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Abstract

This paper considers a classical linear simultaneous equations model with random
coefficients on the endogenous variables. Simultaneous equations models are used to
study social interactions, strategic interactions between firms, and market equilibrium.
Random coefficient models allow for heterogeneous marginal effects. For two-equation
systems, I give two sets of sufficient conditions for point identification of the coefficients’
marginal distributions conditional on exogenous covariates. The first requires full sup-
port instruments, but allows for nearly arbitrary distributions of unobservables. The
second allows for continuous instruments without full support, but places tail restric-
tions on the distributions of unobservables. I show that a nonparametric sieve maximum
likelihood estimator for these distributions is consistent. I apply my results to the Add
Health data to analyze the social determinants of obesity.
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1 Introduction

Simultaneous equations models are among the oldest models studied in econometrics. Their im-

portance arises from economists’ interest in equilibrium situations, like social interactions, strategic

interactions between firms, and market equilibrium. They are also the foundation of work on treat-

ment effects and self-selection. The classical linear simultaneous equations model assumes constant

coefficients, which implies that all marginal effects are also constant. While there has been much

work on allowing for heterogeneous marginal effects by introducing random coefficients on exoge-

nous variables, or on endogenous variables in triangular systems, there has been little work on

random coefficients on endogenous variables in fully simultaneous systems. In this paper, I con-

sider identification and estimation in such systems. For example, I provide sufficient conditions for

point identification of the distribution of elasticities across markets in a simple supply and demand

model with linear equations.

I consider the system of two linear simultaneous equations

Y1 = γ1Y2 + β1Z1 + δ′1X + U1 (1)

Y2 = γ2Y1 + β2Z2 + δ′2X + U2,

where Y ≡ (Y1, Y2)′ are observable outcomes of interest which are determined simultaneously as

the solution to the system, Z ≡ (Z1, Z2)′ are observable instruments, X is a K-vector of observable

covariates, and U ≡ (U1, U2)′ are unobservable variables. X may include a constant. In the data,

we observe the joint distribution of (Y,Z,X). This system is triangular if one of γ1 or γ2 is known to

be zero; it is fully simultaneous otherwise. Two exclusion restrictions are imposed: Z1 only affects

Y1, and Z2 only affects Y2. These exclusion restrictions, plus the assumption that Z and X are

uncorrelated with U , can be used to point identify (γ1, γ2, β1, β2, δ1, δ2), assuming these coefficients

are all constants.1

I relax the constant coefficient assumption by allowing γ1 and γ2 to be random. The distributions

of γ1 | X and γ2 | X, or features of these distributions like the means E(γ1 | X) and E(γ2 | X), are

the main objects of interest. For example, we may ask how the average effect of Y2 on Y1 changes

if we increase a particular covariate. Classical mean-based identification analysis may fail with

random γ1 and γ2 due to non-existence of reduced form mean regressions. Even so, I prove that

the distributions of γ1 | X and γ2 | X are point identified if the instruments Z have full support

and are independent of all unobservables. I show that, with some restrictions on the distribution

of unobservables, full support Z can be relaxed. I propose a consistent nonparametric estimator

for the distributions of γ1 | X and γ2 | X.

Throughout I assume all coefficients on exogenous variables are also random. Note that the ad-

1This result, along with further discussion of the classical model with constant coefficients, is reviewed in most
textbooks. Also see the handbook chapters of Hsiao (1983), Intriligator (1983), and Hausman (1983), as well as the
classic book by Fisher (1966). Model (1) applies to continuous outcomes. For simultaneous systems with discrete
outcomes, see Bjorn and Vuong (1984), Bresnahan and Reiss (1991), and Tamer (2003).

2



ditive unobservables can be thought of as random coefficients on a constant covariate. Throughout

the paper, I use the following application as a leading example of a two-equation system.

Example (Social interactions between pairs of people). Consider a population of pairs of people,

such as spouses, siblings, or best friends. Let Y1 denote the outcome for the first person and Y2 the

outcome for the second. These outcomes may be hours worked, GPA, body weight, consumption,

savings, investment, etc. Model (1) allows for endogenous social interactions: one person’s outcome

may affect the other person’s, and vice versa. Because I allow for random coefficients, these social

interaction effects are not required to be constant across all pairs of people.

Social interaction models for household behavior have a long history within labor and family

economics (see Browning, Chiappori, and Weiss 2014 for a survey). Recently, several papers have

studied social interactions between ‘ego and alter’ pairs of people, or between pairs of ‘best friends’,

studying outcomes like sexual activity (Card and Giuliano 2013) and obesity (Christakis and Fowler

2007, Cohen-Cole and Fletcher 2008). In an empirical application, I revisit the controversial topic

of the social determinants of obesity. I use the Add Health data to construct best friend pairs. I

set the outcomes Y1 and Y2 to be the change in each friends’ weight between two survey waves,

and I choose Zi to be the change in person i’s height over the same time period. I then estimate

the distributions of γ1 and γ2 and find evidence for substantial heterogeneity in social interaction

effects and that usual point estimates are equal to or larger than the nonparametrically estimated

average social interaction effect.

In the rest of this section, I review the related literature. Kelejian (1974) and Hahn (2001)

are the only papers explicitly about random coefficients on endogenous variables in simultaneous

systems. Kelejian considers a linear system like (1) and derives conditions under which we can

apply traditional arguments based on reduced form mean regressions to point identify the means

of the coefficients. These conditions rule out fully simultaneous systems. For example, with two

equations they imply that the system is triangular. Hahn considers a linear simultaneous equations

model like system (1). He applies a result of Beran and Millar (1994) which requires the joint

support of all covariates across all reduced form equations to contain an open ball. This is not

possible in the reduced form for system (1) since each instrument enters more than one reduced

form equation (see remark 4 on page 13).

Random coefficients on exogenous variables, in contrast, are well understood. The earliest work

goes back to Rubin (1950), Hildreth and Houck (1968), and Swamy (1968, 1970), who propose

estimators for the mean of a random coefficient in single equation models. See Raj and Ullah

(1981, page 9) and Hsiao and Pesaran (2008) for further references and discussion. More recent

work has focused on estimating the distribution of random coefficients (Beran and Hall 1992,

Beran and Millar 1994, Beran 1995, Beran, Feuerverger, and Hall 1996, and Hoderlein, Klemelä,

and Mammen 2010).

Random coefficients on endogenous variables in triangular systems are also well studied (Heck-

man and Vytlacil 1998, Wooldridge 1997, 2003). For example, suppose γ2 ≡ 0 and γ1 is random. If
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β2 is constant then E(γ1) is point identified and can be estimated by 2SLS. If β2 is random, then

the 2SLS estimand is a weighted average of γ1—a parameter similar to the weighted average of

local average treatment effects (Angrist and Imbens 1995). This model has led to a large literature

on instrumental variables methods with heterogeneous treatment effects; that is, generalizations of

a linear model with random coefficients on an endogenous variable (Angrist 2004).

For discrete outcomes, random coefficients have been studied in many settings. Ichimura and

Thompson (1998), Bajari, Fox, Kim, and Ryan (2012), and Gautier and Kitamura (2013) study

binary outcome models with exogenous regressors. Gautier and Hoderlein (2012) and Hoderlein

and Sherman (2013) study triangular systems. Finally, recent work by Dunker, Hoderlein, and

Kaido (2013) and Fox and Lazzati (2013) study random coefficients in discrete games.

A large recent literature has examined nonseparable error models like Y1 = m(Y2, U1), where

m is an unknown function (e.g. Matzkin 2003, Chernozhukov and Hansen 2005, and Torgovitsky

2012). These models provide an alternative approach to allowing heterogeneous marginal effects.

Although many papers in this literature allow for Y2 to be correlated with U1, they typically

assume that U1 is a scalar, which rules out models with both an additive unobservable and random

coefficients, such as the first equation of system (1). Additionally, m is typically assumed to be

monotonic in U1, which imposes a rank invariance restriction. For example, in supply and demand

models, rank invariance implies that the demand functions for any two markets cannot cross. The

random coefficient system (1) allows for such crossings. A related literature on nonlinear and

nonparametric simultaneous equations models also allows for nonseparable errors (see Brown 1983,

Roehrig 1988, Benkard and Berry 2006, Matzkin 2008, Blundell and Matzkin 2010, and Berry and

Haile 2011), but these papers again restrict the dimension of unobservables by assuming that the

number of unobservables equals the number of endogenous variables.

Several papers allow for both nonseparable errors and vector unobservables U1, but make as-

sumptions which rule out model (1) with random γ1 and γ2. Imbens and Newey (2009) and Chesher

(2003, 2009) allow for a vector unobservable, but restrict attention to triangular structural equa-

tions. Hoderlein and Mammen (2007) allow for a vector unobservable, but require independence

between the unobservable and the covariate (i.e., Y2 ⊥⊥ U1 in the above model), which cannot hold

in a simultaneous equations model.

Finally, several papers allow for both simultaneity and high dimensional unobservables. Matzkin

(2012) considers a simultaneous equations model with more unobservables than endogenous vari-

ables, but assumes that the endogenous variables and the unobservables are additively separable.

Fox and Gandhi (2011) consider a nonparametric system of equations with nonadditive unob-

servables of arbitrary dimension. They assume all unobservables have countable support, which

implies that outcomes are discretely distributed, conditional on covariates. I focus on continuously

distributed outcomes. Angrist, Graddy, and Imbens (2000) examine the two equation supply and

demand example without imposing linearity or additive separability of a scalar unobserved het-

erogeneity term. Following their work on LATE, they show that with a binary instrument the
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traditional linear IV estimator of the demand slope converges to a weighted average of the average

derivative of the demand function over a subset of prices. Their assumptions are tailored to the

supply and demand example and they do not consider identification of the distribution of marginal

effects. Manski (1995, 1997) considers a general model of treatment response. Using a monotonicity

assumption, he derives bounds on observation level treatment response functions. These bounds

hold regardless of how treatment is selected and thus apply to simultaneous equations models.

He shows how these observation level bounds imply bounds on parameters like average demand

functions. I impose additional structure which allows me to obtain stronger identification results.

I also do not require monotonicity. Kasy (2013) studies general nonparametric systems with arbi-

trary dimensional unobservables, but focuses attention on identifying average structural functions

via a monotonicity condition. Hoderlein, Nesheim, and Simoni (2012) study identification and

estimation of distributions of unobservables in structural models. They assume that a particular

scalar unobservable has a known distribution, which I do not require. They also focus on point

identification of the entire distribution of unobservables, which in system (1) includes the additive

unobservables and the coefficients on exogenous variables. As I discuss later, the entire joint distri-

bution of unobservables in (1) is unlikely to be point identified, and hence I focus on identification

of the distribution of endogenous variable coefficients only.

2 The simultaneous equations model

Consider again system (1), the linear simultaneous equations model:

Y1 = γ1Y2 + β1Z1 + δ′1X + U1 (1)

Y2 = γ2Y1 + β2Z2 + δ′2X + U2.

Assume β1 and β2 are random scalars, δ1 and δ2 are random K-vectors, and γ1 and γ1 are random

scalars. In matrix notation, system (1) is

Y = ΓY +BZ +DX + U,

where

Γ =

(
0 γ1

γ2 0

)
, B =

(
β1 0

0 β2

)
, and D =

(
δ′1

δ′2

)
.

Let I denote the identity matrix. When (I −Γ) is invertible (see section 2.1 below), we can obtain

the reduced form system

Y = (I − Γ)−1BZ + (I − Γ)−1DX + (I − Γ)−1U.
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Writing out both equations in full yields

Y1 =
1

1− γ1γ2

[
U1 + γ1U2 + β1Z1 + γ1β2Z2 + δ′1X + γ1δ

′
2X
]

(2)

Y2 =
1

1− γ1γ2

[
γ2U1 + U2 + γ2β1Z1 + β2Z2 + γ2δ

′
1X + δ′2X

]
.

Identification follows from examining this reduced form system.

Depending on the specific empirical application, the signs of γ1 and γ2 may both be positive,

both be negative, or have opposite signs. When analyzing social interactions between pairs of

people, like spouses or best friends, we expect positive, reinforcing social interaction effects; both

γ1 and γ2 are positive. If we analyze strategic interaction between two firms, such as in the classical

Cournot duopoly model, we expect negative interaction effects; both γ1 and γ2 are negative. In the

classical supply and demand model, supply slopes up and demand slopes down; the slopes γ1 and

γ2 have opposite signs.

2.1 Unique solution

For a fixed value of (Z,X), there are three possible configurations of system (1), depending on the

realization of (B,D,U,Γ): parallel and overlapping lines, parallel and nonoverlapping lines, and

non-parallel lines. Figure 1 plots each of these configurations.

Y1

Y2

Y1

Y2

Y1

Y2

Figure 1: These figures plot the lines Y1 = γ1Y2 + C1, shown as the solid line, and Y2 = γ2Y1 + C2, shown
as the dashed line. By varying γ1, γ2, C1, and C2, each plot shows a different possible configuration of the
system: parallel and overlapping, parallel and nonoverlapping, and non-parallel.

When (B,D,U,Γ) are such that the system has non-parallel lines, the model specifies that the

observed outcome Y is the unique solution to system (1). In the case of parallel and overlapping

lines, the model specifies that the observed outcome Y lies on that line, but it does not predict

a unique Y . Finally, when the system has parallel and nonoverlapping lines, the model makes no

prediction and the observed Y is generated from some unknown distribution. Because of these last

two cases, the model is incomplete without further assumptions (see Tamer 2003 and Lewbel 2007

for a discussion of complete and incomplete models). To ensure completeness, I make the following
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assumption, which implies that a unique solution to system (1) exists with probability 1.2

Assumption A1 (Existence of a unique solution). P (γ1γ2 = 1 | X,Z) = 0.

Since det(I − Γ) = 1− γ1γ2, this assumption is equivalent to requiring (I − Γ) to be invertible

with probability 1 (conditional on X,Z), which allows us to work with the reduced form system

(2). A1 rules out the first two configurations of system (1) almost surely, since parallel lines occur

when γ1 = 1/γ2, or equivalently when γ1γ2 = 1. The existing literature on simultaneous equations

with continuous outcomes, including both classical linear models with constant coefficients as well

as recent nonparametric models, makes a unique solution assumption analogous to A1. Indeed, in

the linear model (1) with constant coefficients, relaxing the unique solution assumption implies that

γ1γ2 = 1 in every system. Hence only the two parallel line configurations may occur. In that case,

it is possible that the distribution of (U1, U2) is such that the lines never overlap, which implies

that constant coefficient model with γ1γ2 = 1 places no restrictions on the data.

When (γ1, γ2) are random coefficients, there is scope for relaxing A1 without obtaining a vac-

uous model, although I do not pursue this in depth. For example, we could replace A1 with the

assumption P (γ1γ2 = 1 | X,Z) < p for some known p, 0 ≤ p < 1. This says that the model

delivers a unique outcome in 100(1 − p) percent of the systems. In the remaining systems, the

model does not. Thus, even if we are unwilling to make assumptions about how the outcome data

Y are generated when γ1γ2 = 1, we may still be able to obtain useful partial identification results,

since we know that a unique solution occurs with at least probability p. This approach is similar

to analysis of contaminated data (see Horowitz and Manski 1995).

2.2 Nearly parallel lines and fat tailed distributions

Although A1 rules out exactly parallel lines, it allows for nearly parallel lines. Nearly parallel lines

occur when γ1γ2 is close, but not equal, to 1. In this case, 1 − γ1γ2 is close to zero, and thus

1/(1−γ1γ2) is very large. This is problematic since 1/(1−γ1γ2) appears in all terms in the reduced

form system (2). So, if γ1γ2 is close to 1 with high enough probability, the means of the random

coefficients in the reduced form do not exist. This possibility precludes the classical mean-based

identification approach of examining E(Y1 | X,Z) and E(Y2 | X,Z), without further restrictions

on the distribution of (γ1, γ2).

In the next section, I show that even when these means fail to exist, we can still identify the

marginal distributions of γ1 and γ2, under the assumption that Z has full support. I then replace

full support Z with the weaker assumption that Z has continuous variation. The trade-off for this

change is that I restrict the distribution of (γ1, γ2) by assuming that the reduced form coefficients

2Here and throughout the paper, stating that an assumption which holds ‘given X’ means that it holds given
X = x for all x ∈ supp(X), where supp(X) denotes the support of X. This can be relaxed to hold only at x values
for which we wish to identify the distribution of γi | X = x, i = 1, 2, or to hold only X-almost everywhere if we are
only interested in the unconditional distribution of γi.
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do not have fat tails, so that their means do exist. Thus, in order to relax full support, I eliminate

near parallel lines.

Remark 1. A similar mean non-existence issue arises in Graham and Powell’s (2012) work on panel

data identification of single equation correlated random coefficient models. Since their denominator

term (see equation 22) is an observable random variable, they are able to use trimming to solve

the problem. Here the denominator is unobserved and so we do not see which observations in the

data are problematic. Hence I take a different approach.

3 Identification

In this section I prove two point-identification results for system (1), neither of which require

parametric assumptions on the distribution of coefficients. In section 3.1, I consider identification

with no assumptions on the distribution of unobservables (U1, U2, γ1, γ2) beyond the unique solution

assumption A1. Consequently, I impose strong assumptions on the instruments to achieve full point

identification: I require Z to be independent of all unobservables and have full support, given X. In

section 3.2, I relax the full support assumption but impose additional restrictions on the distribution

of (U1, U2, γ1, γ2). Specifically, I require Z to have continuous variation and I require the reduced

form coefficients to have finite moments which uniquely determine their distribution. In both

sections I show that the marginal distributions of γ1 | X and γ2 | X are point identified.

Throughout the paper I use the following notation and definition of identification. Let FB,D,U,Γ|X

denote the joint distribution of (β1, β2, δ1, δ2, U1, U2, γ1, γ2) given X. Let α = FB,D,U,Γ|X denote

this unknown structural distribution. Let A denote the set of α’s which satisfy the assumptions of

the model under consideration. Finally, let F (· | α) denote the distribution of observables (Y,X,Z)

when the parameter is α, and let Fobs(·) denote the observed distribution of (Y,X,Z) in the data.

Definition (Identification). The parameters α and α̃ are observationally equivalent if F (· | α) =

F (· | α̃). The identification region for α is the set AI ≡ {α ∈ A : F (· | α) = Fobs(·)}. If this region

is a singleton, α is point identified. If this region is a strict subset of A , but is not a singleton, α is

partially identified. Otherwise, α is not identified. A feature of α is a known function C : A → C ,

where C is some space of interest. For example, C(α) may denote the distribution of γ1 | X.

Two values c and c̃ of a feature C are observationally equivalent if there exist two observationally

equivalent α and α̃ with c = C(α) and c̃ = C(α̃). The identification region for the values of the

feature C is the set {C(α) ∈ C : α ∈ AI}. If this region is a singleton, the value of the feature C is

point identified. If this region is a strict subset of C , but is not a singleton, the value of the feature

C is partially identified. Otherwise, the value of the feature C is not identified.

For a fixed X = x, FB,D,U,Γ|X=x is a 6 + 2K dimensional distribution. Even with no covariates

X, so that K = 0, this is a 6 dimensional distribution, while the data (Y1, Y2, Z1, Z2) has only 4

dimensions. Consequently, it is unlikely that we can obtain point identification of an arbitrary joint
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distribution FB,D,U,Γ|X without restricting its dimension. I therefore focus on providing sufficient

conditions under which we can still obtain point identification of particular features of α. These

conditions continue to allow for high dimensional unobservables.

Throughout this paper, ‘identified’ means ‘point identified’. Relaxing my sufficient conditions

may lead to useful partial identification results for the features of interest. Since such partial

identification results have not been explored even in single equation random coefficient models, I

leave this to future research.

3.1 Instruments with full support

In this section I provide conditions under which the marginal distributions γ1 | X and γ2 | X are

identified, even if the reduced form mean regression fails to exist because the structural equations

are nearly parallel too often.

Assumption A2 (Relevance). P (β1 = 0 | X) = 0 and P (β2 = 0 | X) = 0.

For units with β1 = 0, given A3 below, Z1 has no effect whatsoever on the distribution of

(Y1, Y2) | X and hence cannot help with identification; likewise for units with β2 = 0. This

difficulty of learning causal effects for units whom are not affected by the instrument is well known

and is not particular to the model considered here. As in the existing literature, such as the work

on LATE, A2 can be relaxed if we only wish to identify causal effects for the subpopulation of units

whom are affected by the instrument. That is, if P (β1 = 0 | X) > 0, then we can identify the

distribution of γ2 conditional on X and β1 6= 0. Likewise, if P (β2 = 0 | X) > 0, then we can identify

the distribution of γ1 conditional on X and β2 6= 0. Moreover, as in the constant coefficients case,

if we are only interested in one equation, then we do not need an instrument for the other equation.

That is, P (β1 = 0 | X) > 0 is allowed if we only wish to identify the distribution of γ1 | X. If we

only wish to identify the distribution of γ2 | X, then P (β2 = 0 | X) > 0 is allowed.

Assumption A3 (Independence). Z ⊥⊥ (B,D,U,Γ) | X.

Nearly all of the literature on random coefficients models with cross-sectional data makes an

independence assumption similar to A3.3 This assumption reduces the complexity of the model

by restricting how the distribution of unobservables can depend on the observed covariates: the

distribution of (B,D,U,Γ) is assumed to be the same regardless of the realization of Z, conditional

on X. The covariates X may still be correlated with the unobservables, and (Y1, Y2), as outcome

variables, are generally also correlated with all of the unobservables.

Assumption A4 (Full, rectangular support instruments). supp(Z | X) = R2.

3One exception is Heckman and Vytlacil (1998), who allow a specific kind of correlated random coefficient, although
their goal is identification of the coefficients’ means, not their distributions. Heckman, Schmierer, and Urzua (2010)
construct tests of the independence assumption, building on earlier work by Heckman and Vytlacil (2007). Several
papers, such as Graham and Powell (2012) and Arellano and Bonhomme (2012), relax independence by considering
panel data models.
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This assumption is key in proving identification with minimal restrictions on the distribution

of the unobservables. In section 3.2, I relax this assumption, at the price of placing additional

restrictions on the distribution of the unobservables.

Example (Social interactions between pairs of people, cont’d). Randomized experiments are some-

times used to learn about social interaction effects (e.g. Duflo and Saez 2003, Hirano and Hahn

2010). Let Z1 and Z2 be treatments applied to persons 1 and 2, respectively. Assuming the coef-

ficients represent time-invariant structural parameters, random assignment of treatments ensures

that the independence assumption A3 holds. If the treatment variable also satisfies the exclusion

restriction, and a support condition (such as A4, or A4′ in the next section), then I show one can

identify the distribution of social interaction effects with experimental data.

Theorem 1. Under A1, A2, A3, and A4, the conditional distributions γ1 | X = x and γ2 | X = x

are identified for each x ∈ supp(X).

While I gather all proofs in appendix A, I sketch the proof of theorem 1 here to show its main

idea. Fix a value of x ∈ supp(X). The reduced form system (2) is

Y1 =
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
+

β1

1− γ1γ2
Z1 +

γ1β2

1− γ1γ2
Z2 ≡ π11 + π12Z1 + π13Z2

Y2 =
U2 + γ2U1 + (δ2 + γ2δ1)′x

1− γ1γ2
+

γ2β1

1− γ1γ2
Z1 +

β2

1− γ1γ2
Z2 ≡ π21 + π22Z1 + π23Z2.

For (t1, t2) ∈ R2, we have

t1Y1 + t2Y2 = (t1π11 + t2π21) + (t1π12 + t2π22)Z1 + (t1π13 + t2π23)Z2.

By using a result on identification of random coefficients in single equation models (see lemma 1

below), we can identify the joint distribution of

(t1π11 + t2π21, t1π12 + t2π22, t1π13 + t2π23)

for any (t1, t2) ∈ R2. This lets us learn the joint distribution of, for example,

(π13, π23) =

(
γ1β2

1− γ1γ2
,

β2

1− γ1γ2

)
(3)

and from this we have γ1 = π13/π23. Similarly for γ2. This proof strategy is analogous to a

standard approach for constant coefficient simultaneous equations models, in which case π13 and

π23 are constants whose ratio equals the constant γ1.

The following lemma about single-equation random coefficient models is a key step in the proof

of theorem 1.
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Lemma 1. Suppose

Y = A+B′Z,

where Y and A are scalar random variables and B and Z are random K-dimensional vectors.

Suppose the joint distribution of (Y,Z) is observed. If Z ⊥⊥ (A,B) and Z has support RK then the

joint distribution of (A,B) is identified.

The proof of this lemma is similar to that of the classical Cramér-Wold theorem (Cramér and

Wold 1936 page 291; see also Beran and Millar 1994 page 1980) that the joint distribution of a

random vector is uniquely determined by its one-dimensional projections. The proof follows by

examining the characteristic function of Y given Z:

φY |Z(t | z1, . . . , zK) = E[exp(it(A+B1Z1 + · · ·+BKZK)) | Z = (z1, . . . , zK)]

= φA,B(t, tz1, . . . , tzK),

where the second line follows since Z ⊥⊥ (A,B) and by the definition of the characteristic function for

(A,B). Thus, by varying (z1, . . . , zK) over RK , and t over R, we can learn the entire characteristic

function of (A,B).

Beyond the unique solution assumption A1, no restrictions on the distribution of (B,D,U,Γ) are

required for identification of the distributions of γ1 | X and γ2 | X. Specifically, the unobservable

variables can be arbitrarily dependent.

Example (Social interactions between pairs of people, cont’d). Suppose we examine social inter-

actions between best friend pairs. Friendships may form because a pair of students have similar

observed and unobserved variables. Consequently we expect that (β1, δ1, γ1, U1) and (β2, δ2, γ2, U2)

are not independent. These are called correlated effects in the social interactions literature. Such

dependence is fully allowed here when identifying the distributions of social interaction effects γ1

and γ2. Furthermore, the covariates X, which may contain variables like person 1’s gender and

person 2’s gender, can be arbitrarily related to the unobservables.

Theorem 1 provides a result for the marginal distributions of endogenous variable random co-

efficients. As mentioned earlier, it is unlikely that we will be able to obtain full point identification

of the distribution of all unobservables. Specifically, identification of the joint distribution of all

structural parameters obtains if the joint distribution of all reduced form coefficients (π1, π2) ob-

tains. This latter identification result, however, intuitively requires independent variation of all

the regressors in the reduced form system, which is not possible since all instruments enter each

reduced form equation and thus changing a single variable necessarily affects both equations. See

the remark on page 13 for further discussion. Even so, it may be possible to obtain point identifi-

cation of other functionals of this distribution, such as the joint distribution of γ1 and γ2. Such a

result would, for example, allow us to learn whether assortative matching between friends occurred

along the dimension of social susceptibility. If one of β1 or β2 were constant, then identification of
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this joint distribution would obtain from equation (3) via a change of variables. This argument,

however, does not work when β1 and β2 are random. I leave the general question of what additional

functionals of the full joint distribution of unobservables are identified to future work; although note

that in some cases the setting naturally provides additional restrictions on this joint distribution,

as in the following example.

Example (Social interactions between pairs of people, cont’d). Assuming the unobservables repre-

sent time-invariant structural parameters, independence between (β1, δ1, γ1, U1) and (β2, δ2, γ2, U2)

holds when people are randomly paired, as in laboratory experiments (e.g. Falk and Ichino 2006)

or natural experiments (e.g. Sacerdote 2001). In particular, there is no matching based on the

endogenous social interaction effect; γ1 and γ2 are independent.

The following result uses the proof of theorem 1 to examine triangular systems, a case of

particular relevance for the literature on heterogeneous treatment effects.

Proposition 1. Consider model (1) with β1 and γ2 degenerate on zero:

Y1 = γ1Y2 + δ′1X + U1 (4)

Y2 = β2Z2 + δ′2X + U2.

Suppose the assumptions of either theorem 1 or 2 hold. Then the joint distribution of (γ1, β2) | X
is identified.

For example, suppose Y1 is log-wage and Y2 is education. While the 2SLS estimator of γ1

in the triangular model (4) converges to a weighted average effect parameter, this proposition

provides conditions for identifying the distribution of treatment effects, γ1 | X. The assumption

that β1 is degenerate on zero just means that no instrument Z1 for the first stage equation is

required for identification, as usual with triangular models; any variables Z1 excluded from the first

stage equation may be included in X by making appropriate zero restrictions on δ2. Proposition 1

makes no restrictions on the dependence structure of the unobservables (U1, U2, γ1, β2, δ1, δ2), which

allows (4) to be a correlated random coefficient model. For example, education level Y2 may be

chosen based on one’s individual-specific returns to education γ1, which implies that (β2, δ2, U2)

and γ1 would not be independent. Hoderlein et al. (2010, page 818) also discuss identification of a

triangular model like (4), but they assume β2 is constant.

Remark 2 (The role of additive separability and linearity). In both systems (1) and (4), the

exogenous covariates X are allowed to affect outcomes directly via an additive term and indirectly

via the random coefficients. Without further restrictions on the effect of X, the inclusion of δ1 and

δ2 is redundant. We could instead rewrite the system as

Y1 = γ1(X)Y2 + β1(X)Z1 + V1(X)

Y2 = γ2(X)Y1 + β2(X)Z2 + V2(X),
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where γi(·), βi(·), and Vi(·) are arbitrary random functions of X, i = 1, 2. This formulation

emphasizes that the key functional form assumption is that the endogenous variables and the

instruments to affect outcomes linearly. Nonetheless, system (1) is more traditional, and is also

helpful when proceeding to estimation where we make assumptions on the effect of X for dimension

reduction.

I conclude this section with several remarks on the related literature and by noting that the

identification strategy does not easily generalize to systems with more than two equations. Essen-

tially, the inverse of the matrix of random coefficients on Y becomes too unwieldy. For example,

consider the three-equation system

Y1 = γ12Y2 + γ13Y3 + β1Z1 + U1

Y2 = γ21Y1 + γ23Y3 + β2Z2 + U2

Y3 = γ31Y1 + γ32Y2 + β3Z3 + U3.

The reduced form equation for Y1 is

Y1 = det(I − Γ)−1[(1− γ23γ32)β1Z1 + (γ12 + γ13γ32)β2Z2 + (γ13 + γ12γ23)β3Z3

+ (1− γ23γ32)U1 + (γ12 + γ13γ32)U2 + (γ13 + γ12γ23)U3],

and similarly for Y2 and Y3. The cross equation reduced form coefficients on each instrument can be

identified under assumptions like those above, but they are complicated functions of the structural

distributions we wish to identify. This precludes simple cancellations as in theorem 1. Moreover,

these three dimensional random vectors are functions of the six dimensional vector of endogenous

variable coefficients, as well as the coefficient on the instrument. One possible approach is to

assume some of the coefficients are known to be zero a priori. This would not necessarily eliminate

all simultaneity, and thus may still be of interest. For example, if γ23 = γ32 = 0 is known a

priori, then a similar argument to that above suggests that the marginal distributions of γ12 and

γ13 are identified, by comparing the coefficients on the equation for Y1. This situation can arise if

this system represents a social network, in which case assuming the existence of intransitive triads

implies certain zero restrictions (e.g. Bramoulle, Djebbari, and Fortin 2009). Nonetheless, I do not

pursue this idea here.

Remark 3. Kelejian’s (1974) condition for identification is that det(I−Γ) does not depend on the

random components of Γ. In the two equation system det(I − Γ) = 1− γ1γ2. So his results apply

if either γ1 or γ2 is zero with probability one; that is, if system (1) is actually triangular, and there

is no feedback between Y1 and Y2.

Remark 4. Hahn’s (2001) identification result, his lemma 1, applies Beran and Millar (1994)

proposition 2.2. Although that proposition applies to systems of equations, the equations in those
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systems are not allowed to have common regressors, which rules out fully simultaneous equations

models, as well as triangular models. To see this, consider a simple two equation system(
Y1

Y2

)
=

(
U1

U2

)
+

(
Z1 0

0 Z2

)(
β1

β2

)
,

written in the form of Beran and Millar’s equation (1.1). As above, (U1, U2, β1, β2) are unobserved

random variables. Beran and Millar’s identification result, proposition 2.2, makes a support as-

sumption, labeled 2.1: they require the support of the vector (t1Z1, t2Z2) to contain an open set

in R2 for each (t1, t2) ∈ R2, t1, t2 nonzero. This cannot hold if Z1 and Z2 are functionally related,

such as when Z1 = Z2. Intuitively, when Z1 = Z2, we cannot independently vary the regressor

in the first equation from the regressor in the second equation, which precludes learning the joint

distribution of (β1, β2).

This common regressor issue occurs by construction in a simultaneous equations model. Writing

our system of reduced form equations (2) in the form of Beran and Millar’s equation (1.1) we have

(
Y1

Y2

)
=


U1 + γ1U2 + δ′1X + γ1δ

′
2X

1− γ1γ2
γ2U1 + U2 + γ2δ

′
1X + δ′2X

1− γ1γ2

+

(
Z1 Z2 0 0

0 0 Z1 Z2

)


β1

1− γ1γ2
γ1β2

1− γ1γ2
γ2β1

1− γ1γ2
β2

1− γ1γ2


.

Conditional on X, Beran and Millar’s support condition is then that the support of (t1Z1, t1Z2,

t2Z1, t2Z2) contains an open ball in R4 for all (t1, t2) ∈ R2, t1, t2 nonzero. This does not hold.

Essentially, simultaneity implies that each instrument necessarily enters all reduced form equations.

Consequently, we will not be able to independently vary the regressors across equations to learn

the joint distribution of all reduced form coefficients.

For the simultaneous equations model considered here, and conditional on X, Hahn’s equation

(1) writes the model as

(
Y1

Y2

)
=


U1 + γ1U2 + δ′1X + γ1δ

′
2X

1− γ1γ2

β1

1− γ1γ2

γ1β2

1− γ1γ2
γ2U1 + U2 + γ2δ

′
1X + δ′2X

1− γ1γ2

γ2β1

1− γ1γ2

β2

1− γ1γ2




1

Z1

Z2

 .

His support condition (assumption v) then assumes the support of t1 + t2Z1 + t3Z2 contains an

open ball in R for all nonzero (t1, t2, t3) ∈ R3. This support assumption is not sufficient for

Beran and Millar’s support assumption. Moreover, as shown above, Beran and Millar’s support

assumption cannot hold in a simultaneous equations model by construction. Thus neither the results

of Beran and Millar (1994) nor those of Hahn (2001) apply to the fully simultaneous equations model
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considered here, or even to triangular models.

3.2 Instruments with continuous variation

In this section, I show that we can relax the full support assumption on Z to just requiring that

Z has continuous variation. The trade-off is that I place restrictions on the distribution of random

coefficients.

Assumption A5 (Moment determinacy).

1. Conditional onX = x, the absolute moments of the reduced form coefficients πi ≡ (πi1, πi2, πi3),∫
|p1|α1 |p2|α2 |p3|α3 dFπi|X(p | x), α ∈ N3,

are finite, i = 1, 2, for each x ∈ supp(X). N denotes the natural numbers.

2. The distribution of πi | X = x is uniquely determined by its moments, i = 1, 2, for each

x ∈ supp(X).

A5 places restrictions directly on the reduced form coefficients πi, rather than on the structural

variables (B,D,U,Γ). A6 below provides sufficient conditions for A5, stated in terms of the struc-

tural variables directly. A5.1 implies that the reduced form mean regressions exist. It restricts the

probability of nearly parallel lines (see section 2.2). Assumptions like A5.2 have been used in several

papers to achieve identification, since it reduces the problem of identifying an entire distribution

to that of identifying just its moments. For example, Bajari, Fox, Kim, and Ryan (2012) use it

to identify a random coefficients logit model, and Ponomareva (2010) uses it to identify a quantile

regression panel data model. A5.2 is a thin tail restriction on πi | X; for example, any compactly

supported distribution is uniquely determined by its moments, as well as any distribution whose

moment generating function exists, like the normal distribution.

Assumption A4′ (Instruments have continuous variation). supp(Z | X = x) contains an open

ball in R2, for each x ∈ supp(X).

This assumption requires that there always be some region where we can vary (Z1, Z2) in

any direction. For example, it holds if supp(Z | X) = supp(Z1 | X) × supp(Z2 | X), where

supp(Z1 | X) and supp(Z2 | X) are non-degenerate intervals. A4′ also allows mixed continuous-

discrete distributions, and it also allows the support of Z1 to depend on the realization of Z2, and

vice versa.

Theorem 2. Under A1, A2, A3, A4′, and A5, the conditional distributions γ1 | X = x and

γ2 | X = x are identified for each x ∈ supp(X).

15



The proof is essentially identical to that of theorem 1. The only difference is that in the first step

we apply a different identification result for the single-equation random coefficient model, described

as follows.

Lemma 2. Suppose

Y = A+B′Z,

where Y and A are scalar random variables and B and Z are random K-dimensional vectors. Sup-

pose the joint distribution of (Y,Z) is observed. Assume (1) Z ⊥⊥ (A,B), (2) supp(Z) contains an

open ball in RK , (3) the distribution of (A,B) has finite absolute moments, and (4) the distribution

of (A,B) is uniquely determined by its moments. Then the joint distribution of (A,B) is identified.

For a scalar Z, this result was proved in Beran’s (1995) proposition 2. Lemma 2 here shows

that the result holds for any finite dimensional vector Z, as needed for the simultaneous equations

analysis, and also uses a different proof technique. The proof is a close adaptation of the proofs

of theorem 3.1 and corollary 3.2 in Cuesta-Albertos, Fraiman, and Ransford (2007), who prove

a version of the classical Cramér-Wold theorem. I first show that all moments of (A,B) are

identified, and then conclude that the distribution is identified from its moments. Because of this

proof strategy, if we are only interested in moments of (A,B) in the first place—say, the first

and second moment—then we do not need assumption (4) in lemma 2. So, in the simultaneous

equations model, if we eliminate assumption A5.2, then we can still identify all moments of π1 and

π2. Unfortunately, these reduced form moments do not necessarily identify the structural moments

E(γ1 | X) and E(γ2 | X), assuming these structural moments exist.

A sufficient condition for A5, in terms of the structural parameters, is the following.

Assumption A6 (Restrictions on structural unobservables).

1. P (|1 − γ1γ2| ≥ τ | X) = 1 for some τ > 0. That is, 1 − γ1γ2 is bounded away from zero, or

equivalently, γ1γ2 is bounded away from 1.

2. γ1 | X and γ2 | X have compact support.

3. The distributions of β1 | X and β2 | X have finite absolute moments and their moment

generating functions exist.

4. The distribution of (U1, U2, δ1, δ2) | X has finite absolute moments. The moment generating

function of (U1, U2, δ1, δ2) | X exists.

Proposition 2. A6 implies A5.

A6.1 holds if γ1 and γ2 are always known to have opposite signs, as in the supply and demand

example, or if the magnitude of both γ1 and γ2 is bounded above by some τ < 1 (see proposition

3 in appendix A). The latter assumption may be reasonable in social interactions applications,
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where a positive social interaction coefficient of 1 or greater would be substantively quite large and

perhaps unlikely to be true. A6.2 can be relaxed at the expense of less interpretable tail conditions;

see the proof of proposition 2. A6.3 and A6.4 accommodate most well known distributions, such

as the normal distribution, as well as any compactly supported distribution.

4 Estimation

In this section I consider a nonparametric sieve maximum likelihood estimator of the distributions

of γ1 | X and γ2 | X, under the identification assumptions of either section 3.1 or section 3.2. I

also discuss the two-stage least squares estimator.

A sieve approach is attractive for several reasons. Sieves allow us to easily impose additional

structural assumptions. For applications to pairs of people, the labels of person 1 versus person 2

may not matter, and hence we may assume that γ1 and γ2 have the same distribution, and likewise

for U1 and U2, β1 and β2, and δ1 and δ2. This assumption is easily imposed using sieves. Similarly,

monotonicity assumptions like γ1 ≥ 0 can be imposed by restricting the support of the sieve esti-

mator. Sieves can also nest parametric assumptions about the distribution of random coefficients.

The sieve MLE can thus be thought of as a generalization of the classical full information maximum

likelihood (FIML) estimator, allowing for random coefficients.

One complication of using sieve maximum likelihood, however, is that it requires estimating the

entire joint distribution of unobservables, which is not necessarily identified, as I have only given

conditions for identifying the marginals γ1 | X and γ2 | X. Chen, Tamer, and Torgovitsky (2011)

provide general conditions under which the distance between the sieve MLE and the identified set

converges to zero. I use this result to show that estimates of some point identified features of the

entire parameter converge to the unique true value. Specifically, I prove consistency of the sieve

MLE of the marginal distributions of γ1 | X and γ2 | X, allowing for the possibility that the full

joint distribution of the unobservables is not point identified. This consistency result applies after

using either theorem 1 or theorem 2 to achieve identification.

The objects of interest here are the distribution functions, their densities, or functionals of these

distributions such as the mean and variance. Much of the existing work in nonparametrics on rates

of convergence and asymptotic distribution theory has focused on finite dimensional parameters in

models with an infinite dimensional nuisance parameter, and there is much to be done when the

infinite dimensional parameter itself is of interest. Although I leave a detailed analysis of inference

in this sieve MLE with partial identification setup to future work, one possibility is to apply the

weighted bootstrap procedure of Chen et al. (2011).

4.1 Sieve maximum likelihood

I first give a brief description of the sieve MLE; additional details are in section 4.3. We observe

the joint distribution of (Y,Z,X) = (Y1, Y2, Z1, Z2, X). To reduce the dimension of the estimation
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problem, assume (β1, β2, δ1, δ2) are constant coefficients; the main consistency result can be gen-

eralized to allow these coefficients to be random as well. Assume that (U1, U2, γ1, γ2) | X has a

density with respect to the Lebesgue measure. The likelihood of Y given (Z,X) is

fY |Z,X(y | z, x)

=

∫
fU |X,Γ(y1 − γ1y2 − β1z1 − δ′1x, y2 − γ2y1 − β2z2 − δ′2x | x, γ1, γ2)|1− γ1γ2| dFΓ|X(γ1, γ2 | x).

Let N denote the sample size and n index the observations. The log conditional likelihood of a

random sample {(yn, zn, xn)}Nn=1 from (Y, Z,X) is

LN (α) =

N∑
n=1

log

∫∫
supp(γ1,γ2)

fU1,U2,γ1,γ2|X(y1n − γ1y2n − β1z1n − δ′1xn,

y2n − γ2y1n − β2z2n − δ′2xn, γ1, γ2 | xn) · |1− γ1γ2| dγ1dγ2.

The unknown parameters are α ≡ (β1, β2, δ1, δ2, fU1,U2,γ1,γ2|X). Let A denote the parameter space.

The maximum likelihood estimator solves

sup
α∈A

LN (α).

This estimator is usually infeasible since it requires optimization over an infinite-dimensional pa-

rameter space. To obtain a feasible version of this estimator, we can replace the infinite dimensional

space A with a finite dimensional approximation AN . This approach is called the method of sieves,

and AN are called sieve spaces. An estimator α̂N which solves

sup
α∈AN

LN (α) (5)

is called a sieve maximum likelihood estimator. Let α0 ∈ A denote the true parameter value.

Most consistency results for sieve estimators, such as theorem 3.1 of Chen (2007) or theorem 4.2

of Bierens (2012), require α0 to be point identified. Since α0 might be partially identified, these

results do not apply. Chen et al. (2011), however, provide a general consistency theorem for sieve

extremum estimators with partially identified parameters. In section 4.3, I apply their results to

show that a sieve MLE of the entire parameter vector is consistent in some sense. I use this result

to show that the sieve MLE of the pdfs of γ1 | X and of γ2 | X are consistent in the sup-norm. I

discuss implementation of the sieve estimator and provide Monte Carlo simulations in appendix 5.

4.2 Two-stage least squares

As discussed in section 2.2, nearly parallel lines can preclude mean-based identification approaches.

In this case, the reduced form mean regressions E(Y1 | X,Z) and E(Y2 | X,Z) may not exist, and
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hence any estimate of them, such as OLS of Y1 and Y2 on (X,Z), may fail to converge. Likewise, the

2SLS estimand may not exist, and so the 2SLS estimator also may fail to converge. Even when these

means do exist, 2SLS will converge to a weighted average effect parameter, as shown by Angrist

et al. 2000. To see this in the context of the linear model (1), suppose we are only interested in the

first structural equation. Combining the structural equation for Y1 (the first equation of system 1)

with the reduced form equation for Y2 (the second equation of system 2) yields

Y1 = γ1Y2 + U1

Y2 = π21 + π23Z2,

where I let δ1 = δ2 = β1 = 0 for simplicity, and denote

π2 = (π21, π23) =

(
U2 + γ2U1

1− γ1γ2
,

β2

1− γ1γ2

)
.

This is a triangular system of equations where γ1 and π2 are random and Z2 is an instrument for

Y2. Let γ̂1 denote the 2SLS estimator of γ1. Assuming the relevant means exist (see section 2.2),

we have

γ̂1
p−→ cov(Y1, Z2)

cov(Y2, Z2)
= E

[
β2/(1− γ1γ2)

E[β2/(1− γ1γ2)]
γ1

]
.

Thus 2SLS converges to a weighted average effect parameter (see appendix A for the derivations).

This occurs even if β2 is constant and therefore cancels out in the above expression. With constant

β2, if γ2 is degenerate on zero, so that the system is not actually simultaneous, then 2SLS recovers

E(γ1), the mean random coefficient. The 2SLS estimand is commonly interpreted as weighting

treatment effects by the heterogeneous instrument effect. Here, even when β2 is a constant so that

the instrument has the same effect on all people, heterogeneous effects of endogenous variables com-

bined with simultaneity cause 2SLS to estimate a weighted average effect parameter. Observations

in systems which are close to having parallel lines count the most.

In section 5, I compare this weighted average effect parameter to E(γ1) in several example

simulations. The difference is largest when the true distribution of random coefficients is highly

skewed. In this paper, I have given conditions under which we can go beyond this weighted average

effect parameter and identify the entire marginal distribution of each random coefficient.

4.3 Consistency of a sieve MLE

In this section I provide general conditions for a sieve MLE defined by equation (5) to be consistent.

These conditions are essentially just those of Chen et al. (2011), with additional assumptions on

the parameter space specific to the estimation problem considered here.

The likelihood of Y given (Z,X) and the log conditional likelihood of a random sample of

(Y,X,Z) were given in section 4.1. I first derive those results in detail.
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Assumption E1. Conditional on X, (U,Γ) = (U1, U2, γ1, γ2) has a density with respect to the

Lebesgue measure.

The likelihood of Y given (Z,X) is

fY |Z,X(y | z, x)

=

∫
fY |Z,X,Γ(y | z, x, γ1, γ2) dFΓ|Z,X(γ1, γ2 | z, x)

=

∫
fU |Z,X,Γ(u | z, x, γ1, γ2)|1− γ1γ2| dFΓ|Z,X(γ1, γ2 | z, x)

=

∫
fU |Z,X,Γ(y1 − γ1y2 − β1z1 − δ′1x, y2 − γ2y1 − β2z2 − δ′2x | z, x, γ1, γ2)|1− γ1γ2| dFΓ|Z,X(γ1, γ2 | z, x)

=

∫
fU |X,Γ(y1 − γ1y2 − β1z1 − δ′1x, y2 − γ2y1 − β2z2 − δ′2x | x, γ1, γ2)|1− γ1γ2| dFΓ|X(γ1, γ2 | x)

=

∫∫
supp(γ1,γ2)

fU1,U2,γ1,γ2|X(y1 − γ1y2 − β1z1 − δ′1x,

y2 − γ2y1 − β2z2 − δ′2x, γ1, γ2 | x) · |1− γ1γ2| dγ1 dγ2

≡ p(y | z, x;α),

where α = (β1, β2, δ1, δ2, fU1,U2,γ1,γ2|X). The fourth line follows since Z ⊥⊥ (U,Γ) | X. The second

line follows since, by a change of variables,

fY |Z,X,Γ(y | z, x, γ1, γ2) = fU |Z,X,Γ(u | z, x, γ1, γ2)

∣∣∣∣∂U∂Y
∣∣∣∣

where |∂U/∂Y | is the determinant of the Jacobian of the transformation of Y into U ,

U = (I − Γ)Y −BZ =

(
Y1 − γ1Y2 − β1Z1 − δ′1X
Y2 − γ2Y1 − β2Z2 − δ′2X

)
,

and hence |∂U/∂Y | = | det(I − Γ)| = |1− γ1γ2|.
The log conditional likelihood of a random sample {(yn, zn, xn)}Nn=1 from (Y,Z,X) is

LN (α) =

N∑
n=1

log p(yn | zn, xn;α).

For real-valued functions with domain D ⊆ Rdx , denote the differential operator by

∇λ =
∂|λ|

∂xλ1
1 · · · ∂x

λdx
dx

=
∂λ1

∂xλ1
1

· · · ∂
λdx

∂x
λdx
dx

,

where λ = (λ1, . . . , λdx) is a multi-index, a dx-tuple of non-negative integers, and |λ| = λ1+· · ·+λdx .

For a positive integer m, let Cm(D) denote the set of functions f : D → R such that ∇λf exists
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and is continuous for all |λ| ≤ m. For functions f ∈ Cm(D), define the sup norm

‖f‖∞ ≡ sup
x∈D

|f(x)|,

the Hölder norm

‖f‖Λ ≡ max
|λ|≤m

‖∇λf‖∞ + max
|λ|=m

sup
x 6=x′

|∇λf(x)−∇λf(x′)|
(‖x− x′‖e)γ

,

where 0 < γ ≤ 1 and ‖ · ‖e is the Euclidean norm on Rd, and define the weighted norms

‖f‖s ≡ ‖f(·)ωs(·)‖Λ
‖f‖c ≡ ‖f(·)ωc(·)‖∞,

where ωs : D → R and ωc : D → R are weighting functions. Let ωs(x) = (1 + ‖x‖2e)ζs and

ωc(x) = (1 + ‖x‖2e)ζc where ζs > ζc > dx/2. I will assume that the parameter space is bounded

under ‖ · ‖s, which yields compactness under ‖ · ‖c. I then prove one-sided Hausdorff consistency of

the overall sieve MLE under ‖ · ‖c. I use this result to prove sup-norm consistency for the marginal

distributions of random coefficients.

Assumption E2 (Parameter space). Let X ⊆ RK denote the support of X. Let (U1, U2, γ1, γ2) |
X = x have support U × G ⊆ R4 for all x ∈ X . Define A = B × D ×F , where these parameter

spaces satisfy the following:

1. X is a compact, nonempty subset of the Euclidean space (RK , ‖ · ‖e).

2. B is a compact, nonempty subset of the Euclidean space (R2, ‖ · ‖e). 0 /∈ B.

3. D is a compact, nonempty subset of the Euclidean space (RK , ‖ · ‖e).

4. F is a ‖ · ‖c-closed subset of the Hölder ball {f ∈ Cm(U × G × X ) : ‖f‖s ≤ B0}, where m is

a strictly positive integer, ζs > ζc > (4 +K)/2, B0 <∞ is a known constant, and such that

for all f ∈ F ,

(a) f(u1, u2, γ1, γ2 | x) ≥ 0 for all (u1, u2, γ1, γ2) ∈ U × G and all x ∈ X , and

(b)
∫
U×G f(u1, u2, γ1, γ2 | x) du1 du2 dγ1 dγ2 = 1 for all x ∈ X .

5. For all f ∈ F , fγ1|X and fγ2|X are identified.

6. Q : A → [0,∞) defined by Q(α) = E0[log p(Y | Z,X;α)] is (‖ · ‖A , | · |)-continuous on A .

Assume the true parameter value α0 is in A . Let ‖α‖A ≡ ‖(β1, β2)‖e+‖(δ1, δ2)‖e+‖fU1,U2,γ1,γ2|X‖c.

The parameter space F is defined as a subset of a closed ball under the weighted Hölder norm

‖ · ‖s. Following Gallant and Nychka (1987) and recent papers based on their work such as Newey
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and Powell (2003) and Santos (2012), I show consistency of the sieve MLE under the norm ‖ · ‖c,
which is particularly aided by the fact that the parameter space F is compact under this norm

(although it is not compact under ‖ · ‖s). Restricting the joint density of the unobservables to lie

in a weighted Hölder ball places restrictions on the tails of these distributions. In particular, since

ζs > 0, the weight function ωs(·) = (1 + ‖ · ‖2e)ζs puts large weight on large values of its argument.

Consequently, since the weighted Hölder norm is bounded, the weighted sup-norm is also bounded:

sup
u1,u2,γ1,γ2,x

|f(u1, u2, γ1, γ2 | x)|(1 + ‖(u1, u2, γ1, γ2, x)‖2e)ζs < B0

for any f ∈ F . This implies an upper bound on the tails of the density functions f(u1, u2, γ1, γ2 | x):

they must decrease at least as fast as the weight increases. Since X is assumed to be compact,

this tail restriction does not actually restrict the way in which x affects the function.4 This tail

restriction does, however, restrict the kinds of distributions of (u1, u2, γ1, γ2) to have tails which

are not too fat. I discuss one approach to enforcing these assumptions in practice, especially the

identification assumption E2.5, in section 5.

Assumption E3 (Sieve spaces).

1. For each k ≥ 1, Ak = B ×D ×Fk, Fk 6= ∅, Fk ⊆ F , Fk ⊆ Fk+1, and dim(Fk) <∞.

2. Fk is compact under ‖ · ‖c.

3. ∪∞k=1Fk is dense in F under ‖ · ‖c: For any f ∈ F , there is an element πkf ∈ Fk such that

‖f − πkf‖c → 0 as k →∞.

I discuss examples of such sieve spaces in appendix 5.

Assumption E4 (Uniform convergence).

1. The data {(yn, zn, xn)}Nn=1 are a random sample of (Y, Z,X) from a unique density p0.

2. For each N , E0(supα∈AN | log p(Y | Z,X;α)|) is bounded.

3. (Hölder condition) There is a finite s > 0 and a positive function UN (y, z, x) with E0[UN (Y,Z,X)] <

∞ such that

sup
α,α′∈AN :‖α−α′‖A≤δ

| log p(y | z, x;α)− log p(y | z, x;α′)| ≤ δsUN (y, z, x)

for all z.

4. (Entropy condition) For all δ > 0, the sieve spaces satisfy

H(δ1/s,AN , ‖ · ‖A ) = o(N),

4We can allow regressors with unbounded support, but the norm must be adjusted appropriately to prevent the
weighted Hölder ball assumption from being too restrictive.
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where H(δ1/s,AN , ‖ · ‖A ) denotes the log of the minimal number of δ1/s-radius balls (under

the metric induced by ‖ · ‖A ) that cover the space AN .

Theorem 3. Assume E1-E4. Let ÂN denote the set of solutions to the sieve maximum likelihood

problem (5). Then for any α̂N ∈ ÂN , we have

inf
α∈AI

‖α̂N − α‖A = op(1) and ‖f̂γi|X − fγi|X‖∞ = op(1) for i = 1, 2,

where

f̂γ1|X(γ1 | x) ≡
∫
f̂U1,U2,γ1,γ2|X(u1, u2, γ1, γ2 | x) du1 du2 dγ2

and likewise for f̂γ2|X .

The proof is in appendix A.

5 Implementing the sieve estimator and Monte Carlo simulations

In this section I discuss one approach to implementing the sieve estimator, which I then use in

Monte Carlo simulations to examine the estimator’s finite sample performance. I make several

substantive assumptions which help mitigate the curse of dimensionality and yet still allow some

modeling flexibility.

5.1 Implementing the sieve estimator

Recall that the likelihood of a single observation Y given (Z,X) is

fY |Z,X(y | z, x) =

∫∫
supp(γ1,γ2)

fU1,U2,γ1,γ2|X(y1 − γ1y2 − β1z1 − δ′1x,

y2 − γ2y1 − β2z2 − δ′2x, γ1, γ2 | x) · |1− γ1γ2| dγ1dγ2.

In principle, the theory of section 4.3 allows us to nonparametrically estimate fU1,U2,γ1,γ2|X and

then use this estimate to project out the marginal distributions of fγ1 and fγ2 . This procedure

involves estimating a 4 + dim(X) dimensional function, and hence the estimator will likely have a

very slow rate of convergence, resulting in a poor finite sample approximation with practical sample

sizes. To lessen this problem, I make the following assumptions.

Assumption E5 (Dimension reduction).

1. (U1, U2) and (γ1, γ2) are independent, conditional on X.

2. X is independent of (U1, U2) and of (γ1, γ2).
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3. The dependence between γ1 and γ2 can be modeled by a parametric copula. Specifically, the

cdf of (γ1, γ2) is

Fγ1,γ2(t1, t2) = C(Fγ1(t1), Fγ2(t2); ργ),

where C(·, ·; ργ) is a known parametric copula with parameter ργ ∈ Rdim(ργ).

4. γ1 and γ2 have the same marginal distribution: Fγ1 = Fγ2 .

5. (U1, U2) are bivariate normally distributed with zero means and identical marginal distribu-

tions (i.e. equal variances σU1 = σU2).

E5.1 holds under constant coefficients, but it also allows for arbitrary distributions of (γ1, γ2). I

make E5.1 to avoid having to choose a sieve space for functions with different domains for different

arguments (e.g. the domain R2 × [0, 1]2). In addition to our earlier assumption that (β1, β2, δ1, δ2)

are constant, E5.2 is the main dimension reduction assumption. It rules out heteroskedasticity,

among other things. E5.3 allows for specific dependence patterns between γ1 and γ2 via the

choice of the parametric copula function. Copulas are used to separately model marginal and

joint distributions. See Nelson (2006) for further discussion of copulas and examples of parametric

copulas (see page 116). For a related application combining parametric copulas and nonparametric

marginal distributions using sieves, see Chen, Fan, and Tsyrennikov (2006). E5.5 also allows for

dependence between U1 and U2. E5.4 and E5.5 both impose a symmetric marginal assumption.

This assumption holds in the empirical application where the two equations correspond to people.

Since the labels of person 1 versus person 2 are arbitrary, the marginal distributions of variables

for each person are the same.

None of the assumptions in E5 are necessary for consistency; any of them can be relaxed as

desired. For example, E5.2 can be relaxed to allow for specific forms of parametric heteroskedas-

ticity. Likewise, we can perform all analysis conditional on values of discrete X’s, thus allowing for

X to affect the entire distribution of (γ1, γ2). A scale and location model can be used to allow for

continuous X’s to affect (γ1, γ2), although this is not straightforward since I assume the random

coefficients have bounded support (see below). I make E5.5 in order to focus on estimating the

distribution of random coefficients nonparametrically, but E5.5 can be relaxed along the lines of

E5.3 and E5.4. That is, we can model the joint distribution of (U1, U2) using a parametric cop-

ula, impose symmetric marginals, and then estimate the common marginal distribution via sieves.

Furthermore, we can relax the parametric copula assumption by estimating the copula itself using

sieves (see Sancetta and Satchell 2004).

In addition to the dimension reduction assumptions, I restrict the support of the random coef-

ficients.

Assumption E6 (Support restriction). Fγ has support [0, θ] where θ > 0 is a known constant.

If θ < 1, then this support restriction, combined with E5.5 (bivariate normal additive unob-

servables) and the instrument requirements, relevance (A2), independence (A3), and continuous
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variation (A4′), ensure that Fγ is identified, by proposition 2 and theorem 2. θ ≥ 1 is allowed, but

in this case identification is only guaranteed if one is willing to make the reduced form moment as-

sumptions A5 to apply theorem 2 or if one has a full support instrument in order to apply theorem

1. E6 may be relaxed to allow negative values, but the same caveats to including 1 in the support

apply to including −1 in the support.

Given the above assumptions, the likelihood of Y given (Z,X) simplifies to

fY |Z,X(y | z, x) =

∫∫
[0,θ]2

φσu,ρu(y1 − γ1y2 − β1z1 − δ′1x, y2 − γ2y1 − β2z2 − δ′2x)

· c(Fγ(γ1), Fγ(γ2); ργ)fγ(γ1)fγ(γ2)|1− γ1γ2| dγ1dγ2,

where φσu,ρu is the symmetric bivariate normal pdf with variance σ2
u and correlation ρu, c(·, ·; ργ)

is the density for the copula cdf C(·, ·; ργ), and Fγ and fγ are the cdf and pdf, respectively, of

the common marginal distribution of γ1 and γ2. This common marginal distribution is the only

nonparametric component remaining in the likelihood. In practice, we must choose a particular

sieve space to approximate this distribution. I approximate the density fγ by

fγ;JN (s) =
[SPL(s,M, JN )]2∫ θ

0 [SPL(v,M, JN )]2 dv
,

where

SPL(s,M, JN ) =
M∑
m=0

ams
m +

JN∑
j=1

bj [max{s− tj , 0}]M

for sieve coefficients am, bj ∈ R, and M and JN are positive integers, and 0 = t0 < t1 < · · · <
tJN < tJN+1 = θ is a partition of [0, θ]. I assume the knots tj are equally spaced. SPL(s,M, JN ) is

a polynomial spline of order M with JN knots. See Chen (2007) pages 5569-5580 for a discussion

of other sieve spaces.

This form of the density approximation ensures that the estimated density is non-negative and

integrates to one. The sieve estimator requires computing two integrals: the denominator of fγ;JN

and the integral over the random coefficients. Any numerical integration method can be used. I use

Gauss-Legendre quadrature for the denominator approximation and I use Halton draws to integrate

over (γ1, γ2). Evaluating the copula density requires estimating the cdf Fγ . To do this, I integrate

the estimated density: Fγ;JN (s) =
∫ s

0 fγ;JN (v) dv.

In addition to the sieve space choice, we must choose a parametric copula function. I use the

Gaussian copula of dimension 2:

C(u1, u2; ργ) = Φργ (Φ−1(u1),Φ−1(u2)),

where Φ−1(·) is the inverse of the standard normal cdf, and Φργ (·, ·) is the cdf for the bivariate

normal with unit variances and correlation parameter ργ ∈ [−1, 1]. This copula allows for γ1 and
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γ2 to be independent if ργ = 0, positively related if ργ > 0, and negatively related if ργ < 0.

Finally, note that choosing a parametric specification for fγ , such as the truncated normal dis-

tribution or the beta distribution, leads to a fully parametric maximum likelihood estimator. Both

the fully parametric estimator and the sieve estimator are analogous to the classic full information

maximum likelihood (FIML) estimator of a simultaneous equations system, which assumes that

the coefficients are unknown constants and the additive errors are jointly normally distributed.

5.2 Monte Carlo simulations

To examine the sieve estimator’s finite sample performance, I run several Monte Carlo simulations.

The conditions of both theorems 1 and 2 hold in all simulations so that either result could be used

to ensure identification. I consider three different data generating processes. All dgps are identical

except for the common marginal distribution fγ , which is one of the following:

1. fγ is a truncated normal with pre-truncation mean 0.4 and standard deviation 0.05.

2. fγ is a Beta distribution with shape parameter 6 and scale parameter 3.

3. fγ is a truncated normal with pre-truncation mean 0 and standard deviation 0.2.

See figure 2 for plots each of these marginal distributions. The support of the truncated normal

and Beta is [0, 1], which is then scaled to [0, θ]. For each dgp I consider the sample sizes N = 800

and N = 400, which are approximately the size of the full and restricted samples, respectively, in

my empirical application. All dgps have γ1 independent of γ2. All dgps use the same distribution

of additive errors and of the covariates, and the same constant covariate coefficients. (U1, U2) are

bivariate normal with µu = 0, σu = 1, and ρu = 0. There are four covariates. Two covariates, Z1

and Z2, have a N (0, 3) distribution, own coefficients β1 = 5 and β2 = 0, respectively, and friend

coefficients 0 (e.g. the coefficient on Z1 in the equation for Y2 is zero), so that they satisfy the

exclusion restriction. Two covariates, X1 and X2, have a N (5, 1) distribution. The own coefficient

on X1 is 6 and the friend coefficient is 3. Both the own and friend coefficients on X2 are 0.

The constant term is −10. θ = 0.95, which ensures that the common marginal distribution fγ is

identified. The true structural system with these parameter values is

Y1 = −10 + γ1Y2 + (5Z11 + 0Z12) + (0Z21 + 0Z22) + (6X11 + 3X12) + (0X21 + 0X22) + U1

Y2 = −10 + γ2Y1 + (5Z12 + 0Z11) + (0Z22 + 0Z21) + (6X12 + 3X11) + (0X22 + 0X21) + U2.

Although the second Z and the second X covariate both have zero own and friend coefficients,

they are treated differently by the estimator since the exclusion restriction (zero friend coefficient)

is imposed for Z but not for X.

For each dgp, I compute several statistics. First, I compute the bias and median bias of several

scalar parameter estimators. For any scalar parameter κ, the estimated bias is the mean of κ̂s − κ
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over all s = 1, . . . , S, where S is the total number of Monte Carlo simulations, and s indexes each

simulation run. I use S = 250 simulations, which yields simulation standard errors small enough

to make statistically significant comparisons. The estimated median bias is the median of κ̂s − κ
over all s = 1, . . . , S. I compute these statistics for the sieve estimator of the random coefficients’

mean:

Ê(γ) =

∫ θ

0
x · f̂γ;JN (x) dx,

as well as for the 2SLS estimator of the endogenous variable coefficient, viewed as an estimator

of E(γ). I also compute these statistics for the sieve and 2SLS estimators of β1, the constant

coefficient on the instrument Z1. Finally, I compute the mean and median integrated squared error

of the sieve density estimator f̂γ;JN of fγ . For a fixed simulation s, the ISE is

ISE(f̂γ;JN ,s) =

∫ θ

0
[f̂γ;JN ,s(x)− fγ(x)]2 dx.

The mean ISE (MISE) is estimated by the mean of this value over all simulations. The median ISE

is estimated by the median of this value over all simulations.

In the simulations and the empirical application, I choose JN = 14 for the smaller sample,

JN = 22 for the larger sample, and let M = 3 for both samples. Choosing size of the sieve space

leads to a tradeoff between bias and variance of the sieve estimator: The larger the space, the smaller

the bias and the higher the variance. I use a relatively large number of knots to accommodate all

three dgps.

Figure 2 shows example plots of f̂γ;JN versus the true density. Table 1 shows the estimated bias

and MISE for each of the three dgps and the two sample sizes.
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Table 1: Monte Carlo results: Means

Bias in Ê(γ) Bias in β̂1 MISE

Sieve 2SLS Sieve 2SLS

Indep. trunc. normal(0.4,0.05) E(γ) = 0.38 β1 = 5

N = 400 0.0016 0.0010 -0.0011 0.0033 0.1044

[0.0054] [0.0093] [0.0384] [0.0564] [0.0733]

N = 800 -0.0016 0.0010 0.0030 0.0011 0.1442

[0.0071] [0.0066] [0.0311] [0.0395] [0.2124]

Indep. Beta(6,3) E(γ) = 0.63 β1 = 5

N = 400 -0.0052 0.0236 0.0046 0.0255 0.0480

[0.0296] [0.0318] [0.2262] [0.3258] [0.1408]

N = 800 -0.0089 0.0237 0.0462 0.0126 0.0319

[0.0227] [0.0221] [0.1590] [0.2161] [0.0798]

Indep. trunc. normal(0,0.2) E(γ) = 0.15 β1 = 5

N = 400 0.0516 0.1166 0.0221 0.0251 0.3281

[0.0399] [0.0376] [0.0819] [0.2005] [0.8325]

N = 800 0.0424 0.1167 0.0252 0.0126 0.1801

[0.0364] [0.0262] [0.0715] [0.1377] [0.3655]

Standard deviations in brackets; square these and add to the squared bias to obtain MSE.

The first dgp is similar to a model with a constant coefficient of 0.38. It is symmetric around

0.38 with all the mass within [0.25, 0.5]. Both the sieve and the 2SLS estimator estimate E(γ) well.

The second dgp is slightly asymmetric and more spread out. In this case, both estimators do worse

than in the first dgp, but the 2SLS estimator’s bias in estimating E(γ) is more than twice as large

as the sieve estimator. The third dgp is highly skewed and both the sieve and 2SLS estimators of

E(γ) perform worse than the first two dgps. In this case, the 2SLS estimator is again worse than

the sieve, with a bias more than twice as large as the sieve estimator. For the first dgp, the sieve

estimator provides a good fit even at N = 400, so an increase in sample size does not change much.

For the other two dgps, doubling the sample size reduces the MISE, as well as the root-MSE of the

scalar parameter estimates. The bias in 2SLS does not change with sample size, as expected since

2SLS is inconsistent for E(γ)—instead it is consistent for a weighted average of γ.

Table 2 shows the median biases and the median ISE. The overall patterns from table 1 hold

here as well. The more skewed distributions make E(γ) harder to estimate. Now, however, the
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sieve estimator of E(γ) has median bias from anywhere from 3.5 times to 6.5 times smaller than

the 2SLS estimator in the second and third dgps.

Table 2: Monte Carlo results: Medians

Med. bias in Ê(γ) Med. bias in β̂1 Median ISE

Sieve 2SLS Sieve 2SLS

Indep. trunc. normal(0.4,0.05) E(γ) = 0.38 β1 = 5

N = 400 0.0023 0.0018 -0.0017 0.0038 0.0937

N = 800 -0.0013 0.0007 0.0035 0.0060 0.0994

Indep. Beta(6,3) E(γ) = 0.63 β1 = 5

N = 400 -0.0041 0.0265 0.0121 -0.0013 0.0205

N = 800 -0.0067 0.0236 0.0559 0.0162 0.0169

Indep. trunc. normal(0,0.2) E(γ) = 0.15 β1 = 5

N = 400 0.0303 0.1191 0.0132 0.0190 0.0645

N = 800 0.0208 0.1166 0.0245 0.0119 0.0170

The third dgp resembles what we might expect to see in the empirical application, and this is

precisely when the bias in 2SLS is largest. This bias, about 0.12, is economically large.

Overall, the simulation results suggest that the sieve estimator performs well with practical

sample sizes. Skewed distributions, which we might expect in practice, result in larger biases for

both the sieve and 2SLS estimators, but the sieve estimator significantly outperforms 2SLS.
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0 0.25 0.5 0.75 0.95

(a) Indep. trunc. normal(0.4,0.05), N = 400

0 0.25 0.5 0.75 0.95

(b) Indep. trunc. normal(0.4,0.05), N = 800

0 0.25 0.5 0.75 0.95

(c) Indep. Beta(6,3), N = 400

0 0.25 0.5 0.75 0.95

(d) Indep. Beta(6,3), N = 800

0 0.25 0.5 0.75 0.95

(e) Indep. trunc. normal(0,0.2), N = 400

0 0.25 0.5 0.75 0.95

(f) Indep. trunc. normal(0,0.2), N = 800

Figure 2: Sieve estimates of fγ , the common marginal distribution of random coefficients. Dotted

lines show the true density, solid lines show the estimated density. Estimates correspond to the

simulation with integrated squared error at the median over all simulations.
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6 The social determinants of obesity

In this section, I use the methods developed in this paper to explore the social determinants of

obesity. A large and controversial literature on this topic has developed since Christakis and Fowler

(2007) concluded that “obesity appears to spread through social ties”. I construct pairs of best

friends using the Add Health dataset (Harris, Halpern, Whitsel, Hussey, Tabor, Entzel, and Udry

2009). I then apply the sieve estimator to nonparametrically estimate the distribution of random

coefficients γ1 and γ2 in the simultaneous equations model (1), where outcomes are changes in

weight between two time periods and the instruments are changes in height between the same two

periods. This approach yields estimates of the average social effect while allowing that not all

people affect their best friend equally.

6.1 The Add Health dataset

Add Health is a panel dataset of students who were in grades 7-12 in the United States during the

1994 to 1995 school year. There have been four waves of data collection. I use data from the wave

1 in-home survey, administered between April and December 1995, and the wave 2 in-home survey,

administered between April and August 1996. In both surveys, students were asked to name up to

5 male friends and up to 5 female friends. These friendship data have been widely used to study the

impact of social interactions on many different outcomes of interest, including obesity (Cohen-Cole

and Fletcher 2008, Fowler and Christakis 2008, Halliday and Kwak 2009, Renna, Grafova, and

Thakur 2008, Trogdon, Nonnemaker, and Pais 2008). Card and Giuliano (2013) use this friendship

data to construct pairs of best friends. They then study social interaction effects on risky behavior,

such as smoking and sexual activity, by estimating discrete game models. These are simultaneous

equations models with discrete outcomes and two equations, where each equation represents one

friend’s best-response function of the other friend’s action. I follow a similar approach, but with

continuous outcomes and allowing for nonparametric heterogeneous social effects.

20,745 students are in the wave 1 data. 14,738 students are in the wave 2 data. From the sample

of students remaining after wave 2, I construct 755 same-sex pairs of students—1510 students total.

Students were asked to list their top 5 friends starting with their first best friend, and then their

second best friend, and so on. I first pair all students who named each other as their first best

friend. This gives 476 pairs. I call this the restricted sample. I then pair students where one student

was named as a best friend, but the other student was only named as a second best friend. I next

pair students where both students named each other as second best friends. Continuing in this

manner yields 279 additional pairs. Note that no student is included more than once. Although

students were asked to name friends during both wave 1 and wave 2, I only use friendship data

from the in-home wave 1 survey. I do not consider changes in friendship.
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6.2 Empirical results

Research on obesity focuses on unhealthy weight change. To do this, most studies choose a measure

of ‘fatness’ as the outcome variable, such as body mass index, which is weight in kilograms divided

by squared height in meters. Instead of first scaling weight by height, I use weight directly as the

outcome and then I condition on height. Specifically, I take the outcome of interest, Y1 and Y2 in

model (1), to be the change in weight between the two waves for each student in a pair. I include

both students’ wave 1 heights as control variables in each equation. I also include both students’

wave 1 weights as control variables. This allows for friendship formation based on weight, which

would lead to students’ baseline weights being correlated under positive assortative matching.

I use change in height between two waves as the instrument. In order to apply the identifi-

cation result theorem 2 of section 3.2, any instrument must satisfy four conditions: (1) relevance,

(2) exclusion, (3) independence, and (4) have continuous variation. Relevance is satisfied since

weight increases are physically caused by height increases, holding all else constant. The exclusion

restriction states that a change in one student’s height cannot directly cause a change in the other

student’s weight, which seems plausible. Independence is satisfied if we assume height increases are

caused by random growth spurts. Finally, height is a continuous variable. In the data, however,

change in height is measured in inches and takes 31 distinct values. I discuss this discreteness

further below.

Table 3: Summary statistics

count median mean sd min max

Weight change 1478 2.3 2.27 4.95 -23 31

Weight 1492 59 62.30 14.38 33 136

Height change 1488 0 0.02 0.03 0 .3

Height 1502 1.7 1.68 0.10 1.4 2

Smoking change 1492 0 1.16 7.96 -30 30

Health status change 1510 0 -0.01 0.84 -3 3

Age 1510 16 15.37 1.47 12 19

Weight is measured in kilograms, height in meters. All baseline variables (such

as age) are measured at wave 1. Change variables are the difference between the

wave 2 and wave 1 values. Count is number of people with non-missing values.

I include three additional control variables: smoking change, health status change, and age.

In both waves, students were asked, “During the past 30 days, on how many days did you smoke

cigarettes?” Smoking change is the difference in students’ answers from wave 1 to wave 2. In both

waves, students were asked to rank their general health from excellent (1) to poor (5). Health status

change is the difference in students’ answers from wave 1 to wave 2. Finally, I include students’

age at wave 1. For all three of these variables, I assume that only a students’ own value of the
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variable affects their outcomes—their friends’ smoking change, health status change, and age do not

affect their weight change directly. These exclusion restrictions mean no exogenous social effects

are included beyond one’s friend’s baseline weight and height. Consequently, variation in these

covariates will also be used to aid estimation of endogenous social effects, which helps alleviate

the discreteness in change in height. Table 3 shows summary statistics for all variables and all

observations in the full sample. After dropping observations with missing covariate values, the

number of friend pairs in the full sample is 691 and the number of friend pairs in the restricted

sample is 424.

Table 4: Estimates of endogenous social interaction effect

Full sample Restricted sample

3SLS .3216 .3810

Sieve Ê(γ) .2357 .3765

Sieve v̂ar(γ) .1484 .1518

Observations 691 424

Controls? Yes Yes

Observations are pairs of best friends. Weight changes in each

friend are the endogenous variables. Weight is measured in

kilograms, height in meters. Controls include own and friend’s

baseline height and weight (measured at wave 1), and own

height change, smoking change, health change, and age (mea-

sured at wave 1). Change variables are the difference between

the wave 2 and wave 1 values. Restricted sample consists only

of pairs of people who named each other as their first best

friend. Observations with any missing data are dropped. See

body text for details of estimation.

Table 4 shows the estimation results. First, 3SLS provides estimates of system (1) under the

assumption that all coefficients are constant, and under the restriction that the coefficients on each

equation are equal (γ1 = γ2, β1 = β2, δ1 = δ2). The latter restriction holds since the labels of friend

1 versus friend 2 are arbitrary. Thus, we obtain a single point estimate of γ for each sample, shown

in the first row of the table. The 3SLS point estimate of the social interaction effect for the full

sample implies that a one kilogram increase in your friend’s weight increases your own weight by

0.32 kilograms (the same effect size holds for pounds). This point estimate increases to 0.38 when

considering only pairs of mutual first best friends. Both point estimates are statistically significant

at the 5% level (p-value is 0.011 for the full sample, 0.009 for the restricted sample).

As discussed earlier, when the endogenous variables have random coefficients, estimators like

2SLS and 3SLS estimate weighted average effects, not the mean of the random coefficients. More-

over, as shown in the simulation evidence in section 5, these estimates can be quite different from
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the actual average coefficient. The sieve MLE estimator, on the other hand, provides a consistent

estimator of the average random coefficient, as well as their distribution.

Estimates obtained from the sieve MLE are shown in the second and third row of table 4. As

mentioned above, the labels of friend 1 versus friend 2 are arbitrary, so I assume the distribution

of γ1 equals the distribution of γ2. Assume this distribution has support on [0, 1] (using the

support [0, 0.95] as in the simulations makes little difference). Other assumptions and details of

implementing the sieve estimator are as in section 5. I focus on estimates of two functionals of

this distribution: the mean and the variance. The mean is easily comparable to 3SLS estimates

while the variance provides a measure of the amount of heterogeneity. Functionals which involve

averaging, like the mean and variance, are also usually estimated much more precisely than entire

functions. This is particularly relevant here given the small sample sizes and that the instrument’s

variation is both discrete and quite small, since most students do not grow much over a single year

(see table 3).

For the full sample, the sieve estimate of the average endogenous social interaction effect is

0.24, compared to the larger 3SLS estimate of 0.32. Moreover, the estimated variance in social

interaction effects is 0.15, which is quite large. For the restricted sample, the sieve mean estimate

and the 3SLS estimate are about the same, 0.38. The estimated variance is also approximately

the same as in the full sample, 0.15. Overall, these results suggest that for many students, social

influence matters for changes in weight, which is consistent with the existing empirical literature.

In both samples, the sieve estimated mean is weakly smaller than 3SLS, suggesting that findings of

social interaction effects based on 2SLS or 3SLS may overstate potential multiplier effects of policy

interventions. Conversely, the sieve estimates also reveal substantial variation in social interaction

effects, which suggests that there are some people who are highly susceptible to social interactions.

The approach here has been to estimate unconditional means and variances. By instead estimating

distributions of social interaction effects conditional on covariates, we can potentially explain some

of the observed variation in these endogenous effects and learn which covariate combinations lead

to large average effects. Interventions which target people with these covariates may have larger

benefits than previously thought.

7 Conclusion

In this paper I have studied identification of linear simultaneous equations models with random

coefficients. In simultaneous systems, random coefficients on endogenous variables pose qualita-

tively different problems from random coefficients on exogenous variables. The possibility of nearly

parallel lines can cause classical mean-based identification approaches to fail. For systems of two

equations, I showed that, even allowing for nearly parallel lines, we can still identify the marginal

distributions of random coefficients by using a full support instrument. When nearly parallel lines

are ruled out, we can relax the full support assumption. I proposed a consistent nonparametric
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estimator for the distribution of coefficients, and show that it performs well in finite samples. I

applied my results to analyze the social determinants of obesity and found evidence of signifi-

cant heterogeneity as well as mean coefficient estimates equal to or smaller than the usual point

estimates.

Several issues remain for future research. The sieve MLE of the two-equation model requires

estimating several nuisance distributions. An alternative approach would be welcome. For any new

approach, as well as for the proposed sieve estimator, inference must also be considered. Finally,

it remains to be seen whether additional functionals of the full joint distribution of unobservables,

such as the joint distribution of endogenous variable random coefficients, can be identified, and to

what extent nonparametric identification can be achieved in the many-equation case.
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A Proofs

Proof of theorem 1. The proof has two steps: (1) Identify the joint distribution of linear combi-
nations of the reduced form coefficients, (2) Identify the marginal distributions of γ1 | X and
γ2 | X.

1. Fix an x ∈ supp(X). For any z ∈ supp(Z), we observe the joint distribution of (Y1, Y2) given
Z = z,X = x, which is given by the reduced form system

Y1 =
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
+

β1

1− γ1γ2
z1 +

γ1β2

1− γ1γ2
z2

Y2 =
U2 + γ2U1 + (δ2 + γ2δ1)′x

1− γ1γ2
+

γ2β1

1− γ1γ2
z1 +

β2

1− γ1γ2
z2.

Define

π1 ≡ (π11, π12, π13) ≡
(
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
,

β1

1− γ1γ2
,

γ1β2

1− γ1γ2

)
π2 ≡ (π21, π22, π23) ≡

(
U2 + γ2U1 + (δ2 + γ2δ1)′x

1− γ1γ2
,

γ2β1

1− γ1γ2
,

β2

1− γ1γ2

)
.

For (t1, t2) ∈ R2, we have

t1Y1 + t2Y2 = (t1π11 + t2π21) + (t1π12 + t2π22)z1 + (t1π13 + t2π23)z2.

By A3 and A4, we can apply lemma 1 to show that the joint distribution of

(t1π11 + t2π21, t1π12 + t2π22, t1π13 + t2π23)

given X = x is identified, for each (t1, t2) ∈ R2. In particular, note that the joint distribution
of (π11, π12, π13) given X = x is identified by choosing (t1, t2) = (1, 0), and the joint distri-
bution of (π21, π22, π23) is identified by choosing (t1, t2) = (0, 1). These distributions will be
used for steps (3) and (4).
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2. Consider the term t1π11 + t2π21. The distribution of this scalar random variable is identified
for each (t1, t2) ∈ R2, given X = x. By definition, the characteristic function of (π11, π21) is

φπ11,π22(t1, t2) = E[exp(i(t1π11 + t2π22))].

The right hand side is identified for each (t1, t2) ∈ R2 and hence the characteristic function
φπ11,π22 is identified. Thus the joint distribution of (π11, π21) is identified, given X = x. Like-
wise, the joint distribution of (π12, π22) is identified, given X = x, and the joint distribution
of (π13, π23) is identified, given X = x.

Since the joint distribution of

(π13, π23) =

(
β2

1− γ1γ2
γ1,

β2

1− γ1γ2

)
is identified, given X, lemma 3 implies that γ1 | X is identified.5 Likewise, since the joint
distribution of

(π12, π22) =

(
β1

1− γ1γ2
,

β1

1− γ1γ2
γ2

)
is identified, given X, lemma 3 implies that γ2 | X is identified.

Proof of lemma 1. First suppose Y = π′Z where π = (A,B) and Z = (Z0, Z1, . . . , ZK) has full
support on RK+1. The characteristic function of Y | Z is

φY |Z(t | z) = E[exp(itY ) | Z = z]

= E[exp(it(π′Z)) | Z = z]

= E[exp(i(tz)′π)]

= φπ(tz)

= φπ(tz0, tz1, . . . , tzK),

where the third line follows since Z ⊥⊥ (A,B). Thus

φπ(tz) = φY |Z(t | z) all t ∈ R, z ∈ supp(Z) = RK+1.

So φπ is completely known and hence the distribution of π is known. For example, setting t = 1
shows that we can obtain the entire characteristic function φπ by varying z. Notice that we do not
need to vary t at all. Now return to the original problem, Y = A+B′Z. This is the same problem
we just considered, except that z0 ≡ 1. Thus we have

φπ(t, tz1, . . . , tzK) = φY |Z(t | z) all t ∈ R, z ∈ RK .

In this case, the entire characteristic function φπ is still observed. Suppose we want to learn
φπ(s0, . . . , sK), the characteristic function evaluated at some point (s0, . . . , sK) ∈ RK+1. If s0 6= 0,
let t = s0 and zk = sk/s0. If s0 = 0, then consider a sequence (tn, z1n, . . . , zKn) where tn 6= 0,

5Alternatively, note that γ1 = π13/π23. The distribution of the right hand side random variable is identified, and
thus γ1 is identified. Lemma 3 simply makes this argument more formal by showing how to write the cdf of γ1 directly
in terms of observed cdfs. A similar argument applies to γ2 = π22/π12.
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tn → 0 as n→∞, and zkn = sk/tn. Then

lim
n→∞

φY |Z(tn, tnz1n, . . . , tnzKn) = lim
n→∞

φY |Z(tn, s1, . . . , sK)

= lim
n→∞

φπ(tn, s1, . . . , sK)

= φπ

(
lim
n→∞

tn, s1, . . . , sK

)
= φπ(0, s1, . . . , sK),

where the third line follows by continuity of the characteristic function. Thus the distribution of
π = (A,B) is identified.

Lemma 3. Let Y and X be random variables. Assume X does not have a mass point at zero.
Suppose the joint distribution of (Y X,X) is observed. Then the joint distribution of (Y,X) is
identified, and hence the distribution of Y is identified.

Proof of lemma 3. The distribution of X is identified directly from the observed marginal distri-
bution of (Y X,X). Next, we have

P (Y X ≤ yx | X = x) = P (Y x ≤ yx | X = x)

=


P (Y ≤ y | X = x) if x > 0

1 if x = 0

P (Y ≥ y | X = x) if x < 0.

Thus, for x > 0,
P (Y ≤ y | X = x) = P (Y X ≤ yx | X = x)

and, for x < 0,

P (Y ≤ y | X = x) = 1− P (Y X ≤ yx | X = x) + P (Y X = yx | X = x).

So FY |X(y | x) = P (Y ≤ y | X = x) is identified for all x 6= 0. Consequently, for t > 0,

FY,X(y, t) = P (Y ≤ y,X ≤ t)

=

∫ t

−∞
FY |X(y | x)dFX(x)

=

∫
{t>x>0}

FY |X(y | x)dFX(x) +

∫
{x<0}

FY |X(y | x)dFX(x) +

∫
{x=0}

FY |X(y | x)dFX(x)

=

∫
{t>x>0}

FY |X(y | x)dFX(x) +

∫
{x<0}

FY |X(y | x)dFX(x),

where the second line follows by iterated expectations and the fourth line follows since X does not
have a mass point at zero. The last line is identified. The result is analogous for t ≤ 0. Hence FY,X
is identified.

Proof of proposition 1. Identification of the joint distribution of (γ1β2, β2) follows from the proof
of theorem 1. The result then follows by applying lemma 3.

Proof of theorem 2. The proof strategy follows the same two steps as in the proof of theorem 1.
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1. Use lemma 2 instead of lemma 1 to identify the joint distribution of

(t1π11 + t2π21, t1π12 + t2π22, t1π13 + t2π23)

given X = x. This step uses A3, A4′, and A5.

2. As in theorem 1.

Proof of lemma 2.

1. Preliminary definitions and notation. Let L be an arbitrary closed subspace of RK+1. Let
projL : RK+1 → L denote the orthogonal projection of RK+1 onto L. For an arbitrary
probability distribution G on RK+1, let GL denote the projection of G onto L, which is
defined as the probability distribution on L such that

PGL(B) ≡ PG(proj−1
L (B))

for each (measurable) B ⊆ L. That is, the probability under GL of an event B is the
probability under G of the event proj−1

L (B), the set of all elements in RK+1 which project
into B.

Let `(ẑ) = {λẑ ∈ RK+1 : λ ∈ R} denote the one-dimensional subspace of RK+1 defined by
the line passing through the origin and the point ẑ ∈ RK+1. Random coefficient models
essentially tell us the projection of the distribution (A,B) onto various lines `(ẑ), and our
goal is to recover the original (K + 1)-dimensional distribution.

2. Proof. Let F denote the true distribution of (A,B) and let F̃ denote an observationally
equivalent distribution of (A,B). The conditional distribution of Y | Z = z is the projection
of (A,B) onto the line `(1, z1, . . . , zK). Multiplying Y by a scalar λ tells us the projection of
(A,B) onto the line `(λ, λz1, . . . , λzK). Thus, since F and F̃ are observationally equivalent,
we know that F`(λ,λz) = F̃`(λ,λz) for each z ∈ supp(Z) and each λ ∈ R. Let

R ≡ {(1, z1, . . . , zK) ∈ RK+1 : z ∈ supp(Z), λ ∈ R}
⊆ {(1, z1, . . . , zK) ∈ RK+1 : F`(1,z) = F̃`(1,z)}.

(Note that these sets are not necessarily equal since F`(1,z) = F̃`(1,z) might hold for z /∈
supp(Z). Indeed, we shall show that F = F̃ , in which case the latter set is strictly larger
than the former anytime supp(Z) 6= RK .)

For ẑ = (1, z) ∈ R we have ∫
(ẑ′y)ndF (y) =

∫
(t)ndF`(1,z)(t)

=

∫
(t)ndF̃`(1,z)(t)

=

∫
(ẑ′y)ndF̃ (y).

These integrals are finite by assumption. The first and third lines follow by a change of
variables and the definition of the projection onto a line. The second line follows since ẑ ∈ R.
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Define the homogeneous polynomial pn : RK+1 → R by

pn(ẑ) ≡
∫

(ẑ′y)ndF (y)−
∫

(ẑ′y)ndF̃ (y).

Thus we have pn(ẑ) = 0 for all ẑ ∈ R. That is,

R ⊆ S ≡ {ẑ ∈ RK+1 : pn(ẑ) = 0}.

If pn is not identically zero then the set S is a hypersurface in RK+1, and thus has Lebesgue
measure zero by lemma 4. (Here ‘Lebesgue measure’ refers to the Lebesgue measure on
RK+1.) This implies that R has Lebesgue measure zero. But this is a contradiction: supp(Z)
contains an open ball and thus R contains a cone in RK+1 (see figure 3), which has positive
Lebesgue measure.

0
1
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1

2

!0.5

0.0

0.5

1.0

1.5

0
1

0

1

2

3

0

1

Figure 3: Let K = 2. The horizontal plane shows values of (z1, z2), while the vertical axis shows ‘z0’. The
first plot shows the open ball in supp(Z) as a dashed circle, which is projected up into the plane z0 ≡ 1, as a
solid circle. We know all projections onto lines `(1, z) in this set. The second plot shows four example lines,
through points near the edge of the set. By scaling all of these points up or down by λ ∈ R, we know all
projections onto lines `(ẑ) for points ẑ inside an entire cone, as shown in the third plot (the cone drawn is
only approximately correct).

Thus pn must be identically zero. That is,∫
(ẑ′y)ndF (y) =

∫
(ẑ′y)ndF̃ (y)

for all ẑ ∈ RK+1 and all natural numbers n. By lemma 5, this implies that F and F̃ have the
same moments. Thus F = F̃ .

Lemma 4. Let p : RK → R be a polynomial of degree n, not identically zero. Define

S = {z ∈ RK : p(z) = 0}.

Then S has RK-Lebesgue measure zero.

S is known as a Zariski closed set in Algebraic Geometry, so this lemma states that Zariski
closed sets have measure zero. (See Landsberg (2012, page 115) who provides a statement, but no
proof, of this result.)
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Proof of lemma 4. Let m(x) denote the Lebesgue measure on Rdim(x). For a fixed (x1, . . . , xK−1) ∈
RK−1, define

Sx1,...,xK−1 = {xK ∈ R : p(x1, . . . , xK−1, xK) = 0}.

Then

m(S) =

∫
RK

1S(x) dm(x)

=

∫
RK−1

[∫
R
1Sx1,...,xK−1

(xK) dm(xK)

]
dm(x1, . . . , xK−1)

=

∫
RK−1

[
m(Sx1,...,xK−1)

]
dm(x1, . . . , xK−1)

= 0.

The second line follows by Fubini’s theorem. The fourth line holds as follows: For a fixed
(x1, . . . , xK−1), the fundamental theorem of algebra implies that p(x1, . . . , xK−1, xK) has finitely
many roots xK . Thus Sx1,...,xK−1 is finite, and hence has measure zero. This holds for all
(x1, . . . , xK−1) ∈ RK−1, and hence m(Sx1,...,xK−1), viewed as a function of (x1, . . . , xK−1), is iden-
tically zero, and hence has zero integral.

Lemma 5. Let F and G be two cdfs on RK . Then∫
(z′y)n dF (y) =

∫
(z′y)n dG(y) for all z ∈ RK , n ∈ N

implies that F and G have the same moments.

This lemma states that knowledge of the moments of the projection onto each line `(z) is
sufficient for knowledge of the moments of the entire K-dimensional distribution.

Proof of lemma 5. Fix n ∈ N. Define

pF (z) ≡
∫

(z′y)n dF (y)

=
∑

j1+···+jK=n

(
n

j1 · · · jK

)
zj11 · · · z

jK
K mF

j1,...,jK
,

where

mF
j1,...,jK

≡
∫
yj11 · · · y

jK
K dF (y)

are the moments of F . Define pG(z) likewise. The functions pF (z) and pG(z) are polynomials of
degree n. By assumption, pF = pG. Thus the coefficients on the corresponding terms zj11 · · · z

jK
K

must be equal:
mF
j1,...,jK

= mG
j1,...,jK

.

This follows by differentiating the identity pF (z) ≡ pG(z) in different ways. For example,

∂n

∂zn1
pF (z) = mF

n,0,...,0 = mG
n,0,...,0 =

∂n

∂zn1
pG(z).
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In general, just apply
∂n

∂j11 · · · ∂
jK
K

pF (z) = mF
j1,...,jK

.

n was arbitrary, and thus F and G have the same moments.

Proof of proposition 2. I prove the result for π1; the proof for π2 is symmetric. I suppress condi-
tioning on X everywhere.

1. First I show that A6 implies A5.1, all moments of π1 are finite. For an arbitrary random
K-vector Y with cdf FY , let

mj1,...,jK =

∫
|y1|j1 · · · |yK |jKdFY (y) j1, . . . , jK ∈ N

denote the absolute moments of Y . A generalized version of Hölder’s inequality states that

mj1,...,jK ≤
K∏
k=1

m
1/K
0...,jk·K,...,0 j1, . . . , jK ∈ N,

where m0...,jk·K,...,0 =
∫
|yk|jk·KdFYk(yk). (See Dunford and Schwartz 1958, page 527, exercise

2.) Thus, if all absolute moments of the coordinate random variables Yj are finite, then all
absolute moments of Y are finite.

Recall

π1 ≡ (π11, π12, π13) ≡
(
U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2
,

β1

1− γ1γ2
,

γ1β2

1− γ1γ2

)
.

A6.1 implies that

P

(
1

|1− γ1γ2|
≤ 1

τ

)
= 1,

and hence

P

(
−1

τ
≤ 1

1− γ1γ2
≤ 1

τ

)
= 1.

For n ∈ N, we have ∫
|π12|n dFπ12 =

∫ ∣∣∣∣ β1

1− γ1γ2

∣∣∣∣n dFβ1,γ1,γ2

≤
∣∣∣∣1τ
∣∣∣∣n ∫ |β1|n dFβ1

<∞,

where the second line follows by A6.1 and the last line since β1 has finite absolute moments
by A6.3.

A6.2 implies that there is an M such that supp(γi) ⊆ [−M,M ] for i = 1, 2. This plus A6.1
show that

P

(
−M
τ
≤ γ1

1− γ1γ2
≤ M

τ

)
= 1.
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Hence ∫
|π13|n dFπ13 =

∫ ∣∣∣∣ γ1

1− γ1γ2
β2

∣∣∣∣n dFβ2,γ1,γ2

≤
∣∣∣∣Mτ

∣∣∣∣n ∫ |β2|n dFβ2

<∞.

Next,∫
|π11|n dFπ11 =

∫ ∣∣∣∣U1 + γ1U2 + (δ1 + γ1δ2)′x

1− γ1γ2

∣∣∣∣n dFγ1,γ2,U1,U2,δ1,δ2

≤
∣∣∣∣1τ
∣∣∣∣n ∫ |U1 + γ1U2 + δ′1x+ γ1δ

′
2x|ndFγ1,γ2,U1,U2,δ1,δ2

≤
∣∣∣∣1τ
∣∣∣∣n (|U1|+ |γ1U2|+ |δ′1x|+ |γ1δ

′
2x|
)n
dFγ1,γ2,U1,U2,δ1,δ2

≤
∣∣∣∣1τ
∣∣∣∣n ∫

(
|U1|+M |U2|+

K∑
k=1

|δ1k| · |xk|+M
K∑
k=1

|δ2k| · |xk|

)n
dFU1,U2,δ1,δ2 .

Line 2 follows by A6.1. Line 3 follows by the triangle inequality. Line 4 follows by A6.2 and
the triangle inequality again. This latter expression is only a function of absolute moments
of (U1, U2, δ1, δ2), which are all finite by A6.4. Thus the absolute moments of π11 are finite.

2. Next I show that A6 implies A5.2, π1 is uniquely determined by its moments. Petersen (1982,
theorem 3, page 363) showed that, for an arbitrary random vector Y , if the coordinate random
variables Yj are uniquely determined by their moments, then Y is uniquely determined by
its moments. Thus it suffices to show that π11, π12, and π13 are each separately uniquely
determined by their moments.

The moment generating function of π12 is, for t > 0,

MGFπ12(t) = E[exp(tπ12)]

= E[exp(tβ1/(1− γ1γ2))]

=

∫
β1≥0

exp

(
tβ1

1

1− γ1γ2

)
dFβ1,γ1,γ2 +

∫
β1<0

exp

(
tβ1

1

1− γ1γ2

)
dFβ1,γ1,γ2

≤
∫
β1≥0

exp ([t/τ ]β1) dFβ1,γ1,γ2 +

∫
β1<0

exp ([−t/τ ]β1) dFβ1,γ1,γ2

≤ MGFβ1(−t/τ) + MGFβ1(t/τ)

<∞

where the fourth line follows by A6.1 and the last line since the MGF of β1 exists by A6.3.
An analogous argument holds for t < 0. Thus the moment generating function of π12 exists
and hence π12 is uniquely determined by its moments. An analogous argument shows that
the moment generating function of π13 exists, using A6.2.
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Finally, consider the moment generating function of π11:

MGFπ11(t) = E[exp(tπ11)]

= E

[
exp

(
1

1− γ1γ2
U1 +

γ1

1− γ1γ2
U2 +

1

1− γ1γ2
δ′1x+

γ1

1− γ1γ2
δ′2x

)]
.

A similar argument to above splits the support of the random coefficients into 24 = 16
pieces, one for each combination of signs of the four terms U1, U2, δ

′
1x, δ

′
2x, and then uses

A6.1 and A6.2 to eliminate the γ1 and γ2’s. That leaves us with a sum of the moment
generating function of (U1, U2, γ1, γ2) evaluated at various points. Each of these MGFs exists
by assumption A6.4. Thus the moment generating function of π11 exists and hence π11 is
uniquely determined by its moments.

Proposition 3. Suppose one of the following holds.

1. P [sign(γ1) 6= sign(γ2) | X] = 1.

2. P (|γi| < τi | X) = 1 for some 0 < τi < 1, for i = 1, 2.

3. P (|γi| > τi | X) = 1 for some τi > 1, for i = 1, 2.

Then A6.1 and A1 hold.

Proof of proposition 3. Suppress conditioning on X. In all cases I will show that there is a τ ∈ (0, 1)
such that P [γ1γ2 ∈ (1− τ, 1 + τ)] = 0, which is equivalent to A6.1.

1. Since the sign of γ1 and γ2 are not equal with probability one, P (γ1γ2 < 0) = 1. Let τ be any
number in (0, 1). Then 1−τ > 0 and so P (γ1γ2 ≤ 1−τ) = 1. Hence P [γ1γ2 ∈ (1−τ, 1+τ)] ≤
P [γ1γ2 > 1− τ ] = 0. Thus A6.1 holds.

2. By assumption there are τ1, τ2 ∈ (0, 1) such that P (|γ1| ≤ τ1) = 1 and P (|γ2| ≤ τ2) = 1. Let
τ̃ = max{τ1, τ2} < 1. Thus the support of (γ1, γ2) lies within the rectangle [−τ̃ , τ̃ ]2, as shown
in figure 4.

So P (γ1γ2 ≤ τ̃2) = 1. Let τ = 1− τ̃2 ∈ (0, 1). Then

P (γ1γ2 ≤ 1− τ) = P (γ1γ2 ≤ τ̃2) = 1.

Hence P [γ1γ2 ∈ (1− τ, 1 + τ)] ≤ P [γ1γ2 > 1− τ ] = 0. Thus A6.1 holds.

3. Analogous to the previous case.

Derivations to show 2SLS estimates a weighted average effect parameter. We have

cov(Y1, Z2) = E[(γ1Y2 + U1)(Z2 − E(Z2))]

= E[γ1Y2(Z2 − E(Z2))] since Z2 ⊥⊥ U1

= E

[
γ1

(
U2 + γ2U1

1− γ1γ2
+

β2

1− γ1γ2
Z2

)
(Z2 − E(Z2))

]
= 0 + E

[
γ1β2

1− γ1γ2

]
var(Z2) since Z2 ⊥⊥ (β2, U,Γ)
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Figure 4: The solid rectangle is the boundary of [−τ̃ , τ̃ ]2. The dotted rectangle is the boundary of [−1, 1]2.
The line γ1γ2 = 1 is plotted.

and

cov(Y2, Z2) = E

[(
U2 + γ2U1

1− γ1γ2
+

β2

1− γ1γ2
Z2

)
(Z2 − E(Z2))

]
= 0 + E

[
β2

1− γ1γ2

]
var(Z2) since Z2 ⊥⊥ (β2, U,Γ).

Proof of theorem 3. The first part, infα∈AI ‖α̂N −α‖A = op(1), follows by verifying the conditions
of theorem 3.1 in Chen et al. (2011). The weighted Hölder ball is ‖ · ‖c-compact, which follows by
modifying the proof of lemma A4 in Gallant and Nychka (1987) to use the Arzelá-Ascoli theorem
instead of the Rellich-Kondrachov theorem, and then by applying lemma A.1 of Santos (2012).
Since F is a closed subset of a compact set, it too is compact. Since the overall parameter space
is compact, the penalty function assumptions 3.1.3 hold trivially. The sieve space restrictions 3.1.2
are assumed in E3 and the uniform convergence assumptions 3.1.4 are assumed in E4. Assumption
3.1.1(ii), upper semicontinuity, is implied by the full continuity assumption E2.2. The identified set
is the inverse image of the closed set {E[log p(Y | Z,X;α0)]} ⊆ R (i.e., a singleton set consisting of
the true objective function value), under a continuous map, and hence AI is closed in A . Since A
is compact, AI is a closed subset of a compact set and hence is compact. Thus their assumption
3.1.1(iii) holds.

Next I show ‖f̂γ1|X − fγ1|X‖∞ = op(1). The proof is analogous for f̂γ2|X . By the definition of
‖ · ‖A , the first part of this proof implies that

inf
fU,Γ|X∈FI

‖f̂U,Γ|X − fU,Γ|X‖c = op(1) and inf
(b,d)∈BI×DI

‖(̂b, d)− (b, d)‖e = op(1),
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where AI = BI ×DI ×FI is the identified set. For the distribution of γ1 | X, we have

‖f̂γ1|X − fγ1|X‖∞ = sup
(γ1,x)

|f̂γ1|X(γ1 | x)− fγ1|X(γ1 | x)|

= sup
(γ1,x)

∣∣∣∣∫ [f̂U,Γ|X(u1, u2, γ1, γ2 | x)− fU,Γ|X(u1, u2, γ1, γ2 | x)] du1 du2 dγ2

∣∣∣∣
≤ sup

(γ1,x)

∫
|f̂U,Γ|X(u1, u2, γ1, γ2 | x)− fU,Γ|X(u1, u2, γ1, γ2 | x)| du1 du2 dγ2

= sup
(γ1,x)

∫
|f̂U,Γ|X(u1, u2, γ1, γ2 | x)− fU,Γ|X(u1, u2, γ1, γ2 | x)|

· ωc(u1, u2, γ1, γ2, x)ωc(u1, u2, γ1, γ2, x)−1 du1 du2 dγ2

≤ sup
(γ1,x)

∫
sup

u1,u2,γ1,γ2,x
{|f̂U,Γ|X(u1, u2, γ1, γ2 | x)− fU,Γ|X(u1, u2, γ1, γ2 | x)|

· ωc(u1, u2, γ1, γ2, x)}ωc(u1, u2, γ1, γ2, x)−1 du1 du2 dγ2

= ‖f̂U,Γ|X − fU,Γ|X‖c sup
(γ1,x)

∫
ωc(u1, u2, γ1, γ2, x)−1 du1 du2 dγ2

≤ ‖f̂U,Γ|X − fU,Γ|X‖c
∫

(1 + u2
1 + u2

2 + γ2
2)−ζc du1 du2 dγ2

≤ ‖f̂U,Γ|X − fU,Γ|X‖c · C,

where C <∞ since ζc > (4 +K)/2. Taking the infimum of fU,Γ|X over FI of both sides gives

‖f̂γ1|X − fγ1|X‖∞ ≤ inf
fU,Γ|X∈FI

‖f̂U,Γ|X − fU,Γ|X‖c · C

since fγ1|X is identified.
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