan upper bound for the maximum initial bubble that an be sustained over time just as inTirole (1985). We also show that even if they exist, bubbles are temporary in the sense thatgenerially the eonomy onverges to a bubbleless situation with probability one. Finally,we demonstrate that our existene onditions an be relaxed if fritions suh as borrowingonstraints are introdued.The paper is organized as follows. Setion 1 introdues the model. Setion 2 derives thestruture of equilibria whih are generated by a family of mappings whose dynami proper-ties are analyzed in Setion 3. Setion 4 establishes neessary and suÆient onditions forbubbly equilibria to exist and disusses various extensions of the model. Setion 5 modi�esthe previous setup to study the role of borrowing onstraints. Setion 6 onludes. Allproofs are plaed in the Mathematial Appendix.1 The ModelProdution setor.The prodution side onsists of a representative �rm whih operates a linear-homogeneoustehnology to produe an all-purpose onsumption good using labor and apital as inputs.In addition, the prodution proess is subjeted to an exogenous TFP-shok "t in eahperiod t � 0. At equilibrium, labor supply will be onstant and normalized to unity suhthat per-apita output yt is determined from apital kt and the urrent shok aording tothe intensive form tehnology f : R+ �! R+yt = "t f(kt): (1)The funtion f is C2 with f(0) = 0 and derivatives satisfying f 00 < 0 < f 0 and theInada onditions limk&0 f 0(k) = 1 and limk!1 f 0(k) = 0. The shok proess f"tgt�0onsists of independent random variables where eah "t is distributed aording to theprobability measure � supported on the ompat set E � R++ . This struture induesa probability spae (
;F ;P) on whih all random variables are de�ned and a �ltrationfFtgt�0 to whih all equilibrium proesses onsidered below are adapted.1 Denote byE t [�℄ := E [�jFt ℄ the expetations operator onditional on the information represented by Ftand E � [�℄ the expetation with respet to �.21Formally, a stohasti proess f�tgt�0 taking values in some set � � RM is adapted to the �ltrationde�ned if eah random variable �t : 
 �! � is Borel-measurable with respet to Ft and hene dependsonly on shoks up to time t.2In the following analysis, all equalities or inequalities involving random variables are assumed to holdP-almost surely without further notie. Measurability of mappings always refers to the Borel � algebras.3



Under pro�t maximization and perfet ompetition on fator markets, the equilibriumwage wt and apital return rt are determined by the standard formulaswt = W(kt; "t) := "t [f(kt)� ktf 0(kt)℄ (2a)rt = R(kt; "t) := "tf 0(kt): (2b)Consumption setor.The onsumption setor onsists of overlapping generations of homogeneous onsumerswho live for two periods. Abstrating from population growth, the size of eah generationan be normalized to one. A young onsumer in period t is endowed with one unit of labortime whih is supplied inelastially to the labor market. Old onsumers own the existingstok of apital whih they supply to the prodution proess.A young onsumer in period t � 0 earns labor inome wt > 0 part of whih is onsumedand the remainder invested. For the latter purpose, the onsumer an invest in apitalwhih yields the random apital return rt+1. In addition, a bubbly asset is available whihpromises the random return r?t+1 to be paid in t+ 1 per unit invested at time t.Let st and bt be the investments in apital and the bubble at time t � 0. These hoiesde�ne �rst period onsumption 1t = wt � bt � st while seond period onsumption isgiven by the random variable 2t+1 = bt r?t+1 + st rt+1. Here the randomness enters throughthe unertain returns on both investments whih are treated as given random variablesin the deision. As in Wang (1993), young onsumers evaluate the expeted utility ofdi�erent onsumption plans (1t ; 2t+1) using an additive von-Neumann Morgenstern utilityU(y; o) = u(y) + v(o). Eah z 2 fu; vg is C2 with derivatives satisfying z00 < 0 < z0 andthe one-sided Inada ondition lim&0 z0() =1.Eah young onsumer hooses investment to maximize her expeted lifetime utility. Thedeision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s���� s � 0; b + s � wto: (3)Note that no short-selling onstraints on b are imposed at the individual level. Thus, anysolution to (3) satis�es the orresponding �rst order onditions.At equilibrium, the investment in apital st determines next period's apital stokkt+1 = st: (4)Denote by bt � 0 the value of the bubble in period t � 0. No resoures are added orwithdrawn from outside suh that the bubble must be ompletely self-�naning, i.e.bt+1 = r?t+1 bt; t � 0: (5)Old onsumers in period t � 0 simply onsume the proeeds of their investments in bubblesand apital made during the previous period.Equilibrium.The eonomy is E = (f; �; u; v) plus initial onditions. The following de�nition of a bubblyequilibrium reoniles market learing, individual optimality, and rational expetations.Note that the Inada onditions imposed above ensure an interior equilibrium alloation ofapital and onsumption of both generations.4



De�nition 1Given b0 � 0, k0 > 0, and "0 2 E , an equilibrium of E is an adapted stohasti proess�wt; rt; r?t ; bt; st; kt+1	t�0 of non-negative values whih satis�es the following for eah t � 0:(i) The pair (bt; st) solves (3) at the given wage and returns while kt+1 follows from (4).(ii) Fator pries wt and rt are determined by (2a,b) and bt evolves aording to (5).The equilibrium is alled bubbly, if bt > 0 and bubbleless if bt = 0 for all t � 0.Additional restritions.The subsequent analysis will frequently impose additional restritions on the eonomy E .As these onditions are somewhat stronger than the ones imposed above, it will expliitlybe indiated when they are used.Denote by Eh(x) := jxh0(x)=h(x)j, x 2 D � R the (absolute) elastiity of a di�erentiablefuntion h : D �! Rnf0g. Additional restritions on the utility funtions u and v are:(U1) Ev0 � 1 (U2) lim!1  v0() =1 (U3)Ev0 � � (U4)Eu0 � 1 (U5) lim!1u0() = 0:Examples satisfying (U1) and (U2) are power utility v() = ��1�, 0 < � < 1, or CES utilityv() = [1 � � + ��℄1=�, 0 < � < 1, � > 0. While (U2) exludes logarithmi utility, the�rst example shows that this ase an still be approximated by letting � ! 0. Under (U3),seond period utility v exhibits onstant relative risk aversion while (U4) is automatiallysatis�ed if (U1) holds and v() = �u(), � > 0. The restrition (U5) on the boundarybehavior of u0 is standard.Additional restritions imposed on the prodution tehnology f are the following:(T1) Ef 0 � 1 (T2) Ef < 12 :Restrition (T1) is known as apital inome monotoniity and widely used in OLG modelswith prodution, f. Wang (1993), de la Croix & Mihel (2002), or Hauenshild (2002).It holds, e.g., for a Cobb-Douglas tehnology f(k) = k�, 0 < � < 1. The seond re-strition (T2) ensures that labor inome throughout exeeds apital inome, whih is awell-established empirial regularity. In the Cobb-Douglas ase, it holds if � < 12 .2 Equilibrium DynamisRisk struture of bubbles.While the general de�nition of a bubbly equilibrium from the previous setion imposesno restritions on the risk struture of the return proess fr?t gt�0, the following analysisassumes that the bubble return o�ered at time t is of the following formr?t+1 = R?(zt; "t+1) := #("t+1) zt; t � 0: (6)Here zt > 0 is determined in period t and # : E �! R++ is a bounded measurable funtionwhih de�nes the risk-struture of the bubbly asset. Two spei� ases are of partiularinterest. If # � �# the bubble o�ers a riskless return. If # = idE , the identity map on5



E , the returns on bubbles exhibit the same risk struture as apital investments. Thiswill be referred to as a apital-equivalent bubble. In the latter ase, one neessarily haszt = f 0(kt+1) whih implies r?t+1 � rt+1 for eah t � 0, i.e., the returns on bubbles andapital oinide pointwise.A straightforward interpretation of (6) is as follows. Suppose there are �nitely many shoksE = f"1; : : : ; "Mg and in eah period there exists a omplete set of M Arrow seurities.Let pmt > 0 be the prie of seurity m that pays o� one unit in t + 1 i� "t+1 = "m.In eah period t � 0, the institution baking the bubbly asset (e.g., some governmentor an investment fund) issues a portfolio at = (amt )m=1;:::;M 2 RM++ of these seurities to�nane the bubble, i.e., PMm=1 amt pmt = bt. Let the mix of seurities be onstant overtime and determined by # where #m := #("m) is the relative share of seurity m in theportfolio. The salar zt then determines the supply of seurity m as amt = btzt#m. Foryoung onsumers to be willing to buy these assets, pries must satisfy the Euler equationspmt = �(f"mg)v0(amt + "mf 0(kt+1)kt+1)=u0(wt � bt � kt+1). Combined with the �rst orderonditions for an expetations-onsistent apital investment derived from (3) this yieldspreisely the Euler equation (8) derived below. All these arguments also extend to anin�nite set E and a ontinuum of Arrow seurities. Extensions of (6) towards more generalbubble returns with state-dependent risk struture are disussed in Setion 4.Reursive equilibrium struture.To unover the reursive struture of equilibria, onsider an arbitrary period t � 0. Letthe urrent state xt := (wt; bt) determined by (2a) and (5) be given and wt > bt � 0. Thetemporary equilibrium problem for period t is to determine next period's apital kt+1 > 0and a value zt > 0 onsistent with an optimal savings deision derived from (3) andrational, self-on�rming expetations. The salar zt determines the ex-ante bubble returnr?t+1 o�ered at time t aording to (6) suh that young onsumers are willing to absorb theurrent bubble. Combining the �rst order onditions3 of (3) with (2b), (4), and (6), de�nefor i 2 f1; 2g the mappings H(i)(�; �;w; b) : R++�℄0; w � b[�! RH(1)(z; k;w; b) := u0(w � b� k)� E � �R(k; �)v0�bR?(z; �) + kR(k; �)�� (7a)H(2)(z; k;w; b) := u0(w � b� k)� E � �R?(z; �)v0�bR?(z; �) + kR(k; �)��: (7b)Then, given wt > bt � 0 the previous problem redues to solving the Euler equationsH(1)(zt; kt+1;wt; bt) = H(2)(zt; kt+1;wt; bt) = 0: (8)The following result establishes onditions under whih a unique solution to (8) exists.Lemma 2.1Let the additional restritions (T1), (U1), and (U2) hold. Then, for eah w > b � 0 thereexist unique values z > 0 and 0 < k < w�b suh that H(1)(z; k;w; b) = H(2)(z; k;w; b) = 0.Properties (U1) and (T1) ensure that an inrease in the returns rt+1 or r?t+1 o�ered attime t inreases the desired investment in apital respetively bubbles. Eonomially,this means that the intertemporal substitution e�et always dominates the inome e�et.These onditions appear to be minimal ingredients under whih the state dynamis derived3Throughout this paper, we exploit that di�erentiation may be interhanged with the expetationsoperator E� ��� if the integrand is ontinuously di�erentiable and integration is over a ompat set.6



below are well-de�ned, i.e., eah state has a unique suessor. If bt = 0, either of the tworestritions alone is suÆient. The additional restrition (U2) ensures that onsumersare willing to absorb any bubble bt not exeeding their inome wt if they are o�ered asuÆiently large return. This permits to de�ne the model's state spae as in (9) belowwhih is the 'largest' state spae possible. If (U2) failed to hold { as in the example withlog-utility in Setion 4 { tighter bounds on the bubble would be needed.4Unless stated otherwise, the remainder assumes that the hypotheses of Lemma 2.1 hold.This permits to de�ne the model's endogenous state spae asX := n(w; b) 2 R2+ jw > bo: (9)Exploiting the result from Lemma 2.1, let the mappings K : X �! R++ and Z : X �!R++ determine the solutions kt+1 and zt to (8) for eah xt = (wt; bt) 2 X. Using theimpliit funtion theorem, the following result shows that these mappings are smooth(ontinuously di�erentiable) and haraterizes their monotoniity and boundary behavior.These properties provide the basis for the dynamial systems approah developed below,whih will make repeated use of the Grobman-Hartman Theorem and the Stable ManifoldTheorem in order to haraterize the dynami behavior of the equilibrium mappings.Lemma 2.2If (T1), (U1), and (U2) hold, both K and Z are C1 and satisfy the following properties:(i) limw�b&0K(w; b) = 0 and limw�b&0Z(w; b) =1. (ii) 0 < Kw < �Kb.(iii) If, in addition, either # = idE or (U3) holds, then 0 < �Zw < Zb and KwZb � KbZw.Lemma 2.2 (ii) shows that apital investment inreases with inome and dereases with thesize of the bubble. The latter is the standard rowding-out e�et whih is well-known fromdeterministi models. Similarly, (iii) shows that the return required for onsumers to bewilling to absorb the urrent bubble inreases with its size and dereases with inome. Themain ingredient to the proof of (iii) is Lemma B.1 whih requires seond-period utility todisplay onstant relative risk aversion. While this is a rather strong restrition, numerialexperiments with utility funtions v not satisfying (U3) have throughout displayed thesame properties of Z as in Lemma 2.2 (iii) suggesting that this restrition ould probablybe relaxed. If the bubble is apital-equivalent, no suh ondition is needed.Equilibrium dynamis.Combining Lemma 2.1 with (2a), (5), and (6) the evolution of the endogenous state variableunder the exogenous shoks is governed by the map � = (�(1);�(2)) : X � E �! R2+ ,wt+1 = �(1)(wt; bt; "t+1) :=W(K(wt; bt); "t+1) (10a)bt+1 = �(2)(wt; bt; "t+1) := R?(Z(wt; bt); "t+1)bt: (10b)As �(�; ") does not map X into itself, we refer to it as a pseudo-dynamial system. Thisfeature is essentially due to the boundary behavior stated in Lemma 2.2 (i) and is well-known from deterministi models with bubbles, f. Tirole (1985). Given an initial state4In Tirole (1985) or Weil (1987), restritions are imposed on derived objets suh as the savings funtionor the fator priing funtions W and R and it seems not lear how they restrit the underlying lass ofpreferenes and tehnology. For instane, Weil (1987) assumes that the interest elastiity of savings ispositive, whih is exatly what is ensured by (U1) and (T1).7



x0 = (w0; b0) 2 X, any equilibrium proess fxtgt�0 is generated by randomly mixing thefamily of mappings (�(�; "))"2E de�ned in (10a,b). That is, for eah t > 0 the realizationof the prodution shok "t `selets' a partiular map that determines the state xt from itsprevious value xt�1. Struturally, this orresponds to a two-dimensional version of the one-dimensional dynamis in Wang (1993). The endogenous state variables fxtgt�0 togetherwith the exogenous shok proess f"tgt�0 ompletely determine the other equilibrium vari-ables of the model. Therefore, the existene of equilibrium is equivalent to determiningx0 2 X suh that the proess generated by (10a,b) satis�es xt 2 X for all t � 0 underP-almost all paths of the noise proess. Sine b0 = 0 implies bt = 0 for all t > 0, theeonomy has a unique bubbleless equilibrium along whih the state dynamis redue to aone-dimensional system given by wt+1 = W(K(wt; 0); "t+1), t � 0. This is preisely theequilibrium studied in Wang (1993). It will turn out in the following setions that theproperties of the bubbleless equilibrium are ruial for the existene of bubbly equilibria,a �nding in line with the results obtained in Tirole (1985) for a deterministi eonomy.3 Stationary and Expansive MappingsStruture of dynami mappings.From the struture derived in the previous setion, it stands to reason that the existene ofbubbly equilibria depends ruially on the dynami properties of the mappings (�(�; "))"2Ede�ned in (10a,b). In this setion, we �x a value " 2 E to study the dynami properties ofthe single map � := �(�; "). Mathematially, this orresponds to analyzing the model's be-havior under a partiular realization of shoks given by the onstant sequene ("; "; "; : : :).5De�ne the state spae X as in (9) and onsider the pseudo-dynamial system � : X �! R2+ ,�(w; b) = � �(w; b) (w; b)b � : (11)Throughout, the following restritions will be imposed on � and  .Assumption 1The maps � : X �! R++ and  : X �! R++ in (11) are C1 with derivatives 0 < �w < ��b,0 < � w <  b and �w b � �b w. Also, limw�b&0 �(w; b) = 0 and limw�b&0  (w; b) =1.For t � 0, de�ne the t-fold omposition �t reursively by setting �0 := idX and �t(x) :=� Æ �t�1(x) for all x 2 X where it is de�ned. Let X+ := XT R2++ and X0 := XnX+ .The seond equation in (11) reveals that X0 is self-supporting under �, i.e., �(X0) � X0 .The following assumption restrits the dynami behavior of � on X0 whih will further bedisussed in the next setion.Assumption 2� has a unique �xed point �x0 in X0 . This �xed point satis�es �w(�x0) < 1.As the dynamis on X0 are one-dimensional, uniqueness of the �xed point and the seondondition in Assumption 2 ensure that limt!1�t(x) = �x0 for all x 2 X0 , i.e., �x0 is globallyasymptotially stable on X0 .5Note that this does not say that the distribution � of the shoks is degenerate, i.e., onsumers ontinueto maximize expeted utility suh that this ase is not the one studied in Tirole (1985).8



Stationarity.Our goal will be to haraterize the qualitative dynami behavior of � on X+ . Spei�ally,we want to distinguish ases where � generates expansive respetively stationary behavior.This distintion is based on the followingDe�nition 2� is alled stationary, if it has a �xed point in X+ . Otherwise, it is alled expansive.The idea of stationarity of a map is that there is at least one state x 2 X+ whih issustainable in the sense that �t(x) 2 X+ for all t � 0. The merit of Assumption 2 is thatit permits the following haraterization of stationarity.Lemma 3.1Under Assumptions 1 and 2, a map � of the form (11) is stationary, if and only if  (�x0) < 1.Exluding the non-generi ase  (�x0) = 1, the next result shows that a sustainable statefails to exist if � is expansive, i.e., the dynamis will leave the state spae X in �nitetime for any initial value x0 2 X+ . In this sense, any initial value whih has b0 > 0 isunsustainable under an expansive mapping �.Lemma 3.2Let Assumptions 1 and 2 hold and assume that the �xed point �x0 2 X0 satis�es  (�x0) 6= 1.If � is expansive, then for eah x0 2 X+ there exists t0 2 N suh that �t0(x0) =2 X.From the restritions imposed so far, it does not seem possible to infer that a stationarymap � has a unique steady state in X+ . However, it will turn out that suh a uniquenessproperty is valuable if not required to further desribe the qualitative behavior of stationarymappings. For this reason, we impose uniqueness diretly by the following assumption. Inaddition, we rule out non-hyperboli steady states by assuming that no Eigenvalue � ofthe Jaobian matrix D�(�x) satis�es j�j = 1. Conditions under whih these restritions areonsistent with the primitives of the model are disussed in the next setion.Assumption 3� has at most one steady state in X+ . Moreover, if it exists, this steady state is hyperboli.A �rst step towards haraterizing the global dynami behavior of stationary mappings onX+ is the next result.6Lemma 3.3Under Assumptions 1 and 3, suppose � is stationary. Then, the �xed point �x 2 X+ is asaddle, i.e., the Eigenvalues �1 and �2 of D�(�x) are real and satisfy 0 < j�1j < 1 < j�2j.The stable manifold.The stability result from Lemma 3.3 implies that the dynamis generated by a stationary6One an show that saddle-path stability of interior steady states is a generi phenomenon of mappingsof the form (11) even if Assumption 3 is not satis�ed. For instane, if � has three hyperboli �xed points�x(i) = ( �w(i);�b(i)) 2 X+, i 2 f1; 2; 3g where �w(1) < �w(2) < �w(3), both �x(1) and �x(3) are saddles while �x(2) isunstable, i.e., both Eigenvalues of D�(�x(2)) exeed unity in absolute value. The problem that arises withmultiple steady states is that the stable manifold de�ned below an not be represented as the graph of afuntion M de�ned globally on R++ in this ase. 9



map � display stable behavior only along a lower-dimensional subset of the state spae.This subset is alled the (globally) stable manifold M and onsists of all initial points forwhih forward-iterates of the map � stay in X and onverge to the steady state �x. Formally,M := nx 2 X j�n(x) 2 X 8n � 1 ^ limn!1�n(x) = �xo: (12)The stable manifold M will play a key-role in the following setions. First note that M � X+by the seond requirement in (12). Seond, M is self-supporting under �, i.e., �(M ) � M .Third, as will be shown below, M separates initial points whih are sustainable { in the sensede�ned above { from those whih leave the state spae X in �nite time under iteration of�. This last property requires a geometri haraterization of M as the graph of a stritlyinreasing C1 funtion M : R++ �! R++ . For this purpose, we make the followingadditional assumption where we let wmax := limw!1 �(w; 0) and Y :=℄0; wmax[�R++ .Assumption 4� is a C1-di�eomorphism between the open sets X+ and Y.The �nal result of this setion provides the desired geometri haraterization of the glob-ally stable manifold M and the separation property mentioned above. The proof of (i)employs several ideas also used in Galor (1992).Lemma 3.4Under Assumptions 1, 2, 3, and 4, let � be stationary. Then, the following holds:(i) There exists a C1 funtion M : R++ �! R++ , M0 > 0 suh that M = graphM.(ii) For any x = (w; b) 2 X, the following holds:(a) If b <M(w), then �t(x) 2 X for all t � 0 and limt!1 �t(x) = �x0.(b) If b =M(w), then �t(x) 2 M for all t � 0 and limt!1�t(x) = �x monotonially.() If b >M(w), then there exists t0 � 0 suh that �t0(x) =2 X.Based on the haraterization in (i), Lemma 3.4 (ii) shows that all states stritly belowM onverge to the bubbleless steady state under iteration of � while initial states on Monverge to the bubbly steady state �x. All states above M are unsustainable and leave thestate spae in �nite time. As a onsequene, the set of sustainable states de�ned asX := nx 2 X+ j�n(x) 2 X+ 8n � 0o (13)is given by X = f(w; b) 2 X+ jb � M(w)g. Note from Lemma 3.4 (ii) that X is self-supporting for �, i.e., �(X) � X and that no superset of X an be self-supporting. There-fore, restriting � to this set permits to transform the pseudo-dynamial system (11) intoa proper dynamial system. In the deterministi ase, the �ndings from Lemma 3.4 gener-alize the results in Tirole (1985) whose dynami struture onstitutes a speial ase of thegeneral lass of mappings (11). Also note that X de�ned in (13) is empty if � is expansivedue to Lemma 3.2. 10



4 Existene of Bubbly EquilibriaThe goal of this setion is to exploit the dynami properties of the equilibrium mappings toonstrut bubbly equilibria. In order to apply the results from the previous setion, eahof the equilibrium mappings (�(�; "))"2E de�ned in (10a,b) has to satisfy the additionalAssumptions 1 to 4. The �rst part of this setion provides onditions under whih thisis the ase. It should be noted, however, that the onditions to be presented are fromneessary to obtain the desired properties. For this reason, the main results stated asTheorems 1 and 2 below employ the derived properties embodied in Assumptions 1 to 4whih may well be satis�ed even if the onditions to be presented next are not.Conditions for Assumption 1Given " 2 E , let �(x) := W(K(x); ") and  (x) := #(")Z(x), x 2 X to observe that �(�; ")de�ned in (10a,b) has the struture assumed in (11). Under the hypotheses of Lemma 2.2,both mappings K and Z are stritly monotoni. Further, the properties of the produtionfuntion f imply that W(�; ") is C1, stritly monotoni, and satis�es limk&0W(k; ") = 0.These observations lead to the followingLemma 4.1In addition to (T1), (U1), and (U2), suppose either # = idE or let (U3) hold. Then, eah�(�; ") satis�es Assumption 1.Conditions for Assumption 2To obtain onditions under whih a bubbleless steady state �x0" 2 X0 of �(�; ") exists, reallthat the bubbleless equilibrium in our model oinides with the one in Wang (1993). Heuses the ondition limw!0�(1)w (w; 0; ") > 1 to ensure existene of a positive steady state.While this appears to be a standard restrition in the literature also imposed, e.g., inHauenshild (2002), it does not guarantee that the steady state is unique. Therefore, thefollowing result adds suÆient onditions under whih uniqueness holds. As the returnat the bubbleless steady state varies ontinuously with the parameters of the model, theadditional requirement of a non-unit return from Lemma 3.2 should generially be satis�ed.Lemma 4.2Under (T1), (T2), (U1), (U2), and (U4), eah �(�; ") has at most one �xed point in X0 . If,in addition, (U5) holds and limw!0�(1)w (w; 0; ") > 1, then �(�; ") satis�es Assumption 2.The assumption of a unique bubbleless steady state is imposed throughout in Tirole (1985),Weil (1987), and almost any deterministi study of bubbles. In the stohasti ase studiedhere, it will o�er a onvenient way to distinguish stationary versus expansive behavior of theequilibrium mappings using the result from Lemma 3.1. In addition, one an show that theexistene of a bubbleless steady state of �(�; ") for eah " 2 E is also neessary for bubblyequilibria to exist at all. To see this, note that if some �(�; ") failed to have a bubblelesssteady state, the boundary behavior of f and Lemma 2.2 would imply �(1)(w; b; ") ��(1)(w; 0; ") < w for all x = (w; b) 2 X. Thus, the eonomy would impoverish underforward-iteration of �(�; ") in the sense that the wage and apital stok onverge to zero.In this ase, one an easily show that any initial state x0 2 X+ will leave the state spae Xin �nite time, i.e., the map �(�; ") will display expansive behavior in the exat same senseas de�ned in the previous setion. As argued below, there an be no bubbly equilibria inthis ase. 11



Conditions for Assumption 3In the deterministi ase studied in Tirole (1985), there an be at most one bubbly steadystate. Essentially, this is beause the steady state interest on the bubble is diretly pinneddown by the growth rate of the eonomy. In the stohasti ase studied here, a similarresult holds if the bubble is apital-equivalent, i.e., # = idE in (6). If the returns onbubbles and apital exhibit a di�erent risk struture, however, additional restritions onthe fundamentals of the eonomy stated are required to guarantee uniqueness of the bubblysteady state. Conditions under whih this holds are stated next.Lemma 4.3In addition to (T1), (U1), and (U2), let either # = idE or (T2), (U3), and (U4) hold. Then�(�; ") satis�es Assumption 3, i.e., has at most one steady state in X+ whih is hyperboli.Conditions for Assumption 4In addition to the uniqueness ondition from Assumption 3, the key property needed toonstrut a globally stable manifold as in Setion 3 is that �(�; ") be a C1-di�eomorphism.Our next result shows that this property requires little more than the restritions imposedin Lemma 2.2. Here we de�ne wmax(") := limk!1W(k; ") and Y" :=℄0; wmax(")[�R++ .7Lemma 4.4In addition to (T1), (U1), and (U2), let (U5) and either # = idE or (U3) hold. Then �(�; ")satis�es Assumption 4, i.e., it is a C1-di�eomorphism between the sets X+ and Y".Neessary onditions for bubbly equilibria.The remainder of this setion assumes that eah member of the family (�(�; "))"2E satis�esAssumptions 1, 2, 3, and 4. For ease of exposition, we also assume that E is a �nite set.Generalizations of this restrition are straightforward and disussed below.A �rst observation based on the result from Lemma 3.2 is that existene of a bubblyequilibrium requires eah mapping �(�; ") to be stationary. For if some member �(�; "0),"0 2 E were expansive, any initial state x0 2 X+ would leave the state spae under forward-iteration of this mapping in �nite time t0 2 N. Sine the event of drawing "t = "0 for all1 � t � t0 ours with positive probability �(f"0g)t0 > 0, the equilibrium ondition xt 2 XP{almost surely for all t � 0 is learly not satis�ed in this ase.Therefore, invoking Lemma 3.1 the bubbly return at the bubbleless steady state ( �w0" ; 0)must be smaller than unity for eah " 2 E . This ondition an be stated asmax"2E nR?(Z( �w0" ; 0); ")o < 1: (14)In the deterministi ase E = f"g, (14) redues to the existene ondition in Tirole (1985).Solving (7a) for z, ondition (14) may equivalently be written asmin"2E �E � [#(�)v0(�k0"R(�k0" ; �))℄#(")u0( �w0" � �k0") � > 1: (15)Here �k0" := K(�x0") is the orresponding steady state apital stok. As the bubbleless steadystate is independent of #, (15) may be seen as a restrition on the risk-struture of thebubble. In partiular, this ondition is invariant to re-saling the funtion #.7This is onsistent with the de�nition of wmax in Assumption 4 as limw!1K(w; 0) =1 under (U5).12



A seond observation is that restritions on the initial state x0 = (w0; b0) are required. Tothis end, let (15) hold. Then, eah �(�; ") is stationary and, therefore, has a bubbly steadystate �x" = ( �w";�b") 2 X+ whih is unique by Assumption 3. Let M " be the assoiated stablemanifold de�ned as in (12). Then, Assumption 4 and Lemma 3.4 (i) permit to representeah M " as the graph of an inreasing C1 funtion M" : R++ �! R++ . By Lemma 3.4(ii), it is lear that the initial state x0 = (w0; b0) and, in fat, any suessive state xt mustlie below eah M " , " 2 E . Thus, de�ne for eah w > 0 the ritial valueMrit(w) := min"2E fM"(w): (16)Note that Mrit is well-de�ned as the minimum is taken over �nitely many values in E .Further,Mrit is ontinuous and stritly inreasing although not neessarily di�erentiable.The urve w 7! Mrit(w), w > 0 de�nes the boundary of the set of points whih lie beloweah of the stable sets M " de�ned in (12) for all " 2 E and it follows immediately fromLemma 3.4 (ii) that any equilibrium proess must take values in this set.Combining the previous insights, we are now in a position to state our �rst main resultwhih provides neessary onditions for bubbly equilibria to exist.Theorem 1Suppose E is �nite. Let �(�; ") de�ned in (10a,b) satisfy Assumptions 1, 2, 3, and 4 foreah " 2 E . Then, the existene of a bubbly equilibrium requires the following onditions:(i) For eah " 2 E , �(�; ") is stationary, i.e., ondition (15) holds.(ii) The initial state (w0; b0) satis�es 0 < b0 � brit0 :=Mrit(w0) de�ned as in (16).For the deterministi ase, Theorem 1 ompletely reovers the results in Tirole (1985). Hissetup orresponds to the speial ase where � = Æ" is a Dira measure onentrated at somepoint " > 0, i.e., E = f"g. In this ase, the ondition (ii) in Theorem 1 is also suÆientand eah b0 � brit0 de�nes a bubbly equilibrium.In the general stohasti ase, however, the onditions in Theorem 1 may not be suÆient.To see this, suppose the initial state x0 = (w0; b0) 2 X+ satis�es b0 � Mrit(w0). Then,by (16) b0 � M"(w0) for all " 2 E . It follows from Lemma 3.4 (ii) that for any onstantsequene ("; "; : : :) where " 2 E the sequene of states xt := �(xt�1; "), t � 0 satis�esbt � M"(wt) for all t � 0 and onverges to the bubbleless steady state �x0" if b0 <M"(w0)and to the bubbly steady state �x" otherwise. However, this onvergene may be non-monotoni, i.e., it an happen that for some "0 2 E for whih M"0 6= Mrit, the sequenex0t := �t(x0; "0), t � 0 temporarily exeeds the graph of Mrit, as indiated by the dashedarrows in Figure 1. Suppose this happens after t0 periods, i.e., b0t0 >Mrit(w0t0). Let "00 2 Ebe the value for whih Mrit(w0t0) =M"00(w0t0). Then, b0t0 >M"00(w0t0) and it follows fromLemma 3.4 (ii) that there exists a �nite time t1 2 N for whih �t1(x0t0 ; "00) =2 X. As theevent of drawing "t = "0 for t = 1; : : : ; t0 and "t = "00 for t = t0 + 1; : : : ; t1 has positiveprobability �(f"0g)t0�(f"00g)t1�t0 , the initial hoie x0 is not ompatible with an equilibrium.Conlude from this that, in general, the value de�ned in (16) is only an upper bound forthe initial bubble b0. Also note that the previous arguments beome obsolete if eah M"is independent of ", a ase whih holds in the example studied below.13



A diret onsequene of the previous observations is that the following additional propertyis required for the onditions in Theorem 1 to be suÆient: The set of points below thegraph of Mrit must be self-supporting for the family (�(�; "))"2E . Formally,8w > 0 : b �Mrit(w) ) �(2)(w; b; ") �Mrit(�(1)(w; b; ")) 8" 2 E : (17)The additional ondition (17) leads to the following orollary.Corollary 1Under the hypotheses of Theorem 1, suppose onditions (15) and (17) hold. Then, eah(w0; b0) for whih 0 < b0 �Mrit(w0) de�nes a bubbly equilibrium.An alternative interpretation of (17) an be obtained by de�ning for eah �(�; ") the set ofsustainable states X" as in (13). Then, as demonstrated above, the fat that eah X" is self-supporting for �(�; ") does not imply that the intersetion X := \"2EX" is self-supportingfor the family (�(�; "))"2E . As X = f(w; b) 2 X+ j b � Mrit(w)g, this is preisely whatis ensured by the additional ondition (17) under whih any x0 2 X de�nes a bubblyequilibrium. Also reall from Setion 3 that X" and, therefore, X would be empty if somemap �(�; ") were expansive.Figure 1 illustrates the previous insights for the ase with two shoks where E = f"0; "00g.The dashed arrows represent the ase whih is exluded by (17).
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Figure 1: Dynamis generated by mixing two stationary mappings.SuÆient onditions for bubbly equilibria.As ondition (17) is not stated in terms of the primitives of the model, it is not lear whihrestritions it imposes on the eonomy E and whether it an be satis�ed at all. As ourseond main result, we now establish that (17) holds automatially if the bubble is riskless,i.e., if # in (6) is a onstant funtion �# > 0. In this ase, the existene ondition (15) readsmin"2E �E � [v0(�k0"R(�k0" ; �))℄u0( �w0" � �k0") � > 1: (18)14



Observe the similarity of (18) to the existene onditions (2) and (3) derived in Manuelli(1990, p.273) for a stohasti exhange eonomy. For the ase with a riskless bubble, wenow have the following additional properties of the mappings M" whih haraterize thestable sets M " . Note that the result does not require �niteness of E .Lemma 4.5Let eah �(�; ") be stationary and satisfy Assumptions 1, 2, 3, and 4. If # � �#, then " < "0impliesM"(w) <M"0(w) for all w > 0, "; "0 2 E . Moreover, Mrit =M"min satis�es (17).Lemma 4.5 states that for a riskless bubble, the map " 7�!M"(w) is stritly inreasing onE for all w > 0. In partiular, " 6= "0 implies M " \ M "0 = ;, i.e., the stable sets pertainingto di�erent shoks have an empty intersetion, a property whih will beome important inthe next paragraph. Using the insights from Lemma 4.5, we are in a position to state ourseond main result.Theorem 2Let E be �nite and eah �(�; ") de�ned in (10a,b) satisfy Assumptions 1, 2, 3, and 4. If# � �# > 0 and ondition (18) holds, eah 0 < b0 �M"min(w0) de�nes a bubbly equilibrium.Temporary nature of stohasti bubbles.While bubbly equilibria exist under the onditions (15) and (17), generially these bubblesare only temporary and onverge to zero with probability one. Unlike the ase in Tirole(1985), this holds even if b0 = Mrit(w0). Struturally, the reason is that positive sta-ble sets of the dynamis (10a,b), i.e., ompat subsets A � X+ whih are self-supportingfor the family (�(�; "))"2E suh that �(A ; ") � A for all " 2 E typially fail to exist.To see this, note from Lemma 3.4 that A � X+ losed and self-supporting under �(�; ")requires A � M " . Hene, positive stable sets are subsets of \"2EM " whih is typiallyempty. In partiular, as shown in Lemma 4.5 this is true if the bubbly asset is riskless, i.e.,# � �# > 0. In this ase, all equilibria will be asymptotially bubbleless with probabilityone, i.e., limt!1 bt = 0 P-a.s.This last �nding entails serious onsequenes for the disussion in Bertohi (1994) aboutthe existene of stable sets in a similar model with the bubble orresponding to risklessgovernment debt. Referring to the equilibrium senarios disussed there, Lemma 3.3 al-ready showed that bubbly steady states whih are asymptotially stable and would giverise to stable sets with positive bubbles do not exist. Lemma 4.5 now shows that suhstable sets are diretly exluded by the assumption that debt o�ers a riskless return.An example with persistent bubbles.The following example, however, shows that stable sets giving rise to persistent bubblesmay exist in ertain situations where the return on the bubble is risky. Let U(y; o) =(1� ) ln y +  ln o, 0 <  < 1 and f(k) = k�, 0 < � < 1. This parametrization is widelyused in many deterministi studies, f. Mihel & Wigniolle (2003), or Kunieda (2008). Asondition (U2) is violated in this ase, the tighter restrition bt � wt is required to ensurethat a solution to (8) exists. Thus, rede�ne the endogenous state spaeX0 = f(w; b) 2 R2+ j b < wg: (19)
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Suppose the bubble is apital-equivalent, i.e., # = idE . Solving (8) using (2a,b), theequilibrium mapping de�ned as in (10a,b) takes the expliit form � : X0 � E �! R2 ,wt+1 = �(1)(wt; bt; "t+1) := "t+1(1� �)(wt � bt)� (20a)bt+1 = �(2)(wt; bt; "t+1) := "t+1�(wt � bt)��1bt: (20b)By diret omputations, one veri�es that �(�; ") satis�es Assumptions 1 to 4 for eah " 2 Esuh that all the results from Setion 3 extend to the present ase with the modi�ed statespae given by (19).8 For eah " 2 E the unique bubbleless steady state (w0" ; 0) an beomputed expliitly as �w0" = ("(1��)�)1=(1��) and the assoiated ex-post return on apitaland the bubble is R(K(w0" ; 0); ") = �1�=(1 � �), " 2 E . The latter determines whethereah equilibrium mapping is stationary or expansive. This leads to the following result.Lemma 4.6Given " 2 E , de�ne �(�; ") as in (20a,b). If �� :=  � �1�� > 0, then the following holds:(i) �(�; ") is stationary and has a unique steady state �x" 2 X+ whih is a saddle.(ii) The sets M " de�ned as in (12) take the form M " � M := �(w; b) 2 R2++ �� b = ��w	.Lemma 4.6 (ii) shows that in this partiular ase, the sets M " de�ned as in (12) areindependent of ". Thus, one an show by diret omputations that states below M remainbelow this set, i.e., ondition (17) is satis�ed. This leads to the following result.Theorem 3For the previous parametrization, suppose �� > 0. Then, eah x0 = (w0; b0) 2 X0 for whihb0 � ��w0 de�nes a bubbly equilibrium where the bubble is apital-equivalent, i.e., # = idE .The key feature of this example is that the set M = \"2EM " is self-supporting for the family(�(�; "))"2E . Thus, whenever x0 2 M , the state proess fxtgt�0 generated by (20a,b) staysin M for all t. Moreover, the state dynamis onverge to a ompat subset of M de�nedby the bubbly �xed points (( �w";�b"))"2E of the mappings (�(�; "))"2E whih is a stable set.Thus, in this speial ase, setting the bubble b0 equal to its maximum value brit0 = ��w0yields a result similar to the deterministi ase in Tirole (1985) where the bubble fails todie out and in fat onverges to a positive stable subset of the state spae.The �nal part of this setion outlines some extensions to whih the previous setup shouldbe amendable.In�nite shok spaesIt is straightforward to extend the results from Theorems 1 and 2 to the ase with anin�nite shok spae, e.g., where E = ["min; "max℄. In this ase, de�ne the setsEs := f" 2 E jR?(Z( �w0" ; 0); ") < 1g (21)and Ex := EnEs. As R? from (6) is Caratheodory and the bubbleless steady state �x0" variesontinuously with " by the Impliit Funtion Theorem, both sets Es and Ex are measurable.8As the state spae is now given by (19), the boundary properties in Assumption 1 must be restated aslimw�b&0 �(w; b) = 0 and limw�b&0  (w; b) =1. All arguments whih rely on this boundary behavior,e.g., the proofs of Lemma 3.1 or Lemma 3.4, must (and an easily) be adapted aordingly.16



They represent shoks assoiated with drawing a stationary respetively expansive mapping�(�; "). Extending the arguments developed above, the existene of a bubbly equilibriumrequires �(Ex) = 0, i.e., the probability of drawing an expansive map must be zero. Inaddition, an upper bound on initial onditions must be established, whih is obtained byreplaing (16) byMrit(w) := inf"2EsfM"(w)g. In partiular, if # is ontinuous, e.g., if thebubble is risk-less or apital-equivalent, and Es is ompat, all previous onditions and theresults stated in Theorems 1 and 2 remain valid if in (14) to (18) E is replaed by Es.Bubbles with state-dependent risk-struture.A key restrition imposed throughout the previous analysis is that the risk-struture of thebubbly asset is time invariant. A natural and interesting extension would be to onsiderbubbles with a risk struture that varies with the urrent endogenous state of the eonomy.Formally, one would replae (6) by an arbitrary measurable or even ontinuous funtion# : E � X ! R++ suh that r?t+1 = #("t+1; xt)zt: (22)Maintaining the hypotheses of Lemma 2.1, one observes that the entire equilibrium stru-ture derived in Setion 2 along with the state spae de�nition (9) ontinue to hold underthis modi�ation. In partiular, bubbly equilibria are generated by a family of dynamimappings (�(�; "))"2E and the existene of suh equilibria requires eah member of thisfamily to generate bounded dynamis on a non-empty subset of X+ . Further, the dynamiproperties of the equilibrium mappings an be studied with the same tehniques appliedabove as long as the map #("; �) is ontinuously di�erentiable. Apart from that, thereseems to be onsiderable freedom in the form (22) and the key question is whether er-tain spei�ations hange the monotoniity properties stated in Lemma 2.2 and, therefore,the qualitative dynami properties derived in Setion 3. In this regard, �rst numerialexperiments indiate that for ertain spei�ations some equilibrium mappings may evenpossess bubbly steady states whih are asymptotially stable. Having said this, at leastsome equilibrium mappings should ontinue to display the saddle-path stability whih isruial for the onstrution of bubbly equilibria in this paper. This suspiion is supportedby the observation that the previous modi�ation has no impliations whatsoever in thedeterministi ase where � = Æ". In any ase, the basi approah to onstrut bubblyequilibria employed in this paper should remain fully appliable under this extension. Apartiularly intriguing question is whether the funtion # in (22) an be hosen suh thata positive stable set of the state dynamis exists and the bubble beomes persistent, asin the example from Lemma 4.6. Using di�erent tehniques from funtional analysis, thisissue is further explored in Barbie & Hillebrand (2014).Stohastially bursting bubbles.The previous struture an also be generalized to study bubbles whih burst stohastiallyas in Weil (1987). In this ase, let f�tgt�0 be a sequene of i.i.d. random variables whih,for simpliity, are also independent of the prodution shoks and take values in � := f0; 1g.Then, the shok at time t is now given by the random variable �t := ("t; �t) with values in� := E � �. Consequently, the ex-ante bubble return takes the generalized formr?t+1 = R?(zt; �t+1) := �t+1#("t+1) zt: (23)In partiular, the funtion # in (23) an be hosen onstant in whih ase r?t+1 beomesindependent of the fundamental shok "t+1. It is now straightforward to modify the Eulerequations (8,b) and to determine zt and kt+1 as funtions of the urrent state xt = (wt; bt).17



Then, bubbly equilibria are generated by randomly mixing the family (�(�; �))�2� wheresome equilibrium mappings �(�; �) : X �! R2+ now map bubbly states xt 2 X+ intobubbleless states xt+1 2 X0 , i.e., the bubble 'bursts' whenever � = ("; 0). Clearly, theselatter mappings trivially generate 'stationary dynami behavior' in the sense that eah statex 2 X+ is sustainable under forward-iteration of �(�; �). One an now repeat the entiredynami analysis from the previous setions to obtain neessary and suÆient onditionsfor bubbly equilibria to exist in suh an extended setup. Moreover, by varying the set �and its interpretation the generalized form (23) would also permit to inorporate 'extrinsiunertainty' suh as sunspots in the analysis.Broader lasses of eonomiesThe setup in Wang (1993) has been extended in various diretions to inlude non-additiveutility, orrelated prodution shoks, and more general, so-alled non-lassial produtionfuntions. Reent examples may be found in Morand & Re�ett (2007), MGovern et al.(2013), or Hillebrand (2014). In priniple, it should be possible to extend the study ofthe present paper to these more general lasses of eonomies as long as the bubblelessequilibrium is unique and the equilibrium mappings are smooth. The latter is required inorder to apply the methods used in this paper whih made repeated use of the impliitfuntion theorem and the stable manifold theorem. A large lass of eonomies having thisstruture is identi�ed in Hillebrand (2014).5 Bubbles with Borrowing ConstraintsIn the fritionless eonomy studied in Tirole (1985), bubbly equilibria only exist if thebubbleless equilibrium su�ers from overaumulation of apital. To explain the emergeneof asset bubbles in the presene of underaumulation, several approahes in the literaturestudy deterministi OLG eonomies with fritions suh as ash-in advane onstraints inMihel & Wigniolle (2003) or borrowing onstraints in Kunieda (2008). The present setionextends the setup from Kunieda (2008) to show that his �ndings arry over to a stohastienvironment as well.Heterogeneous onsumers.Following Kunieda (2008) , we modify the previous OLG struture by assuming that eahgeneration now onsists of a ontinuum of heterogeneous onsumers with index set � :=[�min; �max℄ where 0 < �min < 1 < �max. A onsumer born at time t � 0 is identi�ed by herinvestment produtivity � 2 � whih determines the amount of apital obtained by eahonsumption good invested at time t. Spei�ally, if onsumer � 2 � invests st � 0 unitsat time t, she owns �st units of produtive apital at time t + 1. The produtivity index� is ontinuously distributed on the interval �. The distribution funtion G : � �! [0; 1℄has a ontinuous density funtion g : � �! R++ with respet to Lebesgue measure on �.Assuming E [�℄ = R� lg(l)d l = 1, the earlier setup is reovered `on average'.The following analysis restrits attention to the parametrization employed in Kunieda(2008) with log-additive utility U(y; o) = (1 � ) log y +  log o, 0 <  < 1 and Cobb-Douglas prodution f(k) = k�, 0 < � < 1. Given labor inome wt > 0 and the returns onapital and bubbles, the deision problem faed by onsumer � 2 � reads:maxb;s n(1� ) ln(wt � b� s) + E t�ln�r?t+1 b+ rt+1 � s���� s � 0; b � 0; b+ s � wto: (24)18



Note that short-selling of the bubbly asset is no longer possible whih is where the apitalmarket imperfetion enters. For simpliity, suppose that the return on the bubbly assetdetermined by (6) has the same risk-struture as apital, i.e., # = idE and r?t+1 = "t+1ztwith zt determined at time t. However, unlike the senario from Setion 2, it need not bethe ase that zt = f 0(kt+1) at equilibrium sine the per-unit return on apital investment stundertaken by onsumer � 2 � is now �rt+1 = �"t+1f 0(kt+1). Letting �t := zt=f 0(kt+1), oneinfers from (24) that onsumer � will invest only in apital if � > �t and only in the bubbleif � < �t. Thus, diret alulations reveal that the unique solution to (24) is determinedby the pair of demand funtions9s�t = S(�;wt; �t) := wt 1[�min;�t℄(�) (25a)b�t = B(�;wt; �t) := wt 1℄�t;�max℄(�): (25b)Here, 1A is the harateristi funtion of A, i.e., 1A(x) = 1 i� x 2 A and 1A(x) = 0otherwise.Reursive equilibrium struture.Based on individual demands (25a,b), onsider an arbitrary period t � 0. De�ning X0 asin (19), let (wt; bt) 2 X0 be given. The values zt and kt+1 are determined suh that thebubble is absorbed and next period's apital stok is onsistent with individual savings.Using (25a,b), these onditions readbt = Z� B(�;wt; �t)h(�)d� = wtG(�t) (26a)kt+1 = Z� �S(�;wt; �t)h(�)d� = wt �(�t): (26b)Here we de�ne � : � �! [0; 1℄, �(�t) := R �max�t �g(�)d� whih is stritly dereasing withboundary behavior �(�min) = E [�℄ = 1 and �(�max) = 0. As G is invertible, the �rstondition (26a) de�nes the equilibrium value �t as a map L : [0; ℄ �! �,�t = L� btwt� := G�1�1 btwt�: (27)Note that L is stritly inreasing with L(0) = G�1(0) = �min and L() = G�1(1) = �max.Using (27) in (26b) and the de�nition of �t, the values kt+1 and zt are determined askt+1 = K(wt; bt) := wt ��L� btwt�� (28a)zt = Z(wt; bt) := f 0�K(wt; bt)�L� btwt�: (28b)Equilibrium dynamis.Using (2a), (5), and (28a,b), the dynamis are generated by � = (�(1);�(2)) : X0�E �! R2+wt+1 = �(1)(wt; bt; "t+1) := "t+1 (1� �) �K(wt; bt)�� (29a)bt+1 = �(2)(wt; bt; "t+1) := "t+1 � �K(wt; bt)���1L� btwt� bt: (29b)9It is arbitrarily assumed that the onsumer invests only in apital if � = �t. Sine the set of onsumerswho have � = �t has measure zero, this assumption is irrelevant.19



As in the example from the previous setion, one veri�es that �(�; ") de�ned in (29a,b)satis�es Assumptions 1 to 4 for eah " 2 E with the modi�ed state spae given by (19). Inpartiular, the de�nitions of L and � and (28a) yield �(1)(w; 0; ") = "(1� �)(w)�. Thus,the dynamis (29a,b) oinide with (20a,b) along the bubbleless equilibrium. In partiular,a unique bubbleless steady state ( �w0" ; 0) exists for eah " 2 E where �w0" is de�ned as in theprevious setion. However, while the apital return at the bubbleless steady state ontinuesto be R(K( �w0" ; 0); ") = �1�=(1� �), the ex-post return on the bubble is now given byR?(Z( �w0" ; 0); ") = "Z( �w0"; 0) = �min �1� �: (30)Analogously to Setion 4, the returns (30) are key for the dynami properties of the map-pings (�(�; "))"2E in (29a ,b). In partiular, the existene of a bubbly equilibrium requiresthat eah �(�; ") be stationary, whih is the ase i� R?(Z( �w0" ; 0); ") < 1. Based on (30),we have the following result:Lemma 5.1Given " 2 E , de�ne �(�; ") as in (29a,b) and let �min �1�� < 1. Then, the following holds:(i) �(�; ") is stationary and has a unique steady state �x" 2 X+ whih is a saddle.(ii) The sets M " de�ned as in (12) are of the form M " � M := f(w; b) 2 X jb = ��wg.Here, �� > 0 is the unique solution to L(�) = 1��� �(L(�)).An immediate onsequene of Lemma 5.1 (ii) is that a ondition similar to (17) holds. Thisleads to the following main result of this setion.Theorem 4For the previous parametrization, suppose �min �1�� < 1 and de�ne �� as above. Then, eah(w0; b0) 2 X0 for whih b0 � ��w0 de�nes an equilibrium with apital-equivalent bubble.The previous extension with borrowing onstraints preserves the essential dynami featuresof the fritionless example from Setion 4. In the present ase, however, a suÆiently smallvalue �min ensures that �min �1�� < 1 and a bubbly equilibrium exists even if the steadystate apital return exeeds unity, i.e., if the bubbleless equilibrium does not su�er fromoveraumulation. One also observes that M := \"2EM " is again self-supporting for thefamily (�(�; "))"2E from (29a, b). Thus, whenever x0 2 M , the dynamis onverge to aompat stable set. While bubbles are persistent in this partiular ase, we suspet thatthis persistene property should generially fail to hold as the analysis is extended to moregeneral preferenes and tehnologies, just as in the absene of fritions.6 ConlusionsThe previous analysis derived neessary and suÆient onditions under whih bubbly equi-libria exist in a fritionless OLG eonomy with random prodution and endogenous apitalaumulation. A maximum sustainable bubble was identi�ed whih plaes an upper bound20



on the initial ondition extending the results for deterministi models in Tirole (1985).Unlike the deterministi ase, however, bubbles in stohasti OLG models are generiallynon-persistent and vanish asymptotially with probability one even if the initial bubble isset to its maximum value. Introduing fritions suh as borrowing onstraints allows forbubbles to emerge even if the bubbleless equilibrium has overaumulation of apital.This last result was demonstrated for a partiular parametrization of the model whih iswidely used in the literature. An interesting topi of future researh might be to explorehow this generalizes to the broader setup employed in the earlier hapters of this paper.Several other extensions of the model were already disussed in Setion 4. A �nal set ofquestions onerns the welfare impliations of bubbles and whether the onditions underwhih bubbly equilibria exist imply that the bubbleless equilibrium is ineÆient. Theseand related questions are explored in Barbie & Hillebrand (2014).A Mathematial AppendixA.1 Proof of Lemma 2.1Given (w; b) 2 X, let �k := w � b > 0. The argument o(z; k; b; ") := bR?(z; ") + kR(k; ")will be suppressed when onvenient. Suppose b = 0. Then, H(1) is independent of z and #and the existene of a zero k 2℄0; �k[ of H(1)(z; �;w; 0) follows from the arguments of Wang(1993) who also shows that (T1) is suÆient for this zero to be unique. Given k, theondition H(2)(z; k;w; 0) = 0 an be solved expliitly for z > 0 proving the ase b = 0.Suppose b > 0. The strategy is to use (7b) to eliminate z reduing (8) to a one-dimensionalproblem. First, let k̂ 2℄0; �k[ be arbitrary. We prove existene of a unique ẑ > 0 to satisfyH(2)(ẑ; k̂;w; b) = 0. Sine limz!1 o(z; k; b; ") =1 for eah " 2 E , (U2) implieslimz!1 z #(") v0(�) = b�1 limz!1 o(z; k̂; b; ")v0(�)� b�1k̂R(k̂; ") limz!1v0(�) =1:This being true for all " 2 E implies H(2)(z; k̂;w; b) < 0 for z suÆiently large. Combinedwith H(2)(0; k̂;w; b) > 0, this proves existene of ẑ. Uniqueness follows from (U1) by whihH(2)z (z; k;w; b) = �E � �#(�) v0�o(z; k; b; �)�+ b z #(�)2 v00�o(z; k; b; �)�� (A.1)< �E � �#(�)�v0�o(z; k; b; �)�+ o(z; k; b; �)v00�o(z; k; b; �)��� � 0:Let Ẑ(�;w; b) :℄0; �k[�! R++ determine the value ẑ for eah k̂ 2℄0; �k[. By (2b) and (T1),H(2)k (z; k;w; b) = �u00(w � b� k)� �1 + Ef 0(k)�E � �R(k; �) z #(�)v00(�)� > 0: (A.2)By (A.1), (A.2) and the impliit funtion theorem, Ẑ(�;w; b) is C1 and stritly inreasingsine Ẑk(k;w; b) = �H(2)k (ẑ; k;w; b)=H(2)z (ẑ; k;w; b) > 0, for all k 2℄0; �k[, ẑ = Ẑ(k;w; b).Seond, let Ĥ(1)(k;w; b) := H(1)(Ẑ(k;w; b); k;w; b), k 2℄0; �k[. We show that Ĥ(1)(�;w; b)has a unique zero k0 2℄0; �k[. Sine v0 is stritly dereasing, R(k; ")v0�b Ẑ(k;w; b)#(") +kR(k; ")� < R(k; ")v0�kR(k; ")� for all k 2℄0; �k[ and " 2 E . Then, by the Inada onditionslimk%�k Ĥ(1)(k;w; b) � limk%�k�u0(�k � k)� E � �R(k; �)v0�kR(k; �)��� =1:21



Let (kn)n�1 be a sequene in ℄0; �k[ with limn!1 kn = 0. Sine k 7! Ẑ(k;w; b) and, by (T1),k 7! kR(k; ") are inreasing, n(") := b Ẑ(kn;w; b)#(")+knR(kn; ") is bounded from aboveand limn!1R(kn; ") v0�n(")� =1 for all " 2 E . Therefore, limn!1 Ĥ(1)(kn;w; b) = �1.This proves existene of a zero k0. Finally, using (U2) the partial derivatives satisfyH(1)z (z; k;w; b) = �E � �R(k; �) b #(�) v00(�)� > 0 (A.3)H(1)k (z; k;w; b) = �u00(�)� E � �Rk(k; �) v0(�) + (1 + Ef 0(k))R(k; �)2 v00(�)� > 0: (A.4)Combining (A.3) and (A.4) with the monotoniity of Ẑ(�;w; b) yields Ĥ(1)k (k;w; b) =H(1)z (ẑ; k;w; b)Ẑk(k;w; b) +H(1)k (ẑ; k;w; b) > 0 for all k 2℄0; �k[ and ẑ = Ẑ(k;w; b). Hene,k0 is the unique zero of Ĥ(1)(�;w; b). Setting z = Ẑ(k0;w; b) ompletes the proof. �A.2 Proof of Lemma 2.2(i) The �rst limit follows from 0 < K(w; b) < w�b for all x = (w; b) 2 X. To see the seondone, note from (8) that there must be some ~" 2 E for whih #(~")Z(x) � "minf 0(K(x)). Thus,letting � := "min=#(~") we have Z(x) � �f 0(K(x)) for all x 2 X. Combined with the �rstresult and the boundary behavior of f 0, the laim follows.(ii)/(iii) We suppress arguments of funtions when onvenient. Given x = (w; b) 2 X, setz := Z(x), k := K(x), � = (z; k) and write H = (H(1); H(2)). Using (A.1), (A.2), (A.3),and (A.4) the Jaobian matrix D�H satis�es detD�H = H(1)z H(2)k �H(1)k H(2)z > 0. Further,the partial derivatives of H with respet to w and b are given byH(1)w (z; k;w; b) = H(2)w (z; k;w; b) = u00(w � b� k) < 0 (A.5)H(1)b (z; k;w; b) = �u00(w � b� k)� E � �R(k; �)R?(z; �)v00���� > 0 (A.6)H(2)b (z; k;w; b) = �u00(w � b� k)� E � �(R?(z; �))2v00���� > 0: (A.7)By the impliit funtion theorem, using the standard inversion formula for 2� 2 matriesZw(w; b) = �H(1)w [H(2)k �H(1)k ℄detD�H ; Zb(w; b) = H(1)k H(2)b �H(2)k H(1)bdetD�HKw(w; b) = �H(1)w [H(1)z �H(2)z ℄detD�H ; Kb(w; b) = H(2)z H(1)b �H(1)z H(2)bdetD�H : (A.8)Sine the matrixD�H(z; k;w; b) is non-singular also at any boundary point (w; 0) 2 X0 , theimpliit funtion theorem implies that the mappings Z and K an loally be extended to anopen neighborhood around (w; 0). Hene, their derivatives are well-de�ned and ontinuousalso on the boundary X0 and Lemma 2.2 indeed holds on the entire set X.(ii) Use H(2)z < 0 � H(1)z by (A.1), (A.3), and 0 < �H(1)w < H(i)b , i = 1; 2, by (A.5){(A.7).(iii) For # = idE one has Z(w; b) = f 0(K(w; b)) by (8) and (ii) is implied by (i). If, instead,(U3) holds, straightforward alulations giveH(1)k �H(2)k = E � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ (1 + Ef 0(k))� E � [Rk(k; �)v0(�)℄H(1)b �H(2)b = E � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄ :22



By Lemma B.1, H(1)k �H(2)k > 0 � H(1)b �H(2)b whih gives Zw < 0 < Zb. Finally,KwZb �KbZw = �H(1)w [H(2)b �H(1)b ℄detD�H � 0: (A.9)�A.3 Proof of Lemma 3.1Let �x0 = ( �w0; 0) be the unique �xed point of � in X0 from Assumption 2. First, we showthat  (�x0) � 1 implies that � is expansive. By ontradition, suppose  (�x0) � 1 and �has a �xed point �x = ( �w;�b) in X+ . Then, as �b < 0 one has �(w;�b) < �(w; 0) � w for allw � �w0. It follows that �w < �w0. Monotoniity of  implies 1 �  (�x0) <  ( �w0;�b) <  (�x).But this ontradits (11) whose seond omponent learly implies  (�x) = 1.Seond, we show that  (�x0) < 1 implies that � has a �xed point �x = ( �w;�b) 2 X+ . Let F =(F (1); F (2)) : X �! R2 be de�ned by F (1)(w; b) := w��(w; b) and F (2)(w; b) :=  (w; b)�1.Any value x 2 X+ that satis�es F (x) = 0 is a �xed point of �.By uniqueness and stability of �x0, any x = (w; b) 2 X+ satisfying w � �w0 gives F (1)(w; b) >w� �(w; 0) � 0. Further, let 0 < w < �w0 be the unique value for whih  (w; 0) = 1 whihis well-de�ned by the monotoniity and boundary properties of  . Observe that for anyx = (w; b) 2 X+ satisfying w � w, F (2)(w; b) >  (w; 0)� 1 �  (w; 0)� 1 = 0. Combiningboth results shows that any �xed point �x = ( �w;�b) 2 X+ satis�es �w 2 W :=℄w; �w0[.For any w 2 W we have F (1)(w; 0) < 0 and limb%w F (1)(w; b) = w > 0. Thus, there existsa value 0 < b < w suh that F (1)(w; b) = 0 whih is unique by monotoniity of �. Letthis value be determined by the impliit funtion f (1) : W �! R++ whih is C1 by theimpliit funtion theorem with derivative f (1)0(w) = (1� �w(w; b))=�b(w; b), where w 2 Wand b = f (1)(w). Continuity of F (1) implies limw% �w0 f (1)(w) = 0 and limw&w f (1)(w) > 0.For any w 2 W we have F (2)(w; 0) < 0 and limb%w F (1)(w; b) = 1. Thus, there exists avalue 0 < b < w suh that F (2)(w; b) = 0 whih is unique by monotoniity of  . Let thisvalue be determined by the impliit funtion f (2) : W �! R++ whih is C1 by the impliitfuntion theorem with derivative f (2)0(w) = � w(w; b))= b(w; b) > 0 where w 2 W andb = f (2)(w). Continuity of F (2) implies limw% �w0 f (2)(w) > 0 and limw&w f (2)(w) = 0.Let � : W �! R, �(w) := f (1)(w)� f (2)(w). Any zero �w 2 W of � de�nes a steady statevalue �x = ( �w; f (1)( �w)). Existene of suh a zero now follows from ontinuity of � and theboundary behavior limw% �w0 �(w) < 0 and limw&w�(w) > 0. For later referene, we alsonote that the derivative at the steady state is given by�0( �w) = � b(�x)� �w(�x) b(�x) +  w(�x)�b(�x)j�b(�x) b(�x)j : (A.10)By the boundary behavior of �, there is always a steady state at whih �0( �w) � 0. �A.4 Proof of Lemma 3.2By ontradition, suppose there exists x0 = (w0; b0) 2 X+ suh that xt := �t(x0) 2 X for allt � 0. Let x00 := (w0; 0) and x0t := �t(x00) 2 X for all t � 0. Clearly, xt 2 X+ and x0t 2 X0for all t � 0. Stability of �x0 due to Assumption 2 implies limt!1 x0t = �x0 = ( �w0; 0).23



Further, � being expansive implies  (�x0) > 1 by Lemma 3.1 as  (�x0) = 1 is exludedby assumption. A simple indution argument using the monotoniity properties of �shows that w0t > wt > bt > 0 for all t. Further, the indued sequenes  0t :=  (x0t ) and t :=  (xt), t � 0 satisfy  t >  0t for all t � 0 and lim!1  0t =  (�x0) > 1 by ontinuityof  and stability of �x0. Thus, there exists T � 0 suh that  t >  0t > 1 for all t � Tand the sequene (bt)t�T is stritly inreasing, i.e., bt+1 =  tbt > bt for all t � T . Asbt < wt < w0t for all t � 0, �b := limt!1 bt exists and satis�es bT < �b < �w0. But then,1 = limt!1 bt+1bt = limt!1  t whih ontradits limt!1  t � limt!1  0t =  (�x0) > 1. �A.5 Proof of Lemma 3.3At any steady state �x = ( �w;�b) 2 X+ the trae and determinant of the Jaobian D�(�x) readtrD�(�x) = 1+�w(�x)+�b  b(�x) and detD�(�x) = �w(�x)+�b[�w(�x) b(�x)��b(�x) w(�x)℄. By theproperties of � and  , trD�(�x) > 1, detD�(�x) > 0 and trD�(�x) = 1+detD�(�x)���0( �w)where � > 0 and � is de�ned as in the proof of Lemma 3.3. By uniqueness of thesteady state, �0( �w) < 0 as �0( �w) = 0 would imply a non-hyperboli steady state. Hene,trD�(�x) > 1 + detD�(�x) implying saddle-path stability of �x, f. Galor (2007, p.88). �A.6 Proof of Lemma 3.4De�ne X as in (13). Note that �x 2 X and that M � X.(i) Step 1: M is a one-dimensional C1-manifold. By the Stable Manifold Theorem (f.Niteki (1971)), there is an open neighborhood U � X+ \ Y of �x suh that the loallystable set M lo := fx 2 X+ j�n(x) 2 U 8n � 1 ^ limn!1�n(x) = �xg is a one-dimensionalmanifold whih is as smooth as �, i.e., C1. By Niteki (1971, p.89) or Galor (1992, p.1371,De�nition 4), the globally stable manifold de�ned in (12) obtains as M = [n�0��n(M lo).Exploiting Assumption 4, M inherits the smoothness of M lo and is thus a one-dimensionalC1-manifold. The same arguments are used in Galor (1992, p.1371, Corollary 3).Step 2: M is the graph of a stritly inreasing funtion M : W �! R++ , W � R++ . ByLemma B.2, for eah ~w > 0 there exists at most one 0 < ~b < ~w suh that ( ~w;~b) 2 M . LetW be the set of all ~w > 0 for whih suh a value ~b exists. Then, �w 2 W and M is the graphofM : W �! R++ de�ned viaM( ~w) := ~b. Lemma B.2 also implies thatM is inreasing.Step 3: W is an interval andM is ontinuous. As M is C1, there exists an open neighbor-hood V � M of �x, an open subset U � R and a C1-di�eomorphism ' : V �! U. W.l.o.g.,let U be an interval and V � M lo (otherwise, hoose an open interval ~U � U ontaining'(�x) small enough suh that '�1(~U) � M lo and swith to ~V := '�1(~U) and ~' := 'j~V). ByDugundji (1970, p.108, Theorem I.4), V = '�1(U) being the image of an open and on-neted set under a homeomorphism is an open and onneted subset of M ontaining �x. Letx 2 M be arbitrary. By (12), limn!1�n(x) = �x implying �n(x) 2 V for n large enough,i.e., x 2 ��n(V). Sine x was arbitrary and V � M lo , M = [n�0��n(V). Continuity of��n and Theorem I.4 in Dugundji (1970) imply that eah ��n(V) is a onneted set on-taining �x. By (12) and Theorem I.5 in Dugundji (1970, p.108), M is onneted and so areW and B :=M(W ) as the images of M under the ontinuous projetions �1 : (w; b) 7! wand �2 : (w; b) 7! b. Thus, both W and B are intervals. Suppose M were not ontinuousat some interior point w0 2 W . Then, there exists " > 0 suh that for all Æ > 0 suÆiently24



small there is some ~w 2℄w0 � Æ; w0 + Æ[ for whih jM( ~w) �M(w0)j � ". Then, by stritmonotoniity ofM, for all Æ > 0, eitherM(w0) � "+M(w0�Æ) orM(w0+Æ) � "+M(w0).In partiular, there is no w 2 W for whih M(w) 2 [M(w0)� 23";M(w0)� 13"℄. Conludethat B �℄0;M(w0)� 23"[[ ℄M(w0)� 13";1[, i.e., B is separated whih is a ontradition.Step 4: M is C1. Let w0 be an interior point of W . Sine M is C1, there exist an openneighborhood V0 � M of x0 := (w0;M(w0)), an open set U0 � R and a C1-di�eomorphism� = (�1;�2) : U0 �! V0 . Let F := (idW ;M) : W �! M whih is ontinuous byStep 3 and so is the inverse F�1 = �1 whih is the projetion de�ned above. De�neW 0 := �1(V0) whih is open sine �1 is open. Thus, �1 = F�1 Æ � : U0 �! W 0 isC1 and the inverse ��11 = ��1 Æ F : W 0 �! U0 is at least ontinuous. The strategy isto show that ��11 is even C1. Suppose �01(~u) = 0 for some ~u 2 U0 . Let ~w := �1(~u).Sine �2 = M Æ �1 and M(w)�M( ~w)w� ~w takes values in the unit interval10 for all w > 0,�02(~u) = �01(~u) limw! ~w(M(w)�M( ~w))=(w� ~w) = 0. Adopting an argument from Villanaiet al.(2002, p.39), let 	 be a C1-extension of ��1 to an open set in R2 ontaining V0 , i.e.,	jV0 = ��1. Then, (	 Æ �)0(~u) = �1	(�(~u))�01(~u) + �2	(�(~u))�02(~u) = 0 whih ontradits(	 Æ �)jU0 = idU0 implying (	 Æ �)0(~u) = 1. Conlude �01(u) 6= 0 for all u 2 U0 . Then, bythe inverse funtion theorem (��11 )0(w) = 1=�01(��11 (w)) for all w 2 W 0 . Sine �1 is C1 and��11 ontinuous, (��11 )0 is well-de�ned and ontinuous. Thus, �1 is a C1-di�eomorphismand so is F = � Æ ��11 restrited to W 0 . Hene, M is C1 on W 0 and, in partiular, at w0.Step 5: �M (w) := �(w;M(w)), w 2 W is inreasing. We �rst show that �M is non-dereasing, i.e.,M0 � ��w=�b < 1. By ontradition, supposeM0( ~w) > ��w( ~w;~b)=�b( ~w;~b)for some interior point ~w 2 W where ~b :=M( ~w). Then,M0( ~w) > � 1( ~w;~b)= 2( ~w;~b). Let M (w) :=  (w;M(w)), w 2 W . By ontinuity, �M is loally stritly dereasing while  Mis loally stritly inreasing around ~w. Let ŵ > ~w be lose to ~w and b̂ := M(ŵ). Then,(ŵ; b̂); ( ~w;~b) 2 M and ŵ1 := �M (ŵ) < �M ( ~w) =: ~w1 while b̂1 := b̂  M (ŵ) > ~b  M ( ~w) =: ~b1.But M being self-supporting under � implies ( ~w1;~b1) = �( ~w;~b) 2 M and (ŵ1; b̂1) =�(ŵ; b̂) 2 M , i.e., ~b1 = M( ~w1) and b̂1 = M(ŵ1) whih ontradits that M is stritlyinreasing. To see that �M is even stritly inreasing, suppose �M (ŵ) = �M ( ~w) for someŵ > ~w. Then, �M must be onstant on the interval [ ~w; ŵ℄ while  M is weakly inreasing.Repeating the previous argument, ŵ1 = ~w1 and b̂1 > ~b1 leading to the same ontradition.Step 6: W = R++ . By Step 5, ��1M : W ? �! W is well-de�ned where W ? := �M (W ) is aninterval with the same struture (left-open/losed and right-open/losed) as W . By (12),�M has �w as its unique �xed point whih is globally asymptotially stable on W . Therefore,8w 2 W : �M (w) T w , w S �w and 8w 2 W ? : ��1M (w) S w , w S �w: (A.11)De�ne winf := inf W < �w < supW =: wsup and w?inf := inf W ? < �w < supW ? =: w?sup. By(12) and Assumption 4, � is a homeomorphism between M and M \Y from whih we inferthat W ? = W \℄0; wmax [ and , therefore, w?inf = winf and w?sup = minfwsup; wmaxg.We show winf = 0. Choose w0 2 W suh that winf < w0 < �w. For n � 0, let wn+1 = ��1M (wn)and bn := M(wn) whih are well-de�ned as ��1M maps ℄winf ; �w[ into itself. Also note thatxn := (wn; bn) 2 M and xn = ��1(xn�1) for all n � 1. By (A.11), (wn)n�1 is stritlydereasing and onverges to some value w1 � winf. Suppose w1 > 0. By monotoniity ofM, (bn)n�1 is stritly dereasing and onverges to b1 � w1. Suppose w1 = b1. Then,10This follows from monotoniity ofM and a straightforward modi�ation of the ontradition argumentemployed in Step 5 below whereM0( ~w) needs to be replaed by the di�erene quotient �b�w := M(w)�M( ~w)w� ~w .25



limn!1  (wn; bn) = 1 by the properties of  and, sine b1 > 0, (wn; bn) =2 X � M forlarge n, whih is a ontradition. Conlude that limn!1 xn = x1 := (w1; b1) 2 X. As�(xn+1) = xn for all n, ontinuity of � gives limn!1�(xn) = x1 = �(x1). Thus, x1 is a�xed point of � satisfying 0 < w1 < �w < �w0, whih ontradits either Assumption 2 or 3.Conlude that w1 = 0 whih implies winf = 0.We show wsup = 1. Suppose wsup < wmax. Then w?sup = wsup < 1 and, by (A.11) �Mmaps ℄ �w;wsup[ into itself. One an now hoose w0 2℄ �w;wsup[ and modify the argumentsfrom the previous paragraph to obtain a ontradition. Conlude that wsup � wmax = w?sup.Let (wn)n�1 be a stritly inreasing sequene in W onverging to wsup. Then, (�M (wn))n�0onverges to wmax. But, by de�nition of wmax, this is only possible if wsup =1.(ii) Claim (a) follows from Lemma B.2 and Assumptions 2 and 3 while (b) follows from (12),(i), and (A.11). To show (), assume by ontradition that b >M(w) but x = (w; b) 2 X.De�ne xt = (wt; bt) := �t(x) and x̂t = (ŵt; b̂t) := �t(x̂) where x̂ := (w;M(w)). Notethat x̂t 2 M for all t � 0 and limt!1 x̂t = ( �w;�b). Using Assumption 1, an indutionargument yields 0 < b̂t < bt < wt < ŵt for all t. De�ne �t := bt=b̂t to observe that�0 > 1 and �t+1 = �t (xt)= (x̂t) > �t for all t � 0. Hene, limt!1 �t = �� > 1 andlimt!1 bt = ���b =: �b0 > �b exist. Sine wt remains bounded, xt 2 X for all t only if �b0 < 1whih requires limt!1  (xt) = 1 by (11). But, by the previous properties limt!1  (xt) �limt!1  (ŵt; bt) =  ( �w;�b0) >  ( �w;�b) = 1 whih is a ontradition. �A.7 Proof of Lemma 4.2Let " 2 E be given and de�ne �0(w; ") := W(K0(w); ") for w > 0 where k = K0(w) is theunique solution to u0(w � k) = E � [R(k; �)v0(kR(k; �))℄. Any steady state of �(�; ") in X0 isof the form �x0 = ( �w0; 0) where �w0 > 0 is a �xed point of �0(�; "). We show that any suhsteady state satis�es �0w( �w0; ") < 1. For any w > 0 and k = K0(w), the derivative reads�0w(w; ") = Ef (k)1� Ef(k) �0(w; ")w wK00(w)k Ef 0(k): (A.12)By (T2), the �rst fator in (A.12) is positive but stritly less than one. The seond oneequals unity at any steady state. Finally, note that the derivative of K0 satis�es0 < K00(w) = 11 + Ef 0(k) u0(w�k)kju00(w�k)j + (1� Ef 0(k))E� [kR(k;�)2jv00(kR(k;�))j℄kju00(w�k)j (A.13)(T1)� 11 + Ef 0(k) u0(w�k)kju00(w�k)j (U4)� kk + Ef 0(k)(w � k) (T1)� 1Ef 0(k) kw:Thus, the last fator in (A.12) is also bounded by unity, as was to be shown.If the additional onditions hold, then �(w; ") > w for w small while (U5) ensures thatlimw!1K0(w) =1. This and the boundary behavior of f implies �(w; ") < "f(K0(w)) <K0(w) < w for w suÆiently large and yields the existene of a non-trivial steady state. �A.8 Proof of Lemma 4.3We show that if � = �(�; ") has a steady state in X+ , it will be unique. De�ning � as in theproof of Lemma 3.3, it suÆes to show that �0( �w) < 0 at any steady state �x = ( �w;�b) 2 X+ .26



For brevity, let �k := K(�x) and �z := Z(�x). As the denominator in (A.10) is positive, oneveri�es diretly that �0( �w) < 0 if and only ifZb(�x)� Ef 0(�k)R(�k; ")[Kw(�x)Zb(�x)�Kb(�x)Zw(�x)℄ > 0: (A.14)If # = idE , the braketed term in (A.14) is zero and the laim follows from Lemma 2.2 (iii).If # 6= idE , use (A.8) and (A.9) to observe that (A.14) is positive, i� M > 0 whereM := H(1)k H(2)b �H(2)k H(1)b + Ef 0(�k)R(�k; ")H(1)w (H(2)b �H(1)b ):Let M1 := E � [R(�k; �) jv0(�)j℄, M2 := E � [R(�k; �)2 jv00(�)j℄, M3 := E � [(R?(�z; �))2 jv00(�)j℄and M4 := E � [R(�k; �)R?(�z; �) jv00(�)j℄. Using the funtional forms (A.1){(A.4), and (A.5){(A.7), tedious but straightforward alulations reveal that M = A+B + C whereA := ju00(�)jh�f 00(�k)f 0(�k)M1 +m(M3 �M4) + (1 + Ef 0(�k))(M2 �M4)im := 1� Ef 0(�k)R(�k; "); B := �f 00(�k)f 0(�k)M1M3; C := (1 + Ef 0(�k))hM2M3 � �M4�2i:By Lemma B.1(b), M2 � M4 and M3 � M4 whih implies C � 0 by (T1). Also, B > 0.Suppose m � 0. Then, A > 0 by (T1) whih implies M > 0. Conversely, suppose�mM4 > 0. By (8) and (U4), M1 = u0( �w � �b � �k) � ( �w � �b � �k)ju00( �w � �b � �k)j whihimplies B � �f 00(�k)=f 0(�k)( �w��b� �k)ju00(�)jM3. By (T1), (1 +Ef 0(�k))(M2�M4) � 0. By(U3), M1 = ��1(�kM2+�bM3) implyingM1 > �bM3 by (U1). Combining the four inequalitiesgives A+B > ju00(�)jM3h(1 + Ef 0(�k))� f 00(�k)f 0(�k) ( �w � �kR(�k; "))i:Both terms in brakets are non-negative due to (T1) and (T2). Hene, M > 0. �A.9 Proof of Lemma 4.4Given " 2 E , let x0 = (w0; b0) 2 Y" arbitrary. We determine a unique x = (w; b) 2 X+ suhthat �(x; ") = x0. As w0 2℄0; wmax" [, there is a unique k0 > 0 suh that w0 =W(k0; "). Thevalue z0 then follows from the �rst order onditions E � [R?(z0; �)v0(b0#(�)=#(")+k0R(k0; �))℄ =E � [R(k0; �)v0(b0#(�)=#(") + k0R(k0; �))℄ from whih b = b0=(z0#(")) an be inferred. Finally,w is the unique solution to u0(w � b � k0) = E � [R(k0; �)v0(bR?(z0; �) + k0R(k0; �))℄ whihis well-de�ned due to the Inada onditions and (U5) and ensures that k0 = K(x) andz0 = Z(x). Hene, ��1 is well-de�ned. As � is C1 by Lemma 2.2 and detD�(x) > 0,D��1(x0) = [D�(x)℄�1 is ontinuous by the inverse funtion theorem. �A.10 Proof of Lemma 4.5By ontradition, suppose " < "0 but b0 := M"(w0) � M"0(w0) =: b00 for some w0 >0. Let x0 := (w0; b0) and x00 := (w0; b00). Using (10a,b) and an indution argument inonjuntion with Lemma 2.2 and the multipliative struture of shoks, the sequenesfxtgt�0 and fx0tgt�0 de�ned as xt = (wt; bt) := �(xt�1; ") and x0t = (w0t; b0t) := �(x0t�1; "0)satisfy wt < w0t and bt � b0t for all t > 0. Therefore, �x" = ( �w";�b") := limt!1 xt and27



�x"0 = ( �w"0;�b"0) := limt!1 x0t satisfy �w" � �w"0 and �b" � �b"0. By Lemma 2.2 (iii), however, thesteady state property Z(�x") = Z(�x"0) = 1�# requires �x" = �x"0 implying K(�x") = K(�x"0) =: �k.But this ontradits �w" = W(�k; ") < W(�k; "0) = �w"0. Conlude that Mrit = M"minin (16). Using this, # � �#, and the properties of � and M "min , b � Mrit(w) implies�(2)(w; b; ") = �(2)(w; b; "min) � �(2)(w;Mrit(w); "min) = Mrit(�(1)(w;Mrit(w); "min)) �Mrit(�(1)(w; b; "min)) �Mrit(�(1)(w; b; ")) 8" 2 E . Thus, ondition (17) holds. �A.11 Proof of Lemma 4.6(i) The unique bubbly steady state an be obtained by diret omputations and its stabilityproperties follow from the same arguments used in the proof of Lemma 3.3.(ii) Let �t := bt=wt for t � 0. Using (20a,b) gives �t+1 = �(�t) := �1�� [ � �t℄�1�t, t � 0.The map � has �� as its unique non-trivial �xed point whih is unstable. Moreover, �0 < ��implies limt!1 �t = 0 and �0 > �� implies that �t0(�0) >  for some �nite t0. Hene,b0 = ��w0 is neessary for (w0; b0) 2 M " and eah suh initial state onverges to �x. �A.12 Proof of Lemma 5.1(i) De�ne �t as in the previous proof. By (29a,b), �t+1 = �(�t) := �1�� 1L(�t)=�(L(�t))�t,t � 0. Using the properties of L and �, � has �� > 0 as its unique non-trivial steady state.As any bubbly steady state of (29a, b) must satisfy �b" = �� �w", one obtains �w" as the uniquesolution to w = �(1)(w; ��w; "). The stability properties follow from the same argumentsused in the proof of Lemma 3.3.(ii) Noting that the steady state in (i) satis�es �0( ��) > 1 and is, therefore, unstable, ananalogous reasoning as in the proof of Lemma 4.6(ii) yields the laim. �B Auxiliary resultsLemma B.1In addition to (T1), (U1), and (U2), let (U3) hold. Then, for all (w; b) 2 X, the solutionsz := Z(w; b) and k := K(w; b) to (8) satisfy the following inequalities:(a) kE � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ = �bE � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄.(b) E � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ � 0 � E � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄.Proof of Lemma B.1.(a) By (8), 0 = H(1)(z; k;w; b)�H(2)(z; k;w; b) = E � [(R(k; �)�R?(z; �))v0(�)℄. By (U3),v0() = ��1jv00()j for all  = bR?(z; �) + kR(k; ") > 0 whih yields (a).(b) As E � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ � E � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄ and,by (a), the two sides are either both zero or have opposite signs, the laim follows. �Lemma B.2De�ne � as in (11) and let x̂ 6= ~x be distint points in X suh that ŵ � ~w and b̂ � ~b.Suppose x̂n := �n(x̂), n � 0 and ~xn := �n(~x), n � 0 onverge to x̂� = (ŵ�; b̂�) and~x� = ( ~w�;~b�) where ~b� > 0. Then, x̂� and ~x� are �xed points of � and ŵ� > ~w� > ~b� > b̂�.28
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