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Abstract

Many empirical projects are well suited to incorporating a linear di�erence-in-

di�erences research design. While estimation is straightforward, reliable inference can

be a challenge. Past research has not only demonstrated that estimated standard er-

rors are biased dramatically downwards in models possessing a group clustered design,

but has also suggested a number of bootstrap-based improvements to the inference

procedure. In this paper, I �rst demonstrate using Monte Carlo experiments, that

these bootstrap-based procedures and traditional cluster-robust standard errors per-

form poorly in situations with fewer than eleven clusters - a setting faced in many em-

pirical applications. With few clusters, the wild cluster bootstrap-t procedure results in

p-values that are not point identi�ed. I subsequently introduce two easy-to-implement

alternative procedures that involve the wild bootstrap. Further Monte Carlo simula-

tions provide evidence that the use of a 6-point distribution with the wild bootstrap

can improve the reliability of inference.

Keywords: CRVE, grouped data, clustered data, panel data, cluster wild bootstrap

1 Introduction

Di�erence-in-di�erences (DiD) estimators have a great deal of appeal, as there are often
policy changes that a�ect a subset of the population. The presence of two groups allows
us to make inferences about the causal e�ects of a policy change. The appropriateness
of DiD estimators depends on a few critical assumptions being satis�ed, beyond having
a treatment and a control group for the estimates. The �rst assumption is that there is
common support amongst the two groups. Common support requires that the composition
of both groups�in terms of both observable and unobservable characteristics�be similar.

∗Department of Economics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4. Email:
mwebb@ucalgary.ca. I thank my supervisors, James MacKinnon and Steven Lehrer for their continuous
support. I am grateful to Michele Campolieti, Marco Cozzi, and Allan Gregory for thoughtful evalua-
tions on a prior draft. I would also like to thank Russell Davidson, Emmanuel Flachaire, Maximilien Ka�o
Melou, and Arthur Sweetman for helpful comments and suggestions. I am grateful to participants at the 47th
Canadian Economics Association Conference, the 8th CIREQ Ph.D. Student Conference, the 29th Canadian
Econometric Study Group Annual Meeting, and seminar participants at the University of Calgary.
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The second assumption of common or parallel trends requires that each of the groups had
a similar trend in the dependent variable before the policy change.1 The common trend
assumption implies that in the absence of the change, both the treatment and control
groups would have followed along the same trends as before the change. Any change that
is observed in the treatment group, di�erenced by the change in the control group, is then
attributed to the policy change. For more details on program evaluation see DiNardo and
Lee (2011).2

Beyond worrying about the identifying assumptions for DiD, recent research has asked
the question: how reliable are the inferences made with DiD? In answering this question the
literature has shown that a fundamental problem with di�erence-in-di�erences arises from
the use of data with clustered errors. Since ignoring clustered errors leads to very unreliable
inference, corrections for clustered errors have become commonplace in empirical work.3

Although asymptotic corrections work well in many cases, recent studies have suggested
that estimating cluster-robust variance-estimator (CRVE) standard errors leads to biased
inference when the number of clusters is small.

Donald and Lang (2007) �rst showed the unreliability of DiD estimators in the case
when there are few groups and when some variables are �xed within groups. The authors
also used Monte Carlo work that estimated rejection frequencies are too high. The authors
propose a two-step method to estimate the signi�cance of DiD coe�cients. Wooldridge
(2003) proposes an alternative two step method. Bertrand, Du�o and Mullainathan (2004)
(BDM) show that in Monte Carlo simulations to show that DiD coe�cients are estimated
to be signi�cant at the 5% level, 45% of the time. They suggest that the over-rejection
is largely driven by the serial correlation in their data. The authors propose a number
of methods to correct this problem, including a block bootstrap procedure. Conley and
Taber (2011) argue that point estimates within DiD frameworks are not consistent because
variables for policy interventions are often invariant over time for a given group. They
propose a method of inference which relies on information contained in the control groups.
Abadie, Diamond and Hainmueller (2010) propose a similar procedure which involves the
construction of synthetic cohorts. Finally, Cameron, Gelbach and Miller (2008) (CGM)
propose a wild bootstrap-based procedure extending the work of BDM.

Empirical researchers, following CGM, have frequently used wild cluster bootstrap-t
generated p-values for improved inference.4 However, this paper demonstrates that when
the number of clusters is quite small the procedure for inference is noisy and imprecise as
estimated `p-values' are intervals rather point estimates. As a result the standard 2-point
wild cluster bootstrap is not appropriate when there are few clusters, with the appropriate-
ness decreasing as the number of clusters decreases. There are many real world problems

1Abadie (2005) and Athey and Imbens (2006) relax this assumption.
2Arguably, the most well-known application of DiD estimators is Card and Krueger (1994), which exam-

ined the impact of increasing the minimum wage on employment in the fast food industry. Other well-cited
DiD applications have involved analyzing changes in tax laws on health insurance Gruber and Poterba (1994)
and changes to the Earned Income Tax Credit on labour supply Eissa and Liebman (1996). Overviews of
di�erence-in-di�erences estimators are provided in Meyer (1995) and Angrist and Pischke (2008).

3A seminal paper on estimating clustered errors, Rogers (1994), has over 1700 citations according to
Google Scholar as of June 2013.

4As of June 2013 this article has been cited over 417 times according to Google Scholar.
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where data sets contain few clusters. For example, policy analysts in Canada often exploit
variation across ten provinces, while policy analysts in Australia often examine eight states.
Alternatively, clustering is often accounted for in the time dimension, and it is common
in panel data to have few time periods. This is particularly true in �nance, following the
suggestion of Thompson (2011) that when working with a data set in which the number of
�rms greatly exceeds the number of time periods, clustering by year will eliminate much of
the bias.

This paper proposes two procedures when the sample is collected from a small number
of clusters, considering both enumerating the bootstrap samples and new bootstrap weight
distributions. Enumeration involves systematically calculating all of the possible bootstrap
samples, and their associated t-statistics. The enumeration procedure has the bene�t of
being invariant to resampling variance, but it is limited in the precision of the calculated
p-values when the number of clusters is quite small. Expanding the 2-point wild cluster
bootstrap to either a 4-point or a 6-point distribution allows for an approximate test for
signi�cance. The 4-point and 6-point wild cluster bootstraps have resampling variability,
but more precise p-values can be determined. The proposed distributions appear to work
well even in the case of �ve clusters, when the conventional 2-point wild cluster bootstrap
is most inappropriate.

The organization of this paper is as follows: Section 2 provides a background on the
challenge of clustered errors in empirical research and current strategies to deal with them.
Speci�cally, the limitations of the 2-point wild cluster bootstrap are identi�ed and exam-
ined. Alternative bootstrap methods to account for the small cluster problem are discussed
in section 3, with an enumeration technique and the aforementioned new bootstrap weight
distributions considered. Section 4 discusses the design and results of Monte Carlo simula-
tions. The results expose the limitations of existing techniques when properly calculated,
and favor a new 6-point distribution. Section 5 concludes.

2 Background on Methods to Deal With Within Cluster Corre-

lation

Consider a standard two-period linear di�erence-in-di�erences model such as:

Yigt = β0 + β1 ∗ treatg + β2 ∗ postt + β3 ∗ treatg ∗ postt +Xigtγ + uigt. (1)

Here Yigt is an observation for person i in group g and time t, treatg is a dummy variable
for whether the observation is in the treatment group, and postt is a dummy variable for
whether the observation is in time period after the treatment occurred. Neither group was
treated in the pre-period. The treatg ∗ postt variable is an interaction of the two indicator
variables. It is an indicator for those individuals in the treated group in the treated period.
The coe�cient on this term can be interpreted as the di�erence-in-di�erences estimate,
which can be viewed as a causal parameter. Xigt is a vector of other independent variables.
It is quite easy to extend this setup to multiple periods.

Models like (1) are quite common in empirical work, though many papers have shown
a problem with using conventional OLS or heteroskedasticity-consistent standard errors for
inference when data are of a grouped or clustered nature. A data set can be considered
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clustered when there is an underlying natural grouping of the observations. Sometimes
these groups are based on methodology, as in data on many students in several classrooms
within a particular school. More often the grouping is geographic as there are data on many
individuals residing within a given state. The problem is most severe when estimating
the impact of a common group variable, such as a treatment variable, on individual level
outcomes. The �rst paper that identi�ed this problem is Kloek (1981), though the problem
was popularized by Moulton (1990) and Rogers (1994). The problem was considered in
the DiD context by Bertrand, Du�o and Mullainathan (2004) as well as Donald and Lang
(2007). For a detailed survey of the issues related to clustered data see Cameron and Miller
(2010). Recent work involving rescaling either standard errors or covariance matrices has
been done by Imbens and Kolesar (2012) and Brewer, Crossley and Joyce (2013).5

The estimates of the β coe�cients are una�ected by the clustered nature of the data and
can be obtained using the OLS estimator. The issue with clustered data is that the estimated
error terms, ûigt, can no longer be assumed to be i.i.d. Although the errors are independently
distributed across clusters, the errors are correlated within clusters. Expressed formally,
clustered data results in E[ug] = 0, E[ugu

′
g] = Σg, E[ugu

′

h] = 0 for cluster h 6= g. Given
that the i.i.d. assumption is violated, the standard OLS variance matrix is an inappropriate
estimate of the variance. The Cluster Robust Variance Estimator (CRVE) was developed
by Liang and Zeger (1986) in response to the need to correct for within cluster correlation.
The standard Cluster Robust Variance Estimate (CRVE) is given by:

ˆVCR[β̂] = (X
′
X)−1

(
G∑

g=1

Xgûgû
′

gX
′

g

)
(X

′
X)−1. (2)

The CRVE estimate takes a familiar sandwich form, though the ûg terms can be non-
standard and need to be estimated from the data. In the simplest case, the OLS residuals
are used with ûg = yg−Xgβ̂. In other cases, the expression in equation (2),

∑G
g=1Xgûgû

′
gX

′
g,

is replaced by
∑G

g=1 ŨgŨ
′
g. Software packages have di�erent routines for estimating Ũg. For

example, Stata uses:

Ũg =

Ng∑
i=1

ûig

(
1
Xg

)
,

where ûig is the OLS residual for individual i in group g. CRVE controls for both error
heteroskedasticity and quite general correlation and heteroskedasticity within clusters.

General results in White (1984) on covariance matrix estimation imply the consistency
of this estimator based on three assumptions:

A1. The number of clusters, G, goes to in�nity.
A2. The degree of within-cluster correlation is constant across clusters.
A3. Each cluster contains an equal number of observations.

5Another paper that deals with some of the issues of clustered data is Ibragimov and Muller (2010).
However, their paper proposes an estimation technique which requires estimating a t-statistic for each
cluster separately. While this technique works well in many situations, it does not work at all when there
is a binary independent variable which is invariant within a cluster. As this is often the case with DiD
estimates, no Monte Carlo simulations testing their technique will be performed in this paper.
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Several authors have previously studied the �nite sample properties of the estimator when
A1 is not satis�ed. Carter, Schnepel and Steigerwald (2012) relax both assumptions A2
and A3 and derive a new asymptotic distribution for the test statistic. MacKinnon and
Webb (2013) study the �nite sample properties when A3 is violated. Simulation results
from Bertrand, Du�o and Mullainathan (BDM), Cameron, Gelbach and Miller (CGM), and
those presented in this paper, show that the rejection rates based on OLS standard errors
are almost an order of magnitude greater than those based on CRVE. In my own simulations
with 30 clusters (discussed at length later in the paper and shown in table 2), the estimated
5% rejection rate for OLS is 49.9% whereas it is only 8% with CRVE standard errors. In
simulations with 5-clusters, the rejection rate is 47% for OLS and 21% for CRVE.6

2.1 Should we use the Wild Bootstrap to Conduct Inference in DiD Models?

Although CRVE is a substantial improvement over OLS in the presence of grouped data, it
is not without its weaknesses. If one uses CRVE with Ũg = ûg it is biased, as E[ŨgŨ

′
g] 6=

Σg = E[ugu
′
g]. The bias depends on the form of Σg but will usually be downward, which

results in coe�cients being estimated as signi�cant too often.
After presenting Monte Carlo evidence of the over-rejection problem when using standard

CRVE techniques, BDM propose a bootstrap procedure as a means of improving the size of
the tests. In particular BDM suggest block bootstrapping, where they resample blocks of all
observations from a given state.7 Cameron, Gelbach and Miller (2008) perform additional
Monte Carlo experiments and �nd that when the number of clusters is small, e.g. fewer
than 30, the rejection rate of the block bootstrap method proposed by BDM is too large.8

CGM investigate several alternative bootstrap methods for improved inference and argue
that the `Wild Cluster bootstrap-t' method is preferred.

The wild cluster bootstrap is preferable to the block bootstrap in several ways. When
using the wild cluster bootstrap, each bootstrap sample has the same number of observations,
equal to the original sample size, while the block bootstrap generates samples of unequal
size. Additionally, every observation in the data set is in every bootstrap sample. This is an
important characteristic when identi�cation may be coming from only a few observations,
such as when a certain policy is operating in a particular state for only a few years, as pointed
out by Conley and Taber (2011). Finally, the wild bootstrap preserves the structure of the
error correlation within clusters. The structure is preserved as every residual within a cluster
is multiplied by the same weight. CGM present Monte Carlo simulations as evidence that
the wild cluster bootstrap-t technique allows for valid inference with as few as �ve clusters.
As this paper will discuss, there is a problem with the rejection rates they calculate to justify
that claim. This problem is a result of an insu�cient number of unique bootstrap samples.

Imagine we are interested in calculating a wild cluster bootstrap-t p-value for β3 in
equation (1). We can construct the p-value by �rst estimating the t-statistic, t̂, in the

6On a historical note, it was Moulton (1990) that pointed out just how large the rejection rates were for
OLS, and BDM who pointed out that CRVE is still a great distance from the desired size of 5% when there
are few clusters.

7The bootstrap samples are generated by sampling the clusters with replacement.
8The over rejection is a result of the BDM technique using OLS standard errors in generating bootstrap

t-statistics, rather than CRVE standard errors, and a result of less-than-desirable features of the block
bootstrap.
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original sample using cluster-robust standard errors. We then re-estimate the equation by
imposing the null hypothesis, to obtain the restricted estimates β̃, γ̃, ũigt, etc. Then B
iterations, or bootstraps, are performed. In each iteration a bootstrap sample is generated
from the bootstrap data generating process

y∗igt = β̃0 + β̃1 ∗ treatg + β̃2 ∗ postt + β̃3 ∗ treatg ∗ postt +Xigtγ̃ + ũigtvg, (3)

where the ith residual in time t from group g, ũigt, is transformed by the bootstrap weight vg.
9

The di�erence between the wild cluster bootstrap and the conventional wild bootstrap is
that under the former the same vg is applied to all observations within the same cluster, while
the conventional wild bootstrap applies a vigt to each observation. The bootstrap weight
can take many forms, as will be discussed later. In each iteration, a bootstrap t-statistic, t∗j
is generated using cluster-robust standard errors. After B iterations the bootstrap p-value
is then calculated by:

p̂∗(t̂) = 2 min

(
1

B

B∑
j=1

I(t∗j ≤ t̂),
1

B

B∑
j=1

I(t∗j > t̂)

)
, (4)

where I(.) is the standard indicator function.10

This procedure is based on the assumption that a given number of bootstrap samples,
B, are taken from an extremely large pool of potential bootstrap samples. This means that
a set of bootstrap samples are drawn that will contain very few, if any, repeated samples.
Suppose we are concerned about the signi�cance of our estimated β̂ by examining our t-
statistic, t̂, and we have generated a vector of 999 bootstrap t-statistics, t∗ = t∗1, ..., t

∗
999. If we

observe that our estimated t-statistic falls between the 90th and 91st bootstrap t-statistic,
then we would say that the p-value associated with this t-statistic is 0.180.11

With few clusters the number of unique potential bootstrap samples is rather small. The
bootstrap samples depend on the choice of a bootstrap weight distribution. In the literature
two well-known distributions are the Rademacher and the Mammen distributions, both of
which contain only two points. With these distributions, vg from equation (3) is set to one
of two values with a given probability, p. The Rademacher distribution is de�ned as:

vg = ±1 with probability 0.5. (5)

The Mammen distribution is de�ned as:

vg = −
√

5− 1

2
w.p. p =

√
5 + 1

2
√

5
and vg =

√
5 + 1

2
w.p. 1− p.

Accordingly, there are only 2G possible bootstrap samples, where G is the number of groups.
When G = 5 there are only 32 possible bootstrap samples. Cameron, Gelbach and Miller

9In general the bootstrap DGP should impose the null hypothesis, which in this case would mean setting
β̃3 = 0

10These p-values are equal tail p-values, while the enumeration p-values are symmetric p-values calculated
by 1

B

∑B
j=1 I(|t∗j | >= |t̂|).

11Recall that the equal tail p-value is the result of a two-sided test for t-statistics, so p̂∗ =
2min

(
90
999 , 1−

90
999

)
.
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(CGM) recommend using the wild cluster bootstrap-t technique with Rademacher weights.
Thus the 32 bootstrap samples yield 32 distinct t-statistics. However, the set of unique
absolute value t-statistics is only 2G−1 or 16 in the �ve cluster case. A proof of this result
is provided in the Appendix. When G = 5 and B = 399, by sampling with replacement you
are choosing 399 elements from a set of 32. This is not a problem when G is large as you will
obtain a vector of mostly unique t-statistics, but when G is small it is quite problematic.

The CGM procedure inaccurately treats the B t-statistics as B unique values; however,
in the small cluster case, the majority of bootstrap t-statistics are not unique. Having many
repeated t-statistics leaves open the possibility that t̂ will be found multiple times in this
vector.12 We should thus regard unique t-statistics as a signal as to the signi�cance of β̂,
and repeated t-statistics as noise which interferes with our ability to make inferences about
β̂. When 2G is small we cannot perform conventional inference. This problem comes as a
result of the inability to point-identify where t̂ falls within the sorted vector of bootstrap
t-statistics. If t̂ is found multiple times within the vector, then the `p-value' would not be a
point but would instead be an interval from the �rst occurrence of t̂ to the last occurrence
of t̂. Returning to the above example, if we have B = 999 and 31 of those bootstrap
samples result in t∗ = t̂ then t̂ would appear in the sorted vector 31 times. For example,
if t̂ = t∗70, ..., t

∗
100, then the `p-value' would be the interval from 0.140-0.200. Figure 1 plots

the observed spread between the �rst occurrence p-value and the last occurrence p-value
across clusters from Monte Carlo simulations using the Rademacher distribution with 999
bootstraps. The �gure shows that the p-values occupy a wide interval when the number
of clusters is small. This wide interval makes it quite di�cult to assess signi�cance at
conventional levels. It is not until there are more than eleven clusters that these intervals
are quite small.

Calculating additional bootstrap t-statistics will not shrink the width of these intervals.
Calculating an in�nite number of bootstraps will lead to results equivalent to those of the
enumeration p-values, discussed in section 3. One way to generate more unique t-statistics
is to increase the number of clusters, though in empirical work the number of clusters will
be determined by the data.

When using the Rademacher distribution, one of the possible bootstrap t-statistics, t∗j
is the original estimate of the t-statistic, t̂.13 When 2G is small, this will be observed,
almost surely. As there are only 2G possible t-statistics, estimating the p-value depends
on identifying where t̂ lies in the vector of sorted t-statistics. The 2G possible t-statistics
map into a small number of p-values. If inference is done correctly, we should only observe
that small number of p-values across Monte Carlo simulations. CGM instead chose to
estimate the p-value as being the center of this range. Figure 2 shows a histogram of
50,000 p-values based on the CGM method for 2-point wild cluster bootstrap-t. If the CGM
procedure worked appropriately, only 16 unique p-values would be observed.14 However,
the histogram is quite smooth and shows that numerous p-values were calculated. These

12There will also likely be repetitions of other t-statistics in the vector of bootstrap t-statistics.
13This occurs when vg = 1,∀g.
14The fact there are 16 p-values is a result of t̂ = t∗2 and t̂ = t∗30 resulting in the same p-value in a two tail

test.
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additional p-values are a result of the noise from their estimates.15 The noise leads to
improper inference and makes the 2-point wild bootstrap inappropriate in cases with few
clusters.

3 Alternative Bootstrap Methods

The �rst technique considered in this paper for improving inference is that of enumeration.
The above mentioned issues are a result of using a 2-point distribution in general, and
the Rademacher distribution in particular. Inference using a 2-point distribution will be
limited in the few cluster case on account of the interval identi�ed p-values. However, if
one is convinced that the Rademacher distribution is ideal, then enumeration is the correct
way to conduct analysis.16 The procedure for estimating a p-value is quite similar to the
wild cluster bootstrap procedure discussed above. The main di�erence is that with the wild
bootstrap vg is picked at random from the distribution, while with enumeration vg is selected
methodically. Given the small number of possible bootstrap samples when the number of
clusters is small, it is feasible to calculate all possible t-statistics. When all possible test
statistics are calculated, it is referred to as full enumeration; when a subset of these test
statistics is calculated, it is referred to as partial enumeration.

Under full enumeration, the resulting p-values do not depend on resampling variation.
In conventional bootstrap procedures the results will depend in part on the set of samples
drawn, and thus are subject to resampling variation. This is not the case with full enumera-
tion as all samples have been drawn. When the number of clusters is large, it is infeasible to
calculate all possible t-statistics; however, partial enumeration is possible and will result in a
sample of bootstrap t-statistics without any repetitions. The main bene�t of enumeration is
that you get a sample of t-statistics with no repetition, though there can be a small bene�t
in terms of computing time.

The resulting p-value of this procedure is di�erent than a conventional p-value. For
instance when G = 5 there are only 2G−1 unique t-statistics in absolute value. If |t̂| = |t∗2|,
the p-value is equal to 2

16
, which tells us something about the statistical signi�cance of β̂.

We have to be careful not to think about this p-value as 0.125, as doing so can lead one
to incorrectly infer that the observed p-value is drawn from a continuous distribution. In
this case the p-value is 2

16
, but it could have alternatively been 1

16
or 3

16
, and is drawn from

a discrete distribution with the p-value ∈ { 1
16
, ..., 16

16
}. The issue here is that conventional

signi�cance levels that applied econometricians work with are not as meaningful. The p-
value of 2

16
spans the space from 0.0625− 0.125 and so straddles the 10% level.17

Although enumeration has much to its credit, its advantages are largely con�ned to
cases with small G. After G is su�ciently large, say 12, the computational limitations of
full enumeration necessitate partial enumeration, which is very similar to the wild cluster

15The noise comes in part from repeated t̂, but also from repeated t∗1, t
∗
2,etc. The number of t̂ repetitions

changes from one replication to another, thus the variability of p-values in their technique.
16This procedure was alluded to in Efron's seminal bootstrap paper in 1979 and mentioned in Davidson

and Flachaire (2008) speci�cally in the context of the (non-cluster) wild bootstrap.
17Perhaps we are best to remain agnostic about whether this observed p-value is signi�cant at the 10%

level, thus the recommendation of reporting enumerated p-values as fractions as opposed to decimals to
highlight the distinction.
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bootstrap. Figure 3 shows the histogram of Monte Carlo p-values using the enumeration
method for the 5-cluster case. This �gure is comparable to �gure 2 though here it is
easy to see that only the p-values associated with the 16 unique bootstrap t-statistics have
been calculated. Using this technique results in inference being based on the data and the
properties of the bootstrap weighting distribution, and not on resampling noise.

3.1 Adding Points to the Bootstrap Weight Distributions

Enumeration will generate unique t-statistics, and thus is more precise than the conventional
wild bootstrap procedure. However, the limitation of having only 2G−1 t-statistics from
which to conduct inference leaves much to be desired. It is possible to �nd variations to
the wild bootstrap technique which expand the number of points in the weight distribution,
vg in equation (3), used to generate bootstrap samples. Following Davidson and Flachaire
(2008), who show that the Rademacher distributions has better �nite sample properties
than the Mammen distribution, I look for variations of the Rademacher distribution.

The �rst four moments of the `ideal' distribution would be 0,1,1,1. It is however not
possible to satisfy all of these moment conditions.18 The Rademacher and Mammen distri-
butions di�er in the moment conditions that they satisfy. Both distributions have a mean
of zero and a variance of one. The Mammen distribution has a third moment equal to
one, and a fourth moment of two. The Rademacher distribution has a third moment of
zero and a fourth moment of one. The candidate distribution will expand the Rademacher
distribution, imposing symmetry. Like the Rademacher, the candidate distributions ignore
the third moment. The candidate 4-point distribution I consider is:

vg = −
√

3

2
,−
√

1

2
,

√
1

2
,

√
3

2
w.p.

1

4
. (6)

In addition to imposing symmetry the 6-point distribution will impose a restriction that
two of the points are 1 and −1. The imposition of symmetry means that the third moment
will be 0. The candidate distribution will then have 6-points of the form −A,−1,−B,B, 1, A
each selected with equal probability. The �rst four moments of this symmetric 6-point
distribution would have to be 0,1,0,1 to match the Rademacher moments. This also is
impossible. Any symmetric equal probability distribution will automatically satisfy the �rst
and third moment restrictions. It is then a matter of trying to satisfy the second and fourth
moment conditions. Rearranging these moment conditions results in the following equation:
A2 + B2 + 12 = A4 + B4 + 14. This is only satis�ed when A and B are 0, 1, or − 1, which
does not result in a 6-point distribution. Thus it is not possible to have a distribution of the
form −A,−1,−B,B, 1, A with the �rst four moments of 0, 1, 0, 1. The candidate 6-point
distribution I consider is:

vg = −
√

3

2
,−
√

2

2
,−
√

1

2
,

√
1

2
,

√
2

2
,

√
3

2
w.p.

1

6
. (7)

The fourth moments of these distributions are 5
4
for the 4-point, and 7

6
for the 6-point.

There exists the temptation to add additional points to the distribution to increase the

18I thank Professor James MacKinnon and Professor Russell Davidson for bringing this to my attention.
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potential number of bootstrap samples. There are two concerns about doing so. The �rst
is that the ideal weights will be distinct from one another, as the weights 0.99 and 1.01
will result in very similar bootstrap samples and very similar bootstrap t-statistics, t∗j . The
second is that given the desire to have a distribution with distinct weights, mean zero, and
variance one, the inclusion of additional weights will often increase the fourth moment. As a
limiting case I consider using the normal distribution to generate weights for the bootstrap
sample where vg ∼ N(0, 1). Drawing from the normal would allow for in�nite possible
bootstrap samples. Mammen (1993) considered the distribution vg = ui/

√
2 + 1

2
(w2

i − 1),
where ui and wi are draws from the normal distribution.19

The main bene�t of adding additional points to the bootstrap weight distribution is that
the number of potential bootstrap samples increases exponentially. For instance, with the
2-point distribution the number of bootstrap samples is 2G, but with the 4-point distribution
it increases to 4G, and to 6G for the 6-point distribution. So in the case of �ve clusters,
the number of potential bootstrap samples increases from 32 to 1024 to 7776. It should
be noted that the unique number of absolute value t-statistics is less than 4G or 6G. The
proposed distributions are also symmetric, and so have the same feature as the Rademacher
distribution. As a result, the number of unique absolute value t-statistics is 4G

2
for the

4-point and 6G

2
for the 6-point. The large number of possible bootstrap samples should give

us con�dence that inference conducted using the 6-point distribution is based primarily on
the estimated t-statistics, and not on noise introduced from resampling. Figure 4 shows a
histogram of 50,000 p-values based on the 6-point wild bootstrap method. In contrast to
�gure 2, the smoothness seen in this �gure comes from the great number of unique and
correctly calculated p-values.

4 Monte Carlo Evidence

4.1 Description of Simulations

To enhance the comparability of the simulations, I follow the simulation procedure in section
IV.A of Cameron, Gelbach and Miller (2008). Data are generated using

yig = β0 + β1xig + uig
or

yig = β0 + β1(zg + zig) + (εg + εig).
(8)

With zg, zig, εg, εig each an independent draw from N(0, 1). We can think of zg as a group
speci�c component of xig and εg as the group level error. The presence of εg introduces
correlation amongst the error terms. Alternatively, zig is the idiosyncratic component of
xig, while εig is the idiosyncratic component of the error term.

The number of observations per group, Ng, is set to 30 for all simulations. I perform
50,000 replications, and each of the bootstrap exercises uses 399 bootstraps. In generating

19Mammen (1993) also considered another more complicated distribution. These two distributions are
ignored in this paper since simulation results in MacKinnon (2012) show them to be inferior to the Normal
distribution.
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yig, I set β1 = 1 and test the hypothesis that β1 = 1.20 Following common practice, the
null hypothesis is imposed in the bootstrap replications. The rejection rates are estimated
across replications as

α̂ =
1

R

R∑
j=1

I(p∗j ≤ 0.05),

where R is the number of replications, and p∗j is the bootstrap p-value from the jth replica-
tion. This α̂ is then compared to the true size of the test which is given by α = 0.05.

In total eight di�erent rejection rates are compared, across a variety of asymptotic and
bootstrap methodologies. A description of the simulations can be found in table 1. Designs
1-3 use asymptotic procedures for generating p-values, while designs 4-8 use bootstrap pro-
cedures. Design 1 uses t-statistics which are calculated using OLS standard errors and are
assumed to follow a normal distribution. As the OLS standard errors ignore the clustered
nature of the data these rejection rates should be rather high, as was pointed out by Moul-
ton (1990). Design 2 uses the CRVE standard errors of equation (2), and the t-statistics are
assumed to be distributed normally. Design 3 uses the same t-statistics as in design 2, but
the distribution of the t-statistics is assumed to follow a t-distribution with G-1 degrees of
freedom, where G is the number of groups.21

Designs 4-8 employ the wild cluster bootstrap-t procedure as discussed above, but di�er
in which bootstrap weight distribution is used. Design 4 generates p-values using the wild
cluster bootstrap with vg drawn from the 2-point Rademacher distribution described above
in equation (5), this is the test that was recommended by CGM.22 Design 5 generates p-
values with vg drawn from N(0, 1). Design 6 uses vg drawn from the 4-point distribution that
was proposed above in equation (6). Design 7 uses vg drawn from the 6-point distribution
that was proposed above in equation (7). Finally, design 8 generates p-values by enumerating
the Rademacher wild bootstrap t-statistics. When G ≤ 11 full enumeration is used and all
t-statistics are calculated. When G > 11 partial enumeration is used and a unique set of
t-statistics is calculated. The results of the Monte Carlo experiments are discussed below.

4.2 Simulation Results

Table 2 replicates Cameron, Gelbach and Miller (2008) by performing tests 1-5.23 The table
shows the severe problem of ignoring the clustered nature of the data, as the test using

20The code I used for performing the bootstrap simulations is based o� the code provided by Dou-
glas Miller, which can be found at: http://www.econ.ucdavis.edu/faculty/dlmiller/statafiles/bs_
example.do I thank the author for making his code publicly available.

21This distribution is both recommended by Donald and Lang (2007) and is the default Stata uses with
the cluster command. The asymptotic justi�cation for this distribution is provided in Bester, Conley and
Hansen (2011).

22The values reported are slightly di�erent than the values reported by CGM. They are di�erent because
di�erent random numbers were used, but more importantly because CGM use the average value at which t̂
matches the bootstrap t-statistics, while I use the max value at which this occurs. The di�erence is negligible
when 2G is large, but signi�cant when 2G is small, see �gure 1. The di�erence is largely irrelevant as neither
rejection rate is correct in the small G case.

23In all of the tables, the simulation standard error is not shown to save space. The standard error is

sα̂ =
√

α̂(1−α̂)
R−1 with R being the number of replications, and α̂ being the estimated rejection rate. Given

the observed rejection rates the largest standard error is 0.0022 and the smallest is 0.0008.
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OLS standard errors gives rejection rates of close to 50%. Clustering the standard errors
and performing inference-based tests 2 and 3 works much better. Assuming that the t-
statistics are normally distributed is rather problematic when there are very few clusters.
The assumption that the t-statistics follow a t-distribution with G − 1 degrees of freedom
goes a long way in correcting the size of the test, but the rejection rate is still too large when
G is very small. The rejection rates for the wild cluster bootstrap-t with Rademacher weights
look deceivingly nice. As explained above the results for G = 5 and G = 10 should not be
trusted as they are based on a very noisy vector of t-statistics, but the results for G ≥ 15 do
not su�er from this problem. A histogram of the 5-cluster wild bootstrap p-values can be
seen in �gure 2. The under-rejection in the table is evidenced by the under-concentration
of p-values in the far left of the �gure.

Table 3 shows the results of simulations in which the number of clusters is small.24 The
wild bootstrap with Normal weights does fairly well, though it is outperformed in most cases
by the wild bootstrap with either the 4-point or 6-point distribution.25 Both the 4-point
and 6-point distribution work well, though in all cases the 6-point distribution outperforms
the 4-point distribution. Note that when G = 5 the rejection rate is 0.070, which is still
noticeably above 0.05, but better than the T (G − 1) rate of 0.100. This over-rejection can
also be seen in �gure 4, as evidenced by the over-concentration of p-values in the left tail of
the histogram.

As mentioned previously, the enumerated p-values are not point identi�ed and are instead
identi�ed by an interval. Two rejection frequencies are calculated for these p-values, one
using the lower bound, and one using the upper bound. The wide di�erences in these two
rejection frequencies are to be expected, as was shown in �gure 1. In the 5-cluster case the
upper bound never rejects at the 5% level as 1

16
is above that threshold. The lower bound

rejects far too often. This is particularly interesting since both of these rejection frequencies
come from the same estimated t-statistic. The upper bound rejection frequency and lower
bound rejection frequencies converge as G increases. For the 5-cluster case, a histogram of
the 16 t-statistics is shown in �gure 3. The over-concentration of p-values in the left of the
�gure corresponds with the result in the table that the enumeration technique rejects too
often when using the lower bound of the interval. Even with 10 clusters the enumeration
rejection frequencies are higher than those from the 6-point distribution.

Table 4 shows the results when the number of clusters ranges from 5 to 30. The partial
enumeration method which is used for G ≥ 15 works well in the case of G=15 and G=20.
The results are not presented for G ≥ 25, since they should be equivalent to the results
from using the 2-point distribution. The 4-point and 6-point distributions work equally
well, though in a few cases the 6-point distribution outperforms the 4-point distribution.
In general, the various bootstrap methods work better than the analytic T (G− 1) method,
test 3. While the 6-point distribution dominates the 2-point distribution in most cases,
the 2-point distribution does slightly better when G is equal to 15 or 20, though it slightly
under-rejects compared to the 6-point bootstrap when G is larger. Given the small range
in which the 6-point distribution is inferior to the 2-point distribution, and the problems

24The results for the wild cluster bootstrap with Rademacher weights are not presented in this table since
the p-values are not correctly calculated in the 5-10 cluster range.

25The normal distribution is not ideal since the fourth moment is too large; see MacKinnon (2012).
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with the 2-point distribution in the case of few clusters, the 6-point distribution is generally
preferable.

5 Conclusion

While di�erence-in-di�erences estimators are widely used to evaluate policy changes, care
must be taken in performing inference. This is particularly true when individual-level data
are used, and when the data are grouped or clustered. I evaluate the performance of several
inference procedures in Monte Carlo simulations and con�rm the �ndings of Cameron, Gel-
bach and Miller (2008). In this paper I show that substantial improvements can be made
to the inference procedure when the researcher faces few clusters. The few cluster concern
is quite common in practice, as many data sets have fewer than eleven clusters. The issue
with the conventional wild bootstrap procedure is that it uses a 2-point weight distribution.
The small number of weights leads to p-values not being point identi�ed when there are few
clusters. In cases with 5-clusters these intervals have a width of 0.0625 and make conven-
tional inference quite di�cult. Using a 6-point weight distribution solves this problem and
works equally well when there are more clusters.
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Figure 1: Estimated Di�erences From Three Di�erent P-values

Notes: A is the di�erence between the max p-value and the mean p-value. B is the di�erence
between the max p-value and the min p-value.

Figure 2: Histogram of 50,000 Monte Carlo P-values: Rademacher Distribution
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Figure 3: Histogram of 50,000 Monte Carlo P-values: Enumerated Wild Bootstrap

Figure 4: Histogram of 50,000 Monte Carlo P-values: 6-point Distribution

18



Table 1: Design of Monte Carlo Simulations
Design Standard t-statistic Bootstrap

# Description Error distributed as Weights

1 OLS OLS N(0,1) -

2 Cluster ∼ N CRVE N(0,1) -

3 Cluster ∼ T CRVE T(G-1) -

4 Wild Cluster - Rademacher CRVE - 2-point - rademacher

5 Wild Cluster - Normal CRVE - ∼ N(0, 1)
6 Wild Cluster - 4-point CRVE - 4-point equation (6)

7 Wild Cluster - 6-point CRVE - 6-point equation (7)

8 Enumeration - Rademacher CRVE - 2-point - rademacher

Table 2: Results from Monte Carlo Study with Di�erent Numbers of Clusters:
Replicating Results in Cameron, Gelbach, and Miller (2008)

Number of Groups (G)
5 10 15 20 25 30

1 OLS ∼ N(0, 1) 0.468 0.486 0.493 0.494 0.489 0.499
2 CRVE ∼ N(0, 1) 0.211 0.133 0.108 0.094 0.084 0.080
3 CRVE ∼ T (G− 1) 0.100 0.090 0.081 0.075 0.070 0.069
4 Wild 2pt BS *0.037 *0.054 0.050 0.050 0.047 0.048

Notes: Rejection frequencies estimated with 50,000 replications and 399 bootstraps (BS). *
- estimate is not accurately calculated. Simulation standard errors have been omitted from
this table. The smallest standard error in this table is .00084 and the largest standard error
is .00224.
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Table 3: Results fromMonte Carlo Study with Di�erent Numbers of Clusters: Small Number
of Clusters Simulation

Number of Groups (G)
5 6 7 8 9 10

3 CRVE ∼ T (G− 1) 0.100 0.100 0.094 0.096 0.088 0.090
5 Wild N(0, 1) BS 0.072 0.070 0.072 0.072 0.071 0.069
6 Wild 4pt BS 0.070 0.069 0.064 0.062 0.059 0.057
7 Wild 6pt BS 0.070 0.067 0.063 0.061 0.057 0.056

8 Enum. Lower Bound 0.118 0.095 0.084 0.068 0.062 0.060
8 Enum. Upper Bound 0.000 0.059 0.067 0.061 0.058 0.058

Notes: Rejection frequencies estimated with 50,000 replications and 399 bootstraps (BS).
Preferred procedure is presented in bold. Simulation standard errors have been omitted
from this table. The smallest standard error in this table is .00000 and the largest standard
error is .00144.

Table 4: Results from Monte Carlo Study with Di�erent Numbers of Clusters: Larger
Number of Clusters Simulation

Number of Groups (G)
5 10 15 20 25 30

1 CRVE ∼ T (G− 1) 0.100 0.090 0.081 0.075 0.070 0.069
4 Wild 2pt BS *0.037 *0.054 0.050 0.050 0.047 0.048
5 Wild N(0, 1) BS 0.072 0.069 0.065 0.063 0.059 0.059
6 Wild 4pt BS 0.070 0.057 0.054 0.052 0.048 0.049
7 Wild 6pt BS 0.070 0.056 0.052 0.052 0.049 0.049

8 Enum. Lower Bound 0.118 0.060
8 Enum. 2pt BS 0.052 0.051
8 Enum. Upper Bound 0.000 0.058

Notes: Rejection frequencies estimated with 50,000 replications and 399 bootstraps (BS). *
- estimate is not accurately calculated. Preferred procedure is presented in bold. Simulation
standard errors have been omitted from this table. The smallest standard error in this table
is .00084 and the largest standard error is .00144.
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Appendix - Proof of 2G−1 Unique Absolute Value t-statistics

Recall that a bootstrap sample is generated by:

y∗i = Xβ̃ + ũ∗i , (9)

where ũ∗i is the Hadamard product ũ ◦ vi, and vi is the vector of draws of the bootstrap
weights. The Rademacher weights are −1 and +1, so every possible vi is equal to −1 ◦ vj
for some i 6= j. These two bootstrap weight draws will generate the following bootstrap
samples: y∗i = Xβ̃ + ũ ◦ vi and y∗j = Xβ̃ + ũ ◦ vj. Since vj = −1 ◦ vi we can rewrite y∗j as

y∗j = Xβ̃ − ũ ◦ vi.
We then test the null hypothesis β∗i and β∗j are = βo and calculate a t-statistic of the

form:
(X ′X)−1X ′yi − βo(

u′
iui

X′X(n−k)

)1/2 . (10)

The denominator in equation (10) is constant for either i or j, as X and n− k are invariant
and u′iui = u′juj because uj = −1 ◦ ui.

Let us consider the numerator in equation (10), where we have an expression in terms
of β∗i and βo. If we start with the expression:

(X ′X)−1X ′yi − βo,

using the identity that yi = Xβ̃ + ũ ◦ vi we get the following,

(X ′X)−1X ′(Xβ̃ + ũ ◦ vi)− βo.

With a little algebra we get:

(X ′X)−1X ′(Xβ̃ + ũ ◦ vi)− βo
=(X ′X)−1X ′Xβ̃ + (X ′X)−1X ′(ũ ◦ vi)− βo
=β̃ − βo + (X ′X)−1X ′(ũ ◦ vi).

Because the bootstrap samples impose the null hypothesis, β̃ = βo. The numerator then
simpli�es to:

(X ′X)−1X ′(ũ ◦ vi).

Because vi = −1 ◦ vj, the numerator for the t-statistic of β∗j will be the negative of the
numerator for the t-statistic of β∗i . Because the denominators are also the same, the t-
statistics are equal in absolute value. If we reverse the sign on the weight vector vi we
reverse the sign of the t-statistic, but preserve the magnitude. Thus the 2G unique bootstrap
samples will only result in 2G−1 unique t-statistics in absolute value.
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