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ON THE ASYMPTOTIC THEORY FOR LEAST SQUARES SERIES:

POINTWISE AND UNIFORM RESULTS

ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. In this work we consider series estimators for the conditional mean in light

of three new ingredients: (i) sharp LLNs for matrices derived from the non-commutative

Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between

the L∞ and L2-norms, and (iii) maximal inequalities for processes whose entropy integrals

diverge at some rate.

These technical tools allow us to contribute to the series literature, specifically the

seminal work of Newey (1997), as follows. First, we weaken considerably the condition

on the number k of approximating functions used in series estimation from the typical

k2/n → 0 to k/n → 0, up to log factors, which was available only for spline and local

polynomial partition series before. Second, under the same weak conditions we derive L2

rates and pointwise central limit theorems results when the approximation error vanishes.

Under an incorrectly specified model, i.e. when the approximation error does not vanish,

analogous results are also shown. Third, under stronger conditions we derive uniform rates

and functional central limit theorems that hold if the approximation error vanishes or not.

That is, we derive the strong approximation for the entire estimate of the nonparametric

function. Finally, we derive uniform rates and inference results for linear functionals of

interest of the conditional expectation function such as its partial derivative or conditional

average partial derivative.

1. Introduction

Series estimators have been playing a central role on various fields. In econometric

applications it is common that the exact form of a conditional expectation is unknown and

having a flexible functional form can lead to improvements over a pre-specified functional

form. Series estimation offers exactly that by approximating the unknown function based

on k basic functions, where k is allowed to grow with the sample size n to balance the trade

off between variance and bias.

Several asymptotic properties of series estimators have been investigated in the literature.

The focus has been on convergence rates and asymptotic normality results (see Andrews,
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1991; Eastwood and Gallant, 1991; Gallant and Souza, 1991; Newey, 1997; Huang, 2003b;

Chen, 2007; Cattaneo and Farell, 2013, and the references therein).

This work revisits the topic by making use of three critical ingredients:

1. The sharp LLNs for matrices derived from the non-commutative Khinchin inequal-

ities.

2. The sharp bounds on the Lebesgue factor that controls the ratio between the L∞

and L2-norms of the least squares approximation of functions (which is bounded or

grows like a log k in many cases).

3. Sharp maximal inequalities for processes whose entropy integrals diverge at some

rate.

To the best of our knowledge, our results are the first applications of the first ingredient to

statistical estimation problems. Regarding the second ingredient, it has already been used

by Huang (2003a) but for splines only. The third ingredient was derived to allow for weak

moment conditions. All of these ingredients are critical for generating sharp results.

This approach allows us to contribute to the series literature in several directions. First,

we weaken considerably the condition on the number k of approximating functions used in

series estimation from the typical k2/n→ 0 (see Newey, 1997) to

k/n→ 0 (up to logs)

for bounded or local bases which was previously available only for spline series (Huang,

2003a; Stone, 1994) and local polynomial partition series (Cattaneo and Farell, 2013). An

example of a bounded basis is Fourier series; examples of local bases are spline, wavelet, and

local polynomial partition series. To be more specific, for such bases we require k log n/n→
0. Note that the last condition is similar to that on the bandwidth value required for

local polynomial (kernel) regression estimators (h−d log n/n→ 0 where h is the bandwidth

value). Second, under the same weak conditions we derive L2 rates and pointwise central

limit theorems results when the approximation error vanishes. Under a misspecified model,

i.e. when the approximation error does not vanish, analogous results are also shown. Third,

under stronger conditions we derive uniform rates that hold if the approximation error

vanishes or not. An important contribution here is that we show that the series estimator

achieves the optimal uniform rate of convergence under quite general conditions. Previously,

the same result was shown only for local polynomial partition series estimator (Cattaneo and

Farell, 2013). In addition, we derive a functional central limit theorems. By the functional

central limit theorem we mean here that the entire estimate of the nonparametric function
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is uniformly close to a Gaussian process that can change with n. That is, we derive the

strong approximation for the entire estimate of the nonparametric function.

Another set of results established here pertains to the estimation and inference methods

for linear functionals θ of the conditional mean function g : X → R. Examples of linear

functionals θ of interest include, for xj denoting the j-th component of x and x−j denoting

all components of x excluding xj ,

1. the partial derivative: θ(x) = ∂xj
g(x);

2. the average partial derivative: θ =
∫
∂xj

g(x)dµ(x);

3. the conditional average partial derivative: θ(x−j) =
∫
∂xj

g(x)dµ(xj |x−j).

where the measure µ entering the definitions above are taken as known; the result can be

extended to include estimated measures. Under weak conditions we derive pointwise results

for rates of convergence, large sample distributions and inference methods based on the

Gaussian approximation. Under stronger conditions we derive new strong approximation

for the entire estimate of the nonparametric functional. Specifically, we derive results for

uniform rates of convergence, large sample distributions and inference methods based on

the Gaussian approximation.

Notation. In what follows, all parameter values are indexed by the sample size n, but

we omit the index whenever this does not cause confusion. We use the notation (a)+ =

max{a, 0}, a ∨ b = max{a, b} and a ∧ b = min{a, b}. The ℓ2-norm of a vector v is denoted

by ‖v‖, while for a matrix Q the maximum eigenvalue is denoted by ‖Q‖. We also use

standard notation in the empirical process literature,

En[f ] = En[f(wi)] =

n∑

i=1

f(wi)/n and Gn[f ] = Gn[f(wi)] =

n∑

i=1

f(wi)/
√
n

and we use the notation a . b to denote a 6 cb for some constant c > 0 that does not

depend on n; and a .P b to denote a = OP (b). Moreover, for two random variables X,Y

we say that X =d Y if they have the same probability distribution.

2. Set-Up

Throughout the paper, we consider a sequence of models, indexed by the sample size n,

yi = g(xi) + ǫi, E[ǫi|xi] = 0, xi ∈ X ⊆ R
d, i = 1, . . . , n, (2.1)

where yi is a response variable, xi a vector of covariates (basic regressors), ǫi noise, and

x 7→ g(x) = E[yi|xi = x] a regression (conditional mean) function; that is, we consider a
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triangular array of models with yi = yi,n, xi = xi,n, ǫi = ǫi,n, and g = gn. We assume that

g ∈ G where G is some class of functions. Since we consider a sequence of models indexed by

n, we allow the function class G = Gn, where the regression function g belongs to, to depend

on n as well. In addition, we allow X = Xn to depend on n but we assume for the sake of

simplicity that the diameter of X is bounded from above uniformly over n (dropping the

uniform boundedness condition is possible in expense of more technicalities; for example,

without uniform boundedness condition, we would have an additional term log diam(X ) in

(4.19) and (4.21) of Lemma 4.2). We denote σ2i = E[ǫ2i |xi], σ̄2 := supx∈X E[ǫ2i |xi = x], and

σ2 := infx∈X E[ǫ2i |xi = x]. For notational convenience, we omit indexing by n where it does

not lead to confusion.

Assumption A.1 (Sample) For each n, random vectors (yi, x
′
i)
′, i = 1, . . . , n, are i.i.d.

and satisfy (2.1).

We approximate the function x 7→ g(x) by linear forms x 7→ p(x)′b, where

x 7→ p(x) := (p1(x), . . . , pk(x))
′

is a vector of approximating functions that can change with n. We denote the regressors as

pi := p(xi) := (p1(xi), . . . , pk(xi))
′.

Throughout the paper, we assume that the number of series terms k is chosen so that

log k . log n. The next assumption imposes regularity conditions on the regressors.

Assumption A.2 (Eigenvalues) Uniformly over all n, eigenvalues of Q := E[pip
′
i] are

bounded above and away from zero.

Condition A.2 imposes the restriction that pi’s are not too co-linear. Given this assump-

tion, it is without loss of generality to impose the following normalization:

Normalization. To simplify notation, we normalize Q = I, but we shall treat Q as

unknown, that is we deal with random design.

The following proposition establishes a simple sufficient condition for A.2 based on or-

thonormal bases with respect to some measure.

Proposition 2.1 (Stability of Bounds on Eigenvalues). Assume that xi ∼ F where F is a

probability measure on X , and that the regressors pi’s are orthonormal on (X , µ) for some

measure µ. Then A.2 is satisfied if dF/dµ is bounded above and away from zero.
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It is well known that the least squares parameter β is defined by

β := arg min
b∈Rk

E
[
(yi − p′ib)

2
]
,

which by (2.1) also implies that β = βg where βg is defined by

βg := arg min
b∈Rk

E
[
(g(xi)− p′ib)

2
]
.

We call x 7→ g(x) the target function and x 7→ gk(x) = p(x)′β the surrogate function. In

this setting, the surrogate function provides the best linear approximation to the target

function.

For all x ∈ X , let

r(x) := rg(x) := g(x)− p(x)′βg (2.2)

denote the approximation error at the point x, and let

ri := r(xi) = g(xi)− p(xi)
′βg

denote the approximation error for the observation i. Using this notation, we obtain a many

regressors model

yi = p′iβ + ui, E[uixi] = 0, ui := ri + ǫi.

The least squares estimator of β is

β̂ := arg min
b∈Rk

En

[
(yi − p′ib)

2
]
, (2.3)

which induces the estimator ĝ(x) := p(x)′β̂ for the target function g(x). Then it follows

from (2.2) that we can decompose the error in estimating the target function as

ĝ(x)− g(x) = p(x)′(β̂ − β)− r(x),

where the first term on the right-hand side is the estimation error and the second term is

the approximation error.

We are also interested in various linear functionals θ of the conditional mean function. As

discussed in the introduction, examples include the partial derivative function, the average

partial derivative function, and the conditional average partial derivative. Importantly, in

each example above we could be interested in estimating θ = θ(w) simultaneously for many

values w ∈ W. Let I ⊂ W denote the set of indices of interest. By the linearity of the series

approximations, the above parameters can be seen as linear functions of the least squares

coefficients β up to an approximation error, that is

θ(w) = ℓθ(w)
′β + rθ(w), w ∈ I, (2.4)
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where ℓθ(w)
′β is the series approximation, with ℓθ(w) denoting the k-vector of loadings on

the coefficients, and rθ(w) is the remainder term, which corresponds to the approximation

error. Indeed, the decomposition (2.4) arises from the application of different linear oper-

ators A to the decomposition g(·) = p(·)′β + r(·) and evaluating the resulting functions at

w:

(Ag(·)) [w] = (Ap(·)) [w]′β + (Ar(·)) [w]. (2.5)

Examples of the operator A corresponding to the cases enumerated in the introduction

are given by, respectively,

1. a differential operator: (Af)[x] = (∂xj
f)[x], so that

ℓθ(x) = ∂xj
p(x), rθ(x) = ∂xj

r(x);

2. an integro-differential operator: Af =
∫
∂xj

f(x)dµ(x), so that

ℓθ =

∫
∂xj

p(x)dµ(x), rθ =

∫
∂xj

r(x)dµ(x);

3. a partial integro-differential operator: (Af)[x−j ] =
∫
∂xj

f(x)dµ(xj |x−j), so that

ℓθ(x−j) =

∫
∂xj

f(x)dµ(xj |x−j), rθ(x−j) =

∫
∂xj

r(x)dµ(xj |x−j)

where x−j denotes all components of x excluding xj .

For notational convenience, we use the formulation (2.4) in the analysis, instead of the

motivational formulation (2.5).

We shall provide the inference tools that will be valid for inference on the series approx-

imation

ℓθ(w)
′β, w ∈ I.

If the approximation error rθ(w), w ∈ I, is small enough as compared to the estimation

error, these tools will also be valid for inference on the functional of interest

θ(w), w ∈ I.

In this case, the series approximation is an important intermediary target, whereas the

functional θ is the ultimate target. The inference will be based on the plug-in estimator

θ̂(w) := ℓθ(w)
′β̂ of the the series approximation ℓθ(w)

′β and hence of the final target θ(w).
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3. Approximation Properties of Least Squares

Next we consider approximation properties of the least squares estimator. Not sur-

prisingly, approximation properties must rely on the particular choice of approximating

functions. At this point it is instructive to consider particular examples of relevant bases

used in the literature. For each example, we state a bound on the following quantity:

ξk := sup
x∈X

‖p(x)‖.

This quantity will play a key role in our analysis.

Example 3.1 (Polynomial series). Let X = [0, 1] and consider a polynomial series given

by

p̃(x) = (1, x, x2, ..., xk−1)′.

In order to reduce collinearity problems, it is useful to orthonormalize the polynomial series

with respect to the Lebesgue measure on [0, 1] to get the Legendre polynomial series

p(x) = (1,
√
3x,
√

5/4(3x2 − 1), ...)′.

The Legendre polynomial series satisfies

ξk . k;

see, for example, Newey (1997). �

Example 3.2 (Fourier series). Let X = [0, 1] and consider a Fourier series given by

p(x) = (1, cos(2πjx), sin(2πjx), j = 1, 2, ..., k/2 − 1)′,

for k even. Fourier series is orthonormal with respect to the Lebesgue measure on [0, 1] and

satisfies

ξk .
√
k,

which follows trivially from the fact that every element of p(x) is bounded in absolute value

by one. �

Example 3.3 (Spline series). Let X = [0, 1] and consider a linear regression spline series, or

regression spline series of order 1, with a finite number of equally spaced knots l1, . . . , lk−2

in X :

p̃(x) = (1, x, (x − l1)+, . . . , (x− lk−2)+)
′.
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The cubic regression spline series, or regression spline series of order 3, with a finite number

of equally spaced knots l1, . . . , lk−4:

p̃(x) = (1, x, x2, x3, (x− l1)
3
+, ..., (x − lk−4)

3
+)

′.

The function x 7→ p̃(x)′b constructed using regression splines of order s0 is s0 − 1 times

continuously differentiable in x for any b. Instead of regression splines, it is often helpful

to consider B-splines p(x) = (p1(x), . . . , pk(x))
′, which are linear transformations of the

regression splines with lower multicellularity; see De Boor (2001) for the introduction to

the theory of splines. B-splines are local in the sense that each B-spline pj(x) is supported

on the interval [lj(1), lj(2)] for some j(1) and j(2) satisfying j(2) − j(1) . 1 and there is at

most s0 + 1 non-zero B-splines on each interval [lj−1, lj ]. From this property of B-splines,

it is easy to see that B-spline series satisfies

ξk .
√
k;

see, for example, Newey (1997). �

Example 3.4 (Cohen-Deubechies-Vial wavelet series). Let X = [0, 1] and consider Cohen-

Deubechies-Vial (CDV) wavelet bases; see Section 4 in Cohen et al. (1993) and Chapter

7.5 in Mallat (2009) for details on CDV wavelet bases. CDV wavelet bases is a class of

orthonormal with respect to the Lebesgue measure on [0, 1] bases. Each such basis is built

from a Daubechies scaling function φ (defined on R) and the wavelet ψ of order s0 starting

from a fixed resolution level J0 such that 2J0 ≥ 2s0. The functions φ and ψ are supported on

[0, 2s0−1] and [−s0+1, s0], respectively. Translate φ so that it has the support [−s0+1, s0].

Let

φl,m(x) = 2l/2φ(2lx−m), ψl,m(x) = 2l/2ψ(2lx−m), l,m ≥ 0.

Then we can create the CDV wavelet basis from these functions as follows. Take all the

functions φJ0,m, ψl,m, l ≥ J0, that are supported in the interior of [0, 1] (these are functions

φJ0,m withm = s0−1, . . . , 2J0−s0 and ψl,m withm = s0−1, . . . , 2l−s0, l ≥ J0). Denote these

functions φ̃J0,m, ψ̃l,m. To this set of functions, add suitable boundary corrected functions

φ̃J0,0, . . . , φ̃J0,s0−2, φ̃J0,2J0−s0+1, . . . , φ̃J0,2J0−1, ψ̃l,0, . . . , ψ̃l,s0−2, ψ̃l,2J0−s0+1, . . . , ψ̃l,2J0−1, l ≥
J0, so that {φ̃J0,m}0≤m<2J0 ∪ {ψ̃l,m}0≤m<2l,l≥J0 forms an orthonormal basis of L2[0, 1].

Suppose that k = 2J for some J > J0. Then the CDV series takes the form:

p(x) = (φ̃J0,0(x), . . . , φ̃J0,2J0−1(x), ψ̃J0,0(x), . . . , ψ̃J−1,2J−1−1(x))
′.

This series satisfies

ξk .
√
k.
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This bound can be derived by the same argument as that for B-splines. CDV wavelet bases

is a flexible tool to approximate many different function classes. �

Example 3.5 (Local polynomial partition series). Let X = [0, 1] and define a local poly-

nomial partition series as follows. Let s0 be a nonnegative integer. Partition X as 0 = l0 <

l1, · · · < l
k̃−1

< l
k̃
= 1 where k̃ := k/(s0 + 1). For j = 1, . . . , k̃, define δj : [0, 1] → {0, 1} by

δj(x) = 1 if x ∈ (lj−1, lj ] and 0 otherwise. For j = 1, . . . , k, define

p̃j(x) := δ[j/(s0+1)]+1(x)x
j−1−(s0+1)[j/(s0+1)]

for all x ∈ X where [a] is the largest integer that is strictly smaller than a. Finally, define

the local polynomial partition series p1(·), . . . , pk(·) of order s0 as an orthonormalization

of p̃1(·), . . . , p̃k(·) with respect to the Lebesgue (or some other) measure on X . The local

polynomial partition series estimator was analyzed in detail in Cattaneo and Farell (2013).

Its properties are somewhat similar to those of local polynomial estimator of Stone (1982).

When the partition l0, . . . , lk̃ satisfies pj − pj−1 ≍ 1/k̃, that is there exist constants c, C > 0

independent of n and such that c/k̃ ≤ pj−pj−1 ≤ C/k̃ for all j = 1, . . . , k̃, and the Lebesgue

measure is used, the local polynomial partition series satisfies

ξk .
√
k.

This bound can be derived by the same argument as that for B-splines. �

Example 3.6 (Tensor Products). Generalizations to multiple regressors are straightforward

using tensor products of unidimensional series. Suppose that the basic regressors are

xi = (x1i, ..., xdi)
′.

Then we can create d series for each basic regressor. Then we take all interactions of func-

tions from these d series, called tensor products, and collect them into vector of regressors

pi. If each series for a basic regressor has J terms, then the final regressor has dimension

k = Jd,

which explodes exponentially in the dimension d. The bounds on ξk in terms of k remain

the same as in one-dimensional case. �

Each basis described in Examples 3.1-3.6 has different approximation properties which

also depend on the particular class of functions G. The following assumption captures the

essence of this dependence into two quantities.
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Assumption A.3 (Approximation) For each n and k, there are finite constants ck and

ℓk such that for each f ∈ G,

‖rf‖F,2 :=
√ ∫

x∈X
r2f (x)dF (x) ≤ ck and ‖rf‖F,∞ := sup

x∈X
|rf (x)| ≤ ℓkck.

Here rf is defined by (2.2). We call ℓk the Lebesgue factor because of its relation to

the Lebesgue constant defined in Section 3.2 below. Together ck and ℓk characterize the

approximation properties of the underlying class of functions under L2(X , F ) and uniform

distances. Note that constants ck = ck(G) and ℓk = ℓk(G) are allowed to depend n but we

omit indexing by n for simplicity of notation. Next we discuss primitive bounds on ck and

ℓk.

3.1. Bounds on ck. In what follows, we call the case where ck → 0 as k → ∞ the correctly

specified case. In particular, if the series are formed from bases that span G, then ck → 0

as k → ∞. However, if series are formed from bases that do not span G, then ck 6→ 0 as

k → ∞. We call any case where ck 6→ 0 the incorrectly specified (misspecified) case.

To give an example of the misspecified case, suppose that d = 2, so that x = (x1, x2)
′

and g(x) = g(x1, x2). Further, suppose that the researcher mistakenly assumes that g(x) is

additively separable in x1 and x2: g(x1, x2) = g1(x1) + g(x2). Given this assumption, the

researcher forms the vector of approximating functions p(x1, x2) such that each component

of this vector depends either on x1 or x2 but not on both; see Newey (1997) and Newey et al.

(1999) for the description of nonparametric series estimators of separately additive models.

Then note that if the true function g(x1, x2) is not separately additive, linear combinations

p(x1, x2)
′b will not be able to accurately approximate g(x1, x2) for any b, so that ck does

not converge to zero as k → ∞. Since analysis of misspecified models plays an important

role in econometrics, we include results both for correctly and incorrectly specified models.

To provide a bound on ck, note that for any f ∈ G,

inf
b
‖f − p′b‖F,2 ≤ inf

b
‖f − p′b‖F,∞,

so that it suffices to set ck such that ck ≥ supf∈G infb ‖f − p′b‖F,∞. Next, the bounds for

infb ‖f − p′b‖F,∞ are readily available from the Approximation Theory; see DeVore and

Lorentz (1993). A typical example is based on the concept of s-smooth classes, namely

Hölder classes of smoothness order s, Σs(X ). For s ∈ (0, 1], the Hölder class of smoothness
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order s, Σs(X ), is defined as the set of all functions f : X → R such that for C > 0,

|f(x)− f(x̃)| ≤ C(
d∑

j=1

(xj − x̃j)
2)s/2

for all x = (x1, . . . , xd)
′ and x̃ = (x̃1, . . . , x̃d)

′ in X . The smallest C satisfying this property

defines a norm of f in Σs(X ), which we denote by ‖f‖s. For s > 1, Σs(X ) can be defined

as follows. For a d-tuple α = (α1, . . . , αd) of nonnegative integers, let

Dα = ∂α1
x1
. . . ∂αd

xd
.

Let [s] denote the largest integer strictly smaller than s. Then Σs(X ) is defined as the set

of all functions f : X → R such that f is [s] times continuously differentiable and for some

C > 0,

|Dαf(x)−Dαf(x̃)| ≤ C(
d∑

j=1

(xj − x̃j)
2)(s−[s])/2 and |Dβf(x)| ≤ C

for all x = (x1, . . . , xd)
′ and x̃ = (x̃1, . . . , x̃d)

′ in X and for all d-tuples α = (α1, . . . , αd) and

β = (β1, . . . , βd) of nonnegative integers satisfying α1+ · · ·+αd = [s] and β1+ · · ·+βd ≤ [s].

Again, the smallest C satisfying these properties defines a norm of f in Σs(X ), which we

denote ‖f‖s.
If G is a set of functions f in Σs(X ) such that ‖f‖s is bounded from above uniformly

over all f ∈ G, then we can take

ck . k−s/d (3.6)

for the polynomial series and

ck . k−(s∧s0)/d

for spline, CDV wavelet, and local polynomial partition series of order s0. If in addition we

assume that each element of G can be extended to a periodic function, then (3.6) also holds

for the Fourier series. See, for example, Chen (2007) for references.

3.2. Bounds on ℓk. We say that a least squares approximation by a particular series for

the function class G is co-minimal if the Lebesgue factor ℓk is small in the sense of being a

slowly varying function in k. A simple bound on ℓk, which is independent of G, is established
in the following proposition:

Proposition 3.1. If ck is chosen so that ck ≥ supf∈G infb ‖f −p′b‖F,∞, then Condition A.3

holds with some ℓk satisfying

ℓk ≤ 1 + ξk.
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The proof of this proposition is based on the ideas of Newey (1997) and is provided in the

Appendix. The bound established in this proposition, however, is not sharp in most cases

because ξk typically satisfies ξk &
√
k; see our examples above. Much sharper bounds follow

from Approximation Theory for some important cases. To apply these bounds, define the

Lebesgue constant:

ℓ̃k := sup
f∈G

‖p′βf‖F,∞
‖f‖F,∞

.

The following proposition provides a bound on ℓk in terms of ℓ̃k:

Proposition 3.2. If ck is chosen so that ck ≥ supf∈G infb ‖f −p′b‖F,∞, then Condition A.3

holds with

ℓk = 1 + ℓ̃k.

Note that in all examples above, we provided ck such that ck ≥ supf∈G infb ‖f − p′b‖F,∞,

and so the results of Propositions 3.1 and 3.2 apply in our examples. We now provide

bounds on ℓ̃k.

Example 3.7 (Fourier series, continued). For Fourier series on X = [0, 1], F = U(0, 1),

and G ⊂ C(X )

ℓ̃k ≤ C0 log k + C1,

where here and below C0 and C1 are some universal constants; see Zygmund (2002). �

Example 3.8 (Spline series, continued). For B-spline series on X = [0, 1], F = U(0, 1),

and G ⊂ C(X )

ℓ̃k ≤ C0,

under approximately uniform placement of knots; see Huang (2003b). In fact, the result of

Huang states that ℓ̃k ≤ C whenever F has the pdf on [0, 1] bounded from above by ā and

below from zero by a where C is a constant that depends only on a and ā. �

Example 3.9 (Wavelet series, continued). For CDV wavelet series on X = [0, 1], F =

U(0, 1), and G ⊂ C(X )

ℓ̃k ≤ C0.

The proof of this result was recently obtained by Chen and Christensen (2013) who extended

the argument of Huang (2003b) for B-splines to cover wavelets. In fact, the result of Chen

and Christensen also shows that ℓ̃k ≤ C whenever F has the pdf on [0, 1] bounded from

above by ā and below from zero by a where C is a constant that depends only on a and

ā. �
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Example 3.10 (Local polynomial partition series, continued). For local polynomial parti-

tion series on X , F = U(0, 1), and G ⊂ C(X ),

ℓ̃k ≤ C0.

To prove this bound, note that first order conditions imply that for any f ∈ G,

βf = Q−1E[p(x1)f(x1)] = E[p(x1)f(x1)].

Hence, for any x ∈ X ,

|p(x)′βf | = |E[p(x)′p(x1)f(x1)]| . ‖f‖F,∞

where the last inequality follows by noting that the sum p(x)′p(x1) =
∑k

j=1 pj(x)pj(x1)

contains at most s0+1 nonzero terms, all nonzero terms in the sum are bounded by ξ2k . k,

and p(x)′p(x1) = 0 outside of a set with probability bounded from above by 1/k up to a

constant. The bound follows. �

Example 3.11 (Polynomial series, continued). For Chebyshev polynomials with X = [0, 1],

dF (x)/dx = 1/
√
1− x2, and G ⊂ C(X )

ℓ̃k ≤ C0 log k + C1.

This bound follows from a trigonometric representation of Chebyshev polynomials (see, for

example, DeVore and Lorentz (1993)) and Example 3.7. �

Example 3.12 (Tailored Function Classes). For each type of series approximations, it is

possible to specify function classes for which the Lebesgue factors are small. �

Since the Lebesgue factor depends on the particular basis and on the underlying proba-

bility measure, it is important to have a stability result for the Lebesgue factor. The next

proposition provides a bound on ℓkck for most functions in the α-ellipsoid class

F(α) =




∑

j≥1

pj(·)j−αξj : ξj ∈ R, j ≥ 1





according to a Gaussian measure on the coefficients ξj, j ≥ 1, provided the basis functions

are bounded and Lipschitz.

Proposition 3.3 (Generic Stability of Approximation Error for α-Ellipsoid). Consider an

i.i.d. sequence of N(0, 1) coefficients ξj , j ≥ 1, let f =
∑

j≥1 pj(x)j
−αξj and let ℓk(f) and

ck(f) denote respective the Lebesgue factor and the L2 approximation rate associated with f .
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If the basis {pj(x)}j≥1 obeys supx∈X |pj(x)| . jβ and supx∈X ‖∇pj(x)‖ ≤ Mj, with β > 0

and
∑

j≥1 j
−αMj(log j)

1/2 <∞, then

P
(
ℓk(f)ck(f) . d1/2

√
(α− β − 1/2) log kk−α+β+1/2

)
= 1− o(1) as k → ∞

for α > β + 1/2.

In the case of orthogonal basis, most functions f in this class will have ck(f) = k−α+β+1/2.

Thus, Proposition 3.3 establishes that ℓk(f) is slow varying for those functions.

The following example illustrate the performance of the series estimator using different

bases for a real data set.

Example 3.13 (Real Data). Here g(x) is the mean of log wage (y) conditional on education

x ∈ {8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20}.

The function g(x) is computed using population data – the 1990 Census data for the U.S.

men of prime age; see Angrist et al. (2006) for more details. So in this example, we

know the true population function g(x). We would like to know how well this function

is approximated when common approximation methods are used to form the regressors.

For simplicity we assume that xi is uniformly distributed (otherwise we can weigh by the

frequency). In population, least squares estimator solves the approximation problem: β =

argminbE[{g(xi) − p′ib}2] for pi = p(xi), where we form p(x) as (a) linear spline (Figure

1, left) and (b) polynomial series (Figure 1, right), such that dimension of p(x) is either

k = 3 or k = 8. It is clear from these graphs that spline and polynomial series yield similar

approximations.

In the table below, we also present L2 and L∞ norms of approximating errors:

spline k = 3 spline k = 8 Poly k = 3 Poly k = 8

L2 Error 0.12 0.08 0.12 0.05

L∞ Error 0.29 0.17 0.30 0.12

We see from the table that in this example, the Lebesgue factor, which is defined as the

ratio of L∞ to L2 errors, of the polynomial approximations is comparable to the Lebesgue

factor of the spline approximations. �

4. Limit Theory
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Figure 1. Conditional expectation function (cef) of log wage given education

(ed) in the 1990 Census data for the U.S. men of prime age and its least squares

approximation by spline (left panel) and polynomial series (right panel). Solid line -

conditional expectation function; dashed line - approximation by k = 3 series terms;

dash-dot line - approximation by k = 8 series terms

4.1. L2 Limit Theory. After we have established the set-up, we proceed to derive our

results. Recall that σ̄2 = supx∈X E[ǫ2i |xi = x]. In the theorem below, we assume that

σ2 . 1. This is a mild regularity condition. We start with L2 rate of convergence result.

Theorem 4.1 (L2 rate of convergence). Assume that Conditions A.1-A.3 are satisfied. In

addition, assume that ξ2k log n/n→ 0 and σ2 . 1. Then under ck → 0,

‖ĝ − g‖F,2 .P

√
k/n+ ck, (4.7)

and under ck 6→ 0,

‖ĝ − p′β‖F,2 .P

√
k/n+ (ℓkck

√
k/n) ∧ (ξkck/

√
n), (4.8)

Comment 4.1. (i) This is our first main result in this paper. The condition ξ2k log n/n→ 0,

which we impose, is weaker than that imposed in Newey (1997) who required kξ2k/n → 0.

For series satisfying ξk .
√
k, the condition ξ2k log n/n→ 0 amounts to

k log n/n→ 0. (4.9)

This condition is the same as that imposed in Stone (1994), Huang (2003a), and Cattaneo

and Farell (2013) but the result (4.7) is obtained under the condition (4.9) in Stone (1994)
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and Huang (2003a) only for spline series and in Cattaneo and Farell (2013) only for local

polynomial partition series. Therefore, our result improves on those in the literature by

weakening the rate requirements on the growth of k (with respect to n) and/or by allowing

for a wider set of series.

(ii) Under the correct specification (ck → 0), the fastest L2 rate of convergence is achieved

by setting the approximation error and the sampling error to be of the same order,

√
k/n ≍ ck.

One consequence of this result is that for Hölder classes of smoothness order s, Σs(X ), with

ck . k−s/d, we obtain the optimal L2 rate of convergence by setting k ≍ nd/(d+2s), which

is allowed under our conditions for all s > 0 if ξk .
√
k (Fourier, spline, wavelet, and local

polynomial partition series). On the other hand, if ξk is growing faster than
√
k, then it

is not possible to achieve optimal L2 rate of convergence for all s > 0. For example, for

polynomial series considered above, ξk . k, and so the condition ξ2k log n/n → 0 becomes

k2 log n/n → 0. Hence, optimal L2 rate of convergence is achieved by polynomial series

only if d/(d+ 2s) < 1/2 or, equivalently, s > d/2. Even though this condition is somewhat

restrictive, it is better than that obtained in Newey (1997) who required k3/n → 0 for

polynomial series, so that optimal L2 rate could be achieved only if d/(d + 2s) ≤ 1/3 or,

equivalently, s ≥ d. Therefore, our results allow to achieve optimal L2 rate of convergence

in a larger set of classes of functions for particular series.

(iii) The result (4.8) is concerned with the case when the model is misspecified (ck 6→ 0).

It shows that when k/n → 0 and (ℓkck
√
k/n)∧(ξkck/

√
n) → 0, the estimator ĝ(·) converges

in L2 to the surrogate function p(·)′β that provides the best linear approximation to the

target function g(·). In this case, the estimator ĝ(·) does not generally converge in L2 to

the target function g(·). �

4.2. Pointwise Limit Theory. Next we focus on pointwise limit theory (some authors

refer to pointwise limit theory as local asymptotics; see Huang (2003b)). That is, we study

asymptotic behavior of
√
nα′(β̂ − β) and

√
n(ĝ(x) − g(x)) for particular α ∈ Sk−1 and

x ∈ X . Here Sk−1 denotes the space of vectors α in R
k with unit Euclidean norm: ‖α‖ = 1.

Note that both α and x implicitly depend on n. As we will show, pointwise results can be

achieved under weak conditions similar to those we required in Theorem 4.1. The following

lemma plays a key role in our asymptotic pointwise normality result.
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Lemma 4.1 (Pointwise Linearization). Assume that Conditions A.1-A.3 are satisfied. In

addition, assume that ξ2k log n/n→ 0 and σ2 . 1. Then for any α ∈ Sk−1,

√
nα′(β̂ − β) = α′

Gn[pi(ǫi + ri)] +R1n(α), (4.10)

where the term R1n(α), summarizing the impact of unknown design, obeys

R1n(α) .P

√
ξ2k log n

n
(1 +

√
kℓkck). (4.11)

Moreover,
√
nα′(β̂ − β) = α′

Gn[piǫi] +R1n(α) +R2n(α), (4.12)

where the term R2n(α), summarizing the impact of approximation error on the sampling

error of the estimator, obeys

R2n(α) .P ℓkck. (4.13)

Comment 4.2. (i) In summary, the only condition that generally matters for linearization

(4.10)-(4.11) is that R1n(α) → 0, which holds if ξ2k log n/n→ 0 and kξ2kℓ
2
kc

2
k log n/n→ 0. In

particular, linearization (4.10)-(4.11) allows for misspecification (ck → 0 is not required).

In principle, linearization (4.12)-(4.13) also allows for misspecification but the bounds are

only useful if the model is correctly specified, so that ℓkck → 0. As in the theorem on L2

rate of convergence, our main condition is that ξ2k log n/n→ 0.

(ii) We conjecture that the bound on R1n(α) can be improved for splines to

R1n(α) .P

√
ξ2k log n

n
(1 +

√
log n · ℓkck). (4.14)

since it is attained by local polynomials and splines are also similarly localized. �

With the help of Lemma 4.1, we derive our asymptotic pointwise normality result. We

will use the following additional notation:

Ω̃ := Q−1E[(ǫi + ri)
2pip

′
i]Q

−1 and Ω0 := Q−1E[ǫ2i pip
′
i]Q

−1.

In the theorem below, we will impose the condition that supx∈X E
[
ǫ2i 1{|ǫi| > M}|xi = x

]
→

0 as M → ∞ uniformly over n. This is a mild uniform integrability condition. Specifically,

it holds if for some m > 2, supx∈X E[|ǫi|m|xi = x] . 1. In addition, we will impose the

condition that 1 . σ2. This condition is used to properly normalize the estimator.
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Theorem 4.2 (Pointwise Normality). Assume that Conditions A.1-A.3 are satisfied. In

addition, assume that (i) supx∈X E
[
ǫ2i 1{|ǫi| > M}|xi = x

]
→ 0 as M → ∞ uniformly over

n, (ii) 1 . σ2, and (iii) (ξ2k log n/n)
1/2(1 + k1/2ℓkck) → 0. Then for any α ∈ Sk−1,

√
n
α′(β̂ − β)

‖α′Ω1/2‖ =d N(0, 1) + oP (1), (4.15)

where we set Ω = Ω̃ but if R2n(α) →P 0, then we can set Ω = Ω0. Moreover, for any x ∈ X
and s(x) := Ω1/2p(x),

√
n
p(x)′(β̂ − β)

‖s(x)‖ =d N(0, 1) + oP (1), (4.16)

and if the approximation error is negligible relative to the estimation error, namely
√
nr(x) =

o(‖s(x)‖), then
√
n
ĝ(x)− g(x)

‖s(x)‖ =d N(0, 1) + oP (1). (4.17)

Comment 4.3. (i) This is our second main result in this paper. The result delivers point-

wise convergence in distribution for any sequences α = αn and x = xn with α ∈ Sk−1 and

x ∈ X . In fact, the proof of the theorem implies that the convergence is uniform over all

sequences. Note that the normalization factor ‖s(x)‖ is the pointwise standard error, and

it is of a typical order ‖s(x)‖ ∝
√
k at most points. (If ℓkck . 1 and ξk .

√
k, this holds

uniformly across all points.) In this case the condition for negligibility of approximation

error
√
nr(x)/‖s(x)‖ → 0, which can be understood as an undersmoothing condition, can

be replaced by √
n/k · ℓkck → 0.

When ℓkck . k−s, this condition substantially improves on Newey (1997) who required
√
nk−s → 0 in a similar set-up. Further, under the Newey’s condition

√
nk−s → 0, our as-

ymptotic pointwise normality (4.17) holds assuming that ξ2k log n/n→ 0 (if k ≤ n) whereas

Newey (1997) assumed that kξ2k/n → 0.

(ii) When applied to splines, our result is somewhat less sharp than that of Huang (2003b).

Specifically, Huang required that ξ2k log n/n→ 0 and (n/k)1/2 · ℓkck → 0 whereas we require

(kξ2k log n/n)
1/2ℓkck → 0 in addition to Huang’s conditions. The difference can likely be

explained by the fact that we use linearization bound (4.11) whereas for splines it is likely

that (4.14) holds as well.

(iii) More generally, our asymptotic pointwise normality result, as well as other related

results in this paper, applies to any problem where the estimator of g(x) = p(x)′β + r(x)

takes the form p(x)′β̂, where β̂ admits linearization of the form (4.10)-(4.13). �
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4.3. Uniform Limit Theory. Finally, we turn to a uniform limit theory. Not surprising,

stronger conditions are required for our results to hold when compared to the pointwise

case. Let m > 2. We will need the following assumption on the tails of the regression

errors.

Assumption A.4 (Disturbances) Regression errors satisfy supx∈X E[|ǫi|m|xi = x] . 1.

It will be convenient to denote α(x) := p(x)/‖p(x)‖ in this subsection. Moreover, denote

ξLk := sup
x,x′∈X :x 6=x′

‖α(x) − α(x′)‖
‖x− x′‖

We will also need the following assumption on the basis functions to hold with the same

m > 2 as that in Condition A.4.

Assumption A.5 (Basis) Basis functions are such that (i) ξ
2m/(m−2)
k log n/n . 1 and

log ξLk . log k.

The following lemma provides uniform linearization of the series estimator and plays a

key role in our derivation of the uniform rate of convergence.

Lemma 4.2 (Uniform Linearization). Assume that Conditions A.1-A.5 are satisfied. Then

√
nα(x)′(β̂ − β) = α(x)′Gn[pi(ǫi + ri)] +R1n(α(x)), (4.18)

where R1n(α(x)), summarizing the impact of unknown design, obeys

R1n(α(x)) .P

√
ξ2k log n

n
(n1/m

√
log n+

√
k · ℓkck) =: R̄1n (4.19)

uniformly over x ∈ X . Moreover,

√
nα(x)′(β̂ − β) = α(x)′Gn[piǫi] +R1n(α(x)) +R2n(α(x)), (4.20)

where R2n(α(x)), summarizing the impact of approximation error on the sampling error of

the estimator, obeys

R2n(α(x)) .P

√
log n · ℓkck =: R̄2n (4.21)

uniformly over x ∈ X .

Comment 4.4. As in the case of pointwise linearization, our results on uniform lineariza-

tion (4.18)-(4.19) allow for misspecification (ck → 0 is not required). In principle, lineariza-

tion (4.20)-(4.21) also allows for misspecification but the bounds are most useful if the model

is correctly specified so that (log n)1/2ℓkck → 0. We are not aware of any similar uniform

linearization result in the literature. We believe that this result is useful in a variety of

problems. Below we use this result to derive good uniform rate of convergence of the series



20 BELLONI, CHERNOZHUKOV, CHETVERIKOV, AND KATO

estimator. Another application of this result would in be testing shape restrictions in the

nonparametric model. �

The following theorem provides uniform rate of convergence of the series estimator:

Theorem 4.3 (Uniform Rate of Convergence). Assume that Conditions A.1-A.5 are sat-

isfied. Then

sup
x∈X

|α(x)′Gn[piǫi]| .P

√
log n. (4.22)

Moreover, for R̄1n and R̄2n given above we have

sup
x∈X

|p(x)′(β̂ − β)| .P
ξk√
n
(
√

log n+ R̄1n + R̄2n) (4.23)

and

sup
x∈X

|ĝ(x)− g(x)| .P
ξk√
n
(
√

log n+ R̄1n + R̄2n) + ℓkck. (4.24)

Comment 4.5. (i) This is our third main result in this paper. Assume that ℓkck . k−s/d,

ξk .
√
k, and R̄1n + R̄2n . (log n)1/2. Then the bound in (4.24) becomes

sup
x∈X

|ĝ(x)− g(x)| .P

√
k log n

n
+ k−s/d.

Therefore, setting k ≍ (log n/n)−d/(2s+d), we obtain

sup
x∈X

|ĝ(x)− g(x)| .P

(
log n

n

)s/(2s+d)

,

which is the optimal uniform rate of convergence in the function class Σs(X ); see Stone

(1982). To the best of our knowledge, our paper is the first to show that the series estimator

attains the optimal uniform rate of convergence under rather general conditions. We also

note here that it has been known for a long time that a local polynomial (kernel) estimator

achieves the same optimal uniform rate of convergence for a long time; see, for example,

Tsybakov (2009), and it was also shown recently by Cattaneo and Farell (2013) that local

polynomial partition series estimator also achieves the same rate.

(ii) One of the critical conditions to attain the optimal uniform rate of convergence is that

we require R̄1n . (log n)1/2. Specifically, under our other assumptions, this condition re-

quires that k log n/n1−2/m . 1 and k2−2s/d/n . 1, and so we can set k ≍ (log n/n)−d/(2s+d)

if d/(2s+d) < 1−2/m and (2d−2s)/(2s+d) < 1 or, equivalently, m > 2+d/s and d < 4s.

(iii) If the errors have heavy tails (m is small) but one is only interested in estimating

some location function, then one could use median regression estimator that will achieve
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faster uniform convergence rates, since the “errors” in the linearized version of this estimator

are just Bernoulli and therefore are sub-Gaussian; see Belloni et al. (2011) for details. �

After establishing the uniform rate of convergence, we present two results on inference

based on the series estimator. The first result on inference is concerned with the strong

approximation of a series process by a Gaussian process and is a (relatively) minor extension

of the result obtained by Chernozhukov et al. (2009). The extension is undertaken to allow

for a non-vanishing specification error to cover misspecified models. In particular, we make

a distinction between Ω̃ = Q−1E[(ǫi + ri)
2pip

′
i]Q

−1, and Ω0 = Q−1E[ǫ2i pip
′
i]Q

−1 which

are potentially asymptotically different if R̄2n 6→P 0. To state the result, let an be some

sequence of positive numbers satisfying an → ∞.

Theorem 4.4 (Strong Approximation by a Gaussian Process). Assume that Conditions

A.1-A.5 are satisfied with m ≥ 3. In addition, assume that (i) R̄1n = oP (a
−1
n ), (ii) 1 . σ2,

and (iii) a6nk
4ξ2k(1 + ℓ3kc

3
k)

2 log2 n/n→ 0. Then for some Nk ∼ N(0, Ik),

√
n
α(x)′(β̂ − β)

‖α(x)′Ω1/2‖ =d
α(x)′Ω1/2

‖α(x)′Ω1/2‖Nk + oP (a
−1
n ) in ℓ∞(X ), (4.25)

so that for s(x) = Ω1/2p(x),

√
n
p(x)′(β̂ − β)

‖s(x)‖ =d
s(x)′

‖s(x)‖Nk + oP (a
−1
n ) in ℓ∞(X ), (4.26)

and if supx∈X
√
n|r(x)|/‖s(x)‖ = o(a−1

n ), then

√
n
ĝ(x)− g(x)

‖s(x)‖ =d
s(x)′

‖s(x)‖Nk + oP (a
−1
n ) in ℓ∞(X ). (4.27)

where we set Ω = Ω̃ but if R̄2n = oP (a
−1
n ), then we can set Ω = Ω0.

Comment 4.6. Ideally, in order to perform uniform in x ∈ X inference on g(x), one would

like to have a result of the form

√
n
ĝ(x)− g(x)

‖s(x)‖ =d G(x) + oP (a
−1
n ) in ℓ∞(X ) (4.28)

or, equivalently,
√
n
ĝ(x)− g(x)

‖s(x)‖ →d G(x) in ℓ
∞(X ) (4.29)

where {G(x) : x ∈ X} is some zero-mean Gaussian process. However, one can show that the

process on the left-hand side of (4.28) and (4.29) is not asymptotically equicontinuous, and

so it does not have a limit distribution. Instead, Theorem 4.4 provides an approximation of

the series process by a sequence of zero-mean Gaussian processes. Since an → ∞, under our
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conditions the theorem implies that the series process is well approximated by a Gaussian

process, and so the theorem can be interpreted that in large samples, the distribution of

the series process depends on the distribution of the data only via covariance matrix Ω;

hence, it allows to do inference based on the whole series process. Note that the conditions

of the theorem are quite strong but the result of the theorem is also much stronger than

the pointwise normality result: it asserts that the entire series process is uniformly close to

a Gaussian process of the stated form. �

Our result on strong approximation by a Gaussian process plays an important role in our

second result on inference that is concerned with the weighted bootstrap. Consider a set

of weights h1, . . . , hn that are i.i.d. draws from the standard exponential distribution and

are independent of the data. For each draw of such weights, define the weighted bootstrap

draw of the least squares estimator as a solution to the least squares problem weighted by

h1, . . . , hn, namely

β̂b ∈ arg min
b∈Rk

En[hi(yi − p′ib)
2]. (4.30)

For all x ∈ X , denote ĝb(x) = p(x)′β̂b. The following theorem establishes a new result that

states that the weighted bootstrap distribution is valid for approximating the distribution

of the series process.

Theorem 4.5 (Weighted Bootstrap Method). (1) Assume that Conditions A.1-A.5 are

satisfied. Then the weighted bootstrap process satisfies

√
nα(x)′(β̂b − β̂) = α(x)′Gn[(hi − 1)pi(ǫi + ri)] +Rb

1n(α(x)),

where Rb
1n(α(x)) obeys

Rb
1n(α(x)) .P

√
ξ2k log

3 n

n
(n1/m

√
log n+

√
k · ℓkck) = o(1/ log n) =: R̄b

1n (4.31)

uniformly over x ∈ X .

(2) If, in addition, Conditions A.4 and A.5 are satisfied with m ≥ 3 and (i) R̄b
1n =

oP (a
−1
n ), (ii) 1 . σ2, and (iii) a6nk

4ξ2k(1+ℓ
3
kc

3
k)

2 log2 n/n→ 0 hold, then for s(x) = Ω1/2p(x)

and some Nk ∼ N(0, Ik),

√
n
p(x)′(β̂b − β̂)

‖s(x)‖ =d
s(x)′

‖s(x)‖Nk + oP (a
−1
n ) in ℓ∞(X ), (4.32)

and so
√
n
ĝb(x)− ĝ(x)

‖s(x)‖ =d
s(x)′

‖s(x)‖Nk + oP (a
−1
n ) in ℓ∞(X ). (4.33)
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where we set Ω = Ω̃, but if R̄2n = oP (a
−1
n ), then we can set Ω = Ω0. Moreover, the bounds

(4.31), (4.32), and (4.33) continue to hold in P -probability if we replace the unconditional

probability P by the conditional probability P ∗(·|D) where D = {(xi, yi) : i = 1, . . . , n}.

Comment 4.7. (i) This is our fourth main result in this paper. The theorem implies

that the weighted bootstrap process can be approximated by the same Gaussian process

as that used to approximate original series process, and so weighted bootstrap process also

approximates the original series process. Alternatively, one can think of this theorem as a

result that shows equivalence of the weighted bootstrap process and the Gaussian process

in approximating the original series process.

(ii) We emphasize that the first part of the theorem does not require the correct speci-

fication, that is the case ck 6→ 0 is allowed. The second part implicitly require ck → 0 via

the condition a6nk
4ξ2k(1 + ℓ3kc

3
k)

2 log2 n/n → 0. Also, in this theorem, symbol P refers to a

joint probability measure with respect to the data D = {(xi, yi) : i = 1, . . . , n} and the set

of bootstrap weights {hi : i = 1, . . . , n}. �

We close this section by establishing sufficient conditions for consistent estimation of Ω.

Recall that Q = E[pip
′
i]. In addition, denote Σ = E[(ǫi + ri)

2pip
′
i] = I, Q̂ = En[pip

′
i], and

Σ̂ = En[ǫ̂
2
i pip

′
i] where ǫ̂i = yi − p′iβ̂, and let vn = (E[max1≤i≤n |ǫi|2])1/2.

Theorem 4.6 (Matrices Estimation). Assume that Conditions A.1-A.5 are satisfied. In

addition, assume that R̄1n + R̄2n . (log n)1/2. Then

‖Q̂−Q‖ .P

√
ξ2k log n

n
= o(1) and ‖Σ̂− Σ‖ .P (vn ∨ 1 + ℓkck)

√
ξ2k log n

n
= o(1).

Moreover, for Ω̂ = Q̂−1Σ̂Q̂−1,

‖Ω̂− Ω‖ .P (vn ∨ 1 + ℓkck)

√
ξ2k log n

n
= o(1).

Comment 4.8. Theorem 4.6 allows for consistent estimation of the matrix Q under the

mild condition ξ2k log n/n→ 0 and for consistent estimation of the matrices Σ and Ω under

slightly more restricted conditions. Not surprising, the estimation of Σ and Ω depends on

the tail behavior of the error term via the value of vn. Under Condition A.4, the following

simple inequality can be used to bound vn: vn . n1/m. �
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5. Rates and Inference on Linear Functionals

In this section, we derive rates and inference results for linear functionals θ(w), w ∈ I
of the conditional expectation function such as its derivative or average derivative. To a

large extent, with the exception of Theorem 5.6, the results presented in this section can

be considered as an extension of results presented in Section 4, and so similar comments

can be applied as those given in Section 4. Theorem 5.6 deals with construction of uniform

confidence bands for linear functionals under weak conditions and is a new result.

By the linearity of the series approximations, the linear functionals can be seen as linear

functions of the least squares coefficients β up to an approximation error, that is

θ(w) = ℓθ(w)
′β + rθ(w), w ∈ I,

where ℓθ(w)
′β is the series approximation, with ℓθ(w) denoting the k-vector of loadings on

the coefficients, and rθ(w) is the remainder term, which corresponds to the approximation

error. Throughout this section, we assume that I is a subset of some Euclidean space R
l

equipped with its usual norm ‖ · ‖. We allow I = In to depend on n but for simplicity, we

assume that the diameter of I is bounded from above uniformly over n. Results allowing

for the case where I is expanding as n grows can be covered as well with slightly more

technicalities.

In order to perform inference, we construct estimators of σ2θ(w) = ℓθ(w)
′Ωℓθ(w)/n, the

variance of the associated linear functionals, as

σ̂2θ(w) = ℓθ(w)
′Ω̂ℓθ(w)/n. (5.34)

In what follows, it will be convenient to have the following result on consistency of σ̂θ(w):

Lemma 5.1 (Variance Estimation for Linear Functionals). Assume that Conditions A.1-

A.5 are satisfied. In addition, assume that (i) R̄1n + R̄2n . (log n)1/2 and (ii) 1 . σ2.

Then
∣∣∣∣
σ̂θ(w)

σθ(w)
− 1

∣∣∣∣ .P ‖Ω̂− Ω‖ .P (vn ∨ 1 + ℓkck)

√
ξ2k log n

n
= o(1)

uniformly over w ∈ I.

By Lemma 5.1, under our conditions, (5.34) is uniformly consistent for σ2θ(w) in the sense

that σ̂2θ(w)/σ
2
θ (w) = 1 + oP (1) uniformly over w ∈ I.
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5.1. Pointwise Limit Theory for Linear Functionals. We now present a result on

pointwise rate of convergence for linear functionals. The rate we derive is ‖ℓθ(w)‖/
√
n.

Some examples with explicit bounds on ‖ℓθ(w)‖ are given below.

Theorem 5.1 (Pointwise Rate of Convergence for Linear Functionals). Assume that Con-

ditions A.1-A.3 are satisfied. In addition, assume that (i)
√
n|rθ(w)|/‖ℓθ(w)‖ → 0, (ii)

σ̄2 . 1, (iii) (ξ2k log n/n)
1/2(1 + k1/2ℓkck) → 0, and (iv) ℓkck → 0. Then

|θ̂(w)− θ(w)| .P
‖ℓθ(w)‖√

n
.

Comment 5.1. (i) This theorem shows in particular that θ̂(w) is
√
n-consistent whenever

‖ℓθ(w)‖ . 1. A simple example of this case is θ = θ(w) = E[g(x1)]. In this example,

ℓ = ℓ(w) = E[p(x1)], and so ‖ℓ‖ = ‖E[p(x1)]‖ . 1 where the last inequality follows from

the argument used in the proof of Proposition 3.1. Another simple example is θ = θ(w) =

E[p(x1)g(x1)] = β1. In this example, ℓ = ℓ(w) is a k-vector whose first component is 1 and

all other components are 0, and so ‖ℓ‖ . 1. This example trivially implies
√
n-consistency

of the series estimator of the linear part of the partially linear model. Yet another example,

which is discussed in Newey (1997), is the average partial derivative.

(ii) Condition
√
n|rθ(w)/‖ℓθ(w)‖ → 0 imposed in this theorem can be understood as

undersmoothing condition. Unfortunately, to the best of our knowledge, there is no theo-

retically justified practical procedure in the literature that would lead to a desired level un-

dersmoothing. Some ad hoc suggestions include using cross validation or “plug-in” method

to determine the number of series terms that would minimize the asymptotic integrated

mean-square error of the series estimator (see Hardle, 1990) and then blow up the esti-

mated number of series terms by some number that grows to infinity as the sample size

increases. �

To perform pointwise inference, we consider the t-statistic:

t(w) =
θ̂(w)− θ(w)

σ̂θ(w)
.

We can carry out standard inference based on this statistic because of the following theorem.

Theorem 5.2 (Pointwise Inference for Linear Functionals). Assume that the conditions of

Theorem 4.2 and Lemma 5.1 are satisfied. In addition, assume that
√
n|rθ(w)|/‖ℓθ(w)‖ → 0.

Then

t(w) →d N(0, 1).



26 BELLONI, CHERNOZHUKOV, CHETVERIKOV, AND KATO

The same comments apply here as those given in Section 4.2 for pointwise results on

estimating the function g itself.

5.2. Uniform Limit Theory for Linear Functionals. In obtaining uniform rates of

convergence and inference results for linear functionals, we will denote

ξk,θ := sup
w∈I

‖lθ(w)‖ and ξLk,θ := sup
w,w′∈I:w 6=w′

‖ℓθ(w)− ℓθ(w
′)‖

‖w − w′‖ .

The value of ξk,θ depends on the choice of the basis for the series estimator and on the

linear functional. Newey (1997) and Chen (2007) provides several examples. In the case

of splines with X = [0, 1]d, it has been established that ξk .
√
k and supx∈X ‖∂mxj

p(x)‖ .

k1/2+m; see, for example, Newey (1997). With this basis we have for

1. the function g itself: θ(x) = g(x), ℓθ(x) = p(x), and ξk,θ .
√
k;

2. the derivatives: θ(x) = ∂xj
g(x), ℓθ(x) = ∂xj

p(x), ξk,θ . k3/2;

3. the average derivatives: θ =
∫
∂xj

g(x)dµ(x), ℓθ =
∫
∂xj

p(x)dµ(x), and ξk,θ . 1,

where in the last example it is assumed that supp(µ) ⊂ intX , x1 is continuously distributed

with the density bounded below from zero on supp(µ), and |∂xl
µ(x)| . 1 for all l = 1, . . . , k.

We will impose the following regularity condition on the loadings on the coefficients ℓθ(w):

Assumption A.6 (Loadings) Loadings on the coefficients satisfy (i) supw∈I 1/‖ℓθ(w)‖ .

1 and (ii) log ξLk,θ . log k.

The first part of this condition implies that the linear functional is normalized appropri-

ately. The second part is a very mild restriction on the modulus of continuity (with respect

to w) of the linear functional θ(w).

Under Conditions A.1-A.6, results presented in Lemma 4.2 on uniform linearization can

be extended to cover general linear functionals considered here:

Lemma 5.2 (Uniform Linearization for Linear Functionals). Assume that Conditions A.1-

A.6 are satisfied. Then for αθ(w) = ℓθ(w)/‖ℓθ(w)‖,
√
nαθ(w)

′(β̂ − β) = αθ(w)
′
Gn[pi(ǫi + ri)] +R1n(αθ(w)),

where R1n(αθ(w)), summarizing the impact of unknown design, obeys

R1n(α(w)) .P

√
ξ2k log n

n
(n1/m

√
log n+

√
k · ℓkck) = R̄1n
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uniformly over w ∈ I. Moreover,

√
nαθ(w)

′(β̂ − β) = αθ(w)
′
Gn[piǫi] +R1n(αθ(w)) +R2n(αθ(w)),

where R2n(αθ(w)), summarizing the impact of approximation error on the sampling error

of the estimator, obeys

R2n(αθ(w)) .P

√
log n · ℓkck = R̄2n

uniformly over w ∈ I.

From Lemma 5.2, we can derive the following theorem on uniform rate of convergence

for linear functionals.

Theorem 5.3 (Uniform Rate of Convergence for Linear Functionals). Assume that Con-

ditions A.1-A.6 are satisfied. Then

sup
w∈I

∣∣αθ(w)
′
Gn[piǫi]

∣∣ .P

√
log n. (5.35)

If, in addition, we assume that (i) R̄1n+R̄2n . (log n)1/2 and (ii) supw∈I |rθ(w)|/‖lθ(w)‖ =

o((log n/n)1/2), then

sup
w∈I

|θ̂(w)− θ(w)| .P

√
ξ2k,θ log n

n
. (5.36)

Next, we consider the problem of uniform inference for linear functionals based on the

series estimator. We base our inference on the t-statistic process:
{
t(w) =

θ̂(w) − θ(w)

σ̂θ(w)
, w ∈ I

}
. (5.37)

We present two results for inference on linear functionals. The first result is an extension

of Theorem 4.4 on strong approximations to cover the case of linear functionals. As we

discussed in Comment 4.6, in order to perform uniform in w ∈ I inference on θ(w), we would

like to approximate the distribution of the whole process (5.37). However, one can show that

this process typically does not have a limit distribution in ℓ∞(I). Yet, we can construct a

Gaussian process that would be close to the process (5.37) for all w ∈ I simultaneously with

large probability. Specifically, we will approximate the t-statistic process by the following

Gaussian coupling:

{
t∗n(w) =

ℓ(w)′Ω1/2Nk/
√
n

σθ(w)
, w ∈ I

} (5.38)

where Nk denotes a vector of k i.i.d. N(0, 1) random variables.
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Theorem 5.4 (Strong Approximation by a Gaussian Process for Linear Functionals).

Assume that the conditions of Theorem 4.4 and Condition A.6 are satisfied. In addi-

tion, assume that (i) R̄2n . (log n)1/2, (ii) ξk log n/n
1/2−1/m = o(a−1

n ), and that (iii)

supw∈I

√
n|rθ(w)|/‖ℓθ(w)‖ = o(a−1

n ). Then

t(w) =d t
∗(w) + oP (a

−1
n ) in ℓ∞(I).

As in the case of inference on the function g(x), we could also consider weighted bootstrap

method to obtain a result analogous to that in Theorem 4.5. For brevity of the paper,

however, we do not consider weighted bootstrap method here.

The second result on inference for linear functionals is new and concerns with the problem

of constructing uniform confidence bands for the linear functional θ(w). Specifically, we are

interested in the confidence bands of the form

[ι̇(w), ϊ(w)] =
[
θ̂(w) − cn(1− α)σ̂θ(w), θ̂(w) + cn(1− α)σ̂θ(w)

]
, w ∈ I (5.39)

where cn(1 − α) is chosen so that θ(w) ∈ [ι̇(w), ϊ(w)] for all w ∈ I with the prescribed

probability 1− α where α ∈ (0, 1) is a user-specified level. For this purpose, we would like

to set cn(1 − α) as the (1 − α)-quantile of supw∈I |t(w)|. However, this choice is infeasible

because the exact distribution of supw∈I |t(w)| is unknown. Instead, Theorem 5.4 suggests

that we can set cn(1− α) as the (1− α)-quantile of supw∈I |t⋆(w)| or, if Ω is unknown and

has to be estimated, that we can set

cn(1− α) := the conditional (1− α)− quantile of sup
w∈I

|t̂∗(w)| given the data (5.40)

where

t̂⋆n(w) :=
l(w)′Ω̂1/2Nk/

√
n

σ̂θ(w)
, w ∈ I

and Nk ∼ N(0, Ik). Note that cn(1−α) defined in (5.40) can be simulated numerically with

any precision. Yet, conditions of Theorem 5.4 are rather strong. Fortunately, Chernozhukov

et al. (2012) noticed that when we are only interested in the supremum of the process and do

not need the process itself, sufficient conditions for the strong approximation can be much

weaker. Specifically, we have the following theorem, which is an application of a general

result obtained in Chernozhukov et al. (2012):

Theorem 5.5 (Strong Approximation of Suprema for Linear Functionals). Assume that

Conditions A.1-A.6 are satisfied with m ≥ 4. In addition, assume that (i) R̄1n + R̄2n .
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1/(log n)1/2, (ii) ξk log
2 n/n1/2−1/m → 0, (iii) 1 . σ2, and (iv) supw∈I

√
n|rθ(w)|/‖ℓθ(w)‖ =

o(1/(log n)1/2). Then

sup
w∈I

|t(w)| =d sup
t∈I

|t∗(w)|+ oP

(
1√
log n

)
.

Construction of uniform confidence bands also critically relies on the following anti-

concentration lemma:

Lemma 5.3 (Anti-concentration for Separable Gaussian Processes). Let Y = (Yt)t∈T be

a separable Gaussian process indexed by a semimetric space T such that E[Yt] = 0 and

E[Y 2
t ] = 1 for all t ∈ T . Assume that supt∈T Xt < ∞ a.s. Then a(|Y |) := E[supt∈T |Yt|] <

∞ and

sup
x∈R

P

{∣∣∣∣sup
t∈T

|Yt| − x

∣∣∣∣ ≤ ε

}
≤ Aεa(|Y |)

for all ε ≥ 0 and some absolute constant A.

The proof of this lemma can be found in Chernozhukov et al. (2012) (Corollary 2.1).

From Theorem 5.5 and Lemma 5.3, we can now derive the following result on uniform

validity of confidence bands in (5.39):

Theorem 5.6 (Uniform Inference for Linear Functionals). Assume that the conditions of

Theorem 5.5 are satisfied. In addition, assume that cn(1− α) is defined by (5.40). Then

P

{
sup
w∈I

|tn(w)| ≤ cn(1− α)

}
= 1− α+ o(1). (5.41)

As a consequence, the confidence bands defined in (5.39) satisfy

P
{
θ(w) ∈ [ι̇(w), ϊ(w)], for all w ∈ I

}
= 1− α+ o(1). (5.42)

The width of the confidence bands 2cn(1− α)σ̂n(w) obeys

2cn(1− α)σ̂n(w) .P σn(w)
√

log n . ‖ℓθ(w)‖
√

log n

n
.

√
ξ2k,θ log n

n
(5.43)

uniformly over w ∈ I.

Comment 5.2. (i) This is our fifth (and last) main result in this paper. The theorem shows

that the confidence bands constructed above maintain the required level asymptotically and

establishes that the uniform width of the bands is of the same order as the uniform rate of

convergence. Moreover, confidence intervals are asymptotically similar.

(ii) The proof strategy of Theorem 5.6 is similar to that proposed in Chernozhukov et

al. (2009) for inference on the minimum of a function. Since the limit distribution may not
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exists, the insight was to use distributions provided by couplings. Because the limit distri-

bution does not necessarily exist, it is not immediately clear that the confidence bands are

asymptotically similar or at least maintain the right asymptotic level. Nonetheless, we show

that the confidence bands are asymptotically similar with the help of anti-concentration

lemma stated above.

(iii) Theorem 5.6 only considers two-sided confidence bands. However, both Theorem 5.5

and Lemma 5.3 continue to hold if we replace suprema of absolute values of the processes

by suprema of the processes itself, namely if we replace supw∈I |tn(w)| and supw∈I |t∗n| in
Theorem 5.5 by supw∈I tn(w) and supw∈I t

∗
n(w), respectively, and supt∈T |Yt| in Lemma

5.3 by supt∈T Yt. Therefore, we can show that Theorem 5.6 also applies for one-sided

confidence bands, namely Theorem 5.6 holds with cn(1−α) defined as the conditional (1−α)-
quantile of supw∈I t̂

∗
n(w) given the data and the confidence bands defined by [ι̇(w), ϊ(w)] :=

(−∞, θ̂(w) + cn(1− α)σ̂n(w)] for all w ∈ I. �

6. Tools: Maximal Inequalities for Matrices and Empirical Processes

In this section we collect the main technical tools that our analysis rely upon, namely

Khinchin Inequalities for Matrices and a Data Dependent Maximal Inequalities.

6.1. Khinchin Inequalities for Matrices. Consider the Schatten norm SP on symmetric

k × k matrices Q as

‖Q‖SP
=




k∑

j=1

|λj(Q)|p



1/p

.

The case p = ∞ recovers the operator norm ‖ · ‖ and p = 2 the Frobenius norm. It is

obvious that for any p ≥ 1

‖Q‖ ≤ ‖Q‖SP
≤ k1/p‖Q‖.

Therefore, setting p = log k, we get equivalence

‖Q‖ ≤ ‖Q‖Slog k
≤ e‖Q‖. (6.44)

Lemma 6.1 (Khinchin Inequality for Matrices). For symmetric k × k-matrices Qi, i =

1, . . . , n, and 2 ≤ p <∞, and an i.i.d. sequence of Rademacher variables ε1, . . . , εn we have

aP

∥∥∥
(
En[Q

2
i ]
)1/2∥∥∥

SP

≤
(
Eε ‖Gn[εiQi]‖pSP

)1/p
≤ bP

∥∥∥(En[Q
2
i ])

1/2
∥∥∥
SP

where

bP ≤ [21/2π/e]1/2 · √p.
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As a consequence of equivalence (6.44) if k ≥ e2 we have

Eε‖Gn[εiQi]‖ .
√

log k‖(En[Q
2
i ])

1/2‖

The notable feature of this inequality is the
√
log k factor instead of the

√
k factor ex-

pected from the conventional maximal inequalities based on entropy. This inequality due

to Lust-Picard and Pisier (1991) generalizes the Khinchin inequality for vectors. A version

of this inequality was derived by Guédon and Rudelson (2007) using generalized entropy

(majorizing measure) arguments. This is another striking example where the use of gener-

alized entropy yields drastic improvements over the use of entropy. Prior to this Talagrand

(1996a) provided ellipsoidal examples where the difference between the two approaches was

even more extreme.

6.2. LLN for Matrices. The following lemma is a variant of a fundamental result obtained

by Rudelson (1999).

Lemma 6.2 (Matrix LLN). Let Q1, . . . , Qn be i.n.i.d. symmetric non-negative k × k-

matrices with k ≥ e2 such that Q = En[E[Qi]] and ‖Qi‖ ≤M a.s., then for Q̂ = En[Qi]

∆ := E‖Q̂−Q‖ .

√
M(1 + ‖Q‖) log n

n
.

In particular, if Qi = pip
′
i, with ‖pi‖ ≤ ξk a.s., then

∆ := E‖Q̂−Q‖ .

√
ξ2k(1 + ‖Q‖) log n

n
.

6.3. Maximal Inequalities. Consider a function class F collecting functions mapping

some set Z to R, equipped with an envelope function F (z) ≥ supf∈F |f(z)|. The covering

number N(F , L2(Q), ε) is the minimal number of L2(Q)-balls of radius ε needed to cover

the function set F . The covering number relative to the envelope function is given by

N
(
F , L2(Q), ε ‖F‖Q,2

)
. (6.45)

The entropy is the logarithm of the covering number.

We rely on the following result.

Proposition 6.1. Let (ǫ1,X1), . . . , (ǫn,Xn) be i.i.d. random vectors in R
d+1 with E[ǫi|Xi] =

0 and σ2 := supxE[ǫ2i |Xi = x] < ∞. Let F be a class of functions on R
d such that
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E[f(X1)
2] = 1 (normalization) and ‖f‖∞ ≤ b for all f ∈ F . Let G := {(ǫ, x) ∋ R

d+1 7→
ǫf(x) : f ∈ F}. Suppose that there exist constants A > e2 and V ≥ 2 such that

sup
Q
N(G, L2(Q), ǫ‖G‖L2(Q)) ≤ (A/ǫ)V

for all 0 < ǫ ≤ 1 for the envelope G(ǫ, x) := |ǫ|b. If for some m > 2 E[|ǫ1|m] <∞, then

E

[∥∥∥∥∥

n∑

i=1

ǫif(Xi)

∥∥∥∥∥
F

]
≤ C

[
(σ +

√
E[|ǫ1|m])

√
nV log(Ab) + V bm/(m−2) log(Ab)

]
,

where C is a universal constant.

The proof is based on a truncation argument and maximal inequalities for uniformly

bounded classes of functions developed in Giné and Koltchinskii (2006). We recall its

version.

Theorem 6.1 (Giné and Koltchinskii (2006)). Let ξ1, . . . , ξn be i.i.d. random variables

taking values in a measurable space (S,S) with common distribution P . Let F be a suit-

ably measurable class of functions on S with envelope F . Let σ2 be a constant such that

supf∈F var(f) ≤ σ2 ≤ ‖F‖2L2(P ). Suppose that there exist constants A > e2 and V ≥ 2 such

that supQN(F , L2(Q), ǫ‖F‖L2(Q)) ≤ (A/ǫ)V for all 0 < ǫ ≤ 1. Then,

E

[∥∥∥∥∥

n∑

i=1

{f(ξi)− E[f(ξ1)]}
∥∥∥∥∥
F

]
≤ C



√

nσ2V log
A‖F‖L2(P )

σ
+ V ‖F‖∞ log

A‖F‖L2(P )

σ


 ,

where C is a universal constant.

Appendix A. Proofs

A.1. Proofs of Sections 2 and 3.

Proof of Proposition 2.1. For any γ,
∫
(γ′pi)

2dF =
∫
(γ′pi)

2(dF/dµ)dµ. Therefore, if dF/dµ

is bounded above and away from zero, the result follows since pi’s are orthonormal under

(X , µ). �

Proof of Proposition 3.1. Fix f ∈ G. Let

β⋆f := argmin
n

‖f − p′b‖F,∞.

Then

‖rf‖F,∞ = ‖f − p′βf‖F,∞ ≤ ‖f − p′β⋆f‖F,∞ + ‖p′β⋆f − p′βf‖F,∞ ≤ ck + ‖p′β⋆f − p′βf‖F,∞.
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Further, first order conditions imply that βf = Q−1E[p(x1)f(x1)], and so for any x ∈ X ,

p(x)′β⋆f − p(x)′βf = p(x)′Q−1Qβ⋆f − p(x)′Q−1E[p(x1)f(x1)]

= p(x)′Q−1E[p(x1)(p(x1)
′β⋆f − f(x1))].

This implies that

‖p′β⋆f − p′βf‖F,∞ ≤ ξk‖E[p(x1)(p(x1)
′β⋆f − f(x1))]‖.

Moreover, since E[p(x1)p(x1)
′] = Q = I, E[pj(x1)(p(x1)

′β⋆f − f(x1))] is the coefficient on

pj(x1) of the projection of p(x1)
′β⋆f − f(x1) onto p(x1),

‖E[p(x1)(p(x1)
′β⋆f − f(x1))]‖ ≤

(
E[(p(x1)

′β⋆f − f(x1))
2]
)1/2 ≤ ck.

Conclude that

‖rf‖F,∞ ≤ ck + ξkck = ck(1 + ξk),

and so there exists ℓk ≤ 1 + ξk such that Condition A.3 holds with this ℓk. This completes

the proof of the proposition. �

Proof of Proposition 3.2. Fix f ∈ G. Define β⋆f by

β⋆f := argmin
b

‖f − p′b‖F,∞.

Using the fact that for all x ∈ X ,

p(x)′(β⋆f − βf ) = p(x)′βf−p′β⋆
f
,

we obtain

‖rf‖F,∞ ≤ ‖f − p′β⋆f‖F,∞ + ‖p′β⋆f − p′βf‖F,∞
≤ ‖f − p′β⋆f‖F,∞ + ℓ̃k‖f − p′β⋆f‖F,∞ ≤ (1 + ℓ̃k) inf

b
‖f − p′b‖F,∞,

so that

‖rf‖F,∞ ≤ (1 + ℓ̃k) inf
b
‖f − p′b‖F,∞.

Next,

ck ≥ sup
f∈G

inf
b
‖f − p′b‖F,∞

implies that

‖rf‖F,∞ ≤ ck(1 + ℓ̃k),

and so Condition A.3 holds with ℓk = 1+ℓ̃k. This completes the proof of the proposition. �
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Proof of Proposition 3.3. For a function f(·) =∑j≥1 pj(·)j−αξj ∈ F(α), let

Af (x) :=
∑

j≥k+1

pj(x)j
−αξj and v̄k := d1/2

√
(α− β − 1/2) log kk−α+β+1/2.

Then, the statement of the lemma is equivalent to

P

(
sup
x∈X

|Af (x)| . v̄k

)
= 1− o(1).

Therefore, it suffices to prove that

P

(
sup
x∈X

|Af (x)| ≥ Cv̄k

)
= o(1).

for some large absolute constant C.

Consider an ǫ-net Nǫ for X . For some L ≥ 1, let

Hk := {f ∈ F : |Af (x)−Af (x
′)| ≤ L‖x− x′‖ for all x, x′ ∈ X}.

Then

P (sup
x∈X

|Af (x)| ≥ Cv̄k) ≤ P (f /∈ Hk) + P (f ∈ Hk, sup
x∈Nǫ

|Af (x)| ≥ Cv̄k − Lǫ)

≤ P (f /∈ Hk) + |Nǫ|max
x∈Nǫ

P (|Af (x)| ≥ Cv̄k − Lǫ).

Note that we can take |Nǫ| ≤ (diam(X )/ǫ)d and

E[Af (x)
2] = E[(

∑

j≥k+1

j−αpj(x)ξj)
2] = E[

∑

j≥k+1

j−2αp2j(x)ξ
2
j ] .

∑

j≥k+1

j−2(α−β)

. k−2(α−β)+1.

Thus, setting ǫ = k−α+β+1/2/L, we have Lǫ . v̄k. Further, since Af (x) ∼ N(0, E[Af (x)
2]),

we have

|Nǫ|max
x∈Nǫ

P (|Af (x)| ≥ Cv̄k − Lǫ) = o(1).

Next, to bound P (f /∈ Hk), note that f is L-Lipschitz if

Z := sup
x,x′∈X

∣∣∣∣∣

∑
j≥k+1{pj(x)− pj(x

′)}j−αξj

‖x− x′‖

∣∣∣∣∣ ≤ L.

Since supx∈X ‖∇pj(x)‖ ≤Mj , we have that for any δ ∈ (0, 1),

P


Z >

∑

j≥k+1

j−αMj

√
2 log(2j2/δ)


 ≤ P (∃j ≥ k + 1 : |ξj | ≥

√
2 log(2j2/δ))

≤
∑

j≥k+1

δ/j2 ≤ δ.



LEAST SQUARES SERIES: POINTWISE AND UNIFORM RESULTS 35

Since
∑

j≥1 j
−αMj

√
log j <∞,

∑
j≥k+1 j

−αMj
√
log j → 0 as k → ∞, and so we can find a

sequence {δk} such that δk → 0 as k → ∞ and

∑

j≥k+1

j−αMj

√
2 log(2j2/δk) → 0.

Conclude that

P (f /∈ Hk) ≤ P (Z > L) . P


Z >

∑

j≥k+1

j−αMj

√
2 log(2j2/δ)


→ 0.

The asserted claim follows. �

A.2. Proofs of Section 4.1.

Proof of Theorem 4.1. We have that

‖ĝ − g‖F,2 ≤ ‖p′β − g‖F,2 + ‖p′β̂ − p′β‖F,2 ≤ ck + ‖p′β̂ − p′β‖F,2

where under the normalization Q = E[p(xi)p(xi)
′] = I we have

‖p′β̂ − p′β‖F,2 =
[∫

(β̂ − β)′p(x)p(x)′(β̂ − β)dF (x)

]1/2
= ‖β̂ − β‖.

To prove (4.7), we need to show ‖β̂ − β‖ .P

√
k/n. We have

‖β̂ − β‖ = ‖Q̂−1
En[pi(ǫi + ri)]‖ ≤ ‖Q̂−1

En[piǫi]‖+ ‖Q̂−1
En[piri]‖.

By the Matrix LLN (Lemma 6.2), which is the critical step, we have that

‖Q̂−Q‖ →P 0 if
ξ2k log n

n
→ 0.

Therefore, wp → 1, all eigenvalues of Q̂ are bounded away from zero. Indeed, if at least

one eigenvalue of Q̂ is strictly smaller than 1/2, then there exists a vector a with a′a = 1

such that a′Q̂a < 1/2, and so

‖Q̂−Q‖ ≥ |a′(Q̂−Q)a| = |a′Q̂a− a′a| = |a′Q̂a− 1| > 1/2.

Hence, wp → 1, all eigenvalues of Q̂ are not smaller than 1/2. Therefore,

‖Q̂−1
En[piǫi]‖ .P ‖En[piǫi]‖ .P

√
k/n

where the second inequality follows from

E
[
‖En[piǫi]‖2

]
= E[ǫ2i p

′
ipi/n] = E[σ2i p

′
ipi/n] . E[p′ipi/n] = k/n



36 BELLONI, CHERNOZHUKOV, CHETVERIKOV, AND KATO

since σ2i ≤ σ̄2 is bounded. Moreover, since r̂i := p′iQ̂
−1

En[piri] is a sample projection of ri

on pi,

‖Q̂−1/2
En[piri]‖2 = En[rir̂i] = Enr̂

2
i ≤ En[r

2
i ] .P E[r2i ] ≤ c2k, (A.46)

by Markov’s inequality. Therefore, when ck → 0,

‖Q̂−1
En [piri] ‖ .P ‖Q̂−1/2

En[piri]‖ .P c2k

where the first inequality follows from all eigenvalues of Q̂1/2 being bounded away from zero

wp → 1 and the second from (A.46). This completes the proof of (4.7).

Further, note that

E [‖En[piri]‖] =
1

n
E




√√√√
k∑

j=1

(
n∑

i=1

pj(xi)r(xi)

)2



≤ 1

n

√√√√√
k∑

j=1

E



(

n∑

i=1

pj(xi)r(xi)

)2

 ≤ ℓkck

√
E[‖p(x1)‖2]

n
≤ ℓkck

√
k

n
(A.47)

where we have used E[piri] = 0. Alternatively, the first term in (A.47) can be bounded

from above by

1

n

√√√√√E




n∑

i=1

k∑

j=1

pj(xi)2r(xi)2


 ≤ 1

n

√√√√E

[
n∑

i=1

ξ2kr(xi)
2

]
≤ ξkck/

√
n.

Therefore, when ck 6→ 0,

‖Q̂−1
En[piri]‖ ≤ ‖Q̂−1‖‖En[piri]‖ .P (ℓkck

√
k/n) ∧ (ξkck/

√
n),

and so (4.8) follows. This completes the proof of the theorem. �

A.3. Proofs of Section 4.2.

Proof of Lemma 4.1. Decompose

√
nα′(β̂ − β) = α′

Gn[pi(ǫi + ri)] + α′[Q̂−1 − I]Gn[pi(ǫi + ri)].

We divide the proof in three steps. Steps 1 and 2 establish (4.11), the bound on R1n(α).

Step 3 proves (4.13), the bound on R2n(α).

Step 1. Conditional on X = [x1, . . . , xn], the term

α′[Q̂−1 − I]Gn[piǫi]
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has mean zero and variance bounded by α′[Q̂−1 − I]Q̂σ̄2[Q̂−1 − I]α. Next, as in the proof

of Theorem 4.1, wp → 1, all eigenvalues of Q̂ are bounded away from zero and from above,

and so

α′[Q̂−1 − I]Q̂σ̄2[Q̂−1 − I]α . σ̄2‖Q̂‖‖Q̂−1‖2‖Q̂− I‖2 .P
ξ2k log n

n

where the second inequality follows from Matrix LLN (Lemma 6.2) and σ̄2 . 1. We then

conclude by Chebyshev’s inequality that

α′[Q̂−1 − I]Gn[piǫi] .P

√
ξ2k log n

n
.

Step 2. By Matrix LLN (Lemma 6.2), ‖Q̂− I‖ .P (ξ2k log n/n)
1/2, and so

|α′(Q̂−1 − I)Gn[piri]| ≤ ‖Q̂−1 − I‖ · ‖Gn[piri]‖

≤ ‖Q̂−1‖ · ‖Q̂− I‖ · ‖Gn[piri]‖ .P

√
ξ2k log n

n
ℓkck

√
k,

where we used the bound ‖Gn[piri]‖ .P ℓkck
√
k obtained in the proof of Theorem 4.1.

Steps 1 and 2 give the linearization result (4.11).

Step 3. Since E[piri] = 0, the term

R2n(α) = α′
Gn[piri]

has mean zero and variance

E[α′piri]
2 ≤ E[α′pi]

2ℓ2kc
2
k ≤ ℓ2kc

2
k.

Thus, (4.13) follows from Chebyshev’s inequality. This completes the proof of the lemma.

�

Proof of Theorem 4.2. Note that for any α ∈ Sk−1, 1 . ‖α′Ω1/2‖ because 1 . σ2 ≤ σ2i and

Ω ≥ Ω0 ≥ σ2Q. (A.48)

Therefore, (4.16) and (4.17) follow from (4.15), and so it suffices to prove (4.15).

By condition (iii) of the theorem and Lemma 4.1, R1n(α) = oP (1) (note that we can

apply Lemma 4.1 because σ̄2 . 1 follows from condition (i) and ξ2k log n/n→ 0 follows from

condition (iii) of the theorem). Therefore, we can write

√
nα′

‖α′Ω1/2‖(β̂ − β) =
α′

‖α′Ω1/2‖Gn[pi(ǫi + ri)] + oP (1) =

n∑

i=1

ωni(ǫi + ri) + oP (1),
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where

ωni =
α′

‖α′Ω1/2‖
pi√
n
, |ωni| .

ξk√
n
, |ǫi + ri| ≤ |ǫi|+ ℓkck.

Further, it follows from (A.48) that

nE|ωni|2 ≤ E[α′pi]
2/α′Ωα ≤ 1/σ2 . 1. (A.49)

Now we verify Lindberg’s condition for the CLT. First, by construction we have

var
( n∑

i=1

ωni(ǫi + ri)
)
= 1.

Second, for each δ > 0

n∑

i=1

E
[
|ωni|2(ǫi + ri)

21{|ωni(ǫi + ri) > δ}
]
→ 0,

since the left hand side is bounded by

2nE
[
|ωni|2ǫ2i 1{|ǫi|+ ℓkck > δ/|ωni|}

]
+ 2nE

[
|ωni|2ℓ2kc2k1{|ǫi|+ ℓkck > δ/|ωni|}

]
,

and both terms go to zero. Indeed, the first term is bounded from above for some c > 0 by

2nE
[
|ωni|2E

[
ǫ2i 1{|ǫi|+ ℓkck > cδ

√
n/ξk}|xi

]]

. nE
[
|ωni|2

]
· sup
x∈X

E
[
ǫ2i 1{|ǫi|+ ℓkck > cδ

√
n/ξk}|xi = x

]
= o(1)

where we used (A.49), the uniform integrability in the condition (i) and cδ
√
n/ξk − ℓkck →

∞, which follows from the condition (iii); the second term is bounded from above by

2nE
[
|ωni|2ℓ2kc2kP

[
|ǫi|+ ℓkck > cδ

√
n/ξk|xi

]]

. nE
[
|ωni|2ℓ2kc2k

]
· sup
x∈X

P
[
|ǫi|+ ℓkck > cδ

√
n/ξk|xi = x

]

. ℓ2kc
2
k ·

σ̄2

[cδ
√
n/ξk − ℓkck]2

= o(1)

by Chebyshev’s inequality where we used (A.49), cδ
√
n/ξk − ℓkck → ∞, and ℓkck =

o(δ
√
n/ξk). �

A.4. Proofs of Section 4.3.

Proof of Lemma 4.2. Decompose

√
nα(x)′(β̂ − β) = α(x)′Gn[pi(ǫi + ri)] + α(x)′[Q̂−1 − I]Gn[pi(ǫi + ri)].

We divide the proof in three steps. Steps 1 and 2 establish (4.19), the bound on R1n(α(x)).

Step 3 proves (4.21), the bound on R2n(α(x)).
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Step 1. Here we show that

sup
x∈X

∣∣∣α(x)′[Q̂−1 − I]Gn[piǫi]
∣∣∣ .P n1/m

√
ξ2k log

2 n

n
. (A.50)

Conditional on the data, let T := {t = (t1, . . . , tn) ∈ R
n : ti = α(x)′(Q̂−1−I)piǫi, x ∈ X}.

Define the norm ‖ · ‖n,2 on R
n by ‖t‖2n,2 = n−1

∑n
i=1 t

2
i . Letting η1, . . . , ηn be independent

Rademacher random variables (P (η1 = 1) = P (η1 = −1) = 1/2) that are independent of

the data, we have for η = (η1, . . . , ηn) by Dudley’s inequality (Dudley, 1967)

Eη

[
sup
x∈X

|α(x)′[Q̂−1 − I]Gn[ηipiǫi]|
]
≤ C

∫ θ

0

√
logN(ε, T, ‖ · ‖n,2)dε,

where θ := 2 supt∈T ‖t‖n,2 = 2 supx∈X ‖α(x)′(Q̂−1 − I)piǫi‖L2(Pn) ≤ 2max1≤i≤n |ǫi|‖Q̂−1 −
I‖‖Q̂‖1/2. Since for any x, x̃ ∈ X ,

‖α(x)′(Q̂−1 − I)piǫi − α(x̃)′(Q̂−1 − I)piǫi‖L2(Pn)

≤ max
1≤i≤n

|ǫi|‖α(x) − α(x̃)‖‖Q̂−1 − I‖‖Q̂‖1/2

≤ ξLk max
1≤i≤n

|ǫi|‖Q̂−1 − I‖‖Q̂‖1/2‖x− x̃‖,

we have for some C > 0,

N(ε, T, ‖ · ‖n,2) ≤
(
CξLk max1≤i≤n |ǫi||‖Q̂−1 − I‖‖Q̂‖1/2

ε

)d

.

Thus we have
∫ θ

0

√
logN(ε, T, ‖ · ‖n,2)dε ≤ max

1≤i≤n
|ǫi|‖Q̂−1 − I‖‖Q̂‖1/2

∫ 2

0

√
d log(CξLk /ε)dε.

By A.4, we have E[max1≤i≤n |ǫi| | X] .P n1/m where X = (x1, . . . , xn). In addition, note

that ξ
2m/(m−2)
k log n/n . 1 for m > 2 implies that ξ2k log n/n → 0. Therefore, we have

‖Q̂−1 − I‖ .P

√
ξ2k log n/n and ‖Q̂‖ .P 1. Hence, it follows from log ξLk . log k . log n

that

E

[
sup
x∈X

|α(x)′[Q̂−1 − I]Gn[piǫi]| | X
]
≤ 2E

[
Eη[sup

x∈X
|α(x)′[Q̂−1 − I]Gn[ηipiǫi]|] | X

]

.P n1/m

√
ξ2k log

2 n

n
,

where the first line is due to the symmetrization inequality. Thus, (A.50) follows.
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Step 2. Observe that

sup
x∈X

|α(x)′(Q̂−1 − I)Gn[piri]| ≤ ‖Q̂−1 − I‖ · ‖Gn[piri]‖ .P

√
ξ2k log n

n
ℓkck

√
k

where the second inequality was shown in the proof of Lemma 4.1. Now, Steps 1 and 2 give

the linearizarion result (4.19).

Step 3. We wish to bound supx∈X |α(x)′Gn[piri]|. We use Theorem 6.1. Consider the

class of functions

F := {α(x)′p(·)r(·) : x ∈ X}.

Then, |α(x)′p(·)r(·)| ≤ ℓkckξk and for any x, x̃ ∈ X ,

|α(x)′p(·)r(·)− α(x̃)′p(·)r(·)| ≤ ℓkckξ
L
k ξk‖x− x̃‖,

so that

sup
Q
N(F , L2(Q), εℓkckξk) ≤

(
CξLk
ε

)d

.

Thus, by Theorem 6.1, we have

E

[
sup
x∈X

|α(x)′Gn[piri]|
]
. ℓkck

√
log n+ ℓkck

ξk log n√
n

. ℓkck
√

log n,

where we have used the fact that

ξk log n√
n

=
√

log n

√
ξ2k log n

n
= o(

√
log n).

Therefore, we have by Markov’s inequality

sup
x∈X

|α(x)′Gn[piri]| .P ℓkck
√

log n. (A.51)

So, the linearization result (4.21) follows. This completes the proof. �

Proof of Theorem 4.3. Note that (4.23) and (4.24) follow from (4.22) and Lemma 4.2.

Therefore, it suffices to prove (4.22), and so we wish to bound supx∈X |α(x)′Gn[piǫi]|. To

this end, we use Proposition 6.1. Consider the class of functions

G := {(ǫ, x) 7→ ǫα(v)′p(x) : v ∈ X}.

Then, |α(v)′p(xi)| ≤ ξk, var(α(v)
′p(xi)) = 1 and for any v, ṽ ∈ X ,

|ǫα(v)′p(x)− ǫα(ṽ)′p(x)| ≤ |ǫ|ξLk ξk‖v − ṽ‖.
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Thus, taking G(ǫ, x) := |ǫ|ξk, we have

sup
Q
N(G, L2(Q), ε‖G‖L2(Q)) ≤

(
CξLk
ε

)d

.

Therefore, by Proposition 6.1, we have

E

[
sup
x∈X

|α(x)′Gn[piǫi]|
]
.
√

log n+
ξ
m/(m−2)
k log n√

n
.
√

log n, (A.52)

where we have used the following inequality

ξ
m/(m−2)
k log n√

n
=
√

log n ·

√
ξ
2m/(m−2)
k log n

n
.
√

log n.

This completes the proof. �

Proof of Theorem 4.4. The proof follows similarly to that in Chernozhukov et al. (2009).

We shall apply Yurinskii’s coupling (see Theorem 10 in Pollard (2002)):

Let ζ1, . . . , ζn be independent K-vectors with E[ζi] = 0 for each i, and ∆ :=
∑n

i=1E‖ζi‖3
finite. Let S denote denote a copy of ζ1 + · · · + ζn on a sufficiently rich probability space

(Ω,A, P ). For each δ > 0 there exists a random vector T in this space with a N(0, var(S))

distribution such that

P{‖S − T‖ > 3δ} ≤ C0B

(
1 +

| log(1/B)|
K

)
where B := ∆Kδ−3,

for some universal constant C0.

In order to apply the coupling, consider a copy of the first order approximation to our

estimator on a suitably rich probability space

1√
n

n∑

i=1

ζi, ζi = Ω−1/2pi(ǫi + ri).

When R̄2n = oP (a
−1
n ), a similar argument can be used with ζi = Ω−1/2pi(ǫi + ri) replaced

by ζi = Ω−1/2piǫi. As in the proof of Theorem 4.2, all eigenvalues of Ω are bounded away

from zero. Therefore,

E‖ζi‖3 . E‖pi(ǫi + ri)‖3

. E[‖pi‖3(|ǫi|3 + |ri|3)]

. E[‖pi‖3](1 + ℓ3kc
3
k)

. E[‖pi‖2]ξk(1 + ℓ3kc
3
k)

. kξk(1 + ℓ3kc
3
k)



42 BELLONI, CHERNOZHUKOV, CHETVERIKOV, AND KATO

where we used the assumption that supx∈X E[|ǫi|3|xi = x] . 1. Therefore, by Yurinskii’s

coupling, for each δ > 0,

P

{∥∥∥∥
∑n

i=1 ζi√
n

−Nk

∥∥∥∥ ≥ 3δa−1
n

}
.
nk2ξk(1 + ℓ3kc

3
k)

(δa−1
n

√
n)3

(
1 +

log(k2ξk(1 + ℓ3kc
3
k))

k

)

.
a3nk

2ξk(1 + ℓ3kc
3
k)

δ3n1/2

(
1 +

log n

k

)
→ 0

because a6nk
4ξ2k(1 + ℓ3kc

3
k)

2 log2 n/n→ 0.

Hence, using (4.18) and (4.19), we obtain

‖√nα(x)′(β̂−β)−α(x)′Ω1/2Nk‖ ≤
∥∥∥∥∥

1√
n

n∑

i=1

α(x)′Ω1/2ζi − α(x)′Ω1/2Nk

∥∥∥∥∥+ R̄1n = oP (a
−1
n ).

Since ‖α(x)′Ω1/2‖ is bounded from below uniformly over x ∈ X , we conclude that (4.25)

holds, and (4.26) is a direct consequence of (4.25).

Further, under the assumption that supx∈X n
1/2|r(x)|/‖s(x)‖ = oP (a

−1
n ),

√
np(x)′(β̂ − β)

‖s(x)‖ −
√
n(ĝ(x)− g(x))

‖s(x)‖ = oP (a
−1
n ),

so that (4.27) follows. This completes the proof of the theorem. �

Proof of Theorem 4.5. Note that β̂b solves the least squares problem for the rescaled data

{(
√
hiyi,

√
hipi) : i = 1, . . . , n}. The weight hi is independent of (yi, pi), E[hi] = 1, E[h2i ] =

1, and max1≤i≤n hi .P log n. That allows us to extend all results from β̂ to β̂b replacing ξk

by ξbk = ξk log n to account for the larger envelope.

We apply Lemma 4.2 to the original problem (2.3) and to the weighted problem (4.30).

Then

√
nα(x)′

(
β̂b − β̂

)
=

√
nα(x)′

(
β̂b − β

)
+

√
nα(x)′

(
β − β̂

)

= α(x)′Gn[(hi − 1)pi(ǫi + ri)] +Rb
1n(α(x))

where

Rb
1n(α(x)) .P

√
ξ2k log

3 n

n
(n1/m

√
log n+

√
kℓkck)

uniformly over x ∈ X , and so (4.31) follows.

Further, (4.32) follows similarly to Theorem 4.4 by applying Yurinskii’s coupling for the

weighted process with weights vi = hi − 1 so that E[v2i ] = 1 and E[|vi|3] . 1. Thus there is
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a Gaussian random vector Nk ∼ N(0, Ik) such that
∥∥∥∥∥
Ω−1/2

√
n

n∑

i=1

(hi − 1)pi(ǫi + ri)−Nk

∥∥∥∥∥ = oP (a
−1
n ). (A.53)

Combining (A.53) with (4.31) yields (4.32) by the triangle inequality as in the proof of

Theorem 4.4, and (4.33) follows from (4.32).

Note also that the results continue to hold in P -probability if we replace P by P ∗(·|D),

since Bn .P 1 implies that Bn .P ∗ 1. Indeed, the first relation means that P (|Bn| >
ℓn) = o(1) for any ℓn → ∞, while the second means that P ∗(|Bn| > ℓn) = oP (1) for

any ℓn → ∞. But the second clearly follows from the first by Markov inequality because

E[P ∗(|Bn| > ℓn)] = P (|Bn| > ℓn) = o(1). �

Proof of Theorem 4.6. Note that it follows from R̄2n . (log n)1/2 that ℓkck . 1 (see the

definition of R̄2n in (4.21)). Therefore, ‖Σ‖ . (1 + ℓkck)‖Q‖ . 1. In addition, it follows

from Condition A.4 that vn . n1/m, and so R̄1n . (log n)1/2 implies that

(vn ∨ 1 + ℓkck)

√
ξ2k log n

n
→ 0.

Further, the first result follows from the Markov inequality and Matrix LLN (Lemma 6.2),

which shows that E[‖Q̂−Q‖] . (ξ2k log n/n)
1/2 → 0.

To establish the second result, we note that

Σ̂− Σ = En[(ǫ̂
2
i − {ǫi + ri}2)pip′i] + En[{ǫi + ri}2pip′i]− Σ. (A.54)

The first term on the right hand side of (A.54) satisfies

‖En[(ǫ̂
2
i − {ǫi + ri}2)pip′i]‖ ≤ ‖En[{p′i(β̂ − β)}2pip′i]‖+ 2‖En[(ǫi + ri)p

′
i(β̂ − β)pip

′
i]‖

≤ max
1≤i≤n

|p′i(β̂ − β)|2‖En[pip
′
i]‖+ max

1≤i≤n
(|ǫi|+ |ri|) max

1≤i≤n
|p′i(β̂ − β)|‖En[pip

′
i]‖

.P ‖Q̂‖ξ
2
k(
√
log n+ R̄1n + R̄2n)

2

n
+ (vn ∨ 1 + ℓkck)‖Q̂‖ξk(

√
log n+ R̄1n + R̄2n)√

n

since max1≤i≤p |p′i(β̂−β)|2 .P ξ2k(
√
log n+ R̄1n+ R̄2n)

2/n by Theorem 4.3, max1≤i≤n |ri| ≤
ℓkck, and max1≤i≤n |ǫi|2 .P v2n by Markov’s inequality. Therefore,

‖En[(ǫ̂
2
i − {ǫi + ri}2)pip′i]‖ .P (vn ∨ 1 + ℓkck)

√
ξ2k log n

n

because R̄1n+R̄2n . (log n)1/2, ‖Q̂‖ .P 1 by the first result, ξ2k log n/n→ 0, and vn∨1+ℓkck
is bounded away from zero.
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To control the second term in (A.54), let η1, . . . , ηn be a sequence of independent Rademacher

random variables (P (η1 = 1) = P (η1 = −1) = 1/2) that are independent of the data. Then

for η = (η1, . . . , ηn),

E
[
‖En[{ǫi + ri}2pip′i]− Σ‖

]

. E
[
Eη

[
‖En[ηi{ǫi + ri}2pip′i]‖

]]

.

√
log n

n
E
[(
‖En[{ǫi + ri}4‖pi‖2pip′i]‖

)1/2]

≤

√
ξ2k log n

n
E

[
max
1≤i≤n

|ǫi + ri|
(
‖En[{ǫi + ri}2pip′i]‖

)1/2
]

≤

√
ξ2k log n

n

(
E

[
max
1≤i≤n

|ǫi + ri|2
])1/2 (

E
[
‖En[{ǫi + ri}2pip′i]‖

])1/2

where the first inequality holds by Symmetrization Lemma (Lemma 2.3.6 van der Vaart and

Wellner (1996)), the second by Khinchin inequality (Lemma 6.1), the third by max1≤i≤n ‖pi‖ ≤
ξk, and the fourth by the Cauchy-Schwarz inequality.

Since for any positive numbers a, b, and R, a ≤ R(a+ b)1/2 implies a ≤ R2 + R
√
b, the

expression above using the triangle inequality yields

E
[
‖En[{ǫi + ri}2pip′i]− Σ‖

]
.
ξ2k log n

n
(v2n + ℓ2kc

2
k) +

(
ξ2k log n

n
{v2n + ℓ2kc

2
k}
)1/2

‖Σ‖1/2,

and so

E
[
‖En[{ǫi + ri}2pip′i]−Σ‖

]
. (vn ∨ 1 + ℓkck)

√
ξ2k log n

n

because ‖Σ‖ . 1 and (v2n + ℓ2kc
2
k)ξ

2
k log n/n → 0. Now, the second result follows from

Markov’s inequality.

Finally, we have

‖Ω̂− Ω‖ . ‖(Q̂−1 −Q−1)Σ̂Q̂−1‖+ ‖Q−1(Σ̂ − Σ)Q̂−1‖+ ‖Q−1Σ(Q̂−1 −Q−1)‖ = oP (1/an)

whenever ‖Q̂−Q‖ = oP (1/an) and ‖Σ̂−Σ‖ = oP (1/an) because eigenvalues of both Q and Σ

are bounded away from zero and from above. We can set an = (vn∨1+ℓkck)(ξ
2
k log n/n)

1/2.

This gives the third result of the theorem and completes the proof. �

A.5. Proofs of Section 5.
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Proof of Lemma 5.1. As in the proof of Theorem 4.2, all eigenvalues of Ω are bounded away

from zero. Therefore, by the triangle inequality,

∣∣∣∣
σ̂θ(w)

σθ(w)
− 1

∣∣∣∣ ≤
‖ℓθ(w)′(Ω̂1/2 − Ω1/2)‖

‖ℓθ(w)′Ω1/2‖ .P ‖Ω̂1/2 − Ω1/2‖. (A.55)

To bound ‖Ω̂1/2 − Ω1/2‖, we shall use the following lemma:

Lemma A.1. Let A and B be k×k symmetric positive semidefinite matrices. Assume that

B is positive definite. Then ‖A1/2 −B1/2‖ ≤ ‖A−B‖‖B−1‖1/2.

Proof of Lemma A.1. This is exercise 7.2.18 in Horn and Johnson (1990). For completeness,

we derive this result here. Let a be an eigenvector of E = A1/2 − B1/2 with eigenvalue

λ = ‖A1/2 −B1/2‖. Then

‖A−B‖ ≥ |a′(A−B)a|

= |a′(A1/2E + EA1/2 − E2)a|

= |λa′(A1/2 +A1/2 − E)a|

= λ|a′(A1/2 +B1/2)a|

≥ λ|λmin(A
1/2) + λmin(B

1/2)|

where λmin(P ) denotes the minimal eigenvalue of P for P = A1/2 or B1/2. Since A is

positive semidefinite, λmin(A
1/2) ≥ 0. Since B is positive definite, λmin(B

1/2) = ‖B−1‖−1/2.

Combining these bounds gives the asserted claim. �

Therefore,

‖Ω̂1/2 −Ω1/2‖ . ‖Ω̂− Ω‖ .P (vn ∨ 1 + ℓkck)

√
ξ2k log n

n
= o(1) (A.56)

where the second inequality and the last equality follow from Theorem 4.6. Combining

(A.55) and (A.56) gives the asserted claim. �

A.6. Proofs of Section 5.1.

Proof of Theorem 5.1. Fix w ∈ I. Denote α := ℓθ(w)/‖ℓθ(w)‖. Then

|θ̂(w) − θ(w)| ≤ |ℓθ(w)′(β̂ − β)|+ |rθ(w)|
≤ |ℓθ(w)′Gn[piǫi]|/

√
n+ ‖ℓθ(w)‖ (|R1n(α)|+ |R2n(α)|) /

√
n+ o(‖ℓθ(w)‖/

√
n)
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where the second line follows from Lemma 4.1 and condition (i). Next, note that by Lemma

4.1,

|R1n(α)| + |R2n(α)| .P

√
ξ2k log n

n
(1 +

√
kℓkck) + ℓkck = o(1)

where the last conclusion holds from conditions (iii) and (iv). Finally, condition (ii) implies

that

E[|ℓθ(w)′Gn[piǫi]|2] . ‖ℓθ(w)‖2σ̄2‖Q‖2 . ‖ℓθ(w)‖2,
and so the result follows by applying Chebyshev’s inequality. �

Proof of Theorem 5.2. Under our conditions, all eigenvalues of Ω are bounded away from

zero. Therefore,
rθ(w)

σ̂θ(w)
.P

rθ(w)

σθ(w)
.

√
nrθ(w)

ℓθ(w)
→ 0

where the first inequality follows from Lemma 5.1. In addition, by Theorem 4.2,

ℓθ(w)
′(β̂ − β)

σθ(w)
→d N(0, 1).

Hence,

t(w) =
ℓθ(w)

′(β̂ − β)

σ̂θ(w)
− rθ(w)

σ̂θ(w)
=

ℓθ(w)
′(β̂ − β)

(1 + oP (1))σθ(w)
+ oP (1) →d N(0, 1)

by Slutsky’s lemma. This completes the proof of the theorem. �

A.7. Proofs of Section 5.2.

Proof of Lemma 5.2. By triangle inequality,
∥∥∥∥
ℓθ(w1)

‖ℓθ(w1)‖
− ℓθ(w2)

‖ℓθ(w2)‖

∥∥∥∥ ≤ ‖ℓθ(w1)− ℓθ(w2)‖
‖ℓθ(w1)‖

+ ‖ℓθ(w2)‖
∣∣∣∣

1

‖ℓθ(w1)‖
− 1

‖ℓθ(w2)‖

∣∣∣∣

≤ 2‖ℓθ(w1)− ℓθ(w2)‖
‖ℓθ(w1)‖

. ξLk,θ‖w1 − w2‖

uniformly over w1, w2 ∈ I where the last inequality follows from the definition of ξLk,θ and

the condition that 1/‖lθ(w)‖ . 1 uniformly over w ∈ I. Therefore, the proof follows from

the same arguments as those given for Lemma 4.2. �

Proof of Theorem 5.3. Given discussion in the proof of Lemma 5.2, (5.35) follows from the

same arguments as those used for Theorem 4.3, equation (4.22).

Now we prove (5.36). By the triangle inequality,

sup
w∈I

|θ̂(w) − θ(w)| ≤ sup
w∈I

|ℓθ(w)′(β̂ − β)|+ sup
w∈I

|rθ(w)|. (A.57)
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Further,

sup
w∈I

|rθ(w)| ≤ sup
w∈I

|rn(w)|
‖ℓθ(w)‖

sup
w∈I

‖ℓθ(w)‖ .

√
ξ2k,θ log n

n
(A.58)

by the condition (ii) and the definition of ξk,θ. In addition, by Lemma 5.2 and (5.35),

sup
w∈I

|ℓθ(w)′(β̂ − β)| .P
1√
n

(∣∣∣∣sup
w∈I

αθ(w)
′
Gn[piǫi]

∣∣∣∣+ R̄1n + R̄2n

)
sup
w∈I

‖ℓθ(w)‖ (A.59)

.P

√
log n

n
sup
w∈I

‖ℓθ(w)‖ .

√
ξ2k,θ log n

n
. (A.60)

Combining (A.57), (A.58), (A.59), and (A.60) gives the asserted claim. �

Proof of Theorem 5.4. Under our conditions,

(vn ∨ 1 + ℓkck)
ξk log n√

n
= o(a−1

n ).

Further, as in the proof of Theorem 4.4 and using Lemma 5.2, we can find Nk ∼ N(0, Ik)

such that ∥∥∥
√
nαθ(w)

′(β̂ − β)− αθ(w)
′Ω1/2Nk

∥∥∥ = oP (a
−1
n )

uniformly over w ∈ I. Since ‖αθ(w)
′Ω1/2‖ is bounded away from zero uniformly over w ∈ I,

∥∥∥∥∥
√
n
ℓθ(w)

′(β̂ − β)

‖ℓθ(w)′Ω1/2‖ − ℓθ(w)
′Ω1/2Nk

‖ℓθ(w)′Ω1/2‖

∥∥∥∥∥ = oP (a
−1
n ),

or, equivalently, ∥∥∥∥∥
ℓθ(w)

′(β̂ − β)

σθ(w)
− ℓθ(w)

′Ω1/2Nk/
√
n

σθ(w)

∥∥∥∥∥ = oP (a
−1
n ),

uniformly over w ∈ I. Further,
∣∣∣∣∣
ℓθ(w)

′(β̂ − β)

σθ(w)
− ℓθ(w)

′(β̂ − β)

σ̂θ(w)

∣∣∣∣∣ ≤
|ℓθ(w)′(β̂ − β)|

σθ(w)

∣∣∣∣1−
σθ(w)

σ̂θ(w)

∣∣∣∣

.
√
n|αθ(w)

′(β̂ − β)|
∣∣∣∣1−

σθ(w)

σ̂θ(w)

∣∣∣∣

.P

√
log n(vn ∨ 1 + ℓkck)

√
ξ2k log n

n
= o(a−1

n )

uniformly over w ∈ I where the second line follows from ‖αθ(w)
′Ω1/2‖ being bounded away

from zero uniformly over w ∈ I and the third line follows from Lemmas 5.1 and 5.2 and



48 BELLONI, CHERNOZHUKOV, CHETVERIKOV, AND KATO

Theorem 5.3. Therefore,
∥∥∥∥∥
ℓθ(w)

′(β̂ − β)

σ̂θ(w)
− ℓθ(w)

′Ω1/2Nk/
√
n

σθ(w)

∥∥∥∥∥ = oP (a
−1
n ) (A.61)

uniformly over w ∈ I. In addition, supw∈I |rθ(w)|/σθ(w) = oP (a
−1
n ) uniformly over w ∈ I

and Lemma 5.1 imply that supw∈I |rθ(w)|/σ̂θ(w) = oP (a
−1
n ), and so it follows from (A.61)

that ∥∥∥∥∥
ĝ(w)− g(w)

σ̂θ(w)
− ℓθ(w)

′Ω1/2Nk/
√
n

σθ(w)

∥∥∥∥∥ = oP (a
−1
n )

uniformly over w ∈ I. This completes the proof of the theorem. �

Proof of Theorem 5.5. We have

θ̂(w)− θ(w)

σ̂θ(w)
=
ℓθ(w)

′(β̂ − β)

σ̂θ(w)
− rθ(w)

σ̂θ(w)
. (A.62)

Under the conditions R̄2n . 1/(log n)1/2 and ξk log
2 n/n1/2−1/m → 0,

∣∣∣∣∣
ℓθ(w)

′(β̂ − β)

σ̂n(w)
− ℓθ(w)

′(β̂ − β)

σθ(w)

∣∣∣∣∣ .P
1√
log n

(A.63)

uniformly over w ∈ I by the argument used in the proof of Theorem 5.4 with an =

1/(log n)1/2. Further, by Lemma 5.2,

ℓθ(w)
′(β̂ − β)

σθ(w)
=
ℓθ(w)

′
Gn[piǫi]

σθ(w)
+ oP

(
1√
log n

)
(A.64)

uniformly over w ∈ I since R̄1n+R̄2n . 1/(log n)1/2. In addition, as in the proof of Theorem

5.4 with an = 1/(log n)1/2,

|rθ(w)|
σ̂θ(w)

.P
1√
log n

(A.65)

uniformly over w ∈ I. Combining (A.62), (A.63), (A.64), and (A.65) yields

θ̂(w)− θ(w)

σ̂θ(w)
=
ℓθ(w)

′
Gn[piǫi]

σθ(w)
+ oP

(
1√
log n

)
. (A.66)

Now, under the condition ξk log
2 n/n1/2−1/m → 0, the asserted claim follows from Propo-

sition 3.3 in Chernozhukov et al. (2012) applied to the first term on the right hand side

of (A.66) (note that Proposition 3.3 in Chernozhukov et al. (2012) only considers a special

case where ℓθ(w), w ∈ I, is replaced by p(x), x ∈ X , but the same proof applies for a more

general case studied here, with ℓθ(w), w ∈ I). �
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Proof of Theorem 5.6. The proof consists of two steps. The asserted claims are proven in

Step 1, and Step 2 contains some intermediate calculations.

Step 1. Under our conditions, it follows from Step 2 that there exists a sequence {εn}
such that εn = o(1) and

P

{∣∣∣∣sup
w∈I

|t̂⋆n(w)| − sup
w∈I

|t⋆n(w)|
∣∣∣∣ > εn/

√
log n

}
= o(1). (A.67)

Let c0n(1−α) denote the (1−α)-quantile of supw∈I |t⋆n(w)|. Then in view of (A.67), Lemma

A.3 implies that there exists a sequence {νn} such that νn = o(1) and

P
{
cn(1− α) < c0n(1− α− νn)− εn/

√
log n

}
= o(1), (A.68)

P
{
cn(1− α) > c0n(1− α+ νn) + εn/

√
log n

}
= o(1). (A.69)

Further, it follows from Theorem 5.5 that there exists a sequence {βn} of constants and a

sequence {Zn} of random variables such that βn = o(1), Zn equals in distribution to ‖t⋆n‖I ,
and

P

{∣∣∣∣sup
w∈I

|tn(w)| − Zn

∣∣∣∣ > βn/
√

log n

}
= o(1). (A.70)

Hence, for some universal constant A,

P (sup
w∈I

|tn(w)| ≤ cn(1− α)) ≤ P (Zn ≤ cn(1− α) + βn/
√

log n) + o(1)

≤ P (Zn ≤ c0n(1− α+ νn) + (εn + βn)/
√

log n) + o(1)

≤ P (Zn ≤ c0n(1− α+ νn +A(εn + βn))) + o(1)

= 1− α+ νn +A(εn + βn) + o(1)

= 1− α+ o(1)

where the first inequality follows from (A.70), the second from (A.69), and the third from

Lemma 5.3. This gives one side of the bound in (5.41). The other side of the bound can

be proven by a similar argument. Therefore, (5.41) follows. Further, (5.42) is a direct

consequence of (5.41).

Finally, we consider (5.43). The second inequality in (5.43) holds because σθ(w) .

‖ℓθ(w)‖/n1/2 since all eigenvalues of Ω are bounded from above. To prove the first inequality,

note that by Lemma 5.1, σ̂θ(w)/σθ(w) = 1+ oP (1) uniformly over w ∈ I. In addition, Step

2 shows that

cn(1− α) .P

√
log n. (A.71)
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Therefore, 2cn(1 − α)σ̂n(w) .P (log n)1/2σθ(w), uniformly over w ∈ I, which is the first

inequality in (5.43). To complete the proof, we provide auxilliary calculations in Step 2.

Step 2. We first prove (A.67). Note that

∣∣∣∣sup
w∈I

|t̂⋆n(w)| − sup
w∈I

|t⋆n(w)|
∣∣∣∣ ≤ sup

w∈I

∣∣t̂∗n(w) − t∗n(w)
∣∣ = sup

w∈I

∣∣∣∣∣

(
ℓθ(w)

′Ω̂1/2

√
nσ̂n(w)

− ℓθ(w)
′Ω1/2

√
nσθ(w)

)
Nk

∣∣∣∣∣ .

Denote Tn(w) := t̂∗n(w) − t∗n(w). Then, conditionally on the data, {Tn(w), w ∈ I} is a

zero-mean Gaussian process. Further, we have for ENk
[·] denoting the expectation with

respect to the distribution of Nk,

ENk
[Tn(w)

2]1/2 =

∥∥∥∥∥
ℓθ(w)

′Ω̂1/2

√
nσ̂n(w)

− ℓθ(w)
′Ω1/2

√
nσθ(w)

∥∥∥∥∥

≤ ‖ℓθ(w)‖√
nσ̂n(w)

‖Ω̂1/2 − Ω1/2‖+
∥∥∥∥∥
ℓθ(w)

′Ω1/2

√
nσθ(w)

∥∥∥∥∥

∣∣∣∣
σθ(w)

σ̂n(w)
− 1

∣∣∣∣

.P ‖Ω̂1/2 − Ω1/2‖+
∣∣∣∣
σθ(w)

σ̂n(w)
− 1

∣∣∣∣

.P ‖Ω̂− Ω‖ = oP

(
1√
log n

)

uniformly over w ∈ I where the last line follows from the proof of Lemma 5.1. In addition,

uniformly over w1, w2 ∈ I,

ENk
[(Tn(w1)− Tn(w2))

2]1/2 ≤
∥∥∥∥∥
ℓθ(w1)

′Ω̂1/2

√
nσ̂n(w1)

− ℓθ(w2)
′Ω̂1/2

√
nσ̂n(w2)

∥∥∥∥∥+
∥∥∥∥∥
ℓθ(w1)

′Ω1/2

√
nσθ(w1)

− ℓθ(w2)
′Ω1/2

√
nσθ(w2)

∥∥∥∥∥

.P

∥∥∥∥
ℓθ(w1)√
nσ̂n(w1)

− ℓθ(w2)√
nσ̂n(w2)

∥∥∥∥+
∥∥∥∥

ℓθ(w1)√
nσθ(w1)

− ℓθ(w2)√
nσθ(w2)

∥∥∥∥ .

Moreover, uniformly over w1, w2 ∈ I,
∥∥∥∥

ℓθ(w1)√
nσ̂n(w1)

− ℓθ(w2)√
nσ̂n(w2)

∥∥∥∥ ≤ ‖ℓθ(w1)− ℓθ(w2)‖√
nσ̂n(w1)

+
‖ℓθ(w2)‖√

n

∣∣∣∣
1

σ̂n(w1)
− 1

σ̂n(w2)

∣∣∣∣

=
‖ℓθ(w1)− ℓθ(w2)‖√

nσ̂n(w1)
+

‖ℓθ(w2)‖√
n

|σ̂n(w2)− σ̂n(w1)|
σ̂n(w1)σ̂n(w2)

.P
‖ℓθ(w1)− ℓθ(w2)‖

‖ℓθ(w1)‖
. ξLθ (k,I)‖w1 − w2‖

where the last inequality follows from Condition A.6. A similar argument shows that
∥∥∥∥

ℓθ(w1)√
nσθ(w1)

− ℓθ(w2)√
nσθ(w2)

∥∥∥∥ .P ξLθ (k,I)‖w1 − w2‖

uniformly over w1, w2 ∈ I. Now, (A.67) follows from Dudley’s inequality (Dudley (1967)).
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Finally, to show (A.71), we note that in view of (A.67), it suffices to prove that

c0n(1− α) .
√

log n. (A.72)

But {t∗n(w), w ∈ I} is a zero mean Gaussian process satisfying E[t∗n(w)
2]1/2 = 1 for all

w ∈ I and

E[(t∗n(w1)− t∗n(w2))
2]1/2 ≤

∥∥∥∥∥
ℓθ(w1)

′Ω1/2

√
nσθ(w1)

− ℓθ(w2)
′Ω1/2

√
nσθ(w2)

∥∥∥∥∥ . ξLθ (k,I)‖w1 − w2‖

where the last inequality was shown above. Hence, (A.72) follows from combining Dudley’s

and Markov’s inequalities. �

A.8. Proofs of Section 6.

Proof of Lemma 6.2. Using the Symmetrization Lemma (Lemma 2.3.6 van der Vaart and

Wellner (1996)) and the Khinchin inequality, bound

∆ := E‖Q̂−Q‖ ≤ 2EEε‖En[εiQi]‖ ≤
√

log n

n
E‖(EnQ

2
i )

1/2‖

Since

E‖(EnQ
2
i )

1/2‖ = E‖(EnQ
2
i )‖1/2 ≤

[
ME‖EnQi‖

]1/2

and

‖EnQi‖ ≤ ∆+ ‖Q‖,

one has

∆ ≤
√
M log n

n
[∆ + ‖Q‖]1/2,

solving which for ∆ gives the result stated in the lemma. �

Proof of Proposition 6.1. For a τ > 0 specified later, define ǫ−i := ǫiI(|ǫi| ≤ τ)−E[ǫiI(|ǫi| ≤
τ)|Xi] and ǫ

+
i := ǫiI(|ǫi| > τ)−E[ǫiI(|ǫi| > τ)|Xi]. Since E[ǫi|Xi] = 0, ǫi = ǫ−i + ǫ+i . Invoke

the decomposition
n∑

i=1

ǫif(Xi) =
n∑

i=1

ǫ−i f(Xi) +
n∑

i=1

ǫ+i f(Xi).

We apply Theorem 6.1 to the first term. Noting that var(ǫ−i f(Xi)) ≤ supx E[(ǫ−i )
2|Xi =

x]E[f(Xi)
2] ≤ supxE[ǫ2i |Xi = x] = σ2 and ǫ−i f(Xi) ≤ 2τb, we have

E

[∥∥∥∥∥

n∑

i=1

ǫ−i f(Xi)

∥∥∥∥∥
F

]
≤ C

[√
nσ2V log(Ab) + V τb log(Ab)

]
.
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On the other hand, applying Theorem 2.14.1 of van der Vaart and Wellner (1996) to the

second term, we obtain

E

[∥∥∥∥∥

n∑

i=1

ǫ+i f(Xi)

∥∥∥∥∥
F

]
≤ C

√
nb
√
E[|ǫ+1 |2]

∫ 1

0

√
V log(A/ǫ)dǫ. (A.73)

By assumption,

E[|ǫ+1 |2] ≤ E[ǫ21I(|ǫ1| > τ)] ≤ τ−m+2E[|ǫ1|m],

by which we have

(A.73) ≤ C
√
E[|ǫ1|m]bτ−m/2+1

√
nV log(A).

Taking τ = b2/(m−2), we obtain the desired inequality. �

A.9. Additional technical results.

Lemma A.2. Let Z be a random vector in R
k, M be a k × k matrix and Γ ⊂ R

k \ {0}.
Then we have that

sup
γ∈Γ

E

[∣∣∣∣
γ′

‖γ‖MZ

∣∣∣∣
m]

≤ ‖M‖m sup
‖a‖=1

E
[
|a′Z|m

]
.

Proof of Lemma A.2. Let γ̄ achieve the supremum on the left hand side and set ā = γ̄/‖γ̄‖.
Then we have

E [|ā′MZ|m] = E [|(M ′ā)′Z|m] = ‖M ′ā‖mE
[
| (M ′ā)′

‖M ′ā‖Z|m
]

≤ ‖M ′‖m‖ā‖kE
[
| (M ′ā)′

‖M ′ā‖Z|m
]

≤ ‖M‖m sup‖a‖=1 E [|a′Z|m]

since ‖ā‖ = 1 and M ′ā/‖M ′ā‖ = 1. �

Lemma A.3 (Closeness in Probability Implies Closeness of Conditional Quantiles). Let

Xn and Yn be random variables and Dn be a random vector. Let FXn(x|Dn) and FYn(x|Dn)

denote the conditional distribution functions, and F−1
Xn

(p|Dn) and F−1
Yn

(p|Dn) denote the

corresponding conditional quantile functions. If |Xn − Yn| = oP (ε), then for some νn ց 0

with probability converging to one

F−1
Xn

(p|Dn) ≤ F−1
Yn

(p+ νn|Dn) + ε and F−1
Yn

(p|Dn) ≤ F−1
Xn

(p+ νn|Dn) + ε,∀p ∈ (νn, 1− νn).

Proof of Lemma A.3. We have that for some νn ց 0, P{|Xn − Yn| > ε} = o(νn). This

implies that P [P{|Xn − Yn| > ε|Dn} ≤ νn] → 1, i.e. there is a set Ωn such that P (Ωn) → 1

and P{|Xn − Yn| > ε|Dn} ≤ νn for all Dn ∈ Ωn. So, for all Dn ∈ Ωn

FXn(x|Dn) ≥ FYn+ε(x|Dn)− νn and FYn(x|Dn) ≥ FXn+ε(x|Dn)− νn,∀x ∈ R,
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which implies the inequality stated in the lemma, by definition of the conditional quantile

function and equivariance of quantiles to location shifts. �
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