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Abstract

Widely used convolutions and deconvolutions techniques traditionally rely on the

assumption of independence, an assumption often criticized as being very strong. We

observe that independence is, in fact, not necessary for the convolution theorem to hold.

Instead, a much weaker notion, known as subindependence, is the appropriate necessary

and sufficient condition. We motivate the usefulness of the subindependence concept by

showing that is arguably as weak as a conditional mean assumption. We also provide an

equivalent definition of subindependence that does not involve Fourier transforms and

devise a constructive method to generate pairs of subindependent random variables.

1 Introduction

Convolutions and deconvolutions play a central role in the identification and the estimation

of measurement error models (Fan (1991), Fan and Truong (1993), Li (2002), Li and Vuong

(1998), Wang and Hsiao (2011), Taupin (2001), Hu and Ridder (2012), Hu and Ridder (2010),

Bonhomme and Robin (2010), Carrasco and Florens (2011), Wilhelm (2010), Schennach

(2004), Schennach (2007), Schennach (2008), Schennach (2013b)) and, more generally, in any

problem involving sums of independent random variables. The use of convolution techniques

in this context yields very computationally and conceptually convenient methods. However,

the requirement that the variables (e.g. the true quantity of interest and its measurement

error) be independent is often criticized as being too strong (Bound, Brown, and Mathiowetz

(2001), Hu and Schennach (2008)). In this note, we observe that independence is, in fact,

not necessary for the convolution theorem to hold. Instead, a much weaker notion, known

as subindependence, is the appropriate necessary and sufficient condition.

Although the concept of subindependence and its relation to convolutions is known

(Hamedani and Volkmer (2009), Ebrahimi, Hamedani, Soofi, and Volkmer (2010)), it has
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received surprisingly little attention. This paper contributes to this literature (i) by moti-

vating the usefulness of this concept by showing that it is as weak as a conditional mean

assumption in a well-defined sense, (ii) by providing an equivalent and general definition of

subindependence that does not involve Fourier transforms and (iii) by devising a simple and

general method to generate pairs of subindependent random variables.

2 Main Results

Let  and  denote two scalar real-valued random variables and let  =  +  . Let the

characteristic functions (c.f.) of some random variable  be denoted by  () ≡ 
£


¤
and let the joint c.f. of two variables  and  be denoted by  ( ) = 

£


¤
. We

denote the density of a random variable  (with respect the Lebesgue measure) by  while

its cdf is denoted by  , and similarly for joint densities and cdf.

The convolution theorem (Loève (1977), Lukacs (1970)) states that, under independence

of  and  , we have the convenient factorization  () = + () = 
£
+

¤
=


£


¤

£


¤
=  () (). Such a result does not actually require full independence,

because the latter is equivalent to the following assumption (by Theorem 16-B in Loève

(1977)):

Assumption 1 (Independence) 
£
(+ )

¤
= 

£


¤

£


¤
for any  ∈ R and  ∈

R.

Note that independence requires the factorization to hold for any  and any  when the

convolution theorem only needs the factorization to hold for  = . This observation leads

to the following weaker assumption:

Assumption 2 (Subindependence) 
£
(+ )

¤
= 

£


¤

£


¤
for all  ∈ R.

Note that the number of restrictions imposed by subindependence is considerably less

than for independence: Only a one-dimensional subset of the domain of the joint c.f. of 

and  is constrained instead of its whole two-dimensional domain. For comparison, this is

as little constraint on the joint c.f. as a conditional mean assumption  [ | = ] = 0,1

which can also be expressed as a constraint on the c.f. on a one-dimensional subset (see

Proposition 2 in Schennach (2013a)):

Assumption 3 (Conditional mean) [ ( ) ]=0 = 
£
 

¤
= 0 for all  ∈ R.

1For almost every  ∈ R, and assuming that  [| | | = ] ∞ and  [| |] ∞.

2



Informally, one could interpret these observations as follows. If one were to select a

generating process for  at “random”, the chances that it satisfies subindependence are

of the same order as the chances that it satisfies a conditional mean assumption, while the

chances of satisfying independence are considerably smaller. Another interpretation is that,

in a case where the convolution theorem does not hold, the error made in using it anyway

is related to the “distance” to the nearest generating process satisfying subindependence,

which is much “closer” than the nearest model satisfying independence.

One could argue that, regardless of favorable dimensionality arguments, the notion of

subindependence is less intuitive than the one of conditional mean, because the former is

apparently tied to a Fourier representation. To address this concern, we now provide simple

ways to characterize and generate subindependent pairs of random variables that does not

involve Fourier transforms. First, here is an equivalent characterization of subindependence:

Lemma 1 Two scalar real-valued random variables  and  are subindependent iff

+ () =

Z Z
1 (+  ≤ )  ()  ()  (1)

Note that the left-hand side of (1) is the distribution of the sum  +  (accounting for

possible dependence between  and  ), while the right-hand side is the convolution of the

marginal distributions of  and  , expressed in a form that allows for general probability

measures. The two expressions are obviously equal under independence, but this lemma

shows that it holds under the weaker conditions of subindependence. For densities (instead

of general probability measures), Lemma 2 in Ebrahimi, Hamedani, Soofi, and Volkmer

(2010) gives a lengthier but more transparent characterization of subindependence:

Lemma 2 Two scalar real-valued random variables  and  with continuous joint density

 ( ) (and marginals  () and  (), respectively) are subindependent iff

∆ ( ) ≡  ( )−  ()  ()

satisfies Z ∞

−∞
∆ ( )  = 0 for any  ∈ R (2)Z ∞

−∞
∆ ( )  = 0 for any  ∈ R (3)Z ∞

−∞
∆ (  − )  = 0 for any  ∈ R. (4)

Although it is straightforward to find functions ∆ ( ) satisfying (2) and (3), it is

more difficult to do so while at the same time satisfying (4). For this reason, we provide a

simple construction to generate pairs of subindependent random variables.
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Figure 1: Function ∆ ( ) from Example 1.

Theorem 1 Let  and  be scalar real-valued random variables with marginal density

 () and  (), respectively, and satisfying  [||]  ∞ and  [| |]  ∞. Any joint
density  ( ) such that  and  are subindependent can be written in the form

 ( ) =  ()  () +

µ



− 



¶
 ( ) (5)

for some function  : R2 7→ R such thatZ ∞

−∞
 ( )  = 0 and

Z ∞

−∞
 ( )  = 0 (6)

and

lim
||→∞

 (  − ) = 0 (7)

for any  ∈ R

Remark 1 This theorem does not guarantee that, for any choice of  ( ), the resulting

 ( ) is a valid probability density. However, it does guarantee that if one considered

every possible  ( ) satisfying the restrictions and such that (5) is a well-defined density,

one would have covered all possible joint densities that satisfy subindependence. There are

essentially two ways in which  ( ) could fail to be a valid density: (i) if  ( ) is not

sufficiently differentiable, which is easy to avoid and (ii) if the resulting function  ( )

reaches negative values, in which case one can merely rescale  ( ) so that  ( ) ≥ 0
everywhere.

We can use Theorem 1 to construct simple examples that provide graphical intuition into

the concept of subindependence.

4



-3 -2 -1  0  1  2  3

-3
-2

-1
 0

 1
 2

 3

-2
-1
 0
 1
 2

Figure 2: Function ∆ ( ) from Example 2.

Example 1 Taking  ( ) = −(
2+2)2 yield  ( ) =  ()  () + ∆ ( )

with ∆ ( ) = ( − + 2 − 2) −
1
2
2− 1

2
2.

The deviation ∆ ( ) is shown in Figure 1 and illustrates perhaps the simplest

general shape of a deviation from independence that will preserve subindependence. One

can also easily construct an example (illustrated in Figure 2) where independence is violated

but subindependence and conditional mean  [ |] = 0 hold. This is useful to see that

subindependence is not incompatible with the natural conditional mean assumption.

Example 2 Taking  ( ) = (2 − 1)−(2+2)2 yield  ( ) =  ()  ()+∆ ( )

with∆ ( ) = (−1 + 2 + 2 − 3 + 3 − 22) −
1
2
2− 1

2
2. Note that

R
 ( )  =

0 in this case.

3 Conclusion

This paper’s aim is not to try to argue that economic models should be stated in terms

of subindependence, which would admittedly be an unnatural assumption. Rather, we are

arguing that inferences made under the assumption of independence are robust to large

deviations from independence that maintain subindependence. This considerably expands

the scope of validity of the wide range of methods developed under independence, because

subindependence is arguably just as weak an assumption as conditional mean. Indeed, both

conditions, when phrased in terms of c.f., impose constraints on a subset of its domain that

is of the same dimension. We provide explicit examples that illustrate that deviations from

independence that maintain subindependence have quite simple and plausible shapes.
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A Proofs

Proof of Lemma 1. To show the equivalence of (1) and assumption 2, we observe that

the equality of the cdf + () and ̃ () ≡
R R

1 (+  ≤ )  ()  () is equivalent

to the equality of the corresponding probability measures + () and ̃ (). By the

well-known uniqueness of c.f. (Loève (1977), Lukacs (1970)), this is equivalent to the equality

between the corresponding Fourier transforms:Z
+ () =

Z
̃ ()  (8)

The left-hand side of (8) is obviouslyZ
+ () = 

£
(+ )

¤
(9)

by construction. Evaluating the right-hand-side yields:Z
̃ () =

Z


µZ Z
+ ()  ()  ()

¶
=

Z Z Z
+ ()  ()  ()

where 0 () ≡ 1 (0 ≤ ) and where the second equality follows from Fubini’s theorem for

finite measures (see Chapter 5 in Bhattacharya and Rao (2010)). Since + () represents

a unit point mass at  = + , we haveZ
̃ () =

Z Z
(+) ()  ()

=

Z Z
 ()  ()

=

Z
 ()

Z
 ()

= 
£

¤

£

¤

(10)

where we have again used Fubini’s theorem for finite (complex) measures. Equating (9) and

(10) for any  ∈ R yields Assumption 2.
Proof of Theorem 1. Subindependence of and  requires that  ( ) =  () () =

 ( 0) (0 ). Therefore,  ( ) can be written as:

 ( ) =  () () +∆ ( ) (11)

where ∆ ( ) = 0 if either  = 0,  = 0 or  = . Since ∆ ( ) is a difference

of c.f., which are always bounded, it is also bounded. Since  [||] and  [| |] are finite,

6



 (),  () and  ( ) are everywhere continuously differentiable and, therefore, so

is ∆ ( ). In particular, this implies that near the line  =  (where ∆ ( )

vanishes), ∆ ( ) behaves linearly and the ratio
∆ ()

(−) does not diverge ( =
√−1

is a constant introduced for convenience). Away from this line, (− ) is nonzero, so the

ratio does not diverge either and ∆ ( ) can be written in the form:

∆ ( ) =  (− ) ( ) (12)

where  ( ) is finite at each ( ) ∈ R2 and such that  ( 0) = 0 and  (0 ) = 0.

Equation (12). Since (− ) is nonzero along the lines  = 0 and  = 0 (except at  =  = 0)

the constraints ∆ ( 0) = 0 and ∆ (0 ) = 0 translate directly into the constraint

that  ( 0) = 0 and  (0 ) = 0. The inverse Fourier transform of these constraints yield

(6). (The value at  (0 0) is irrelevant since it is finite and multiplied by (− ) = 0.) Since

∆ ( ) and  ( ) are bounded, they are a special case of tempered distributions and

admit an inverse Fourier transform, given by (Lighthill (1962)):

∆ ( ) =

µ



− 



¶
 ( ) (13)

where ∆ ( ) and  ( ) denote the inverse Fourier transforms of ∆ ( ) and

 ( ), respectively. Combining (13) with the inverse Fourier transform of (11) yields (5).

We can further restrict the behavior of  ( ) by invoking Equation (4) from Lemma 2 with

∆ ( ) given by (13):Z ∞

−∞

∙µ



− 



¶
 ( )

¸
=−

 = 0

for any  ∈ R. Letting superscripts denote orders of derivatives with respect to each argu-
ments, we can write:

0 =

Z ∞

−∞

¡
(10) (  − )− (01) (  − )

¢
 =

Z ∞

−∞




 (  − ) 

= lim
→∞

 (  − )− lim
→−∞

 (  − )

Hence lim→∞  (  − ) = lim→−∞  (  − ). These limits must also be zero because

otherwise the constraints (6) would diverge, thus implying (7).
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