
Karni, Edi; Vierø, Marie-Louise

Working Paper

Probabilistic Sophistication and Reverse Bayesianism

Queen's Economics Department Working Paper, No. 1303

Provided in Cooperation with:
Queen’s University, Department of Economics (QED)

Suggested Citation: Karni, Edi; Vierø, Marie-Louise (2013) : Probabilistic Sophistication and Reverse
Bayesianism, Queen's Economics Department Working Paper, No. 1303, Queen's University,
Department of Economics, Kingston (Ontario)

This Version is available at:
https://hdl.handle.net/10419/97465

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/97465
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


QED
Queen’s Economics Department Working Paper No. 1303

Probabilistic Sophistication and Reverse Bayesianism

Edi Karni
Johns Hopkins University

Marie-Louise VierÃÿ
Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

2-2013



Probabilistic Sophistication and Reverse Bayesianism ∗

Edi Karni †

Johns Hopkins University

Marie-Louise Vierø ‡

Queen’s University

February 10, 2014

Abstract

This paper extends our earlier work on reverse Bayesianism by relaxing the assump-
tion that decision makers abide by expected utility theory, assuming instead weaker
axioms that merely imply that they are probabilistically sophisticated. We show that
our main results, namely, (modified) representation theorems and corresponding rules
for updating beliefs over expanding state spaces and null events that constitute “reverse
Bayesianism,” remain valid.

Keywords: Awareness, unawareness, reverse Bayesianism, probabilistic sophisti-
cation

JEL classification: D8, D81, D83

∗We thank Graeme Doole, Asen Kochov, and Jacob Sagi for comments.
†Johns Hopkins University, Department of Economics and University of Warwick, Warwick Business

School, E-mail: karni@jhu.edu.
‡Queen’s University, Department of Economics, Dunning Hall Room 312, 94 University Avenue,

Kingston, Ontario K7L 3N6, Canada, viero@econ.queensu.ca.

1



1 Introduction

The theory of “reverse Bayesianism” is intended to depict the response of Bayesian decision

makers to expansions of their universe in the wake of discoveries of new consequences

and/or acts, and improved understanding of the links between acts and consequences. In

particular, we are interested in those aspects of the structure of the preferences that persist

as the universe expands, since those aspects allow one to infer from existing preferences

something about the preferences in the expanded environment. This feature of our model

is worth emphasizing against the backdrop of consumer theory under certainty. This issue

was discussed in Lancaster (1966) who made the following statement:1

“Perhaps the most important aspects of consumer behavior relevant to an econ-

omy as complex as that of the United States are those of consumer reactions

to new commodities and to quality variations. Traditional theory has nothing

to say on these. In the case of new commodities, the theory is particularly

helpless. We have to expand from a commodity space of dimension n to one

of dimension n+1, replacing the old utility function by a completely new one,

and even a complete map of the consumer’s preferences among the n goods pro-

vides absolutely no information about the new preference map. A theory which

can make no use of such information is a remarkably empty one.” (Lancaster

(1966) p. 133, the italics are ours).

This paper extends our earlier work on reverse Bayesianism, replacing the subjective

expected utility model with probabilistic sophistication. Probabilistically sophisticated

choice is characterized by a unique subjective probability measure on a state space by which

acts (that is, mappings from the set of states to the set of consequences) are transformed

to lotteries on the set of consequences, a utility function on the set of these lotteries,

and choice behavior that maximizes the utility over the lotteries corresponding to feasible

sets of acts. In two seminal papers, Machina and Schmeidler (1992, 1995) axiomatize

probabilistically sophisticated choice in the analytical frameworks of Savage (1954) and

Anscombe and Aumann (1963). The main contribution of these works is to break the link

between the subjective expected utility model and the existence of choice-based subjective

probabilities. This is an important extension of Bayesian theory.
1We thank Graeme Doole for calling our attention to this paragraph in Lancaster’s article.
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Karni and Vierø (2013) introduced a model describing the evolution of the beliefs of

subjective expected utility maximizing decision makers as they discover new acts, conse-

quences, and information pertaining to links between acts and consequences. We intro-

duced the notions of conceivable and feasible state spaces and showed how these expand in

response to each of the discoveries. In this paper we extend our earlier work showing that

the reverse Bayesianism model is not predicated on subjective expected utility maximizing

behavior. Accordingly, we depart from the expected utility model, assuming instead that

decision makers are merely probabilistically sophisticated, and show that the results of

Karni and Vierø (2013) hold in the more general context of probabilistically sophisticated

choice.

Another motivation for the extension of our earlier work undertaken here is the pos-

sibility of instances in which a decision maker’s choice behavior could display reversal of

conditional preferences as the universe expands. This type of behavior is inconsistent with

the initial version of reverse Bayesianism whose foundation is the subjective expected util-

ity model. As we show below (see section 3.4), the conditional preference reversals are

the result of the nonseparability of preferences across states. In particular, our model is

motivated by nonseparability with respect to outcomes on null events that are rendered

nonnull as a result of the discovery of links between acts and consequences that the de-

cision maker thought impossible. Because our concrete example relies on the analytical

framework exposed in the next section and the results in section 3.3, we relegate it to a

later section.

Invoking the analytical framework of Anscombe and Aumann (1963), we demonstrate

that our main results in Karni and Vierø (2013), namely, (modified) representations of

preferences and corresponding rules for updating beliefs over expanding state spaces that

constitute “reverse Bayesianism,” hold when preferences are merely probabilistically so-

phisticated. Since the analytical framework and the related literature were discussed in

Karni and Vierø (2013), in what follows, we review briefly those aspects of the model neces-

sary to make the exposition self-contained, underscoring instead the adjustment necessary

for the transition from expected utility to probabilistically sophisticated choice. This is

done in the next section. In section 3 we expose the representation theorems and analyze

the evolution of beliefs in the wake of discovery of new consequences, acts and links between

them. Concluding remarks appear in section 4. The proofs are collected in section 5.
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2 The Analytical Framework

Building upon Schmeidler and Wakker (1987) and Karni and Schmeidler (1991), Karni

and Vierø (2013) introduced a unifying framework within which growing awareness due

to the discovery of new acts and consequences as well as revising beliefs in light of new

information regarding their links may be described and analyzed. We briefly recall this

framework below, but refer the reader to Karni and Vierø (2013) for details.

2.1 Conceivable states and acts

Let F be a finite, nonempty set of feasible acts, and let C be a finite, nonempty set of

feasible consequences. Together these sets determine a conceivable state space, CF , whose

elements depict the resolutions of uncertainty. In other words, a state is a function from the

set of feasible acts to the set of feasible consequences. As an illustration, let there be two

feasible acts, F = {f1, f2}, and two consequences, C = {c1, c2}. The resulting conceivable

state space is CF , consisting of four states as depicted in the following matrix:

F\CF s1 s2 s3 s4

f1 c1 c2 c1 c2

f2 c1 c1 c2 c2

(1)

Once the set of conceivable states is fixed, we can define the set of conceivable acts,

which consists of all the mappings from the conceivable state space to lotteries on the set

of consequences.2 Formally, the set of conceivable acts is given by:

F̂ := {f : CF → ∆ (C)}, (2)

where ∆ (C) is the set of all lotteries with consequences in C as prizes.3 Conceivable acts

are imaginable given the decision maker’s awareness of feasible acts and consequences and

the corresponding conceivable state space.

A decision maker’s conceivable state space expands due to discovery of new feasible acts

and/or consequences. Consider the two-act two-consequences example depicted above and
2Fishburn (1970) Ch. 12 discusses a construction of a state space along similar lines. He does not,

however, discuss an extension of the set of acts to include conceivable acts.
3Formally, p ∈ ∆ (C) is a function p : C → [0, 1] satisfying Σc∈Cp (c) = 1. Notice that with this definition

of ∆(C) we have that, for any C ⊂ C′, any p ∈ ∆(C) is also an element of ∆(C′) with p(c) = 0 for all

c ∈ C′ − C. Likewise, q ∈ ∆(C′) is an element of ∆(C) if q(c) = 0 for all c ∈ C′ − C.
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imagine that a third feasible consequence was discovered, so that the new set of feasible

consequences is C ′ = {c1, c2, c3}. The feasible acts need to be redefined, since choosing the

act fi, i = 1, 2 conceivably may result in any of the three consequences. We denote the

redefined set of feasible acts by F ∗. The corresponding conceivable state space is given by

(C ′)F
∗

and consists of nine states. The event (C ′)F
∗
−CF represents the expansion of the

decision maker’s conceivable state space due to the discovery of the new consequence.

Discovery of new feasible acts also alters the conceivable state space, albeit in a different

way. Consider again the two-act two-consequences example above and suppose that a new

feasible act, f3, is discovered. The new set of feasible acts is F ′ = {f1, f2, f3} and the

corresponding conceivable state space, CF
′
, consists of eight states and is a finer partition

of the original state space CF .

As the decision maker’s conceivable state space expands, so does the set of conceivable

acts. In the wake of the discovery of a new consequence, the new set of conceivable acts is

F̂ ∗ := {f : (C ′)F
∗
→ ∆ (C ′)}, and the decision maker’s posterior preference relation over

these acts is denoted by <F̂ ∗ . In the aftermath of the discovery of a new feasible act, the

new set of conceivable acts is F̂ ′ := {f : CF
′ → ∆ (C)}, and the decision maker’s posterior

preference relation over these acts is denoted by <F̂ ′ .

At this point the reader may find it disturbing that we expand the conceivable state

space in the wake of the discovery of new feasible acts but we do not expand the state space

when we introduce new conceivable acts. The reason is that conceivable acts are bets on

the conceivable states (or events). As we have seen, the discovery of new feasible acts

expands the conceivable state space by assigning to every existing state the set of all the

consequences, thereby “splitting” it to generate a refined state space. By contrast a new

conceivable act assigns to every existing state a unique outcome. Hence, for conceivable

acts the subjective uncertainty regarding the payoffs of all acts, feasible or otherwise, is

completely resolved once the original state is known. Consequently, the introduction of

conceivable acts do not change the conceivable state space.

Decision makers are characterized by preference relations over the conceivable acts.

Because the set of conceivable acts is a variable in our model, we denote the preference

relation on F̂ by <F̂ , and denote by �F̂ and ∼F̂ the asymmetric and symmetric parts

of <F̂ , respectively. These derived relations are given the usual interpretation of strict

preference and indifference, respectively. With the usual abuse of notation, we denote by

p the constant act that assigns p to each s ∈ CF and by c the degenerate lottery δc that
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assigns the unit probability mass to the consequence c.

2.2 Feasible states

Decision makers entertain beliefs about the possible links between feasible acts and their

potential consequences. These beliefs manifest themselves in, and may be inferred from,

the decision makers’ choice behavior.

Consider a decision maker whose choices are characterized by a preference relation <F̂

on F̂ . For any f ∈ F̂ , p ∈ ∆ (C) , and E ⊂ CF , let pEf be the act in F̂ obtained from f by

replacing its s−th coordinate with p for all s ∈ E. Following Savage (1954), a state s ∈ CF

is said to be null if p{s}f ∼F̂ q{s}f, for all p, q ∈ ∆ (C), for all f ∈ F̂ . A state is said to be

nonnull if it is not null. Denote by EN the set of null states and let S (F,C) = CF − EN

be the set of all nonnull states, which we refer to as the feasible state space. Note that a

conceivable state is null if it includes an assignment of a feasible consequence to a feasible

act that the decision maker believes to be impossible.4

New information may change the decision maker’s beliefs concerning the links between

feasible acts and consequences and, consequently, his perception of the feasible state space.

Unlike the discovery of new feasible consequences and/or new feasible acts, changes of the

decision maker’s beliefs concerning the links between them will expand or contract only

the set of feasible states without affecting the conceivable state space.

Expansion of the feasible state space entails updating zero probability events, while

contraction of it entails nullifying positive probability events that are no longer considered

possible. When new links become possible, the decision maker includes the consequences

f (s) , for all f ∈ F and some s ∈ CF − S (F,C), in the ranges he considers possible of

the feasible acts. Vice versa when old links are eliminated. We denote the newly defined

feasible state space by S′ (F,C), the corresponding set of conceivable acts by F̂S′ , and the

decision maker’s posterior preference relation by <F̂S′
.

2.3 Basic preference structure

Let F and C be finite, nonempty sets of feasible acts and consequences, respectively. The

set of conceivable states is given by CF and the corresponding set of conceivable acts by

F̂ := {f : CF → ∆ (C)} as described above. For all f, g ∈ F̂ and α ∈ [0, 1] define the
4Fishburn (1970)’s notion of excluded states is analogous to our non-feasible states.
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convex combination αf + (1− α) g ∈ F̂ by: (αf + (1− α) g) (s) = αf (s) + (1− α) g (s) ,

for all s ∈ CF . Then, F̂ is a convex subset in a linear space.

We assume throughout that each set of consequences has a most preferred and a least

preferred element. Formally, there exist c∗ (C) , c∗ (C) ∈ C such that the constant act that

assigns c∗ (C) to every state is strictly preferred over any other constant act in F̂ and

the constant act that assigns c∗ (C) to every state is strictly less preferred than any other

constant act in F̂ .

For all p, q ∈ ∆ (C), p dominates q according to first-order stochastic dominance if

Σ{i|ci4c}p (ci) ≤ Σ{i|ci4c}q (ci) for all c ∈ C, and p strictly dominates q according to first-

order stochastic dominance if p dominates q according to first-order stochastic dominance

and, in addition, Σ{i|ci4c}p (ci) < Σ{i|ci4c}q (ci) for some c ∈ C.We denote these domination

relations by p ≥1 q and p >1 q, respectively.

As described above, when the state space expands in the wake of discoveries of new

feasible consequences, the set of conceivable acts must be expanded and the preference

relations must be redefined on the extended domain.

Following Machina and Schmeidler (1995), we assume that, for each F̂ , <F̂ adheres to

the following axioms, which ensure probabilistic sophistication.

(A.1) (Weak order) For every F̂ , the preference relation <F̂ is transitive and complete.

(A.2) (Mixture continuity) For each F̂ and all f, g, h ∈ F̂ , if f �F̂ g and g �F̂ h then

there exist α ∈ (0, 1) such that αf + (1− α)h ∼F̂ g.

(A.3) (Monotonicity) For every F̂ and p, q ∈ ∆ (C) , if p ≥1 q then pEih <F̂ qEih, for

all partitions {E1, ..., En} of CF and all h ∈ F̂ , with pEih �F̂ qEih if p >1 q and Ei

is nonnull.

(A.4) (Replacement) For every F̂ and any partition {E1, ..., En} of CF , if

δc
∗(C)

Ei

(
δc∗(C)

Ejδ
c∗(C)

)
∼F̂

(
αδc

∗(C) + (1− α) δc∗(C)
)

Ei∪Ej

δc∗(C)

for some α ∈ [0, 1] and pair of events Ei, Ej , then

pEi

(
qEjh

)
∼F̂ (αp+ (1− α) q)

Ei∪Ej
h

for all p, q ∈ ∆ (C) and h ∈ F̂ .
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(A.5) (Nontriviality) For every F̂ , �F̂ 6= ∅.

To link the preference relations across expanding sets of conceivable acts, we invoke

the invariant risk preferences axiom introduced in Karni and Vierø (2013), asserting the

commonality of risk attitudes across levels of awareness.

(A.6) (Invariant risk preferences) For every given F̂ , F̂ ′, if C and C ′ are the sets of

consequences associated with F̂ and F̂ ′, respectively, then p <F̂ q if and only if

p <F̂ ′ q for all p, q ∈ ∆ (C ∩ C ′) .

When new consequences are discovered, i.e. C ⊂ C ′, then C ∩ C ′ = C. When new

feasible acts are discovered, the invariant risk preferences axiom may be stated as follows:

For all F, F ′ and p, q ∈ ∆(C), p <F̂ q if and only if p <F̂ ′ q. When new links are discovered

(or old links eliminated) between the original sets of acts, F, and consequences, C, the

invariant risk preferences axiom asserts that, for all p, q ∈ ∆(C), p <F̂ q if and only if

p <F̂S′
q.

3 The Main Results

As in Karni and Vierø (2013), we divide the analysis of the effects of growing awareness

on choice behavior and the evolution of decision makers’ beliefs into three parts. First,

we explore the implications of the discovery of new consequences. Second, we explore the

implications of the discovery of new feasible acts. Third, we explore the implications of new

information regarding acts-consequences links. The discovery of new acts or consequences

increases the number of conceivable and, in general, also that of feasible states. However,

unlike the discovery of new consequences, the discovery of new feasible acts increases the

number of conceivable states by refining the original state space. By contrast, the discovery

of new acts-consequences links changes the set of feasible states without affecting the

conceivable state space.

To explore the implications of these sources of growing awareness, we introduce addi-

tional axioms, each of which modifies a corresponding axiom in Karni and Vierø (2013).

These modifications are needed in order to accommodate the possibility that preferences

are not necessarily separable. As it is the case for the consistency axioms in Karni and Vierø

(2013), the consistency axioms below ensure robustness of the decision maker’s preferences

with respect to future discoveries.
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3.1 Discovery of new consequences and its representation

The following axiom requires that when a decision maker discovers new consequences his

ranking of subjective versus objective uncertainty, conditional on the original set of feasible

states, remains intact. To formalize this idea, let C ′ ⊃ C, F ∗, and S(F ∗, C ′) denote, respec-

tively, the new set of consequences, the new set of feasible acts redefined to accommodate

the new consequences, and the resulting new feasible state space.5

(A.7) (Replacement consistency I) For every given F , for all C,C ′ with C ⊂ C ′ and

S(F,C) ⊆ S(F ∗, C ′), for all s ∈ S(F,C), η ∈ [0, 1], f, g ∈ F̂ , and f ′, g′ ∈ F̂ ∗, if

f = δc
∗(C)

{s}δ
c∗(C), g = ηδc

∗(C) + (1− η) δc∗(C) on CF , g′ = ηδc
∗(C) + (1− η) δc∗(C)

on (C ′)F
∗
, f ′ = f on S (F,C) and f ′ = g′ on S (F ∗, C ′)− S(F,C), then it holds that

f <F̂ g if and only if f ′ <F̂ ∗ g
′.

Axiom (A.7) concerns bets that involve only the best and worst consequences in C.

The act g is defined on the original state space and is an objective bet that pays off with

probability η, while the act f , also defined on the original state space, is a subjective bet

that pays off in state s. The act g′ extends the objective bet to the expanded state space

such that it continues to only involve objective uncertainty. Finally, f ′ is an extension of

f that agrees with g′ on the new event. The axiom therefore asserts that, conditional on

the prior subjective state space, the decision maker’s ranking of the subjective bet that

pays off in state s and the objective bet that pays off with probability η, is preserved when

he discovers new feasible consequences which expand the conceivable state space. It thus

ensures consistency between the ranking of subjective versus objective uncertainty given

awareness of conceivable acts that correspond to nested sets of feasible consequences.

The corresponding axiom, awareness consistency, in Karni and Vierø (2013) requires

that when the decision maker discovers new consequences, his entire preference relation con-

ditional on the prior feasible state space remains unchanged. Thus, awareness consistency

is reminiscent of Savage’s (1954) sure thing principle in that it requires that preference

between acts is independent of the aspects on which the acts agree. Put differently, the

awareness consistency axiom requires consistency of the conditional ranking of all acts.
5Below, f ′ = f on an event E means that f ′(s) = f(s) for all s ∈ E (i.e. it is defined pointwise for the

states in E).
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To the contrary, the present Axiom (A.7) only requires consistency for a subset of

initial acts and extensions. In particular, it only requires consistency for initial acts f that

involve subjective uncertainty regarding a single state and g that involve purely objective

uncertainty, and extensions f ′ and g′ of these that agree on the new event such that g′

continues to only involve objective uncertainty. Put differently, it only requires consistency

of the conditional ranking when one of the acts is a perfect insurance against subjective

uncertainty and continues to be that after the expansion of the state space.

Our first result describes the evolution of a decision maker’s beliefs in the wake of

discoveries of new consequences. Like Theorem 1 in Karni and Vierø (2013) this theorem

asserts that, as he becomes aware of new consequences, the decision maker updates his

beliefs in a way that preserves the likelihood ratios of events in the original state space.

Unlike in Karni and Vierø (2013) the decision maker is not necessarily an expected utility

maximizer, he is merely probabilistically sophisticated. Hence, reverse Bayesianism is

independent of the expected utility hypothesis.

Theorem 1 For each set, F̂ , of conceivable acts let <F̂ be a binary relation on F̂

then, for all F̂ , F̂ ∗, the following two conditions are equivalent:

(i) <F̂ and <F̂ ∗ each satisfy (A.1) - (A.5) and jointly, <F̂ and <F̂ ∗ satisfy (A.6) and

(A.7).

(ii) There exist real-valued, mixture continuous, strictly monotonic6 functions, V on

∆(C) and V ∗ on ∆(C ′), and probability measures, πF̂ on CF and πF̂ ∗ on (C ′)F
∗
, such that

for all f, g ∈ F̂ ,

f <F̂ g ⇔ V
(
Σs∈S(F,C)πF̂ (s) f (s)

)
≥ V

(
Σs∈S(F,C)πF̂ (s) g (s)

)
. (3)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔ V ∗

(
Σs∈S(F ∗,C′)πF̂ ∗ (s) f ′ (s)

)
≥ V ∗

(
Σs∈S(F ∗,C′)πF̂ ∗ (s) g′ (s)

)
. (4)

The functions V and V ∗ are unique up to positive transformations and V ∗ is an extension of

V , the probability measures πF̂ and πF̂ ∗ are unique, πF̂ (S (F,C)) = πF̂ ∗ (S (F ∗, C ′)) = 1,

6A function V is strictly monotonic if V (p) ≥ V (q) whenever p dominates q according to first-order

stochastic dominance, with strict inequality in the case of strict dominance, and V is mixture continuous if

V (αp+ (1− α) q) is continuous in α for all p and q.
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and, for all s ∈ S (F,C) ,

πF̂ (s) =
πF̂ ∗ (s)

πF̂ ∗ (S (F,C))
. (5)

3.2 Discovery of new feasible acts and its representation

The discovery of new feasible acts expands the conceivable state space and increases the

number of coordinates defining a state. To state the next axiom, which is analogous to

Axiom (A.7), we introduce the following additional notations: If F ⊂ F ′ then for each s ∈
CF there corresponds an event E (s) ⊂ CF

′
defined by E (s) = {s′ ∈ CF ′ | PCF (s′) = s},

where PCF (·) is the projection of CF
′

on CF .7 For s ∈ CF , we refer to the set E (s) as

the inverse image under PCF of s on CF
′
.

(A.8) (Replacement consistency II) For every given C, all pairs of feasible acts F

and F ′ such that F ⊂ F ′, all s ∈ S(F,C), η ∈ [0, 1], f, g ∈ F̂ , and f ′, g′ ∈ F̂ ′, if

f = δc
∗(C)

{s}δ
c∗(C), g = g′ = ηδc

∗(C) + (1− η) δc∗(C), and f ′ = δc
∗(C)

E(s)δ
c∗(C), then

it holds that f <F̂ g if and only if f ′ <F̂ ′ g
′.

Like Axiom (A.7), Axiom (A.8) concerns bets that involve only the best and worst

consequences in C. It asserts that the ranking of subjective bets that pay off in state s and

the objective bets that pay off with probability η, conditional on a given set of conceivable

acts, is the same as the ranking of subjective bets that pay off in the event E (s) and the

objective bets that pay off with probability η conditional on the set of conceivable acts

spanned by the discovery of new feasible acts. In other words, the axiom asserts that the

decision maker’s ranking of subjective versus objective uncertainty is independent of the

detail with which the subjective uncertainty is described.

The representation theorem below describes how a decision maker’s beliefs evolve as he

becomes aware of new feasible acts. Specifically, the decision maker updates his beliefs so

that the probability of each state in the original state space is equal to that of its inverse

image under PCF on CF
′
. In other words, since the event E (s) in CF

′
is a refinement of

the state s in CF , its probability is equal to that of s.

Theorem 2 For each set F̂ of conceivable acts let <F̂ be a binary relation on F̂ , then,

for all F̂ , F̂ ′, the following two conditions are equivalent:

7Suppose that | F |= r and | F
′
|= k > r. Let s = (c1, ..., ck) ∈ CF ′

, then P CF (s) = (c1, ..., cr) ∈ CF .
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(i) <F̂ and <F̂ ′ each satisfy (A.1) - (A.5) and jointly, <F̂ and <F̂ ′ satisfy (A.6) and

(A.8).

(ii) There exist a real-valued, mixture continuous, strictly monotonic function V on

∆(C) and probability measures, πF̂ on CF and πF̂ ′ on CF
′
, such that for all f, g ∈ F̂ ,

f <F̂ g ⇔ V
(
Σs∈S(F,C)πF̂ (s) f (s)

)
≥ V

(
Σs∈S(F,C)πF̂ (s) g (s)

)
. (6)

and, for all f ′, g′ ∈ F̂ ′,

f ′ <F̂ ′ g
′ ⇔ V

(
Σs∈S(F ′,C)πF̂ ′ (s) f

′ (s)
)
≥ V

(
Σs∈S(F ′,C)πF̂ ′ (s) g

′ (s)
)
. (7)

The function V is unique up to positive transformations, the probability measures πF̂ and

πF̂ ′ are unique, πF̂ (S (F,C)) = πF̂ ′ (S (F ′, C)) = 1, and, for all s ∈ S (F,C) ,

πF̂ (s) = πF̂ ′ (E (s)) (8)

where E (s) is the inverse image under PCF of s on CF
′
.

3.3 Discovery of new feasible states and the nullification of existing fea-

sible states and their representations

When links between feasible acts and consequences that were believed to exist are discov-

ered to be non-existent, the feasible state space contracts. Similarly, when such links that

were believed not to exist are discovered to exist, the feasible state space expands. In the

first instance, an event that was believed to be nonnull and was assigned positive proba-

bility becomes a null event and must be assigned zero probability. In the second instance,

an event that was believed to be null and was assigned zero probability becomes a nonnull

event and must be assigned positive probability.

The next axiom depicts the evolution of the preference relation in these circumstances.

Clearly, the first instance described above corresponds to the usual Bayesian updating.

The second instance, in which the posterior of a zero-probability event is positive, does not

admit Bayesian updating. It is, however, consistent with our model of reverse Bayesianism.

In fact, in our model the two instances are treated symmetrically, which is reassuring given

that they depict symmetrically opposing discoveries.

(A.9) (Replacement consistency III) For all pairs of conceivable acts F̂ and F̂S′ , all

f, g ∈ F̂ and f ′, g′,∈ F̂S′ , if g = g′ = ηδc
∗(C) + (1− η) δc∗(C) for some η ∈ [0, 1] and
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f = f ′ = δc
∗(C)

{s}
(
δc∗(C)

S(F,C)∩S′(F,C)g
)
, for some s ∈ S(F,C) ∩ S′(F,C), then it

holds that f <F̂ g if and only if f ′ <F̂S′
g′.

The next representation theorem describes how a decision maker’s beliefs are updated as

he discovers that links between feasible acts and consequences that he believed impossible

are in fact possible and when he discovers that links that he believed possible are in fact

impossible.

Theorem 3 For each set of conceivable acts F̂ , let <F̂ be a binary relation on F̂ then,

for all F̂ and F̂S′ , the following two conditions are equivalent:

(i) Each <F̂ and <F̂S′
satisfy (A.1) - (A.5) and jointly <F̂ and <F̂S′

satisfy (A.6) and

(A.9).

(ii) There exist a real-valued, mixture continuous, strictly monotonic function V on

∆(C) and, for all F̂ and F̂S′ , there are probability measures πF̂ and πF̂S′
on CF such that,

for all f, g ∈ F̂ ,

f <F̂ g ⇔ V
(
Σs∈S(F,C)πF̂ (s) f (s)

)
≥ V

(
Σs∈S(F,C)πF̂ (s) g (s)

)
. (9)

and, for all f ′, g′ ∈ F̂S′ ,

f ′ <F̂S′
g′ ⇔ V

(
Σs∈S′(F,C)πF̂S′

(s) f ′ (s)
)
≥ V

(
Σs∈S′(F,C)πF̂S′

(s) g′ (s)
)
. (10)

The function V is unique up to positive transformations, the probability measures πF̂ and

πF̂S′
are unique, πF̂ (S (F,C)) = πF̂S′

(S′ (F,C)) = 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂S′

(s)

πF̂S′
(s′)

(11)

for all s, s′ ∈ S (F,C) ∩ S′ (F,C) .

If S′ (F,C) ⊂ S (F,C) then Theorem 3 describes Bayesian updating (that is, (11) may

be written as πF̂S′
(s) = πF̂ (s) /πF̂ (S′ (F,C)) , for all s ∈ S′ (F,C)). If S′ (F,C) ⊃ S (F,C)

then πF̂ (s) = πF̂S′
(s) /πF̂S′

(S (F,C)) for all s ∈ S (F,C) .
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3.4 Preference reversals

Consider next an example of the reversal of conditional preferences we alluded to in the

introduction. Let there be three outcomes, c1, c2, and c3, with c1 and c3 being the most and

least preferred outcomes, respectively. Let there be two acts, f which perfectly insures the

decision maker by always returning the outcome c2, and g which may return either c1 or c3.

Consequently, there are two feasible states, s1 = (c2, c1) and s2 = (c2, c3). Suppose that the

decision maker strictly prefers f over g. The decision maker now makes a discovery that

leads him to believe that the act f may also result in the consequence c3 if act g results in

c3. This implies an expansion of the feasible state space to include the state s3 = (c3, c3).

The discovery also redefines the set of conceivable acts, which now includes the act f ′ that

returns c2 in states s1 and s2 and c3 in state s3, and the act g′ that returns c1 in state

s1 and c3 in states s2 and s3. The act f ′ thus agrees with f conditional on the initial

feasible state space, as does the act g′ with g. Since f ′ and g′ agree on s3, the axioms in

Karni and Vierø (2013) force f ′ to be preferred to g′. (This is because the representation

in Karni and Vierø (2013) is separable across states, so the terms that concern the state

s3 in which the acts agree cancel out). However, the decision maker may have preferred f

over g initially either because f provided perfect insurance or because of disappointment

aversion. In other words, before the discovery the decision maker can avoid the ex post

sense of disappointment (or elation) by choosing f , while by choosing g he exposes himself

to disappointment (if s2 obtains) or elation (if state s1 obtains). After the state space

expands, since f ′ might also result in disappointment (if s3 obtains) the decision maker

can no longer avoid the disappointment and as a result may prefer the potential higher

gain from g′. The latter type of behavior is permitted by the axioms in the present paper.8

As the preceding example shows, the behavioral implications of the model in the present

paper are different from those of the model in Karni and Vierø (2013), since the present

paper’s model is compatible with conditional preference reversals, while our previous model

is not. However, the two models have in common that under both growing awareness

of consequences or the discovery of new links between acts and consequences can lead

to reversal of unconditional preferences between two acts. To grasp this, consider the

conceivable state space with four states depicted in the matrix (1), and suppose that
8Gul (1991) axiomatized a model of disappointment aversion under risk. The argument here is analogous

to that of Gul except that here it is cast in terms of uncertainty.
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S(F,C) = {s2, s3}, that π(s2) < π(s3), that c1 � c2, and that we are in the special case

of Theorem 1 in which the representation has an expected utility form. Then f1 �F̂ f2.

Suppose now that a new consequence, c3 ≺ c2, is discovered, resulting in a conceivable state

space that includes an additional five states. Our update rules imply that beliefs under

the expanded level of awareness have πF̂∗ (s2)

πF̂∗ (s3) = πF̂ (s2)

πF̂ (s3) and thus that πF̂ ∗(s2) < πF̂ ∗(s3).

However, the following is consistent with our update rules: S(F ∗, C ′) = {s2, s3, s5}, where

s5 = (c3, c1), and πF̂ ∗(s5) > (πF̂ ∗(s3)− πF̂ ∗(s2))u
∗(c1)−u∗(c2)
u∗(c1)−u∗(c3) . Then, by the representation

(5) in Theorem 1, f2 �F̂ ∗ f1. That is, the change in awareness has led to a reversal of

unconditional preferences over the two acts. Enough probability mass is shifted to the

newly emerged feasible state that the worse outcome to f1 in that state outweighs the

ranking conditional on the initial state space. This causes the preference reversal.

Unlike growing awareness of consequences or the discovery of new links between acts

and consequences, growing awareness of feasible acts cannot lead to preference reversals

among existing feasible acts. The reason is twofold. First, our update rule in Theorem 2

implies that the probability of each state in the original state space equals the probability

of the corresponding event in the new state space. Second, all existing feasible acts remain

measurable with respect to the original state space under the expanded level of awareness.

Therefore, the ranking of feasible acts must be unchanged.

4 Concluding Remarks

Grant and Polak (2006) propose an alternative axiomatization of probabilistically sophis-

ticated choice behavior, which is equivalent to that in Machina and Schmeidler (1995) and

“decomposes” the independence assumptions that are built into the replacement axiom of

Machina and Schmeidler. The axioms of Grant and Polak, together with our axioms (A.6)

through (A.9), would result in the analogues of Theorems 1, 2, and 3 in the axiomatic

framework of Grant and Polak (2006).

Kochov (2010) shows that a decision maker’s beliefs when he is aware that his perception

of the environment is incomplete are represented by a non-singleton set of priors. As the

decision maker’s perception of the environment becomes more precise, Kochov’s axioms

imply that the updating of the multiple priors is rectangular as in Epstein and Schneider

(2003). Kochov’s model corresponds to our analysis of the discovery of new feasible acts.

The issue of updating the prior probability of null (that is, zero-probability) events was
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recently addressed by Ortoleva (2012). Ortoleva proposes an interesting model, according

to which decision makers are characterized by a set of priors and a prior on the set of priors.

Before the arrival of information, decision makers maximize their subjective expected utility

with respect to the most likely prior in the support of the prior on priors. When new

information indicates that an event that was assigned zero probability according to this

prior obtains, the prior is discarded, the prior on priors is updated according to Bayes’ rule,

and the most likely prior in the support of the updated distribution is used to evaluate acts,

by the subjective expected utility criterion. For this method to work every null event must

be assigned positive probability by some prior in the support of the prior on priors. This

begs the question of updating beliefs on events that are believed impossible. Ortoleva’s

(2012) approach to updating the probabilities of null events is different from ours in that

it is non-Bayesian. If reduction of compound lotteries was applied in Ortoleva’s model

to obtain a unique prior, then all the null events in his model would be assigned positive

probabilities.

5 Proofs

5.1 Proof of Theorem 1

(i)⇒ (ii) . Since <F̂ and <F̂ ∗ satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler

(1995) implies (3) and (4) as well as the uniqueness of V and V ∗ and of πF̂ and πF̂ ∗ . By

(3) and (4), the restriction of <F̂ and <F̂ ∗ to the constant acts p ∈ ∆ (C) imply that

V (p) ≥ V (q) if and only if p <F̂ q and p <F̂ ∗ q if and only if V ∗ (p) ≥ V ∗ (q) . By (A.6),

p <F̂ q if and only if p <F̂ ∗ q. Thus, by the uniqueness of the representations, V and V ∗

can be chosen so that V = V ∗ on ∆ (C) .

To prove (5) suppose that, for some s ∈ S (F,C) ,

πF̂ (s) 6=
πF̂ ∗ (s)

πF̂ ∗ (S (F,C))
.

Without loss of generality, let

πF̂ (s) >
πF̂ ∗ (s)

πF̂ ∗ (S (F,C))
:= πF̂ ∗ (s | S (F,C)) .

Then there is η ∈
(
πF̂ ∗ (s | S (F,C)) , πF̂ (s)

)
. By the representation in (3), f = δc

∗(C)
{s}δ

c∗(C) ∼F̂
πF̂ (s) δc

∗(C) +
(
1− πF̂ (s)

)
δc∗(C).
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Since πF̂ (s) > η > πF̂ ∗ (s | S (F,C)), by Axiom (A.3), we have the following ranking

of lotteries:

πF̂ (s) δc
∗(C) +

(
1− πF̂ (s)

)
δc∗(C) �F̂ ηδ

c∗(C) + (1− η) δc∗(C) (12)

and

ηδc
∗(C) + (1− η) δc∗(C) �F̂ ∗ πF̂ ∗ (s | S (F,C)) δc

∗(C) +
(
1− πF̂ ∗ (s | S (F,C))

)
δc∗(C) (13)

for all η ∈
(
πF̂ ∗ (s | S (F,C)) , πF̂ (s)

)
.

Now, by (13) and Axiom (A.3),(
ηδc

∗(C) + (1− η) δc∗(C)
)
S(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
)

� F̂ ∗

(
πF̂ ∗ (s | S (F,C)) δc

∗(C) +
(
1− πF̂ ∗ (s | S (F,C))

)
δc∗(C)

)
S(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
)
,

which is equivalent to

ηδc
∗(C) + (1− η) δc∗(C)

�F̂ ∗
(
πF̂ ∗ (s | S (F,C)) δc

∗(C) +
(
1− πF̂ ∗ (s | S (F,C))

)
δc∗(C)

)
S(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
)
,

which, by (4), is equivalent to

V ∗
(
ηδc

∗(C) + (1− η) δc∗(C)
)

> V ∗

(
πF̂ ∗(S(F,C))

(
πF̂ ∗(s | S(F,C))δc

∗(C) +
(
1− πF̂ ∗(s | S(F,C))

)
δc∗(C)

)
+
(
1− πF̂ ∗(S(F,C))

) (
ηδc

∗(C) + (1− η) δc∗(C)
))

(14)

= V ∗

(
πF̂ ∗(s)δ

c∗(C) +
(
πF̂ ∗(S(F,C))− πF̂ ∗(s)

)
δc∗(C) +

(
1− πF̂ ∗(S(F,C))

) (
ηδc

∗(C) + (1− η) δc∗(C)
))

.

By (4), inequality (14) is equivalent to

ηδc
∗(C) + (1− η) δc∗(C) �F̂ ∗ δ

c∗(C)
{s}

(
δc∗(C)

S(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
))

. (15)

Now, by (12) and (3),

V
(
πF̂ (s) δc

∗(C) +
(
1− πF̂ (s)

)
δc∗(C)

)
> V

(
ηδc

∗(C) + (1− η) δc∗(C)
)
,
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which is equivalent to

δc
∗(C)

{s}δ
c∗(C) �F̂ ηδ

c∗(C) + (1− η) δc∗(C). (16)

But the act on the left hand side of (15) is the act g′ in Axiom (A.7), while the act on

the right hand side of (15) is the act f ′. Also, the act on the left hand side of (16) is the

act f in Axiom (A.7), while the act on the right hand side of (16) is the act g. Expressions

(15) and (16) thus imply that f �F̂ g and g′ �F̂ ∗ f
′, a contradiction of Axiom (A.7).

(ii)→ (i) . That <F̂ and <F̂ ∗ satisfy (A.1) - (A.5) is an implication of the Theorem of

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the equality

of V and V ∗ on ∆ (C) .

To show that (A.7) holds, let f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗ be as in (A.7). By (3),

f <F̂ g ⇔ V
(
πF̂ (s) δc

∗(C) +
(
1− πF̂ (s)

)
δc∗(C)

)
≥ V

(
ηδc

∗(C) + (1− η) δc∗(C)
)
.

By the equality of V and V ∗ on ∆ (C) and (5), the last inequality holds if and only if

V ∗
(

πF̂ ∗ (s)
πF̂ ∗ (S (F,C))

δc
∗(C) +

(
1−

πF̂ ∗ (s)
πF̂ ∗ (S (F,C))

)
δc∗(C)

)
≥ V ∗

(
ηδc

∗(C) + (1− η) δc∗(C)
)
.

(17)

which, by (4), is equivalent to

πF̂ ∗ (s)
πF̂ ∗ (S (F,C))

δc
∗(C) +

(
1−

πF̂ ∗ (s)
πF̂ ∗ (S (F,C))

)
δc∗(C) <F̂ ∗ ηδ

c∗(C) + (1− η) δc∗(C). (18)

Now, since the left-hand-side lottery in (18) first-order stochastically dominates the

right-hand side lottery, by Axiom (A.3)(
πF̂ ∗ (s | S (F,C)) δc

∗(C) +
(
1− πF̂ ∗ (s | S (F,C))

)
δc∗(C)

)
S(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
)

< F̂ ∗

(
ηδc

∗(C) + (1− η) δc∗(C)
)
S(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
)
,

Hence, (17) holds if and only if V ∗
(
ξδc
∗(C) + (1− ξ) δc∗(C)

)
≥ V ∗

(
ηδc

∗(C) + (1− η) δc∗(C)
)
,

where

ξ :=
(
πF̂ ∗ (S (F,C))

πF̂ ∗ (s)
πF̂ ∗ (S (F,C))

+
(
1− πF̂ ∗ (S (F,C))

)
η

)
= πF̂ ∗(s)+

(
1− πF̂ ∗(S(F,C))

)
η.

Since ξδc
∗(C)+(1− ξ) δc∗(C) ∈ ∆ (C) is the constant act whose payoff is Σs∈S(F ∗,C′)πF̂ ∗ (s) f ′ (s) ,

the representation result in (4) implies that (17) holds if and only if f ′ <F̂ ∗ g
′.♠
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5.2 Proof of Theorem 2

(i)⇒ (ii) . Since <F̂ and <F̂ ′ satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler

(1995) implies a representation as in (6) as well as the uniqueness of V and of πF̂ for each

level of awareness. By (A.6), p <F̂ q if and only if p <F̂ ′ q. Thus, by the uniqueness of the

representations, V can be chosen to be invariant to the level of awareness.

To prove (8), suppose that, for some s ∈ S (F,C) , πF̂ (s) 6= πF̂ ′(E(s)). Without loss

of generality, let πF̂ (s) > πF̂ ′(E(s)). Then there exists η ∈
(
πF̂ ′(E(s)), πF̂ (s)

)
, and by

Axiom (A.3), we have the following ranking of lotteries:

πF̂ (s) δc
∗(C) +

(
1− πF̂ (s)

)
δc∗(C) �F̂ ηδ

c∗(C) + (1− η) δc∗(C) (19)

and

ηδc
∗(C) + (1− η) δc∗(C) �F̂ ′ πF̂ ′(E(s))δc

∗(C) +
(
1− πF̂ ′(E(s))

)
δc∗(C) (20)

for all η ∈
(
πF̂ ′(E(s)), πF̂ (s)

)
.

However, by (6),

f = δc
∗(C)

{s}δ
c∗(C) ∼F̂ πF̂ (s) δc

∗(C) +
(
1− πF̂ (s)

)
δc∗(C).

Also, by (7),

f ′ = δc
∗(C)

E(s)δ
c∗(C) ∼F̂ ′ πF̂ ′ (E(s)) δc

∗(C) +
(
1− πF̂ ′ (E(s))

)
δc∗(C).

Thus, the preference in (19) is equivalent to f �F̂ g, while the preference (20) is equivalent

to g′ �F̂ ′ f
′. This contradicts Axiom (A.8).

(ii) → (i) That <F̂ and <F̂ ′ satisfy (A.1) - (A.5) is an implication of the Theorem of

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the function

V being independent of F̂ .

To show that (A.8) holds, let f, g ∈ F̂ and f ′, g′ ∈ F̂ ′ be as in (A.8). By (6),

f <F̂ g ⇔ V
(
πF̂ (s) δc

∗(C) +
(
1− πF̂ (s)

)
δc∗(C)

)
≥ V

(
ηδc

∗(C) + (1− η) δc∗(C)
)
.

By (8), the last inequality holds if and only if

V
(
πF̂ ′ (E(s)) δc

∗(C) +
(
1− πF̂ ′ (E(s))

)
δc∗(C)

)
≥ V

(
ηδc

∗(C) + (1− η) δc∗(C)

)
. (21)

By (7), the expression in (21) is equivalent to f ′ �F̂ ′ g
′. Thus, Axiom (A.8) must hold.♠
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5.3 Proof of Theorem 3

(i)⇒ (ii) . Since <F̂ and <F̂S′
satisfy (A.1) - (A.5), the Theorem of Machina and Schmeidler

(1995) implies a representation as in (9) as well as the uniqueness of V and of πF̂ for each

level of awareness. By (A.6), p <F̂ q if and only if p <F̂S′
q. Thus, by the uniqueness of

the representations, V can be chosen to be invariant to the level of awareness.

For some s ∈ S(F,C)∩S′(F,C), let g = g′ = ηδc
∗(C) + (1− η) δc∗(C), and f, f ′ be as in

Axiom (A.9). Suppose that f ∼F̂ g. But f ∼F̂ g if and only if

δc
∗(C)

{s}

(
δc∗(C)

S(F,C)∩S′(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
))
∼F̂ ηδ

c∗(C) + (1− η) δc∗(C). (22)

By the representation in (9) the last indifference holds if and only if

V

(
πF̂ (s)δc

∗(C) +
(
πF̂ (S(F,C) ∩ S′(F,C))− πF̂ (s)

)
δc∗(C) + (23)

(1− πF̂ (S(F,C) ∩ S′(F,C)))
(
ηδc

∗(C) + (1− η) δc∗(C)
))

= V
(
ηδc

∗(C) + (1− η) δc∗(C)
)

But (23) holds if and only if πF̂ (s) + (1− πF̂ (S(F,C) ∩ S′(F,C)))η = η. Hence,

η =
πF̂ (s)

πF̂ (S(F,C) ∩ S′(F,C))
. (24)

By Axiom (A.9), f ∼F̂ g if and only if f ′ ∼F̂S′
g′, which is equivalent to

δc
∗(C)

{s}

(
δc∗(C)

S(F,C)∩S′(F,C)

(
ηδc

∗(C) + (1− η) δc∗(C)
))
∼F̂S′

ηδc
∗(C) + (1− η) δc∗(C).

(25)

By the representation in (10), (25) holds if and only if

V

(
πF̂S′

(s)δc
∗(C) +

(
πF̂S′

(S(F,C) ∩ S′(F,C))− πF̂S′
(s)
)
δc∗(C) (26)

+(1− πF̂S′
(S(F,C) ∩ S′(F,C)))

(
ηδc

∗(C) + (1− η) δc∗(C)
))

= V
(
ηδc

∗(C) + (1− η) δc∗(C)
)

But (26) holds if and only if πF̂S′
(s)+(1−πF̂S′

(S(F,C)∩S′(F,C)))η = η. Thus, f ′ ∼F̂S′
g′

if and only if

η =
πF̂S′

(s)

πF̂S′
(S(F,C) ∩ S′(F,C))

. (27)
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By (24) and (27 we have that

πF̂ (s)
πF̂ (S(F,C) ∩ S′(F,C))

=
πF̂S′

(s)

πF̂S′
(S(F,C) ∩ S′(F,C))

. (28)

An analogous argument applies for any s′ ∈ S(F,C)∩S′(F,C). We therefore also have

that, for any s′ ∈ S(F,C) ∩ S′(F,C),

πF̂ (s′)
πF̂ (S(F,C) ∩ S′(F,C))

=
πF̂S′

(s′)

πF̂S′
(S(F,C) ∩ S′(F,C))

. (29)

Together (28) and (29) imply that

πF̂S′
(s)

πF̂S′
(s′)

=
πF̂ (s)
πF̂ (s′)

. (30)

(ii)→ (i) . That <F̂ and <F̂S′
satisfy (A.1) - (A.5) is an implication of the Theorem of

Machina and Schmeidler (1995). Invariant risk preferences, (A.6), follows from the function

V being independent of F̂ .

To show that (A.9) holds, let f, g ∈ F̂ and f ′, g′ ∈ F̂S′ be as in (A.9). By (9), f <F̂ g

if and only if

V

(
πF̂ (s)δc

∗(C) +
(
πF̂ (S(F,C) ∩ S′(F,C))− πF̂ (s)

)
δc∗(C)

+(1− πF̂ (S(F,C) ∩ S′(F,C)))
(
ηδc

∗(C) + (1− η) δc∗(C)
))

≥ V
(
ηδc

∗(C) + (1− η) δc∗(C)
)
.

By first order stochastic dominance, the last inequality holds if and only if

πF̂ (s)
πF̂ (S(F,C) ∩ S′(F,C))

≥ η. (31)

Suppose that g′ �F̂S′
f ′. By (10), g′ �F̂S′

f ′ if and only if

V

(
πF̂S′

(s)δc
∗(C) +

(
πF̂S′

(S(F,C) ∩ S′(F,C))− πF̂S′
(s)
)
δc∗(C)
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+(1− πF̂S′
(S(F,C) ∩ S′(F,C)))

(
ηδc

∗(C) + (1− η) δc∗(C)
))

< V
(
ηδc

∗(C) + (1− η) δc∗(C)
)
.

By first order stochastic dominance, this holds if and only if πF̂S′
(s) + (1− πF̂S′

(S(F,C)∩
S′(F,C)))η < η. Hence,

η >
πF̂S′

(s)

πF̂S′
(S(F,C) ∩ S′(F,C))

. (32)

Now, expressions (31) and (32) imply that

πF̂ (s)
πF̂ (S(F,C) ∩ S′(F,C))

>
πF̂S′

(s)

πF̂S′
(S(F,C) ∩ S′(F,C))

. (33)

However, by (11),
πF̂ (s′)
πF̂ (s)

=
πF̂S′

(s′)

πF̂S′
(s)

(34)

for all s, s′ ∈ S(F,C) ∩ S′(F,C). Summing over s′ ∈ S(F,C) ∩ S′(F,C) and rearranging,

(34) implies that

πF̂ (s)
πF̂ (S(F,C) ∩ S′(F,C))

=
πF̂S′

(s)

πF̂S′
(S(F,C) ∩ S′(F,C))

which contradicts (33).♠

22



References

[1] Anscombe, Francis J. and Robert J. Aumann (1963) “A Definition of Subjective Prob-

ability,” Annals of Mathematical Statistics 43, 199–205.

[2] Epstein, Larry and Martin Schneider (2003) “Recursive Multiple Prior,” Journal of

Economic Theory 113, 1–31

[3] Fishburn, Peter, C. (1970) Utility Theory for Decision Making. John Wiley & Sons.

[4] Grant, Simon and Ben Polak (2006) “Bayesian Beliefs with Stochastic Monotonicity:

An Extension of Machina and Schmeidler,” Journal of Economic Theory 130, 264–282.

[5] Gul, Faruk (1991) “A Theory of Disappointment Aversion,” Econometrica 59, 667-

686,

[6] Karni, Edi and David Schmeidler (1991) “Utility Theory with Uncertainty,” in Werner

Hildenbrand and Hugo Sonnenschein, eds., Handbook of Mathematical Economics vol.

IV. Elsevier Science Publishers B.V.

[7] Karni, Edi and Marie-Louise Vierø (2013) ““Reverse Bayesianism”: A Choice-Based

Theory of Growing Awareness,” American Economic Review, forthcoming.

[8] Kochov, Asen. 2010. “A Model of Limited Foresight,” working paper, University of

Rochester.

[9] Lancaster, Kelvin J. (1966) “A New Approach to Consumer Theory,” Journal of Po-

litical Economy 74, 132-157.

[10] Machina, Mark and David Schmeidler (1992) “A More Robust Definition of Subjective

Probability,” Econometrica 60, 745–780.

[11] Machina, Mark and David Schmeidler (1995) “Bayes without Bernoulli: Simple Con-

ditions for Probabilistically Sophisticated Choice,” Journal of Economic Theory 67,

106–128.

[12] Ortoleva, Pietro (2012) “Modeling the Change of Paradigm: Non-Bayesian Reaction

to Unexpected News,” American Economic Review 102, 2410–2436.

23



[13] Savage, Leonard J. (1954) The Foundations of Statistics. John Wiley & Sons.

[14] Schmeidler, David and Peter Wakker (1987) “Expected Utility and Mathematical

Expectation,” in John Eatwell, Murray Milgate, and Peter Newman, eds., The New

Palgrave: A Dictionary of Economics. Macmillan Press.

24


