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1 Introduction

Habituation to technologies and ideas that, prior to their discovery, were unimaginable or,

in some instances, for lack of appropriate language, indescribable, is an important aspect

of human experience. The anticipation of additional such discoveries shapes our future

outlook and manifests itself in our choice behavior.

On the more mundane level, decision makers might have experienced situations in

which, because of lack of imagination or lack of attention, their decisions resulted in out-

comes that they failed to foresee and take into account. Therefore, when making decisions,

one might suspect that one might fail to take into account all the potential consequences.

Awareness of one’s limited awareness of the consequences of one’s actions affects individual

choice behavior in a way similar to the anticipation of discoveries of new consequences.

In this paper, which builds upon Karni and Vierø (2013, 2014), we propose a dynamic,

choice-based, theory designed to capture decision makers anticipation of becoming aware

of consequences which they are currently unaware of, because they are unimaginable, are

not explicitly specifiable, or for lack of attention have been neglected, and analyze its

behavioral implications.

The main thrust of Karni and Vierø (2013, 2014) is the evolution of decision makers’

beliefs as they become aware of new acts, consequences, and the links among them. In

these models, however, decision makers are myopic, believing at every point that they are

fully aware of the scope of their universe. Formally, decision makers consider the state

space that resolves the uncertainty associated with the alternative feasible courses of ac-

tion and consequences that they can describe, to be a sure event. Put differently, even

though it happened before, decision makers do not anticipate the possibility of discover-

ies that would change their conception of the universe and require an expansion of the

state space. In this paper, we extend the analytical framework to incorporate decision

makers’ awareness of their potential ignorance and the anticipation that new discoveries

may reveal consequences that were unspecified in the formulation of the decision problem

either because they are unimaginable or were neglected for lack of attention. Within the

extended analytical framework we develop axiomatic models of choice under uncertainty

and analyze the behavioral implications of a decision maker’s awareness of his unawareness,

including the evolution of his beliefs about his ignorance in the wake of discovery of new

consequences.
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Depending on the nature of the discoveries, the sense of ignorance, or the ‘residual’

unawareness, may shrink, grow, or remain constant. For instance, as unknown and unsus-

pected regions of the Earth or the solar system were discovered (or rediscovered), fewer

regions remained to be discovered, and the sense of ignorance diminished. By contrast,

some scientific discoveries, such as relativity, atoms, or the structure of the DNA, resolved

certain outstanding issues in physics and biology and, at the same time, opened up new,

unsuspected, vistas. These discoveries enhanced the sense that our ignorance is, in fact,

greater than what was perceived before these discoveries were made. Our model is designed

to accommodate both types of growing awareness.

The sense that there might be consequences, lurking in the background, of which one

is unaware may inspire fear or excitement and affect individual choice behavior. In this

work we present a model that assigns utility to the unknown that captures this aspect of

the decision problem. The “utility of unknown consequences” represents the attitudes of

the decision maker towards discovering unknown consequences and the emotions it evokes.

If fear is the predominant emotion evoked by the unknown, then confidence that one

is unlikely to encounter unknown consequences would beget boldness of action while the

lack of it would induce more prudent behavior. If acting in an environment, be it physical,

cultural, legal or political, that one is accustomed to is accompanied by greater degree of

such confidence, lack of familiarity with foreign cultural, legal, or political landscapes may

contribute to the reported domestic bias and ‘insufficient’ diversification in domestic and

foreign financial investments.

In the next section we present the analytical framework and the basic preference struc-

ture. In section 3 we introduce axioms that provide links among distinct levels of un-

awareness and present the representation theorem assigning probabilistic beliefs to making

new discoveries and providing rules for updating beliefs. We also present the axiomatic

structure depicting shrinking and growing sense of ignorance. In section 4 we enrich the

framework and introduce a subjective expected utility model with utility of the unknown.

Concluding remarks and a brief review of the related literature appear in section 5. The

proofs are provided in Section 6.
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2 The Analytical Framework

In our earlier work (see Karni and Vierø [2013, 2014]), dubbed ‘reverse Bayesianism,’ we

modeled and analyzed the evolution of a decision maker’s beliefs when his universe, for-

malized as a state space, expands. In these works, the state space expands as a result of

discoveries of new acts and/or consequences. There is, however, a fundamental difference

between discoveries of acts and consequences. Discovery of new acts, such as the introduc-

tion of derivatives in financial markets, the introduction of new means of transportation by

constructing jet-propelled airplanes, or the generation of electricity using nuclear energy,

are the result of innovative designs. By contrast, the discovery of new consequences, such

as new diseases, (e.g., the discovery of syphilis by the Europeans), the beneficial effects of

Penicillium fungi (penicillin) in fighting certain bacterial infections, or the depletion of the

ozone layer by photodissociation of man-made halocarbon refrigerants, is arrived at coin-

cidentally, through observation and/or scientific experimentation. Insofar as this paper is

concerned, the crucial difference between the two types of discoveries is that the discovery

of new acts refine the existing state space while the discovery of new consequences expands

the state space. Put differently, when a new feasible act is designed, each element of the

prior state space (the state space that existed prior to the introduction of the new act)

becomes a non-degenerate event in the posterior state space (the state space following the

introduction of the new act). By contrast, when a new consequence is discovered the prior

state space is augmented as additional states come into being. Thus, unlike the discovery

or invention of new feasible acts whose effect on the structure of the state space is fully

anticipated, the discovery of new consequences uncovers elements of the state space that

were unimaginable, or indescribable, in the formulation of the decision problem.

In this work we investigate behavioral and cognitive aspects of awareness of unaware-

ness. This investigation focuses on the effects of the anticipation and discovery of new

consequences on decision makers’ awareness of their ignorance.

2.1 Conceivable states and acts

Let F be a finite, nonempty set of feasible acts, and C0 be a finite, nonempty set of

feasible consequences. We define x0 = ¬C0 to be the abstract “consequence” that has the
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interpretation “none of the above”.1 Let Ĉ0 = C0 ∪ {x0}. Together these sets determine

the augmented conceivable state space, ĈF
0 , which is, by definition, exhaustive.2 They also

determine the subset of fully describable states, CF
0 . As an illustration, let there be two

feasible acts, F = {f1, f2}, and two feasible consequences, C0 = {c1, c2}. The resulting

augmented conceivable state space consists of nine states as depicted in the following

matrix:

F\ĈF0
0 s1 s2 s3 s4 s5 s6 s7 s8 s9

f1 c1 c2 c1 c2 x0 x0 c1 c2 x0

f2 c1 c1 c2 c2 c1 c2 x0 x0 x0

(1)

The subset of fully describable states in this example is CF
0 = {s1, ..., s4}.

The set of conceivable acts, consists of all the mappings from the augmented conceivable

state space to lotteries on the set of feasible consequences.3 Formally,

F̂0 := {f : ĈF
0 → ∆ (C0)}, (2)

where ∆ (C0) is the set of all lotteries with consequences in C0 as prizes.4 Conceivable acts

can be interpreted as bets on the outcomes of the feasible acts whose payoffs are lotteries

over feasible consequences. The reason we restrict the payoffs to lotteries over feasible

consequences is that, under the level of awareness described by F and C0 these are the

only payoffs that can be meaningfully specified in every state. Consequently, the set of

consequences that defines the payoffs of the conceivable acts is a strict subset of the set of

“consequences” that defines the augmented conceivable state space.5

1Since there is no universal set of consequences in the background, the addition of the abstract conse-

quence x0 to the set C0 generates a set of consequences that is, by definition, universal. The element x0 is

defined “negatively”using the set of feasible consequences. If x0 is the empty set, then C0 is the universal

set of consequences.
2This method of constructing the state space from the primitive sets of feasible acts and consequences

appears in Schmeidler and Wakker (1987) and Karni and Schmeidler (1991). It was used in Karni and

Vierø (2013, 2014). The augmentation due to “none of the above” is specific to the present paper.
3Here we invoke the analytical framework of Anscombe and Aumann (1963).
4Formally, p ∈ ∆ (C0) is a function p : C0 → [0, 1] satisfying Σc∈C0p (c) = 1. Notice that with this

definition of ∆(C0) we have that, for any C0 ⊂ C1, any p ∈ ∆(C0) is also an element of ∆(C1) with

p(c) = 0 for all c ∈ C1 − C0. Likewise, q ∈ ∆(C1) is an element of ∆(C0) if q(c) = 0 for all c ∈ C1 − C0.
5We revisit this assertion in Section 4.
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Suppose that a new consequence, c′ /∈ C0, is discovered. This discovery expands the set

of feasible consequences to C1 = C0 ∪ {c′}. At the same time the abstract “consequence”

that has the interpretation “none of the above” becomes x1 = ¬C1 and the augmented set

of consequences becomes Ĉ1 = C1∪{x1}. The posterior augmented conceivable state space

is ĈF
1 . In our illustrating example, if a new consequence c3 is discovered, the augmented

conceivable state space becomes

F\ĈF
1 s1 s2 s3 s4 s′5 s5 s′6 s6 s′7 s7 s′8 s8 s′9 s′′9 s′′′9 s9

f1 c1 c2 c1 c2 c3 x1 c3 x1 c1 c1 c2 c2 c3 c3 x1 x1

f2 c1 c1 c2 c2 c1 c1 c2 c2 c3 x1 c3 x1 c3 x1 c3 x1

(3)

The set of fully describable states also expands and is now CF
1 = CF

0 ∪ {s′5, s′6, s′7, s′8, s′9}.
Thus, when a new feasible consequence is discovered, each of the prior fully describable

states remains as before, while each of the prior imperfectly describable states is split into

a fully describable state and one or more posterior imperfectly describable states. Hence,

points are added to the subset of fully describable states, and simultaneously the number

of imperfectly describable states also increases.

As the decision maker’s augmented conceivable state space expands, so does the set

of conceivable acts, F̂1 := {f : ĈF
1 → ∆ (C1)}. Because the set of conceivable acts is

a variable in our model, a decision maker is characterized by a collection of preference

relations, one for each level of awareness over the corresponding set of conceivable acts.

We denote the preference relation on F̂i by <i, i = 0, 1. In particular, the prior preference

relation is denoted by <0 on F̂0 and the posterior preference relation is denoted by <1 on

F̂1. Denote by �i and ∼i the asymmetric and symmetric parts of <i, respectively. These

derived relations are given the usual interpretation of strict preference and indifference,

respectively. With the usual abuse of notation, we denote by p the constant act that

assigns p to each s ∈ ĈF
i and by c or δc the degenerate lottery that assigns the unit

probability mass to the consequence c.

For all f, g ∈ F̂i and α ∈ [0, 1] define the convex combination αf + (1− α) g ∈ F̂i by:

(αf + (1− α) g) (s) = αf (s) + (1− α) g (s) , for all s ∈ ĈF
i . Then, F̂i is a convex subset in

a linear space.

Consider a decision maker whose choices are characterized by a preference relation <i

on F̂i. For any f, g ∈ F̂i, and E ⊂ ĈF
i , let gEf be the act in F̂i obtained from f by for each

s ∈ E replacing its s− th coordinate with g(s). Following Savage (1954), a state s ∈ ĈF
i is
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said to be null if p{s}f ∼i q{s}f, for all p, q ∈ ∆ (Ci), for all f ∈ F̂i. A state is said to be

nonnull if it is not null.

2.2 Basic preference structure

We assume throughout that the set of consequences of which the decision maker is aware

prior to the discovery has a most preferred and a least preferred element. Formally, there

exist c∗, c∗ ∈ C0 such that the constant act that assigns c∗ to every state is strictly preferred

over any other constant act in F̂0 and the constant act that assigns c∗ to every state is

strictly less preferred than any other constant act in F̂0.

For all p, q ∈ ∆ (Ci), p first-order stochastically dominates q according to <i if Σ{j|c<icj}p (cj) ≤
Σ{j|c<icj}q (cj) for all c ∈ Ci, and p strictly first-order stochastically dominates q accord-

ing to <i if p first-order stochastically dominates q according to <i and, in addition,

Σ{j|c<icj}p (cj) < Σ{j|c<icj}q (cj) for some c ∈ Ci. We denote these domination relations by

p ≥1 q and p >1 q, respectively.

As described above, when the state space changes in the wake of discoveries of new

consequences, the set of conceivable acts must be expanded and the preference relation

must be redefined on the extended domain. Following Machina and Schmeidler (1995), we

assume that, for each F̂i, <i adheres to the following axioms, which ensure probabilistic

sophistication.

(A.1) (Weak order) For every F̂i, the preference relation <i is transitive and complete.

(A.2) (Mixture continuity) For each F̂i and all f, g, h ∈ F̂i, if f �i g and g �i h then

there exists α ∈ (0, 1) such that αf + (1− α)h ∼i g.

(A.3) (Monotonicity) For every F̂i and p, q ∈ ∆ (Ci) , if p ≥1 q then pEk
h <i qEk

h, for

all partitions {E1, ..., En} of ĈF
i and all h ∈ F̂i, with pEk

h �i qEk
h if p >1 q and Ek

is nonnull.

(A.4) (Replacement) For every F̂i and any partition {E1, ..., En} of ĈF
i , if

δc∗
Ek

(
δc∗
Ej
δc∗
)
∼i

(
αδc∗ + (1− α) δc∗

)
Ek∪Ej

δc∗

for some α ∈ [0, 1] and pair of events Ei, Ej , then

pEk
(qEjh) ∼i (αp+ (1− α) q)

Ek∪Ej
h
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for all p, q ∈ ∆ (Ci) and h ∈ F̂i.

(A.5) (Nontriviality) For every F̂i, �i 6= ∅.

To link the preference relations across expanding sets of conceivable acts, we invoke the

relevant part of the invariant risk preferences axiom introduced in Karni and Vierø (2013),

asserting the commonality of risk attitudes across levels of awareness.

(A.6) (Invariant risk preferences) For all C0 ⊂ C1 and the corresponding <0 on F̂0

and <1 on F̂1, p <0 q if and only if p <1 q, for all p, q ∈ ∆ (C0) .

3 Representation and Evolution of Beliefs

3.1 The general result

The following two axioms link the preference relations across different levels of aware-

ness. The first axiom, dubbed Refinement Consistency I, asserts that the decision maker’s

ranking of objective versus subjective uncertainty, conditional on the initial set of fully

describable states, remains unchanged when the set of fully describable states expands

in the wake of discovery of new consequences. The intuition is that, while the discovery

of new consequences may change the decision maker’s sense of ignorance, such discover-

ies do not affect the part of his preferences that only concerns the fully describable and

well-understood part of his universe.

(A.7) (Refinement Consistency I) For all C0 ⊂ C1 and the corresponding sets of

conceivable acts F̂0 and F̂1, all f, g ∈ F̂0 and f ′, g′,∈ F̂1, if g = g′ = ηδc∗ + (1− η) δc∗

for some η ∈ [0, 1] and f = f ′ = δc∗
{s}

(
δc∗
CF

0
g
)
, for some s ∈ CF

0 , then it holds that

f <0 g if and only if f ′ <1 g
′.

Note that g and g′ are roulette lotteries interpreted as constant acts on the relevant

state space. What happens when a new consequence is discovered is that the event on

which the acts f and g as well as f ′ and g′ agree is partitioned more finely. The axiom

states that such refinement does not alter preferences conditional on the event that is

unaffected by the change. In a nutshell, Refinement Consistency I ensures robustness of

the decision maker’s preferences, conditional on the a priori fully describable event, with

respect to discovery of new consequences.
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The second axiom, dubbed Refinement Consistency II, asserts that, in the wake of

discovery of new consequences, and conditional on the set of a priori imperfectly describable

states, a decision maker’s ranking of objective uncertainty versus subjective uncertainty

regarding a state is the same as that of objective uncertainty versus subjective uncertainty

regarding the corresponding event in the a posteriori state space. To state this idea formally

we introduce the following additional notations: If C0 ⊂ C1 then for each s ∈ ĈF
0 − CF

0

there corresponds an event E (s) ⊂ ĈF
1 − CF

0 defined by E (s) = {ŝ ∈ ĈF
1 − CF

0 | ∀f ∈ F
if f (s) ∈ C0, then f (ŝ) = f (s) and if f (s) = x0 then f(ŝ) ∈ {x1} ∪ (C1 − C0)}.6

(A.8) (Refinement Consistency II) For all C0 ⊂ C1 and the corresponding sets of

conceivable acts F̂0 and F̂1, all f, g ∈ F̂0 and f ′, g′,∈ F̂1, if g = g′ = ηδc∗ + (1− η) δc∗

for some η ∈ [0, 1], f = δc∗

{s}
(
δc∗
(ĈF

0 −CF
0 )g
)
, and f ′ = δc∗

E(s)(δ
c∗
(ĈF

1 −CF
0 )g

′), for some

s ∈ ĈF
0 − CF

0 , then it holds that f <0 g if and only if f ′ <1 g
′.

Note that the acts f , g, f ′, and g′ all agree on the, initially fully describable, event CF
0 .

The intuition behind the axiom is that, conditional on the event that is not fully describable

a priori, the decision maker views the relative likelihoods of a priori measurable sub-events

as being independent of the extent to which he can describe the events.7

Theorem 1 below concerns the existence and uniqueness properties of a probabilistically

sophisticated representation of preference relations satisfying the aforementioned axioms.

To state the theorem we invoke the following definitions: A function V is said to be strictly

monotonic if V (p) ≥ V (q) whenever p dominates q according to first-order stochastic

dominance, with strict inequality in the case of strict dominance. A function V is said to

be mixture continuous if V (αp+ (1− α) q) is continuous in α for all p and q.

Theorem 1 For each C0 ⊂ C1 and the corresponding preference relations <0 on F̂0 and

<1 on F̂1, the following two conditions are equivalent:

(i) <0 and <1 each satisfy (A.1) - (A.5) and jointly, <0 and <1 satisfy (A.6) - (A.8).

(ii) There exist real-valued, mixture continuous, strictly monotonic functions, V0 on

∆(C0) and V1 on ∆(C1), and probability measures, π0 on ĈF
0 and π1 on ĈF

1 , such that for
6It may be helpful to look at the matrices (1) and (3) to see what this notation captures.
7An event E is measurable with respect to the prior state space if there is an act, f ∈ F̂0 and consequence

c ∈ Ĉ0 such that f−1(c) = E.
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all f, g ∈ F̂0,

f <0 g ⇔ V0

(
Σs∈ĈF

0
π0 (s) f (s)

)
≥ V0

(
Σs∈ĈF

0
π0 (s) g (s)

)
. (4)

and, for all f ′, g′ ∈ F̂1,

f ′ <1 g
′ ⇔ V1

(
Σs∈ĈF

1
π1 (s) f ′ (s)

)
≥ V1

(
Σs∈ĈF

1
π1 (s) g′ (s)

)
. (5)

The functions V0 and V1 are unique up to positive transformations and V0 (p) = V1 (p) for

all p ∈ ∆ (C0) , the probability measures π0 and π1 are unique and, for all s, s′ ∈ CF
0 ,

π0 (s)
π0 (s′)

=
π1 (s)
π1 (s′)

(6)

and, for all s, s′ ∈ ĈF
0 − CF

0 ,
π0 (s)
π0 (s′)

=
π1 (E (s))
π1 (E(s′))

. (7)

Property (6) in Theorem 1 states that the decision maker’s subjective beliefs about the

relative likelihoods of fully describable states, conditional of the initial set of fully describ-

able states, remain unchanged in the wake of discoveries of new consequences. Property

(7) states that the decision maker’s subjective beliefs about the relative likelihood of a

priori measurable sub-events, conditional of the set of states that he cannot fully describe

a priori, remains unchanged in the wake of discoveries of new consequences. Property (6)

is reverse Bayesian updating following the discovery of a new consequence as it occurs

in Karni and Vierø (2013, 2014). Thus, insofar as the discovery of new consequences is

concerned, the model and preference structures of Karni and Vierø (2013, 2014) are nested

within the present one and correspond to the special case when πi(CF
i ) = 1 for all i. That

is, in Karni and Vierø (2013, 2014), for any level of awareness, the decision maker assigns

probability zero to future expansions of his awareness.

3.2 Decreasing and increasing sense of ignorance

Discoveries of new consequences expand the decision maker’s universe and, depending on

their nature, may be accompanied by diminishing, growing or unchanged sense of igno-

rance. These reflect that intuitively there are three different possible reactions to making

a discovery of a new consequence: One could think that it leaves fewer consequences to
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discover or that new discoveries will be harder to make. Alternatively, one could become

more focused on the possibility of making new discoveries, perhaps because the discovery

of new consequences poses new questions. Finally, one could consider the current discovery

as having no effect on the likelihood of future discoveries. As we now show, each of these

reactions is axiomatically founded.

The next axiom captures the preferential expression of a decreasing sense of ignorance.

The case of an increasing sense of unawareness is symmetric and can be treated formally

in the same way. For both decreasing and increasing sense of ignorance, the axioms de-

scribe the decision maker’s willingness to bet on or against making discoveries of new

consequences.

(A.9) (Decreasing Sense of Ignorance) For all C0 ⊂ C1 and the corresponding sets

of conceivable acts F̂0 and F̂1, for all f, g ∈ F̂0 and f ′, g′,∈ F̂1, such that g = g′ =

ηδc∗ + (1− η) δc∗ for some η ∈ [0, 1], f = δc∗

CF
0
δc∗ and f ′ = δc∗

CF
1
δc∗ , we have that

f ∼0 g implies f ′ <1 g
′.

Note that this is a decreasing sense of ignorance in the weak sense. It includes the

cases of strictly decreasing sense of ignorance (f ′ �1 g
′) and constant sense of ignorance

(f ′ ∼1 g
′) as special instances. A decision maker has a constant sense of ignorance if he

is equally inclined to bet against something unforeseen before and after the discovery of a

new consequence. He has a strictly decreasing sense of ignorance if he is more inclined to

bet against something unforeseen after the discovery.

Theorem 2 below quantifies the decreasing sense of unawareness by subjective proba-

bilities. Specifically, if growing awareness is accompanied by decreasing sense of ignorance,

the subjective probability assigned to the ‘residual’ unawareness diminishes.

Theorem 2 For each pair C0 ⊂ C1 and the corresponding preference relations <0 on F̂0

and <1 on F̂1, the following statements are equivalent:

(i) <0 and <1 each satisfy (A.1) - (A.5), and jointly <0 and <1 satisfy (A.6) - (A.9).

(ii) There exists a representation as in Theorem 1 and, in addition,

π0(ĈF
0 − CF

0 ) ≥ π1(ĈF
1 − CF

1 ). (8)
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Inequality (8) includes the case of strictly shrinking ignorance, π0(ĈF
0 −CF

0 ) > π1(ĈF
1 −

CF
1 ) , and the case of constant ignorance, π0(ĈF

0 −CF
0 ) = π1(ĈF

1 −CF
1 ), as special instances.

Clearly, it is possible to formulate the notion of a strictly increasing sense of ignorance

by changing the conclusion of Axiom (A.9) as follows:

(A.9’) (Increasing Sense of Ignorance) For all C0 ⊂ C1 and the corresponding sets

of conceivable acts F̂0 and F̂1, all f, g ∈ F̂0 and f ′, g′,∈ F̂1, such that g = g′ =

ηδc∗ + (1− η) δc∗ for some η ∈ [0, 1], f = δc∗
CF

0
δc∗ and f ′ = δc∗

CF
1
δc∗ , f ∼0 g implies

g′ �1 f
′.

A decision maker has an increasing sense of ignorance if he is less inclined to bet against

a future increase in awareness after a new consequence is discovered. Correspondingly, we

have the following:

Corollary 1 For all C0 ⊂ C1 and the corresponding preference relations <0 on F̂0 and <1

on F̂1, the following statements are equivalent:

(i) <0 and <1 each satisfy (A.1) - (A.5) and jointly, <0 and <1 satisfy (A.6) - (A.8)

and (A.9’).

(ii) There exists a representation as in Theorem 1 and, in addition,

π0(ĈF
0 − CF

0 ) < π1(ĈF
1 − CF

1 ). (9)

Constant or strictly increasing sense of ignorance necessitates that the decision maker

views the world as infinite. There will, in his view, always be more consequences to discover.

On the other hand, with a decreasing sense of ignorance, both finite and infinite views of

the universe are possible.

As the above analysis shows, the model of Karni and Vierø (2013, 2014) is the special

case of growing awareness in which the decision maker exhibits a constant sense of un-

awareness assigning zero probability to discovery of new consequences. In Karni and Vierø

(2013, 2014), new discoveries were outside of the decision maker’s conception. However,

the same situation arises if the decision maker can in fact conceive of new discoveries, but

considers them impossible.
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4 Utility of Unknown Consequences

4.1 Extended conceivable acts

Conceivable acts are mappings from the set of states to the set of lotteries on feasible

consequences. This specification is the most general possible if the consequences (the lot-

teries) are to be meaningfully described in every state. In other words, including the

abstract consequence “none of the above,” or x0, in the supports of the lotteries would

create a conceptual problem in states that are fully characterized by feasible consequences

(e.g., the states s1, ..., s4 in the first example in Section 2.1). In these states, x0 remains

abstract, so a lottery with x0 in its support cannot be specified and, therefore, is meaning-

less. By contrast, in states whose partial or complete descriptions include x0, this abstract

consequence takes a concrete meaning. Consequently, only in those states lotteries whose

supports include x0 can be specified. In the first example in Section 2.1, with the state

space depicted in (1), a lottery that assigns 10% chance to winning c1, 75% to winning c2,

and 15% chance to winning a prize, which is not yet known, but is neither c1 nor c2 and

will be discovered once the event {s5, ..., x9} obtains, is well defined in the states s5, . . . , s9.

As we have shown, the specification of the conceivable acts that restricts the support

of the lotteries to feasible consequences is sufficient to obtain subjective probabilities and

utility representation on conceivable acts (see Theorem 1). These subjective probabilities

also apply in the special case in which the representation takes the form of subjective ex-

pected utility. In case of subjective expected utility, however, if only the aforementioned

conceivable acts are considered, it is possible to specify the utilities of the feasible conse-

quences but not that of the unspecified consequence x0. Put differently, the framework of

Sections 2 and 3 makes it possible to assign probabilistic beliefs to discovery of new conse-

quences, but is not sufficiently rich to give us a measuring rod for “the utility of unknown

consequences” that may not even exist. Assigning utility to the unspecified consequence,

x0, would allow an explicit and formal expression of the decision maker’s sentiments (e.g.,

fear or excitement) associated with the prospect of discovering consequences of which he

is currently unaware. Presumably, the sentiments associated with discovering unknown

aspects of the universe affect individual (and social) choice behavior.

To explore the possibility of assigning utility to unknown consequences, x0, we extend

the range of the set of conceivable acts. Formally, let ∆(Ĉ0) be the set of extended lotteries

that include x0 in their supports. Let F̂0 be as defined in (2) and F̃ := {f̃ : (ĈF
0 −CF

0 )→

13



∆(Ĉ0)}. That is, F̃ is the set of all functions from the set of imperfectly describable states

to the set of extended lotteries. Define a set of extended conceivable acts F ∗ as follows:

F ∗ = {f̃(ĈF
0 −CF

0 )f | f ∈ F̂0, f̃ ∈ F̃}.

Note that F ∗ ⊃ F̂0 and, in particular, that F ∗ does not include the constant acts whose

image is in ∆(Ĉ0) −∆ (C0) . The set of extended conceivable acts F ∗ is therefore not an

Anscombe and Aumann (1963) set of acts. Rather, the set is the limit of what can be

meaningfully expressed as bets that can in fact be resolved, given the decision maker’s

awareness. For all f∗ = f̃(ĈF
0 −CF

0 )f and g∗ = g̃(ĈF
0 −CF

0 )g in F ∗ and α ∈ (0, 1) , define

(αf∗ + (1− α) g∗) (s) = αf∗(s) + (1− α) g∗(s), for all s ∈ ĈF
0 (that is, αf∗ + (1− α) g∗ =

(αf̃ + (1− α)g̃)(ĈF
0 −CF

0 ) (αf + (1− α) g)). Then F ∗ is a convex set in a linear space.

4.2 Extended preferences and their representation

Let <∗ be a preference relation on F ∗ and assume that the restriction of <∗ to F̂0 agrees

with < (that is, <∗=< on F̂0). Note that the definition of null and nonnull events from

Section 2.1 still applies.

We state the following well-known subjective expected utility axioms for a weak order

<∗ on a generic set of acts F and a generic set of consequences C.8

(A.10) (Archimedean) For all f, g, h ∈ F, if f �∗ g and g �∗ h then αf +(1− α)h �∗ g
and g �∗ βf + (1− β)h, for some α, β ∈ (0, 1).

(A.11) (Independence) For all f, g, h ∈ F, and α ∈ (0, 1], f <∗ g if and only if αf +

(1− α)h <∗ αg + (1− α)h.

(A.12) (Monotonicity) For all p, q ∈ ∆(C), f ∈ F, and nonnull event E ⊆ ĈF
0 , pEf <∗

qEf if and only if p <∗ q.

(A.13) (Nontriviality) There are f, g ∈ F such that f �∗ g.

By the Theorem of Anscombe and Aumann (1963), the restriction of <∗ to F̂0 is

a weak order satisfying the Archimedean, Independence, Monotonicity and Nontriviality
8We believe these axioms are sufficiently famous that they do not require further discussion. For readers

not familiar with these axioms, Fishburn (1970) and Kreps (1988) give excellent discussions.
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axioms with F =F̂0 and C = C0 if and only if there exists a non-constant, real-valued,

affine function, U on ∆ (C0) , unique up to positive linear transformation, and a unique

probability measure π on ĈF
0 such that for all f, g ∈ F̂0,

f <∗ g ⇔
∑

s∈ĈF
0

U (f (s))π (s) ≥
∑

s∈ĈF
0

U (g (s))π (s) . (10)

Representation (10) gives us the utility of feasible consequences as well as the probability

measure over the augmented conceivable state space. To extend the representation to also

provide the utility of the abstract consequence x0, we define sets of conditional extended

conceivable acts as follows: For every f ∈ F̂0, let

F(ĈF
0 −CF

0 ) (f) := {f̃(ĈF
0 −CF

0 )f ∈ F
∗ | f̃ ∈ F̃}.

That is, F(ĈF
0 −CF

0 ) (f) is the set of all acts in F ∗ that are extensions of a particular f ∈ F0.

With this we can obtain a subjective utility representation on each of the sets of conditional

extended conceivable acts.

Proposition 1 For every given f ∈ F̂0 the restriction of <∗ to F(ĈF
0 −CF

0 ) (f) is a weak

order satisfying (A.10) - (A.13) with F =F(ĈF
0 −CF

0 ) (f) and C = Ĉ0 and if and only if there

exist a real-valued, non-constant, affine function U∗f on ∆(Ĉ0) and a conditional probability

measure µ on (ĈF
0 − CF

0 ) such that, for all f̃(ĈF
0 −CF

0 )f and g̃(ĈF
0 −CF

0 )f in F(ĈF
0 −CF

0 ) (f) ,

f̃(ĈF
0 −CF

0 )f <∗ g̃(Ĉ0−C0)f ⇔
∑

s∈ĈF
0 −CF

0

U∗f (f̃(s))µ(s) ≥
∑

s∈ĈF
0 −CF

0

U∗f (g̃(s))µ(s), (11)

where U∗f is unique up to positive affine transformation, µ is unique and µ (s) = 0 if and

only if s is null.

The proof is an immediate implication of Anscombe and Aumann (1963).

Since <∗ agrees with < on F̂0, the representations in (10) and (11) together imply

that for all f ∈ F̂0 and p ∈ ∆(C0), U∗f (p) = U(p), i.e. independent of f , and that µ(s) =

π(s)/π(ĈF
0 −CF

0 ) for all s ∈ ĈF
0 −CF

0 . However, the utility of the abstract consequence x0,

U∗f (x0), may depend on the act f . The axiom below, which we call Separability, connects
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the different conditional representations in Proposition 1. The axiom requires that the

ranking of acts that agree on the set of fully describable states, CF
0 and are constant on

the set of partially describable states, ĈF
0 −CF

0 , be independent of the part on which they

agree. This separability is not implied by the independence axiom because lotteries in

∆(ĈF
0 ) are not defined on the subset of fully describable states, which lends the choice set

a “non-rectangular shape.” Formally,

(A.14) (Separability) For all f, g ∈ F̂0 and p̂, q̂ ∈ ∆(Ĉ0), q̂(ĈF
0 −CF

0 )f <∗ p̂(ĈF
0 −CF

0 )f if

and only if q̂(ĈF
0 −CF

0 )g <∗ p̂(ĈF
0 −CF

0 )g.

The next theorem formally combines the representations (10) and (11) to obtain a

general subjective expected utility representation with a utility of the unknown.

Theorem 3 The following conditions are equivalent:

(i) For every given f ∈ F ∗, the preference relation <∗ on F ∗ is a weak order satisfy-

ing axioms (A.10) - (A.13) with C = C0 and F =F̂0 and also with C = Ĉ0 and

F =F(ĈF
0 −CF

0 ) (f) for all f ∈ F̂0, as well as axiom (A.14).

(ii) There exist real-valued, non-constant, affine functions, U on ∆ (C0) and U∗ on

∆(Ĉ0), and a probability measure π on ĈF
0 such that, for all f∗,g∗ ∈ F ∗,

f∗ <∗ g∗ ⇔ (12)∑
s∈CF

0

U(f∗(s))π(s) +
∑

s∈ĈF
0 −CF

0

U∗(f∗(s))π(s) ≥
∑

s∈CF
0

U(g∗(s))π(s) +
∑

s∈ĈF
0 −CF

0

U∗(g∗(s))π(s).

The functions U and U∗ are unique up to positive linear transformation and they

agree on ∆ (C0). The probability measure is unique, with π (s) = 0 if and only if s is

null and, for all s ∈ ĈF
0 − CF

0 , π (s) /π(ĈF
0 − CF

0 ) = µ (s) .

The framework of sections 2 and 3 allowed us to obtain the decision maker’s beliefs,

including those assigned to the less than fully describable event and its measurable sub-

events. As we have just shown, enriching the framework to include extended conceivable

acts further allows us to obtain the utility of the unknown. This utility will reflect whether

the decision maker faces the unknown with fear or excitement.
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4.3 Applications

A strength of our framework is that it distinguishes among states in which different feasible

acts result in new consequences, as illustrated in the matrix (1). It therefore allows for the

decision maker viewing different acts as being more or less likely to increase awareness. If

familiarity begets boldness while lack of it begets prudence, acts that are perceived as less

likely to result in unforeseeable consequences are expected be preferred over similar acts

that are more likely to result in unforeseeable consequences. As an illustration, consider

again the example in matrix (1) in Section 2.1. Suppose that the decision maker is confident

that the act f1 is unlikely to lead to unforeseen consequences. Specifically, f1 is taking

a familiar route from Spain to India around the Cape of Good Hope. For simplicity

of exposition, suppose that the decision maker believes that if he chooses f1 either the

consequence c1 “getting to India safely” or c2 “sinking in the ocean” will obtain. In other

words, on the basis of past experience, under f1 the possibility that “neither c1 nor c2”

(that is, x0) will obtain is believed to be impossible. Formally, the event {s5, s6, s9} is

considered null. By contrast, x0 is considered a real possibility if f2, a route that was not

tried before, such as going to India by sailing westward, is chosen. Thus, the event {s7, s8}
is assigned positive probability. By the representation (12),

f1 7→ U (δc1) [π0 (s1) + π0 (s3) + π0 (s7)] + U (δc2) [π0 (s2) + π0 (s4) + π0 (s8)] .

and

f2 7→ U(δc1) [π0 (s1) + π0 (s2)] + U(δc2) [π0 (s3) + π0 (s4)] + U∗(δx0) [π0 (s7) + π0 (s8)] .

Therefore, a choice of f2 over f1 yields higher probability of encountering an “unknown”

consequence, x0. If U(δc1) > U∗(δx0) and π0 (s3) ≥ π0 (s2) + π0 (s8) , then f1 � f2.

This type of reasoning might explain the reluctance to invest in foreign markets gov-

erned by legal rules and customs that are less familiar. Investment in such environments

may involve consequences of which the investors are unaware. Awareness of such unaware-

ness may result in more prudent behavior and produce the well-known domestic bias in

financial investments.
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5 Concluding Remarks

5.1 The evolution of beliefs about describable events

Theorem 1 concerns the evolution of the relative likelihoods of fully describable (or not

fully describable) events in the wake of discovery of new consequences, but is silent on the

likelihood themselves. By contrast, Theorem 2 concerns the evolution of the likelihoods of

the not fully describable events. Therefore, combining the results of the two theorems makes

it is possible to discuss the magnitudes of the change in the beliefs about the likelihoods

of fully describable events. For instance, suppose that a new discovery is accompanied by

a sense of constant unawareness. By Theorem 2, π0(ĈF
0 − CF

0 )− π1(ĈF
1 − CF

1 ) = 0. But

Σs∈CF
0
π0 (s) + π0(ĈF

0 − CF
0 ) = 1

and

Σs∈CF
0
π1 (s) + Σs∈(CF

1 −CF
0 )π1 (s) + π1(ĈF

1 − CF
1 ) = 1.

Hence, probability mass must be shifted from CF
0 to CF

1 − CF
0 , proportionally (that is,

the probabilities of all the states in CF
0 must be reduced equiproportionally). Similarly,

increasing sense of unawareness requires that probability mass must be shifted from CF
0 to

ĈF
1 − CF

0 , proportionally and that some of this probability must be shifted to ĈF
1 − CF

1 .

Finally, decreasing sense of unawareness implies that some probability mass of the event

ĈF
0 −CF

0 is shifted towards the newly describable event CF
1 −CF

0 . In the latter instance, the

effect of growing awareness on the subjective probability assigned to the set of originally

describable states, CF
0 , is unpredictable.

The present paper shows that the model of Karni and Vierø (2013) is, in fact, the special

case of growing awareness in which the decision maker exhibits not only a constant sense

of ignorance, but a constant sense of ignorance assigning zero probability to discovering

new consequences. Such a decision maker can be thought of as being myopic with respect

to growing awareness, believing at every point that he is fully aware of the scope of his

universe. The present paper thus gives an explicit and formal meaning to this type of

myopia.
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5.2 Related literature

The exploration of the issue of (un)awareness in the literature has invoked at least three

different approaches; the epistemic approach, the game-theoretic or interactive decision

making approach, and the choice-theoretic approach.

The epistemic approach is taken in Fagin and Halpern (1988), Dekel, Lipman, and Rus-

tichini (1998) Modica and Rustichini (1999), Halpern (2001), Heifetz, Meier, and Schipper

(2006, 2008), Li (2009), Hill (2010), Board and Chung (2011), Walker (2011), and Halpern

and Rego (2009, 2013a). Of these, Board and Chung (2011), Walker (2011), and Halpern

and Rego (2009, 2013a) consider awareness of unawareness. Schipper (2013a) provides an

excellent overview of the epistemic literature as well as of the literature on awareness and

unawareness more generally.

The game-theoretic, or interactive decision making, approach is taken in Halpern and

Rego (2008, 2013b), Heifetz, Meier, and Schipper (2013a, 2013b), Heinsalu (2014), and

Grant and Quiggin (2013). The latter develops a model of games with awareness in which

inductive reasoning may cause an individual to entertain the possibility that her aware-

ness is limited. Individuals thus have inductive support for propositions expressing their

own unawareness. In this paper, we implicitly assume inductive reasoning to motivate

considering awareness of unawareness.

The choice-theoretic approach to unawareness or related issues is taken in Li (2008),

Ahn and Ergin (2010), Schipper (2013b), Lehrer and Teper (2014), Kochov (2010), Walker

and Dietz (2011), and Alon (2014). The former four are discussed in detail in Karni and

Vierø (2013). Walter and Dietz (2011) and Kochov (2010) consider decision makers who

are aware of their potential unawareness, and are thus the papers closest related to the

present paper.

Walker and Dietz (2011) take a choice theoretic approach to static choice under “con-

scious unawareness.” In their model, unawareness materializes in the form of coarse contin-

gencies (that is, their state space does not resolve all uncertainty). Their representation is

similar to Klibanoff, Marinacci, and Mukerji’s (2005) smooth ambiguity model. The model

of Walker and Dietz (2011) differs from ours in several respects: theirs is a static model

and thus does not consider the issue of updating when awareness increases, their approach

to modeling the state space differs from ours, and in their model a decision maker’s beliefs

are not represented by a single probability measure.
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Kochov (2010) develops an axiomatic model of dynamic choice in which the decision

maker knows that her perception of the environment may be incomplete. This causes the

decision maker’s beliefs to be represented by a non-singleton set of priors, with prior by

prior Bayesian updating as the decision maker’s perception of the universe becomes more

precise. Kochov’s work differs from ours in the way the state space and its evolution are

modeled, and the representation of decision makers’ beliefs.

Alon (2014) considers a decision maker in a Savage framework. The axioms she imposes

imply that the decision maker acts as if he completes the state space with an extra state to

which he assigns the worst consequence obtainable from every act. The decision maker is

a subjective expected utility maximizer over the set of extended acts. An interpretation of

the model is that the decision maker acts as if she faces some unforeseen event. Unlike the

model of this paper, Alon’s model is static and thus begs the issue of updating. Moreover,

since the range of acts is simply the standard set of consequences, Alon’s model does not

extend the utility to unknown consequences.

The separation of probabilistic sophistication from the expected utility hypothesis was

first done in a Savage framework in Machina and Schmeidler (1992). Machina and Schmei-

dler (1995) followed up with the result for an Anscombe and Aumann framework. Grant

and Polak (2006) proposed an alternative axiomatization of probabilistically sophisticated

choice behavior.

In the framework of preferences over menus, Dekel, Lipman and Rustichini (2001)

propose “... a model that allows for unforeseen contingencies in the sense that the agent

does not have an exogenously given list of all possible states of the world.” (p. 893). The

agent in their model knows that there may be considerations that she cannot specify.

While this sounds similar, the content is completely different from the model of this paper.

Specifically, the states in Dekel, Lipman and Rustichini are alternative preferences that

the decision maker might entertain at the time he has to choose from the menu. These

“mental states” resolve the uncertainty concerning the decision maker’s own preferences

rather than the payoffs of the feasible acts.

By definition, when a decision maker is unaware of a consequence, he cannot pay

attention to that consequence. This aspect of our model is shared by the recent literature

on revealed attention (see Masatlioglu, Nakajima, and Ozbay (2012). In the case where

the decision maker assigns probability zero to future discoveries of new consequences, our

model is related to Ortoleva’s (2012) model of non-Bayesian reactions to unexpected news.
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6 Proofs

6.1 Proof of Theorem 1

(i)⇒ (ii) . Since <0 and <1 satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler

(1995) implies the existence of mixture continuous, monotonic real-valued functions, V0

and V1 satisfying (4) and (5) as well as the uniqueness of V0 and V1 and of π0 and π1. By

(4) and (5), the restriction of <0 and <1 to the constant acts p, q ∈ ∆ (C0) imply that

V0(p) ≥ V0(q) if and only if p <0 q and that V1(p) ≥ V1(q) if and only if p <1 q. By (A.6),

p <0 q if and only if p <1 q. Thus, by the uniqueness of the representations, V0 and V1 can

be chosen so that V0 = V1 on ∆ (C0) .

Let g = g′ = ηδc∗ + (1− η) δc∗ , and for some s ∈ CF
0 , and let f, f ′ be as in Axiom

(A.7). Suppose that f ∼0 g. But f ∼0 g if and only if

δc∗

{s}

(
δc∗
CF

0
(ηδc∗ + (1− η)δc∗)

)
∼0 ηδ

c∗ + (1− η) δc∗ . (13)

By the representation in (4) the last indifference holds if and only if

V0

(
π0(s)δc∗ +

(
π0(CF

0 )− π0(s)
)
δc∗ + (1− π0(CF

0 ))(ηδc∗ + (1− η)δc∗)
)

= V0

(
ηδc∗ + (1− η)δc∗

)
(14)

But, by first-order stochastic dominance, (14) holds if and only if π0(s)+(1−π0(CF
0 ))η = η.

Hence,

η =
π0(s)
π0(CF

0 )
. (15)

By Axiom (A.7), f ∼0 g if and only if f ′ ∼1 g
′, the latter of which is equivalent to

δc∗

{s}

(
δc∗
CF

0
(ηδc∗ + (1− η)δc∗)

)
∼1 ηδ

c∗ + (1− η) δc∗ . (16)

By the representation in (5), (16) holds if and only if

V1

(
π1(s)δc∗ +

(
π1(CF

0 )− π1(s)
)
δc∗ + (1− π1(CF

0 ))(ηδc∗ + (1− η)δc∗)
)

(17)

= V1

(
ηδc∗ + (1− η)δc∗

)
But (17) holds if and only if π1(s) + (1− π1(CF

0 )η = η. Thus, f ′ ∼1 g
′ if and only if

η =
π1(s)
π1(CF

0 )
. (18)
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By (15) and (18) we have that
π0(s)
π0(CF

0 )
=

π1(s)
π1(CF

0 )
. (19)

An analogous argument applies for any s′ ∈ CF
0 . We therefore also have that, for any

s′ ∈ CF
0 ,

π0(s′)
π0(CF

0 )
=

π1(s′)
π1(CF

0 )
. (20)

Together, (19) and (20) imply that

π1(s)
π1(s′)

=
π0(s)
π0(s′)

. (21)

Now, let again g = g′ = ηδc∗ + (1− η) δc∗ , and for some s ∈ ĈF
0 −CF

0 , let f, f ′ be as in

Axiom (A.8). Suppose that f ∼0 g. But f ∼0 g if and only if

δc∗

{s}

(
δc∗
ĈF

0 −CF
0

(ηδc∗ + (1− η)δc∗)
)
∼0 ηδ

c∗ + (1− η) δc∗ . (22)

By the representation in (4) the last indifference holds if and only if

V0

(
π0(s)δc∗ +

(
1− π0(CF

0 )− π0(s)
)
δc∗ + π0(CF

0 ))
(
ηδc∗ + (1− η) δc∗

))
(23)

= V0

(
ηδc∗ + (1− η) δc∗

)
using that π0(ĈF

0 −CF
0 ) = 1− π0(CF

0 ). But (23) holds if and only if π0(s) + π0(CF
0 )η = η.

Hence,

η =
π0(s)

1− π0(CF
0 )
. (24)

By Axiom (A.8), f ∼0 g if and only if f ′ ∼1 g
′, the latter of which is equivalent to

δc∗

E(s)

(
δc∗
ĈF

1 −CF
0

(ηδc∗ + (1− η)δc∗)
)
∼1 ηδ

c∗ + (1− η) δc∗ . (25)

By the representation in (5), (25) holds if and only if

V1

(
π1(E(s))δc∗ +

(
π1(ĈF

1 − CF
0 )− π1(E(s))

)
δc∗ + π1(CF

0 )(ηδc∗ + (1− η)δc∗)
)

= V1(ηδc∗ + (1− η)δc∗) (26)
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But (26) holds if and only if π1(E(s)) + π1(CF
0 )η = η. Thus, f ′ ∼1 g

′ if and only if

η =
π1(E(s))

1− π1(CF
0 )
. (27)

By (24) and (27) we have that

π0(s)
1− π0(CF

0 )
=

π1(E(s))
1− π1(CF

0 )
. (28)

An analogous argument applies for any s′ ∈ ĈF
1 −CF

0 . We therefore also have that, for

any s′ ∈ ĈF
1 − CF

0 ,
π0(s′)

1− π0(CF
0 )

=
π1(E(s′))

1− π1(CF
0 )
. (29)

Together (28) and (29) imply that

π1(E(s))
π1(E(s′))

=
π0(s)
π0(s′)

. (30)

(ii) ⇒ (i) . That <0 and <1 satisfy (A.1) - (A.5) is an implication of the Theorem of

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the equality

of V0 and V1 on ∆ (C0) .

To show that (A.7) holds, let f, g ∈ F̂0 and f ′, g′ ∈ F̂1 be as in (A.7). By (4), f <0 g if

and only if

V0

(
π0(s)δc∗ +

(
π0(CF

0 )− π0(s)
)
δc∗ + (1− π0(CF

0 ))
(
ηδc∗ + (1− η) δc∗

))
≥ V0

(
ηδc∗ + (1− η) δc∗

)
.

By first order stochastic dominance, the last inequality holds if and only if

π0(s)
π0(CF

0 )
≥ η. (31)

Suppose that g′ �1 f
′. By (5), g′ �1 f

′ if and only if

V1

(
π1(s)δc∗ +

(
π1(CF

0 )− π1(s)
)
δc∗ + (1− π1(CF

0 )
(
ηδc∗ + (1− η) δc∗

))
< V1

(
ηδc∗ + (1− η) δc∗

)
.

23



By first order stochastic dominance, this holds if and only if π1(s) + (1 − π1(CF
0 ))η < η.

Hence,

η >
π1(s)
π1(CF

0 )
. (32)

Now, expressions (31) and (32) imply that

π0(s)
π0(CF

0 )
>

π1(s)
π1(CF

0 )
. (33)

However, by (6),
π0 (s′)
π0 (s)

=
π1 (s′)
π1 (s)

(34)

for all s, s′ ∈ CF
0 . Summing over s′ ∈ CF

0 and rearranging, (34) implies that

π0(s)
π0(CF

0 )
=

π1(s)
π1(CF

0 )

which contradicts (33).

To show that (A.8) holds, let f, g ∈ F̂0 and f ′, g′ ∈ F̂1 be as in (A.8). By (4), f <0 g if

and only if

V0

(
π0(s)δc∗ +

(
1− π0(CF

0 )− π0(s)
)
δc∗ + π0(CF

0 )
(
ηδc∗ + (1− η) δc∗

))
≥ V0

(
ηδc∗ + (1− η) δc∗

)
.

By first order stochastic dominance, the last inequality holds if and only if

π0(s)
1− π0(CF

0 )
≥ η. (35)

Suppose that g′ �1 f
′. By (5), g′ �1 f

′ if and only if

V1

(
π1(E(s))δc∗ +

(
1− π1(CF

0 )− π1(E(s))
)
δc∗ + π1(CF

0 )
(
ηδc∗ + (1− η) δc∗

))
< V1

(
ηδc∗ + (1− η) δc∗

)
.

By first order stochastic dominance, this holds if and only if π1(E(s)) + π1(CF
0 )η < η.

Hence,

η >
π1(E(s))

1− π1(CF
0 )
. (36)
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Now, expressions (35) and (36) imply that

π0(s)
1− π0(CF

0 )
>

π1(E(s))
1− π1(CF

0 )
. (37)

However, by (6),
π0 (s′)
π0 (s)

=
π1 (E(s′))
π1 (E(s))

(38)

for all s, s′ ∈ ĈF
0 − CF

0 . Summing over s′ ∈ ĈF
0 − CF

0 and rearranging, (38) implies that

π0(s)
1− π0(CF

0 )
=

π1(E(s))
1− π1(CF

0 )

which contradicts (37). ♠

6.2 Proof of Theorem 2

Sufficiency of axioms: That the axioms imply existence of a representation as in Theorem

1 follows from the proof of Theorem 1. Let g = g′ = ηδc∗ + (1− η) δc∗ , and let f, f ′ be as

in Axiom (A.9). Suppose that f ∼0 g. But f ∼0 g if and only if

δc∗

CF
0
δc∗ ∼0 ηδ

c∗ + (1− η) δc∗ . (39)

By the representation in (4) the last indifference holds if and only if

V0

(
π0(CF

0 )δc∗ +
(
1− π0(CF

0 )
)
δc∗

)
= V0

(
ηδc∗ + (1− η) δc∗

)
(40)

But, by first-order stochastic dominance, (40) holds if and only if

η = π0(CF
0 ). (41)

By Axiom (A.9), f ∼0 g implies that f ′ %1 g
′, which is equivalent to

δc∗

CF
1
δc∗ %1 ηδ

c∗ + (1− η) δc∗ . (42)

By the representation in (5), (42) holds if and only if

V1

(
π1(CF

1 )δc∗ +
(
1− π1(CF

1 )
)
δc∗

)
≥ V1

(
ηδc∗ + (1− η) δc∗

)
(43)
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But, by first-order stochastic dominance, (43) holds if and only if

π1(CF
1 ) ≥ η. (44)

By (41) and (44) we have that

π1(CF
1 ) ≥ π0(CF

0 ), (45)

which is equivalent to π1(ĈF
1 −CF

1 ) ≤ π0(ĈF
0 −CF

0 ). The inequality in (45) is strict if and

only if f ′ �1 g
′ in Axiom (A.9), and holds with equality if and only if f ′ ∼1 g

′ in Axiom

(A.9).

Necessity of Axioms: Necessity of axioms (A.1)-(A.8) follows from the proof of Theorem

1. To show that (A.9) holds, let f, g ∈ F̂0 and f ′, g′ ∈ F̂1 be as in (A.9). By (4), f ∼0 g if

and only if

V0

(
π0(CF

0 )δc∗ +
(
1− π0(CF

0 )
)
δc∗

)
= V0

(
ηδc∗ + (1− η) δc∗

)
(46)

By first order stochastic dominance, (46) holds if and only if

η = π0(CF
0 ). (47)

Suppose now that g′ �1 f
′. By (5), g′ �1 f

′ if and only if

V1

(
π1(CF

1 )δc∗ +
(
1− π1(CF

1 )
)
δc∗

< V1

(
ηδc∗ + (1− η) δc∗

)
.

By first order stochastic dominance, this holds if and only

π1(CF
1 ) < η. (48)

Now, expressions (47) and (48) imply that

π0(CF
0 ) > π1(CF

1 ). (49)

However, by (8), π0(CF
0 ) ≤ π1(CF

1 ), which contradicts (49). ♠
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6.3 Proof of Theorem 3

Sufficiency of axioms: We here provide the part of the proof that does not follow directly

from (10) or Proposition 1. The agreement of <∗ and < on F̂0 and the representations (10)

and (11) imply that, for all f̃ , g̃ ∈ F̃ such that f̃ (s), g̃ (s) ∈ ∆ (C0) for all s ∈ ĈF
0 − CF

0 ,

and for all f ∈ F̂0

f̃(ĈF
0 −CF

0 )f <∗ g̃(ĈF
0 −CF

0 )f ⇔
∑

s∈ĈF
0 −CF

0

U
(
f̃ (s)

)
π (s) ≥

∑
s∈ĈF

0 −CF
0

U (g̃ (s))π (s) . (50)

Hence, with appropriate normalization, for all p ∈ ∆(C0), U∗f (p) = U (p) , for all f ∈ F̂0.

Therefore U∗ (p) is independent of f .

Suppose that c∗ �∗ x0 � c∗, let p̂ = αc∗ + (1− α) c∗ be such that p̂(ĈF
0 −CF

0 )f ∼
∗

x0(ĈF
0 −CF

0 )f . Then, by the representation (11), U∗f (p̂) = U∗f (x0). Then, by Axiom (A.14)

and the representation (11) we have that U∗g (p̂) = U∗g (x0). But U∗f (p̂) = U∗f (x0) is equivalent

to

u∗f (x0) = αU (c∗) + (1− α)U (c∗)

and U∗g (p̂) = U∗g (x0) is equivalent to

u∗g (x0) = αU (c∗) + (1− α)U (c∗) .

Hence, u∗f (x0) = u∗g (x0) ≡ u (x0) for all f, g ∈ F̂0.

Suppose instead that x0 <∗ c∗ �∗ c∗, and let p̂ = αx0 + (1− α) c∗ be such that

p̂(ĈF
0 −CF

0 )f ∼
∗ c∗

(ĈF
0 −CF

0 )
f . Then, by the representation (11) , U∗f (p̂) = U∗f (x0). Then, by

Axiom (A.14) and representation (11) we have that U∗g (p̂) = U∗g (x0). But U∗f (p̂) = U∗f (x0) is

equivalent to

αu∗f (x0) + (1− α)U (c∗) = U (c∗) ,

and U∗g (p̂) = U∗g (x0) is equivalent to

αu∗g (x0) + (1− α)U (c∗) = U (c∗) .

Solving for u∗f (x0) and u∗g (x0) we get,

u∗f (x0) = u∗g (x0) =
U (c∗)− U (c∗)

α
+ U (c∗) ≡ u (x0)

for all f, g ∈ F̂0.
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Finally, if c∗ �∗ c∗ <∗ x0 let p̂ = αc∗ + (1− α)x0 such that p̂(ĈF
0 −CF

0 )f ∼
∗ c∗(ĈF

0 −CF
0 )f

then, by the same argument,

u∗f (x0) = u∗g (x0) =
U (c∗)− αU (c∗)

1− α
≡ u (x0)

for all f, g ∈ F̂0.

It follows that U∗(q̂) =
∑

c∈C0
q̂ (c)U (δc) + q̂(x0)u (x0) for any q̂ ∈ ∆(Ĉ0).

The uniqueness of the subjective probabilities is implied by the uniqueness of the sub-

jective probabilities in (10).9

Necessity of axioms: Necessity of axioms (A.10)-(A.13) on the respective domains fol-

lows from Anscombe and Aumann (1963). The necessity of (A.14) is immediate. ♠

9The uniqueness of π in conjunction with Proposition 1 imply that µ (s) = π (s) /π(ĈF
0 − CF

0 ) for all

s ∈ ĈF
0 − CF

0 .
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