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POSTERIOR INFERENCE IN CURVED EXPONENTIAL
FAMILIES UNDER INCREASING DIMENSIONS

∗

By Alexandre Belloni and Victor Chernozhukov

Duke University and Massachusetts Institute of Technology

This work studies the large sample properties of the posterior-
based inference in the curved exponential family under increasing
dimension. The curved structure arises from the imposition of vari-
ous restrictions on the model, such as moment restrictions, and plays
a fundamental role in econometrics and others branches of data anal-
ysis. We establish conditions under which the posterior distribution
is approximately normal, which in turn implies various good prop-
erties of estimation and inference procedures based on the posterior.
In the process we also revisit and improve upon previous results for
the exponential family under increasing dimension by making use of
concentration of measure. We also discuss a variety of applications
to high-dimensional versions of the classical econometric models in-
cluding the multinomial model with moment restrictions, seemingly
unrelated regression equations, and single structural equation mod-
els. In our analysis, both the parameter dimension and the number
of moments are increasing with the sample size.

Key words: curved exponential family; Bernstein-Von Mises theo-
rems; increasing dimension; single-equation structural equations; seem-
ingly unrelated regression; multivariate linear models; multinomial
model with moment restrictions

JEL codes: C1, C3; AMS codes: 62F15

1. Introduction. The main motivation for this paper is to obtain large
sample results for posterior inference in the curved exponential family under
increasing dimension. In the exponential family, the log of a density is linear
in parameters θ ∈ Θ; in the curved exponential family, these parameters θ are
restricted to lie on a curve η 7→ θ(η) parameterized by a lower dimensional
parameter η ∈ Ψ. There are many classical examples of densities that fall
in the curved exponential family; see for example Efron [13], Lehmann and
Casella [21], and Bandorff-Nielsen [1]. Curved exponential densities have
also been extensively used in applications [13, 18, 20, 19]. An example of
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2 BELLONI AND CHERNOZHUKOV

the condition that puts a curved structure onto an exponential family is a
moment restriction of the type:

∫
m(x, α)f(x, θ)dx = 0,

that restricts θ to lie on a curve that can be parameterized as {θ(η), η ∈ Ψ},
where component η = (α, β) contains α and other parameters β that are
sufficient to parameterize all parameters θ ∈ Θ that solve the above equation
for some α. In econometric applications, often moment restrictions represent
Euler equations that result from the data being an outcome of an optimiza-
tion by rational decision-makers; see e.g. Hansen and Singleton [14], Cham-
berlain [7], Imbens [16], and Donald, Imbens and Newey [10]. In the last
section of the paper we discuss in more details other econometric models
that fit this framework, such as multivariate linear models, seemingly unre-
lated regressions, single equation structural models, as in Zellner [27] and
[28]; we also discuss multinomial model with moment restrictions. Thus, the
curved exponential framework is a fundamental complement to the expo-
nential framework.

Under high-dimensionality, despite of its applicability, theoretical proper-
ties of the curved exponential family are not as well understood as the cor-
responding properties of the exponential family. In this paper, we contribute
to the theoretical analysis of the posterior inference in curved exponential
families under high dimensionality. We provide sufficient conditions under
which consistency and asymptotic normality of the posterior is achieved
when both the dimension of the parameter space and the sample size are
large. Our framework only requires weak conditions on the prior distribu-
tion, which allows for improper priors. In particular, the uninformative prior
always satisfies our assumptions. We also study the convergence of moments
and the rates with which we can estimate them. We then apply these results
to a variety of models where both the parameter dimension and the number
of moments are increasing with the sample size.

The present analysis of the posterior inference in the curved exponential
family builds upon the work of Ghosal [17] who studied posterior inference in
the exponential family under increasing dimension. Under sufficient growth
restrictions on the dimension of the model, it was shown that the posterior
distributions concentrate in neighborhoods of the true parameter and can be
approximated by an appropriate normal distribution. Such analysis extended
in a fundamental way the classical results of Portnoy [24] for maximum
likelihood methods for the exponential family with increasing dimensions.

In addition to a detailed treatment of the curved exponential family, we
also establish some useful results for the classical exponential families. In
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fact, we begin our analysis revisiting Ghosal’s increasing dimension setup
for the exponential family. We present several results that complement the
results in Ghosal [17]. First, we amend the conditions on priors to allow
for a larger set of priors, for example, improper priors; second, we use con-
centration inequalities for log-concave densities to sharpen the conditions
under which the normal approximations apply; and third, we show that the
approximation of α-th order moments of the posterior by the correspond-
ing moments of the normal density becomes exponentially difficult in the
moment order α.

We also note that by establishing the asymptotic normality of the poste-
rior distribution we can invoke results in Belloni and Chernozhukov[2] that
guarantees good computational properties for MCMC methods. Moreover,
new results on sampling from manifolds (see Diaconis et al [9]) permits
the implementation of different random walk schemes that complement the
schemes analysed in [2]. The results derived in this work can be used to
weaken the conditions required in C.1-C.3 in [2] to hold in curved exponen-
tial families which should also be beneficial to the new schemes proposed in
[9].

This work allows for increasing dimension so it can be thought as a sieve
technique. However, this paper does not formally account for the approxi-
mation errors resulting from using approximate functional forms as opposed
to exact functional forms. Approximation errors can be introduced into the
model and our results can also be shown to hold under more stringent con-
ditions (approximations errors need to vanish at rates comparable to the
sampling errors), a sharp analysis of the impact of the approximation error
can be delicate and is outside of the scope of the present paper. An example
where approximation errors are controlled is the work Bontemps [5] where a
non-parametric regression setting in the classical Gaussian mode. We view
the extension of the current (non-Gaussian) setting to non-parametric cases
under sharp conditions as a major venue for future work.

The rest of the paper is organized as follows. In Section 2 we formally
define the framework, assumptions, and develop results for the exponen-
tial family. In Section 3, the main section, we develop the results for the
curved exponential family. In Section 4 we apply our results on a variety
of applications. Appendices collect proofs of the main results and technical
lemmas.

Notation. For a, b ∈ IRd, their (Euclidean) inner product is denoted by
〈a, b〉, and ‖a‖ =

√
〈a, a〉. The unit sphere in IRd is denoted by Sd−1 =

{v ∈ IRd : ‖v‖ = 1}. For a linear operator A, the operator norm is denoted
by ‖A‖ = sup{‖Aa‖ : ‖a‖ = 1}. Let φd(·;µ;V ) denote the d-dimensional
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Gaussian density function with mean µ and covariance matrix V .

2. Exponential Family Revisited. Assume that we are have a trian-

gular array of random samples {X(n)
1 X

(n)
2 · · · X(n)

n , n ≥ 1}. Assume further

that the data X
(n)
i , i = 1, . . . , n, are independent d(n)-dimensional vectors

draws from a d(n)-dimensional exponential family whose density is defined
by

(2.1) f
(
x; θ(n)

)
= h(x)exp

(〈
x, θ(n)

〉
− ψ(n)

(
θ(n)

))
,

where θ(n) ∈ Θ(n) an open convex set of IRd(n)
, ψ(n) is the associate normal-

izing function and h(n) depends only on the data. Let θ
(n)
0 ∈ Θ(n) denote the

(sequence of) true parameter which is assumed to be bounded away from
the boundary of Θ(n) (uniformly in n). For notational convenience we will
suppress the superscript (n) but it is understood that the associate objects
are changing with n.

Under this framework, the posterior density of θ given the observed data
{Xi}ni=1 is defined as
(2.2)

πn(θ) =
π(θ)

∏n
i=1 f(Xi; θ)∫

Θ π(ξ)
∏n

i=1 f(Xi; ξ)dξ
=

π(θ)exp (〈∑n
i=1Xi, θ〉 − nψ(θ))∫

Θ π(ξ)exp (〈
∑n

i=1Xi, ξ〉 − nψ(ξ)) dξ
,

where π(·) denotes a prior distribution on Θ.
Our results are stated in terms of a re-centered Gaussian distribution in

the local parameter space. Let µ = ψ′(θ0) and F = ψ′′(θ0) be the mean and
covariance matrix of Xi, and let J = F 1/2 be its square root (i.e., JJT = F ).
The re-centering is defined as ∆n :=

√
nJ−1

(
1
n

∑n
i=1Xi − µ

)
; it follows that

E[∆n] = 0, and E[∆n∆
T
n ] = Id where Id denotes the d-dimensional identity

matrix. Moreover, the posterior in the local parameter space is defined for
u ∈ U =

√
nJ(Θ− θ0) as

(2.3) π∗(u) =
π(θ0 + n−1/2J−1u)

∏n
i=1 f(Xi; θ0 + n−1/2J−1u)∫

U π(θ0 + n−1/2J−1u)
∏n

i=1 f(Xi; θ0 + n−1/2J−1u)du
.

In the same lines of Portnoy [24] and Ghosal [17], conditions on the growth
rates of the third and fourth moments are imposed. Following these refer-
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ences the following quantities play an important role in the analysis:

B1n(c) = sup
θ,a

{
|Eθ

[
〈a, V 〉3

]
| : a ∈ Sd−1, ‖J(θ − θ0)‖2 ≤

cd

n

}
,(2.4)

B2n(c) = sup
θ,a

{
Eθ

[
〈a, V 〉4

]
: a ∈ Sd−1, ‖J(θ − θ0)‖2 ≤ cd

n

}
,(2.5)

λn(c) =
1

6

(√
cd

n
B1n(0) +

cd

n
B2n(c)

)
,(2.6)

where V is a random variable distributed as J−1(U − Eθ[U ]) and U has
density f(·; θ) as defined in (2.1).

Comment 2.1 Note that λn(c) is different than the quantity with the same
notation defined in [17] and we provide a technical discussion about the dif-
ferences in the Appendix. For now we note that (2.6) is always smaller than
its counterpart in [17] which leads to weaker requirements. In the specific
applications of interest we develop bounds on (2.6). In the case that the den-
sity (2.1) is log-concave in the data, we provide generic bounds for (2.6) in
Appendix D.

We will need to impose some regularity conditions on the prior π.

Assumption P(cn). For the specified positive sequence cn, the prior
density function π satisfies:

sup
θ∈Θ

ln[π(θ)/π(θ0)] ≤ O(d) and | ln π(θ)− lnπ(θ0)| ≤ Kn(cn)‖θ − θ0‖

for any θ s.t. ‖θ− θ0‖ ≤
√
cn‖F−1‖d/n, with Kn(cn)

√
cn‖F−1‖d/n = o(1).

In what follows the sequence cn will typically remain uniformly bounded
in n. These conditions differ from the ones imposed in [17]. Although the
same Lipschitz condition is assumed, we require only a relative lower bound
on the value of the prior on the true parameter instead of an absolute bound.
Thus this condition requires that the true parameter does not have an expo-
nentially small prior value relative to other parameter values. We note that
such conditions allow for improper priors which were not allowed in [17].
Importantly, the uninformative prior trivially satisfies Assumption P.

Next we state the main results of this section.

Theorem 1 For any fixed value c > 0, suppose that (i) B1n(c)
√
d/n = o(1),

(ii) λn(c)d = o(1), (iii) ‖F−1‖d/n = o(1), and (iv) Assumption P(c) hold.
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Then we have asymptotic normality of the posterior density function

∫

U
|π∗n(u)− φd(u;∆n, Id)|du = oP (1).

Theorem 1 has different assumptions on the prior that Theorem 3 of [17]
has. However, Theorem 1 does not require additional technical assumptions
used in [17], as discussed in Appendix A, and the growth condition of d with
relative to the sample size n is improved by at least ln d factors.

In some applications it might be desired to have stronger convergence
properties than simply asymptotic normality. The following theorem pro-
vides sufficient conditions for the α-moment convergence. In what follows,

for sequences of α and d, let Md,α := (d+ α)
(
1 + α ln(d+α)

d+α

)
.

Theorem 2 In addition to the conditions (i) and (iii) of Theorem 1, sup-
pose that the following hold for any fixed c̄:
(ii′) λn (c̄Md,α/d) [c̄Md,α]

1+α/2 = o(1);

(iv′) Assumption P(c̄Md,α/d) and Kn (c̄Md,α/d)

√
‖F−1‖

[
c̄Md,α

]1+α
/n = o(1).

Then we have

(2.7)

∫

U
‖u‖α|π∗n(u)− φd(u;∆n, Id)|du = oP (1).

Conditions (ii’) and (iv’) lead to the strengthening of conditions (ii) and
(iv) of Theorem 1 respectively. We emphasize that Theorem 2 allows for
α and d to grow as the sample size increases. Our conditions highlight the
polynomial trade off between n and d but an exponential trade off between
n and α. This suggests that the estimation of higher moments in increasing
dimensions applications could be very delicate. Conditions (ii′) and (iv′)
simplify significantly if α ln d = o(d), in which case Md,α = d(1 + o(1)).

Comment 2.2 Suppose that we are interested in allowing α to grow with
the sample size as well. If d is growing in a polynomial rate with respect to
n, our results do not allow for α = O(lnn). Some limitation along these
lines should be expected since there is an exponential trade off between α
and n. However, it is definitely possible to let both the dimension and α to
grow with the sample size with the rate α = O(

√
lnn). Such slow growth

conditions illustrate the potential limitations for the practical estimation of
higher order moments.

3. Curved Exponential Family. Next we consider the curved expo-
nential family. LetX1,X2, . . . ,Xn be i.i.d. observations from a d-dimensional
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curved exponential family with density given by

f(x; θ) = h(x) exp (〈x, θ(η)〉 − ψ(θ(η))) ,

where η ∈ Ψ ⊂ IRd1 , θ : Ψ → Θ, an open subset of IRd, and d → ∞ as
n → ∞ as before. In this section we assume that J = Id for notational
convenience.

The parameter of interest is η, whose true value η0 lies in the interior of
the set Ψ ⊂ IRd1 . The true value of θ induced by η0 is given by θ0 = θ(η0).
The mapping η 7→ θ(η) takes values from IRd1 to IRd where d1 ≤ d. Moreover,
assume that η0 is the unique solution to the system θ(η) = θ0.

Thus, the parameter θ corresponds to a high-dimensional parametrization,
and η describes the lower-dimensional parametrization of the density. We
require the following regularity conditions on the mapping θ(·).

Assumption A. For every κ, and uniformly in γ ∈ B(0, κ
√
d), there

exists a linear operator G : IRd1 → IRd such that G′G has eigenvalues
bounded from above and away from zero, and for every n

(3.8)
√
n
(
θ(η0 + γ/

√
n)− θ(η0)

)
= r1n + (I +R2n)Gγ,

where

(3.9) ‖r1n‖d1/2 → 0 and ‖R2n‖d→ 0.

Assumption B. There exist a strictly positive constants ε0 such that
for every η ∈ Ψ (uniformly on n) we have

(3.10) ‖θ(η)− θ(η0)‖ ≥ ε0‖η − η0‖.

Assumption P’. The prior density function π satisfies:

sup
η∈Ψ

ln[π(θ(η))/π(θ(η0))] ≤ O(dp).

Thus the mapping η 7→ θ(η) is allowed to be nonlinear and discontinuous.
For example, the additional condition of δ1n = 0 implies the continuity
of the mapping in a neighborhood of η0. More generally, condition (3.9)
impose that the map admits an (uniform) approximate linearization in the
neighborhood of η0. An example of a kind of map allowed in this framework
is given in Figure 1.

A prior π on Θ induces a prior over Ψ as π(η) = π(θ(η))/
∫
Ψ π(θ(η̃))dη̃.

Alternatively the prior can be placed directly over Ψ. Assumption P’ also
bounds the maximum log-likelihood given by the prior to any η different
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Fig 1. This figure illustrates the mapping θ(·). The (discontinuous) solid line is the map-
ping while the dash line represents the linear map induced by G. The dash-dot line repre-
sents the deviation band controlled by r1n and R2n.

than η0 to be of the order dp which can grow with n. If Assumption P holds
we have dp ≤ d. However, if the prior is placed directly on Ψ we typically
have dp = d1. Finally, if the prior is uninformative we trivially have dp = 1.
The posterior of η given the data is denoted by

πn(η) ∝ π(θ(η)) ·
n∏

i=1

f(xi; θ(η)) = π(θ(η)) · exp
(
n
〈
X̄, θ(η)

〉
− nψ(θ(η))

)

where X̄ = (1/n)
∑n

i=1Xi.
Under this framework, we also define the local parameter space to describe

contiguous deviations from the true parameter as

γ =
√
n(η − η0), and let s = (G′G)−1G′√n(X̄ − µ)

be a first order approximation to the normalized maximum liklelihood/ex-
tremum estimate. It follows that the following bounds hold for s:

E[s] = 0, E[ss′] = (G′G)−1, and ‖s‖ = OP (
√
d1).

The posterior density evaluated at γ ∈ Γ :=
√
n(Ψ−η0) is given by π∗n(γ) =

ℓ(γ)/
∫
Γ ℓ(γ)dγ, where

ℓ(γ) = exp
(
n
〈
X̄, θ(η0 + n−1/2γ)− θ(η0)

〉
− n

[
ψ(θ(η0 + n−1/2γ))− ψ(θ(η0))

])

× π
(
θ
(
η0 + n−1/2γ

))
.

(3.11)
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In order to formally state our results we need the following additional
definition

an = sup{c : λn(c) ≤ 1/16}.
Because λn(c) can be used to bound deviations between the posterior dis-
tribution from a suitable Gaussian distribution (Lemma 1) it follows that in
a neighborhood of size

√
and we can still bound the posterior ℓ(·) by above

with a proper Gaussian density.
Next we address the consistency question for the maximum likelihood

estimator associated with the curved exponential family.

Theorem 3 Suppose that Assumptions A, B and P’ hold, an → ∞. Then
the maximum likelihood estimator η̂ satisfies

‖η̂ − η0‖ = OP

(√
d1 + dp
n

)
.

Two remarks regarding Theorem 3 are worth mentioning. First, we note
that the condition λn(c) = o(1) implies an → ∞. However, λn(c) = o(1)
is stronger than the condition

√
d/nB1n(c) = o(1) used for consistency for

the exponential case obtained in Ghosal [17]. Second, consistency result in
Theorem 3 relies on the dimension of the larger model d and very mild
assumptions on the prior were made in Theorem 3. If the prior used is
defined over the full space, it might place an exponentially small (in the
dimension d) weight in η0 relative to other points. In the case d1 ∼ d this is
not problematic but it could impact the rates if d1 = o(d). In cases a prior
can be placed directly over Γ so that dp = O(d1), we obtain the standard
rate of convergence of

√
d1/n.

Finally, we can state the asymptotic normality result for the curved ex-
ponential family.

Theorem 4 Suppose that Assumptions A, B, and P’ hold, log d = o(an),
and conditions (i)-(iv) of Theorem 1 hold. Then, asymptotic normality for
the posterior density associated with the curved exponential family holds,

∫
|π∗n(γ)− φd1(γ; s, (G

′G)−1)|dγ = oP (1).

4. Applications to Selected Econometric Models. In this section
we verify the conditions that lead to asymptotic normality in a variety of
econometric problems covering both exponential and curved exponential
families under increasing dimension. Most examples are motivated by the
classical work of Zellner [28] on Bayesian econometrics.
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4.1. Multivariate Linear Model. Next we consider a multivariate linear
model. The response variable Yi is a dr-dimensional vector, the disturbances
Ui are normally distributed with mean zero and covariance matrix Σ0. The
covariates Zi are dc-dimensional and the parameter matrix of interest Π0 is
dc × dr,

(4.12) Yi = ZiΠ0 + Ui i = 1, . . . , n.

For notational convenience, let Y and Z denote the matrices whose rows
are given by yi and Zi respectively. Note that the dimension of the model is
d = d2r + dcdr.

Conditioning on the covariates Z, this model can be cast as an exponential
family model by the following parametrization, see for instance [26],

(4.13) θ =

(
θ1
θ2

)
=

(
−1

2Σ
−1

ΠΣ−1

)
, X̄ =

1

n

(
X̄1

X̄2

)
=

1

n

(
Y ′Y
Z ′Y

)

and using the (trace) inner product 〈θ,X〉 = trace(X ′
1θ1) + trace(X ′

2θ2).
This parametrization leads to the normalizing function

(4.14) ψ(θ) = − 1

4n
trace(Zθ2θ

−1
1 θ′2Z

′)− 1

2
log det(−2θ1).

We make the following assumptions on the design. The covariates zi sat-

isfy maxi≤n ‖Zi‖ = O(d
1/2
c ), the matrices Z ′Z/n and Σ0 have eigenvalues

bounded away from zero and from above, and the matrix Π0 has full rank
with singular values also bounded away from zero and from above uniformly
in n.

Under these assumptions, by Lemma 10 it follows that ‖F−1‖ = O(1).
Also, Lemma 11 bounds the quantities B1n(c) = O(dc) and B2n(c) = O(d2c).
Therefore we have asymptotic normality by Theorem 1 provided that the
condition d(dc

√
d/n+ d2cd/n) = o(1) holds.

4.2. Seemingly Unrelated Regression Equations. The seemingly unrelated
regression model (Zellner [27]) considers a collection of dr models

(4.15) yk = Xkβk + uk, k = 1, . . . , dr,

each having n observations, and the dimension of βk is dk. Let dc denote
the total number of distinct covariates. The dr-dimensional vector of distur-
bances u has zero mean and covariance Σ0. This model can be written in the
form of (4.12) by setting Π = [π1(β1);π2(β2); · · · ;πdr(βdr )]. Note that the
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vector πi(βi) has zeros for regressors that do not appear in the ith model.
Garderen [26] shows that this model is a curved exponential model provided
that the matrix Π has some zero restrictions.

Consider the assumptions of Section 4.12. In this case we have that

(4.16) η =

(
η1
η2

)
=

(
Σ−1

Π

)
, θ(η) =

(
−1

2Σ
−1

ΠΣ−1

)
.

We restrict the space of Σ to consider λmin(Σ) > λmin a fixed constant (note
that this induces λmax(Σ

−1) < 1/λmin which leads to a convex region in the
parameter space), and that operator norm of Π is bounded by a constant,
‖Π‖ ≤M a fixed constant.

The mapping θ(·) is twice differentiable and Lemma 12 establishes that
condition (3.8) holds with R2n = 0 and ‖r1n‖ ≤ O(d/

√
n). This implies that

the requirement of d6r + d3cd
3
r = o(n) suffices for Assumption A to hold.

In order to verify Assumption B, we have

‖θ(η)− θ(η0)‖ ≥ max{‖η1 − η01‖, ‖η2η1 − η02η01‖}.
By setting ε0 = λmin(Σ0)/4M we can assume that ‖η1 − η01‖ < ε0‖η −
η0‖ otherwise Assumption B holds. This assumption leads to ‖η2 − η02‖ ≥
(1/2)‖η−η0‖. In this case, since the operator norm of η2 satisfies ‖η2‖ ≤M ,
we have

‖η2η1 − η02η01‖ = ‖η2(η1 − η01) + (η2 − η02)η01‖
≥ ‖η2 − η02‖λmin(Σ0)− ‖η2‖‖η1 − η01‖
≥ ‖η − η0‖λmin(Σ0)/2−Mε0‖η − η0‖
≥ ‖η − η0‖λmin(Σ0)/4 ≥ ε0‖η − η0‖

which implies Assumption B.

4.3. Single Structural Equation Model. Next we consider the single struc-
tural equation,

(4.17) y(1) = Y (2)β + z(1)γ + v

for which the associated reduced form system, given by the multivariate
linear model in (4.12), can be partitioned as

(4.18) (y(1) Y (2)) = (z(1) Z(2))

(
π11 Π12

π21 Π22

)
+ (u(1) U (2)).

We assume full column rank of Z and rank(π21 Π22) = rank(Π22) = dr − 1
where dr is the dimension of (y(1) Y (2)). The compatibility between the
models (4.17) and (4.18) requires that

π11 = Π12β + γ, π21 = Π22β, and u(1) = U (2)β + v.
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The model can also be embedded in (4.12) as follows
(4.19)

η =




η1
η2
η3


 =




Σ−1
(

Π12

Π22

)

(
γ
β

)



, θ(η) =




−1
2Σ

−1
(
γ +Π12β Π12

Π22β Π22

)
Σ−1


 .

Similar arguments to those used in Section 4.2 show that Assumptions A
and B holds.

4.4. Multinomial Model. This example of multinomial model was also
analyzed in [17]. Our goal is to weaken some of the conditions required
previously using the techniques proposed here.

Let X = {x0, x1, . . . , xd} be the known finite support of a multinomial
random variable X where d is allowed to grow with sample size n. For
each j denote by pj the probability of the event {X = xj} which is as-
sumed to satisfy max0≤j≤d 1/pj = O(d). The parameter space is given by

θ = (θ1, . . . , θd) where θj = log(pj/(1 −∑d
k=1 pk)). It follows that under

the assumption on the pj ’s the true value of θj ’s are bounded. The Fisher
information matrix is given by F = P − pp′ where P = diag(p). In this case
we have B1n(c) = O(d3/2) and B2n(c) = O(d2). We refer to [17] for detailed
calculations.

The growth condition d6(log d)/n → 0 was imposed in [17] to obtain the
asymptotic normality results (the case of α = 0). We weaken this growth
requirement by combining the derivation in [17] with the analysis in Section 2
with an uninformative (improper) prior. In this case we have Kn(c) = 0 and
our definition of λn remove the logarithmic factors. As a result, Theorem 1
leads to a weaker growth condition d4/n → 0. For α-moment estimation, the
conditions of Theorem 2 are satisfied with the condition that d4+α+δ/n→ 0
for any strictly positive value of δ. Recently another approach based on Le
Cam’s proof that is specific to discrete probability distributions allows for
further improvements, see [6].

4.5. Multinomial Model with Moment Restrictions. In this subsection
we provide a high-level discussion of the multinomial model with moment
restrictions. Let X = {x0, x1, x2, . . . , xd} be the known finite support of a
multinomial random variableX which was described in Section 2. Conditions
(i) − (iv) are verified as in Section 4.4.

As discussed in the introduction, it is of interest to incorporate moment
restrictions into this model, see Chamberlain [7] and Imbens [16] for discus-
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sions. This will lead to a curved exponential model as studied in Section
3.

The parameter of interest is η ∈ Ψ ⊂ IRd1 a compact set. Consider a (twice
continuously differentiable) vector-valued moment function m : X × Ψ →
IRM such that

E[m(X, η)] = 0 for a unique η0 ∈ Ψ.

The log-likelihood function associated with this model

(4.20)

l(q, η) =

n∑

i=1

d∑

j=0

I{Xi = xj} ln qj

for some θ and η such that

d∑

j=0

qjm(xj , η) = 0,

d∑

j=0

qj = 1.

and l(q, η) = −∞ if the probability distribution q violates any of the mo-
ments conditions. The log-likelihood function (4.20) induces the mapping
q : Ψ → ∆d−1 formally defined as

(4.21)

q(η) = argmax
q

l(q, η)

d∑

j=0

qjm(xj , η) = 0,

d∑

j=0

qj = 1, q ≥ 0.

In this case, the function θj(η) = log(qj(η)/q0(η)) (for j = 1, . . . , d) is
the mapping from Ψ → Θ discussed in Section 3. Assuming that the matrix
E [m(X, η)m(X, η)′ ] is uniformly positive definite over η, Qin and Lawless
[25] use the inverse function theorem to show that θ(·) is a twice continuous
differentiable mapping of η in a neighborhood of η0. In particular this implies

that we can take R2n = 0 and ‖r1n‖ = O
(
dd21(d/n)

)
. Thus, Assumption A

holds provided that d4.5 = o(n).
Assumption B is satisfied if η belongs in a compact set Ψ and that the

mapping θ(·) is injective (over a set that contains Ψ in its interior). We refer
to Newey and McFadden [23] for a discussion of primitive assumptions for
identification with moment restrictions.

APPENDIX A: TECHNICAL RESULTS

In this section we prove the technical lemmas needed to prove our main
result in the following section. Our exposition follows the work of Ghosal
[17]. For the sake of completeness we include Proposition 1, which can be
found in Portnoy [24], and a specialized version of Lemma 1 of [17]. All the
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remaining proofs use different techniques and rely on weaker assumptions.
In particular, we no longer require the prior to be proper, no bounds on the
growth of det (ψ′′(θ0)) are imposed, and lnn and ln d do not need to be of
the same order.

Using the notation in Section 2, let

(A.22) H(a) = {u ∈ U : ‖u‖ ≤ a}.

Moreover, for u ∈ U let

(A.23) Z̃n(u) = exp
(
〈u,∆n〉 − ‖u‖2/2

)
and

(A.24)

Zn(u) = exp

(
1√
n

〈
n∑

i=1

Xi, J
−1u

〉
− n

[
ψ
(
θ0 + n−1/2J−1u

)
− ψ(θ0)

])
,

otherwise (if θ0 + n−1/2J−1u /∈ Θ), let Zn(u) = Z̃n(u) = 0. The quantity
(A.24) denotes the likelihood ratio associated with f as a function of u. In a
parallel manner, (A.23) is associated with a standard Gaussian density. We
note that (A.23) and (A.24) are logconcave functions.

We start recalling a result on the Taylor expansion of ψ which is key to
control deviations between Z̃(u) and Z(u).

Proposition 1 (Portnoy [24]) Let ψ′ and ψ′′ denote respectively the gra-
dient and the Hessian of ψ. For any θ, θ0 ∈ Θ, there exists θ̃ = λθ+(1−λ)θ0,
for some λ ∈ [0, 1], such that

(A.25)

ψ(θ) = ψ(θ0) + 〈ψ′(θ0), θ − θ0〉+ 1
2 〈θ − θ0, ψ

′′(θ0)(θ − θ0)〉+
+ 1

6Eθ0

[
〈θ − θ0,W 〉3

]

+ 1
24

{
Eθ̃

[
〈θ − θ0,W 〉4

]
− 3

(
Eθ̃

[
〈θ − θ0,W 〉2

])2}

where Eθ [g(W )] denotes the expectation of g(U − Eθ [U ]) with U ∼ f(·; θ).
Based on Proposition 1 we control the pointwise deviation between Zn and

Z̃n in a neighborhood of zero (i.e., in a neighborhood of the true parameter).

Lemma 1 (Essentially in Ghosal [17] or Portnoy [24]) For all u such
that ‖u‖ ≤

√
cd, we have

| lnZn(u)−ln Z̃n(u)| ≤ λn(c)‖u‖2 and lnZn(u) ≤ 〈∆n, u〉−
1

2
‖u‖2(1−2λn(c)).
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Proof. Let (I) = | ln Z̃n(u)−lnZn(u)| = n|ψ(θ0+n−1/2J−1u)−ψ(θ0)|. Using
Proposition 1, by the mean value theorem, for some θ̃ ∈ [θ0, θ0+n

−1/2J−1u]
we have

(I) ≤ n

∣∣∣∣
1
6Eθ0

[〈
u

n1/2 , V
〉3]∣∣∣∣

+ 1
24

∣∣∣∣∣

{
Eθ̃

[〈
u

n1/2 , V
〉4

− 3

(
Eθ̃

[〈
u

n1/2 , V
〉2])2

]}∣∣∣∣∣
≤ 1

6

(
n−1/2‖u‖3B1n(0) + n−1‖u‖4B2n(c)

)
≤ λn(c)‖u‖2.

The second inequality follows directly from the first result.
Next we show how to bound the integrated deviation between the quan-

tities in (A.23) and (A.24) restricted to the neighborhood of zero.

Lemma 2 For any c > 0 we have

(∫
Z̃n(u)du

)−1 ∫

{u:‖u‖≤
√
cd}

|Zn(u)− Z̃n(u)|du ≤ cdλn(c)e
2cdλn(c)

Proof. Using |ex−ey| ≤ |x−y|max{ex, ey} and Lemma 1, since ‖u‖ ≤
√
cd

we have

|Zn(u)− Z̃n(u)| ≤ | lnZn(u)− ln Z̃n(u)| exp
(
〈∆n, u〉 − 1

2(1− 2λn(c))‖u‖2
)

≤ λn(c)‖u‖2 exp
(
〈∆n, u〉 − 1

2(1− 2λn(c))‖u‖2
)
.

By integrating over the set H(
√
cd) as defined in (A.22), we obtain

∫

H(
√
cd)

|Zn(u)− Z̃n(u)|du

≤
∫

H(
√
cd)
λn(c)‖u‖2 exp

(
〈∆n, u〉 −

1

2
(1− 2λn(c))‖u‖2

)
du

≤ cdλn(c)

∫

H(
√
cd)

exp

(
〈∆n, u〉 −

1

2
(1− 2λn(c))‖u‖2

)
du

≤ cdλn(c)e
2cdλn(c)

∫

H(
√
cd)

exp

(
〈∆n, u〉 −

1

2
‖u‖2

)
du

≤ cdλn(c)e
2cdλn(c)

∫
Z̃n(u)du.

The next lemma controls the tail of Zn relatively to Z̃n. In order to achieve
that it makes use of a concentration inequality for log-concave densities func-
tions developed by Lovász and Vempala in [22]. The lemma is stated with a
given bound on the norm of ∆n which is allowed to grow with the dimension.
Such bound on ∆n can be easily obtained with probability arbitrary close
to one by standard arguments.
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Lemma 3 Suppose that ‖∆n‖2 < C1d and λn(c) < 1/8 for some c >
16[4C1 ∨ 2].Then for every k ≥ 1 we have

∫

{u:‖u‖≥k
√
cd}

π(θ0 + n−1/2J−1u)Zn(u)du

≤ sup
u
π(u)

(
ecdλn(c)

∫
Z̃n(u)du

)
e−kcd/16.

Proof. Firs we prove some technial results. By definition of c, we have
∆n ∈ H(

√
cd) and u ∈ Hc(k

√
cd). Define ũ =

√
cdu/‖u‖. Since Zn and Z̃n

are logconcave functions we have

(A.26)
logZn(u) ≤ logZn(ũ) +∇[log(Zn(ũ))]

′(u− ũ)

= logZn(ũ) + (‖u‖ −
√
cd)∇[log(Zn(ũ))]

′u/‖u‖

where ∇ is the gradient. Next note by Lemma 1

(A.27)

logZn(ũ) ≤ log Z̃n(ũ) + λn(c)‖ũ‖2
= ∆′

nũ− (1/2)(1 − 2λn(c))‖ũ‖2
≤
√
Cqd

√
cd− (1/2)(1 − 2λn(c))‖ũ‖2

= −cd(1/2 − λn(c)−
√
C1/c) = −cdϕ

where ϕ := (1/2 − λn(c)−
√
C1/c) ≥ (1/2) − (1/8) − (1/8) = 1/4.

Using the logconcavity of Zn and Lemma 1 again we have

0 = logZn(0) ≤ logZn(ũ) +∇[log(Zn(ũ))]
′(0− ũ)

≤
√
C1d

√
cd− cd(1 − 2λn(c))/2 −

√
cd∇[log(Zn(ũ))]

′u/‖u‖

so that

(A.28) ∇[log(Zn(ũ))]
′u/‖u‖ ≤ −

√
cdϕ.

Using (A.27) and (A.28) in the bound (A.26), since ‖u‖ −
√
cd ≥ (k −

1)
√
cd, we have for any u ∈ Hc(k

√
cd)

logZn(u) ≤ −cdϕ−
√
cdϕ(k − 1)

√
cd ≤ −cdkϕ.

Thus we can apply Lemma 5.16 [22] with β := d
d−1ckϕ ≥ 2k ≥ 2 and

Mf ≥ Zn(0) = 1, and we obtain

(A.29)

∫
Hc(k

√
cd) Zn(u)du ≤ (e1−ββ)d−1

∫
Zn(u)du

≤ (e1−ββ)d−12
∫
H(

√
cd)Zn(u)du

≤ (e1−ββ)d−12ecdλn(c)
∫
H(

√
cd) Z̃n(u)du
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where we used that
∫
Zn(u)du ≤ 2

∫
H(

√
cd) Zn(u)du (note that k does not

appear).
To prove the statement of the lemma, we have
∫

H(k
√
cd)c

π (θ0 + n−1/2J−1u)Zn(u)du

≤ sup
H(k

√
cd)c

π(θ0 + n−1/2J−1u)

∫

H(k
√
cd)c

Zn(u)du

and the result follows by (A.29) and noting

(e1−ββ)d−12ecdλn(c) = 2ed−1([d/(d − 1)]ckϕ)d−1ecdλn(c)e−ckdϕ

≤ exp (d+ d log(2ckϕ) + cdλn(c)− ckdϕ)
≤ exp (−ckdϕ/4)

since 1 + log(2x) ≤ x/4 for x ≥ 19 and λn(c) ≤ ϕ/2.
We note that the value of c in the previous lemma could depend on n as

long as the condition is satisfied. In fact, we can have c as large as

(A.30) an := sup{c : λn(c) < 1/16}.

(A.30) characterizes a neighborhood of size
√
and on which the quantity

Zn(·) can still be bounded by a proper Gaussian. Essentially, Lemma 3
bounds the contribution outside this neighborhood.

We close this section with a technical lemma that combines some of the
previous results to be easily applied.

Lemma 4 Under r1n := Kn(c)
√

‖F−1‖cd/n = o(1), supθ π(θ)/π(θ0) ≤
exp(wd), r2n := [1/16 − λn(c)− w/c] > 0, r3n := cdλn(c) = o(1) we have:

(1) sup‖u‖≤
√
cd

∣∣∣π(θ0+n−1/2J−1u)
π(θ0)

− 1
∣∣∣ ≤ (1 + o(1))r1n

(2)
∫
π(θ0 + n−1/2J−1u)Zn(u)du = [1 +O(r1n + e−r2nd + r3n)]

∫
π(θ0)Z̃n(u)du,

Proof. To show (1) note that for x = o(1), we have exp(x) = 1+x(1+o(1)).
Since Kn(c)

√
‖F−1‖cd/n = o(1) we have

sup‖u‖≤
√
cd

∣∣∣π(θ0+n−1/2J−1u)
π(θ0)

− 1
∣∣∣ ≤

∣∣∣exp
(
Kn(c)

√
‖F−1‖cd/n

)
− 1
∣∣∣

= (1 + o(1))Kn(c)
√

‖F−1‖cd/n.

To show (2), let r1n := Kn(c)
√

‖F−1‖cd/n, Λ = {u : ‖u‖ ≤
√
cd} for c

sufficiently large. Using (1) we have
∫
π(θ0 + n−1/2J−1u)Zn(u)du = (1 + r1n[1 + o(1)])

∫

Λ
π(θ0)Zn(u)du+
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+O

(
sup
u
π(θ0 + n−1/2J−1u)

∫

Λc

Zn(u)du

)
.

By assumption we have supu π(θ0 + n−1/2J−1u) ≤ π(θ0) exp(wd), and by
Lemma 3 we have that for c large enough

sup
u
π(θ0+n

−1/2J−1u)

∫

Λc

Zn(d)du ≤ exp(−cd[1/16−λn(c)−w/c])
∫
π(θ0)Z̃n(u)du

where by c > 16w and λn(c) = o(1), exp(−cd[1/16 − λn(c) − w/c]) = o(1)
since d → ∞ (alternatively, if d is fixed we could let c → ∞ slowly enough
so that λn(c) = o(1)).

By Lemma 2 we have

∫

Λ
|Zn(u)− Z̃n(u)|du ≤ cdλn(c) exp(2cdλn(c))

∫
Z̃n(u)du

where cdλn(c) exp(2cdλn(c)) = O(r3n) since r3n = o(1).

APPENDIX B: PROOF OF THEOREMS 1 AND 2

Armed with Lemmas 1, 2, 3, and 4, we now show asymptotic normality
and moments convergence results (respectively Theorems 1 and 2) under
the appropriate growth conditions of the dimension of the parameter space
with respect to the sample size.

It is easy to see that Theorem 1 follows from Theorem 2 with α = 0,
therefore its proof is omitted.

Proof of Theorem 2. By definition of Md,α, we use that
√
c̄Md,α ≥

4‖∆n‖ in the analysis which is not restrictive since ‖∆n‖ = OP (
√
d).

We will divide the integral of (2.7) in two regions

Λ =
{
u ∈ IRd : ‖u‖ ≤

√
c̄Md,α

}
and Λc,

where c̄ is a sufficiently large constant (independent of n). We note that the
conditions in Lemma 4 are satisfied with cd = c̄Md,α for n sufficiently large.
We use the notation r1n := Kn(c̄Md,α/d)

√
‖F−1‖c̄Md,α/n, supθ π(θ)/π(θ0) ≤

exp(wd), r2n := [1/16−λn(c̄Md,α/d)−w/c̄] > 0, and r3n := c̄Md,αλn(c̄Md,α/d).
Note that by construction

π∗n(u) =
π(θ0 + n−1/2J−1u)Zn(u)∫
π(θ0 + n−1/2J−1u′)Zn(u′)du′

and φ(u;∆n, Id) =
Z̃n(u)∫
Z̃n(u′)du′

.
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To simplify the notation we let I :=
∫
π(θ0 + n−1/2J−1u′)Zn(u

′)du′, Ĩ :=∫
Z̃n(u

′)du′, πu(u) := π(θ0 + n−1/2J−1u) and πu(0) := π(θ0). Thus have

(B.31)

∫
‖u‖α

∣∣∣πu(u)Zn(u)
I − Z̃n(u)

Ĩ

∣∣∣ du
≤
∫
Λ ‖u‖α πu(u)Zn(u)

I

∣∣∣ πu(0)
πu(u)

− 1
∣∣∣ du+

+
∫
Λ ‖u‖α

∣∣∣πu(0)Zn(u)
I − πu(0)Z̃n(u)

πu(0)Ĩ

∣∣∣ du
+supu πu(u)

∫
Λc ‖u‖α Zn(u)

I du

+
∫
Λc ‖u‖α Z̃n(u)

Ĩ
du

where we want to prove that the LHS is oP (1). Next we bound each of the
four terms on the RHS.

To bound the first integral in the RHS of (B.31), by Lemma 4, since
r1n = o(1), we have

sup
u∈Λ

∣∣∣∣
π(θ0)

π(θ0 + n−1/2J−1u)
− 1

∣∣∣∣ ≤ (1 + o(1))r1n.

Thus, ∫
Λ ‖u‖α πu(u)Zn(u)

I

∣∣∣ πu(0)
πu(u)

− 1
∣∣∣ du

≤ (1 + o(1))r1n
∫
Λ ‖u‖α πu(u)Zn(u)

I du

≤ (1 + o(1))r1n(c̄Md,α)
α/2
∫
Λ

πu(u)Zn(u)
I du

≤ (1 + o(1))r1n(c̄Md,α)
α/2 = o(1)

where the last relation follows from (iv’).
To bound the second integral in (B.31), note that

∫
Λ ‖u‖α

∣∣∣πu(0)Zn(u)
I − πu(0)Z̃n(u)

πu(0)Ĩ

∣∣∣ du ≤
∫
Λ ‖u‖α πu(0)Zn(u)

I

∣∣∣πu(0)Ĩ−I

πu(0)Ĩ

∣∣∣ du+
+(1/Ĩ)

∫
Λ ‖u‖α

∣∣∣Zn(u)− Z̃n(u)
∣∣∣ du.

By Lemma 4 part (2), I = [1 + O(r1n + e−r2nd + r3n)]π(θ0)Ĩ . By Lemma 2
we have ∫

Λ

∣∣∣Zn(u)− Z̃n(u)
∣∣∣ du ≤ r3n exp(2r3n)Ĩ .

Also using Lemma 4 part (1) we have

∫
Λ ‖u‖α

∣∣∣πu(0)Zn(u)
I − πu(0)Z̃n(u)

πu(0)Ĩ

∣∣∣ du
≤ (c̄Md,α)

α/2O(r1n + e−r2n c̄Md,α + r3n) = o(1)

under our conditions.
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To bound the third term in the RHS of (B.31), let

Λc
k :=

{
u : ‖u‖ ∈

[
k
√
c̄Md,α, (k + 1)

√
c̄Md,α

]}
.

For each k, using Lemma 3, and subsequently Lemma 4 part (2), we have

∫
Λc

k

Zn(u)du ≤ exp(r3n − kc̄Md,α/16)
∫
Z̃n(u)du

≤ exp(r3n − kc̄Md,α/16)[1 +O(r1n + e−r2nd + r3n)]I/πu(0).

Thus,
(B.32)

sup
u
πu(u)

∫

Λc

‖u‖αZn(u)

I
du ≤ sup

u
πu(u)

∞∑

k=1

{
(k + 1)αc̄α/2M

α/2
d,α

∫

Λc
k

Zn(u)du

}

≤ sup
u

πu(u)

πu(0)
c̄α/2M

α/2
d,α W

∞∑

k=1

(k + 1)α exp(−kc̄Md,α/16)

where W = [1 +O(r1n + e−r2nd + r3n)] exp(r3n) = 1 + o(1). Note also that
supu πu(u)/πu(0) ≤ exp(wd). Since Md,α > max{1, α}, by choosing c̄ large
enough we have

∞∑

k=1

(k + 1)αe−kc̄Md,α/16 ≤ e−c̄Md,α/20.

Moreover, our definition ofMd,α also implies that the RHS of (B.32) satisfies

W exp(wd)c̄α/2M
α/2
d,α e

−c̄Md,α/20

=W exp
(
wd+ α

2 (ln c̄+ lnMd,α)− c̄Md,α/20
)

≤W exp (−c̄Md,α/40) = o(1)

provided that c̄ is large enough.
Finally, the last integral in (B.31) converges to zero by standard bounds

on Gaussian densities for an appropriate choice of the constant c̄ (note that
c̄ can be chosen independently of d and α).

APPENDIX C: PROOFS OF SECTION 3

For γ ∈ Γ =
√
n(Ψ− η0) let uγ = n1/2[θ(η0 + n−1/2γ)− θ(η0)] ∈ U ⊂ IRd,

and we write

Zn(uγ) := Zn

(
n1/2

[
θ
(
η0 + n−1/2γ

)
− θ(η0)

] )
=

ℓ(γ)

π
(
θ
(
η0 + n−1/2γ

))

where Zn is defined in (A.24).
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In the next lemma it is required that log d = o(an) which is a substan-
tially weaker condition than the one used in [17] for establishing asymptotic
normality for the posterior of (regular) exponential densities, λn(c log d)d =
o(1).

Lemma 5 Assume that requirements (i),(ii), (iii), and (iv) hold. Suppose
Assumptions A, B and P’(0) holds. In addition, suppose that log d = o(an).
Then, for some constant k̄ independent of n, we have

∫

Γ\B(0,k̄
√

d1+dp)
π
(
θ(η0) + n−1/2uγ

)
Zn(uγ)dγ

≤ o

(∫

Γ
π
(
θ(η0) + n−1/2uγ

)
Zn(uγ)dγ

)

Comment C.1 The only assumption made on d1 in Lemma 5 was that
d1 ≤ d. If d1 log d = o(d) the proof simplifies significantly since there is
no need to define region (II) in the proof. Moreover, we see the role of the
prior via dp ≤ d. Strengthening the assumption on the prior the same proof
allow for the integrand on the left hand side to be Γ \B(0, k̄

√
d1) instead of

potentially Γ \B(0, k̄
√
d) in the result.

Proof of Lemma 5. Divide Γ into three regions:

(I) := B
(
0, k̄NG

)
, (II) := {γ : max{‖γ‖, ‖uγ‖} ≤ k̄NT } \B

(
0, k̄NG

)
,

(III) := Γ \
(
(I) ∪ (II)

)
,

where k̄ is chosen later to be large enough independent of the dimensions d
or d1. Region (I) is defined to be the region where the linear approximation
G for θ(·) is valid in the sense of Assumption A. Region (III) represents
the tail of the distribution; either γ or uγ has large norm. Finally, region
(II) is an intermediary region for which G is not a valid approximation but
we still have interesting guarantees for deviations from normality. We point
out that regions (II) or (III) might be non-convex. We will derive sufficient
conditions on the values of NG and NT as a function of d and d1. It will be
sufficient to set NG =

√
d1 + dp/

√
2 and NT =

√
d log d.

For notational convenience we define cG = k̄2N2
G/d and cT = k̄2N2

T /d.
Our assumptions are such that

dλn(cG) → 0 and λn(cT ) < 1/16.

We first bound the contribution of region (III). For any γ ∈ (III), define
ũγ = k̄NG

uγ

‖uγ‖ ∈ U . Using Lemma 1 we have

lnZn(ũγ) ≤ 〈∆n, ũγ〉 −
1

2
(1− 2λn(cG))‖ũγ‖2.
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Since logZn(·) is globally concave in U and logZn(0) = 0, we have
(C.33)

logZn(uγ) ≤ ‖uγ‖
‖ũγ‖ lnZn(ũγ)

≤ ‖uγ‖
k̄NG

(
〈∆n, r1n + (I +R2n)Gγ〉 − 1−2λn(cG)

2 ‖ũγ‖2
)

≤ ‖uγ‖
k̄NG

(
‖∆n‖‖r1n‖+ ‖∆n‖‖GR2nγ‖+ 〈G′∆n, γ〉 − 1−2λn(cG)

2 ‖ũγ‖2
)

≤ ‖uγ‖
k̄NG

(
k̄NG
5 k̄NG − 1−2λn(cG)

2 k̄2N2
G

)

≤ −‖uγ‖NG
k̄
5

by choosing k̄ large enough such that ‖G′∆n‖ < k̄NG/5, ‖∆n‖‖r1n‖ =
O(d1/2‖r1n‖) = o(1), ‖∆n‖‖GR2nγ‖ = O(d1/2NG‖R2n) = o(1), and using
that λn (cG) ≤ λn (cT ) ≤ 1/16. The contribution of (III) can be bounded
by

∫

(III)
π
(
θ(η0) + n−1/2uγ

)
Zn(uγ)dγ

≤ π(θ0) sup
η∈Ψ

π(θ(η))

π(θ(η0))

∫

(III)
exp

(
− k̄NG

5
‖uγ‖

)
dγ,

where supη∈Ψ π(θ(η))/π(θ(η0)) ≤ exp(wdp) for a constant w associated with
Assumption P’.

The integral on the right can be bounded as follows

∫
(III) exp

(
− k̄NG

5 ‖uγ‖
)
dγ ≤

∫
B(0,k̄NT )∩(III) exp

(
− k̄NG

5 ‖uγ‖
)
dγ

+
∫
B(0,k̄NT )c exp

(
− k̄NG

5 ‖uγ‖
)
dγ

and recall that uγ is a function of γ. However, by definition of the regions,
γ ∈ B(0, NT ) ∩ (III) implies ‖uγ‖ ≥ k̄NT , and γ ∈ B(0, NT )

c implies that
‖uγ‖ ≥ ε0NT by Assumption B. Direct calculations to bound the integrals
yields

∫
(III) exp

(
− k̄NG

5 ‖uγ‖
)
dγ

≤ exp(−k̄2NGNT /5)(k̄NT )
d1Vold1(Bd1(0, 1))+

+(5/k̄NG)
d1−1Vold−1(S

d−1(0, 1)) exp(−k̄ε0NGNT /3 + 2)Γ(d1)

≤ exp
(
− k̄2

5 NGNT + d1 ln(k̄NT )
)
+

+exp
(
− k̄

3ε0NGNT + d1 ln d1

)

where Volk denote the k-dimensional volume of a set and Γ(·) is the gamma
function so that Vold1−1(S

d1−1(0, 1)) = 2πd1/2/Γ(d1/2), Vold1(Bd1(0, 1)) =
πd1/2/Γ(d1/2 + 1), and Vold1−1(S

d1−1(0, 1)) = d1Vold1(Bd1(0, 1)).
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Using the assumption on the prior, we can bound the contribution of
(III) by

(C.34) π(θ0)exp
(
3 + wdp + d1 log d1 + d1 log(k̄NT )− k̄ε0NGNT /3

)

if k̄ ≥ 2ε0.
Next consider γ ∈ (II). By definition γ ∈ B(0, k̄NT ) \B(0, k̄NG). Under

the assumption that λn(cT ) < 1/16, we have that

lnZn(uγ) ≤ 〈∆n, uγ〉 −
1

2

7

8
‖uγ‖2.

Moreover, by Assumption B, we have ‖uγ‖ ≥ ε0‖γ‖. Therefore, by choos-
ing k̄ such that k̄NG > 8‖G′∆n‖, Assumption A, we have

∫
(II)

π
(
θ(η0) + n−1/2uγ

)
Zn(uγ)dγ

≤ π(θ0)

(
sup
η∈Ψ

π(θ(η))

π(θ(η0))

)∫

(II)

exp

(
〈∆n, uγ〉 −

1

2

7

8
‖uγ‖2

)
dγ

≤ π(θ0)

(
sup
η∈Ψ

π(θ(η))

π(θ(η0))

)∫

(II)

exp

(
−1

2

7

16
‖uγ‖2

)
dγ

≤ π(θ0)
(
supη∈Ψ

π(θ(η))
π(θ(η0))

)
exp(−ε20k̄2N2

G/5)(4/ε0)
d1

where we used standard bounds to Gaussian densities. Using our assumption
on the prior, we can bound the contribution of (II) by

(C.35) π(θ0)exp
(
wdp + d1 ln(4/ε0)− ε20k̄

2N2
G/5

)
.

Finally, we show a lower bound on the integral over (I). First note that for
any γ ∈ (I) condition (3.9) holds and we have uγ = r1n + (I + R2n)Gγ.
Therefore, uγ ∈ B(0, ‖G‖(1 + ‖R2n‖)k̄NG + ‖r1n‖) ⊂ B(0, 2‖G‖k̄NG). For
simplicity, let c(I) = 4‖G‖2N2

G/d so that

∫
(I) π

(
θ(η0) + n−1/2uγ

)
Zn(uγ)dγ

≥ π(θ0)exp

(
−Kn(c(I))

√
c(I)d

n

)∫
(I) Zn(uγ)dγ.

Under our assumptions exp

(
−Kn(c(I))

√
c(I)d

n

)
→ 1. Furthermore, using

(3.10), ‖∆n‖ = O(
√
d), and ‖γ‖ ≤ k̄NG, we have

lnZn(r1n + (I +R2n)Gγ) = 〈∆n, r1n + (I +R2n)Gγ〉−
−1+2λn(c(I))

2 ‖r1n + (I +R2n)Gγ‖2

≥ o(1) + 〈∆n, Gγ〉 −
1+2λn(c(I))

2 ‖Gγ‖2.
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Therefore we have
∫
(I)
π
(
θ(η0) + n−1/2uγ

)
Zn(uγ)dγ

≥ π(θ0)O
(∫

(I) exp
(
〈∆n, Gγ〉 − 1+2λn(k̄2)

2 ‖Gγ‖2
)
dγ
)

≥ π(θ0)O
(
(1 − 2λn

(
c(I)
)
)d1/2 det(G′G)−1/2

)

≥ π(θ0)O (exp(−‖G‖d1)) .

The choices stated in the beginning NG =
√
d1 + dp/

√
2 and NT =√

d log d yields the result since we have d ≥ max{d1, dp} and k̄ can be taken
to be sufficiently large (independent of d and n).

Proof of Theorem 3. Note that supη∈Ψ | log[π(θ(η))/π(θ(η0))]| ≤ wdp.

Let γ̂ be such that η̂ = η0+n
1/2γ̂. We will show that lnZ(uγ) < −c{d1+dp}

with c > 2w for any γ /∈ B(0, k̄
√
d1 + dp) where k̄ is sufficiently large.

Therefore, since logZn(0) = 0, the MLE γ̂ ∈ B(0, k̄
√
d1 + dp) and the result

follows.
Take any γ /∈ B(0, k̄

√
d1 + dp), using (C.33) where NG =

√
d1 + dp/

√
2,

we have
lnZ(uγ) < −‖uγ‖NGk̄/5 ≤ −ε0k̄2{d1 + dp}/5

√
2

where the last inequality follows from Assumption B so that ‖uγ‖ ≥ ε0‖γ‖ ≥
εk̄
√
d1 + dp. As stated earlier, the result follows by choosing k̄ sufficiently

large.
Proof of Theorem 4. We have that
∫
|π∗

n(γ)− φd1
(γ; s, (G′G)−1)|dγ ≤

∫
B(0,k̄

√
d) |π∗

n(γ)− φd1
(γ; s, (G′G)−1)|dγ+∫

Γ\B(0,k̄
√
d)
π∗
n(γ) + φd1

(γ; s, (G′G)−1)dγ.

The main step of the proof is to show that the second term is negligible for
k̄ large enough. This follows from Lemma 5 and known results for Gaussian
densities under the assumed conditions. Thus, we can restrict our analysis
to B(0, k̄

√
d).

The remaining of the proof follows the same steps in the proof of Theorem
2 since Assumption A ensures that the linearization in (3.8) is sufficiently
precise in the region B(0, k̄

√
d) under (3.9).

APPENDIX D: BOUND ON λn(c) WHEN f IS LOGCONCAVE

In this section we derive a new bound on the fundamental quantity

λn(c) =
1

6

(√
cd

n
B1n(0) +

cd

n
B2n(c)

)

when the density function (2.1) is log-concave in the data. We start by
restating the following theorem for log-concave distributions.
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Lemma 6 (Lovász and Vempala [22]) If X is a random vector from a
log-concave distribution in IRd then

E
[
‖X‖k

]1/k
≤ 2kE [‖X‖] ≤ 2kE

[
‖X‖2

]1/2
.

This result provides a reverse direction of the Holder inequality which will
allow us to control higher moments based on the second moment. Since we
will be bounding moments from random variables in the exponential family
we can apply Lemma 6.

In what follows we consider θ ∈ Rc = {θ ∈ Θ : ‖J−1(θ − θ0)‖ ≤
√
cd/n},

U ∼ fθ = f(·; θ), and let Hθ = Eθ[(U − Eθ[U ])(U − Eθ[U ])′]1/2. In this
notation J = Hθ0 .

We first bound the third moment term B1n(0). In this case, since the
variable of interest 〈a, V 〉 is properly normalized to have unit variance, its
third moment is bounded by a constant.

Lemma 7 (Bound on B1n) Suppose that f(·; θ0) is a logconcave distribu-
tion. Then we have that B1n(0) ≤ 63.

Proof. Let V = J−1(U−E[U ]) where U ∼ fθ0 . Therefore V has a logconcave
density function, E[V ] = 0, and E[V V ′] = Id. Using Lemma 6, we have

B1n(0) ≤ sup
‖a‖=1

Eθ0

[
| 〈a, V 〉 |3

]
≤ 63 sup

‖a‖=1
E
[
| 〈a, V 〉 |2

]3/2
= 63.

Before we proceed to bound the term B2n in λn we state and prove the
following technical lemma.

Lemma 8 Let X be a random vector in IRd and M be a d× d matrix. We
have that

sup
‖a‖=1

E
[
| 〈a,MX〉 |k

]
≤ ‖M‖k sup

‖a‖=1
E
[
| 〈a,X〉 |k

]

Proof. Let ā achieve the supremum on the left hand side. Then we have

E
[
| 〈ā,MX〉 |k

]
= E

[
| 〈M ′ā,X〉 |k

]
= ‖M ′ā‖kE

[
|
〈

M ′ā
‖M ′ā‖ ,X

〉
|k
]

≤ ‖M ′‖k‖ā‖kE
[
|
〈

M ′ā
‖M ′ā‖ ,X

〉
|k
]

≤ ‖M‖k sup‖a‖=1 E
[
| 〈a,X〉 |k

]

since ‖ā‖ = 1 and M ′ā/‖M ′ā‖ = 1.
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Unlike Lemma 7, we need to bound the forth moment in a vanishing
neighborhood of θ0. This will require an additional assumption that Hθ

becomes sufficiently close to J for any θ in this neighborhood of θ0. This
additional condition is c than the conditions of Theorem 2.4 in [17].

Lemma 9 Suppose that f(·; θ) is a logconcave distribution and assume that
‖I −H−1

θ J‖ < 1/2 (in the operator norm). Then we have that

sup
‖a‖=1

Eθ

[
| 〈a, V 〉 |k

]
≤ 22k · kk.

Proof. By convexity of t 7→ tk (k ≥ 1) we have (t + s)k ≤ 2k−1
(
tk + sk

)
,

and Lemma 8 yields

sup‖a‖=1Eθ

[
| 〈a, V 〉 |k

]
= sup‖a‖=1Eθ

[
|
〈
a, (I −H−1

θ J +H−1
θ J)V

〉
|k
]

≤ 2k−1 sup‖a‖=1 Eθ

[
|
〈
a, (I −H−1

θ J)V
〉
|k
]
+

+ 2k−1 sup‖a‖=1 Eθ

[
|
〈
a,H−1

θ JV
〉
|k
]

≤ 2k−1‖I −H−1J‖k sup‖a‖=1Eθ

[
| 〈a, V 〉 |k

]
+

+ 2k−1 sup‖a‖=1 Eθ

[
|
〈
a,H−1

θ JV
〉
|k
]
.

Using that ‖I −H−1
θ J‖ < 1/2 we have

sup
‖a‖=1

Eθ

[
| 〈a, V 〉 |k

]
≤ 2k sup

‖a‖=1
Eθ

[
|
〈
a,H−1

θ JV
〉
|k
]
.

Now we invoke Lemma 6 to obtain

sup
‖a‖=1

Eθ

[
| 〈a, V 〉 |k

]
≤ 2k · (2k)k sup

‖a‖=1
Eθ

[
|
〈
a,H−1

θ JV
〉
|2
]k/2

= 22k · kk

since Eθ

[
(H−1

θ JV )(H−1
θ JV )′

]
= I.

Corollary 1 (Bound on B2n(c)) Suppose that f(·; θ) is a logconcave dis-
tribution and assume that ‖I −H−1

θ J‖ < 1/2 for any θ ∈ Rc. Then we have
that B2n(c) ≤ 216.

APPENDIX E: AUXILIARY RESULTS FOR SECTION 4

Lemma 10 In the multivariate linear model, the information matrix satis-
fies

λmin(F ) ≥
1

4

λ4min(Σ0)λ
2
min(Z

′Z/n)
1 + 1 ∨ [λ2max(Σ0)λ2max(4Π

′
0Z

′Z/n)]
.



POSTERIOR INFERENCE IN CURVED EXPONENTIAL 27

Proof. For a direction γ = (γ1, γ2), we have F [γ, γ] = ∇2ψ(θ0)[γ, γ] =
∇(∇ψ(θ0)[γ])[γ]. Since

ψ(θ) = − 1

4n
trace(Zθ2θ

−1
1 θ′2Z

′)− 1

2
log det(−2θ1)

by direct calculations we have

∇ψ(θ)[γ] = (1/[4n])trace(γ′1θ
−1
1 θ′2Z

′Zθ2θ
−1
1 )− (1/[2n])trace(γ′2θ

−1
1 θ′2Z

′Z)+
+(1/2)trace(γ′1θ

−1
1 )

and

F [γ, γ] = −(1/[2n])trace(γ′1θ
−1
1 θ′2Z

′Zθ2θ
−1
1 θ−1

1 γ′1)+
+(1/n)trace(γ′2θ

−1
1 γ1θ

−1
1 θ′2Z

′Z)−
−(1/[2n])trace(γ′2Z

′Zγ′2θ
−1
1 ) + (1/2)trace(γ′1θ

−1
1 γ′1θ

−1
1 )

= (4/n)trace(γ′1Π
′
0Z

′ZΠ0γ
′
1) + (4/n)trace(γ′1Π

′
0Z

′Zγ′2Σ0)+

+(1/n)trace(Σ
1/2
0 γ′2Z

′Zγ′2Σ
1/2
0 ) + 2trace(Σ

1/2
0 γ′1Σ0γ

′
1Σ

1/2
0 )

where we used that θ1 = −(1/2)Σ−1
0 , θ2 = Π0Σ

−1
0 . Next note that only the

second term in the expression above can be negative. However, we can bound
its magnitude by

|(4/n)trace(γ′1Π′
0Z

′Zγ′2Σ0)| = |(4/n)trace(Π′
0Z

′Zγ′2Σ0γ
′
1)|

≤ ‖4Π′
0(Z

′Z/n)γ2‖‖Σ0γ
′
1‖

≤ λmax(4Π
′
0Z

′Z/n)‖γ2‖λmax(Σ0)‖γ1‖.

Moreover, we also note that − 1
4ntrace(Zθ2θ

−1
1 θ′2Z

′) is a convex function in
the relevant range.1 Thus,

(E.36)
(4/n)trace(γ′1Π

′
0Z

′ZΠ0γ
′
1) + (4/n)trace(γ′1Π

′
0Z

′Zγ′2Σ0)+

+(1/n)trace(Σ
1/2
0 γ′2Z

′Zγ′2Σ
1/2
0 ) ≥ 0.

To bound minγ F [γ, γ]/‖γ‖2 from below let

µ = 1 ∨ λmax(4Π
′
0Z

′Z/n)λmax(Σ0)/[λmin(Σ0)λmin(Z
′Z/n)].

If ‖γ2‖ ≥ 2µ‖γ1‖ we have

F [γ, γ] ≥ (1/2)λmin(Σ0)λmin(Z
′Z/n)‖γ2‖2

≥ (1/2)λmin(Σ0)λmin(Z
′Z/n)(1/(1 + [1/µ2])‖γ‖2.

1Indeed, over {X = (X1, X2) : X1 � 0}, we have

trace(AX2X
−1
1 X

′

2A
′) = min

M
trace(M) :

[

M X ′

2A
′

AX2 X1

]

� 0.
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Otherwise, we can assume that ‖γ2‖ ≤ 2µ‖γ1‖. In this case, by (E.36) we
have

F [γ, γ] ≥ λmin(Σ0)
2‖γ1‖2

≥ λmin(Σ0)
2‖γ‖2(1/[1 + 4µ2]).

The result follows.

Lemma 11 In the multivariate linear model, we have

B1n(c) = O(dc) and B2n(c) = O(d2c)

where the constants can depend on the maximal eigenvalues of J−1 and Σ0,
and maximal singular value of Π0.

Proof. Let y ∈ IRdr X = (yy′, ziy′) we have

yy′ = (ui + ziΠ)(u
′
i +Π′z′i) = uiu

′
i + uiΠ

′z′i + ziΠu
′
i + ziΠΠ

′z′i

so that if u ∼ N(0,Σ), we have yy′ − E[yy′] = uiu
′
i − Σ + uiΠ

′z′i + ziΠu
′
i.

Similarly,
ziy

′ = zi(u
′
i +Π′z′i) = ziu

′
i + ziΠ

′z′i

so that if u ∼ N(0,Σ), we have ziy
′ − E[ziy

′] = ziu
′
i. Thus, for a = (a′1, a

′
2)

′

and J−1 = [J−1
1 ;J−1

2 ],

〈
a, J−1(X − E[X])

〉
= trace(a′1J

−1
1 [uiu

′
i − Σ+ uiΠ

′z′i + ziΠu
′
i])

+trace(a′2J
−1
2 [ziu

′
i])

and by symmetry of the probability distribution of u, we have

|E
[〈
a, J−1(X − E[X])

〉3] |
= |E

[
trace3(a′1J

−1
1 [uiu

′
i − Σ])

]
+

+3E
[
trace(a′1J

−1
1 [uiu

′
i − Σ])trace2(a′2J

−1
2 [ziu

′
i])
]
|

≤ 23|E
[
trace3(a′1J

−1
1 uiu

′
i)
]
|+ 23|trace3(a′1J−1

1 Σ)|+
+3E

[
trace(a′1J

−1
1 uiu

′
i)trace

2(a′2J
−1
2 ziu

′
i)
]
|+

+3trace(a′1J
−1
1 Σ)E

[
trace2(a′2J

−1
2 ziu

′
i)
]
|

≤ 23|E
[
(u′ia

′
1J

−1
1 ui)

3
]
|+ 23|trace3(a′1J−1

1 Σ)|+
+3E

[
(u′ia

′
1J

−1
1 ui)(u

′
ia

′
2J

−1
2 zi)

2
]
|+

+3trace(a′1J
−1
1 Σ)E

[
(u′ia

′
2J

−1
2 zi)

2
]
|

= O(dc)

where we used the Gaussianity of u, Lemma 6, and that J has bounded
eigenvalues.



POSTERIOR INFERENCE IN CURVED EXPONENTIAL 29

To obtain the second result, we have

E
[〈
a, J−1(X − E[X ])

〉4] ≤ 24E
[
trace4(a′1J

−1
1 [uiu

′
i − Σ + uiΠ

′z′i + ziΠu
′
i])
]
+

+24E
[
trace4(a′2J

−1
2 ziu

′
i)
]
.

Similar calculations yield

E
[〈
a, J−1(X − E[X])

〉4]
= O(d2c).

Lemma 12 In the seemingly unrelated regressors model, for every κ > 0,
uniformly in γ = (γ1, γ2) ∈ B(0, κ

√
d) we have

√
n(θ(η0 + γ/

√
n)− θ(η0)) =

(
−γ1/2

Π0γ1 + γ2Σ
−1
0

)
+ r1n(γ)

where ‖r1n(γ)‖ ≤ κ2d/
√
n.

Proof. By direct calculations we have

∇θ(η0)[γ] =
(

−γ1/2
Π0γ1 + γ2Σ

−1
0

)
and ∇2θ(η)[γ, γ] =

(
0

2γ2γ1

)

so that ‖∇2θ(η)[γ, γ]‖ ≤ ‖γ‖2 for all η. Thus we can set R2n = 0 and note
that we can set

‖r1n(γ)‖ ≤
√
n sup

η
‖∇2θ(η)[γ/

√
n, γ/

√
n]‖ ≤ ‖γ‖2/

√
n ≤ κ2d/

√
n.
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