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Abstract

This paper considers the class of p-dimensional elliptic distributions (p ≥ 1) satisfy-

ing the consistency property (Kano, 1994) and within this general framework presents a

two-stage semiparametric estimator for the Lebesgue density based on Gaussian mix-

ture sieves. Under the on-line Exponentiated Gradient (EG) algorithm of Helmbold

et al. (1997) and without restricting the mixing measure to have compact support, the

estimator produces estimates converging uniformly in probability to the true elliptic

density at a rate that is independent of the dimension of the problem, hence circumvent-

ing the familiar curse of dimensionality inherent to many semiparametric estimators.

The rate performance of our estimator depends on the tail behaviour of the underlying

mixing density (and hence that of the data) rather than smoothness properties. In

fact, our method achieves a rate of at least Op(n
−1/4), provided only some positive

moment exists. When further moments exists, the rate improves reaching Op(n
−3/8)

as the tails of the true density converge to those of a normal. Unlike the elliptic density

estimator of Liebscher (2005), our sieve estimator always yields an estimate that is a

valid density, and is also attractive from a practical perspective as it accepts data as

a stream, thus significantly reducing computational and storage requirements. Monte

Carlo experimentation indicates encouraging finite sample performance over a range

of elliptic densities. The estimator is also implemented in a binary classification task

using the well-known Wisconsin breast cancer dataset.

1 Introduction

Owing to generality considerations and breadth of application, density estimation is one of

the most actively studied challenges in statistics. Although nonparametric density estimation

was advanced dramatically by the introduction of the kernel density estimator (Fix and
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Hodges, 1951), the performance of this estimator deteriorates rapidly for a fixed sample size

as the number of dimensions grows large. Moreover, this performance depends heavily on

the choice of b bandwidth parameters, where b grows quadratically with the dimension of

the problem. This provides motivation for estimating nonparametrically within a restricted

class of p-dimensional Lebesgue densities (p ≥ 1): one that embeds many naturally arising

distributions, allowing us to maintain a large degree of flexibility, whilst circumventing these

problems that arise in high dimensions.

Much recent research has focussed on shape constrained density estimation. For instance,

Cule et al. (2010) consider maximum likelihood estimation of a p-dimensional density that

satisfies a log-concavity constraint, i.e. densities with tails decaying at least exponentially

fast. This estimator involves no choice of smoothing parameter, and is able to estimate a

range of symmetric and asymmetric densities consistently. Moreover, the estimator is shown

to exhibit a certain degree of robustness to mispecification (Cule and Samworth, 2010).

This paper is concerned with nonparametric estimation within the class of elliptic den-

sities in Rp. This problem has been addressed in the literature before (Stute and Werner,

1991; Liebscher, 2005; Sancetta, 2009), but our work provides new contributions, which are

highlighted below. Densities from the elliptic class are characterised by the property that

their contours of equal density have the same elliptical shape as the Gaussian. Indeed, many

of the convenient analytic properties possessed by the multivariate normal distribution (see

e.g. Muirhead, 1982, Chapter 1) stem from the quadratic form in its characteristic function,

which is actually a feature of the elliptic class more generally (Fang et al., 1990; Camba-

nis et al., 1981). Such features are, in part, responsible for the popularity of the elliptical

symmetry assumption in applied work (see e.g. Kariya and Eaton (1977); Marsh (2007) for

usage in the invariant testing literature, Owen and Rabinovitch (1983); Berk (1997) for us-

age in portfolio theory, and Chmielewski (1981) for a review of elliptical symmetry with

applications).

More specifically, we consider a large subclass of elliptic distributions whose densities

can be expressed as scale mixtures of normal densities, hence restrict attention only to

distributions whose tails are heavier than those of a normal (Beale and Mallows, 1959).

Members of this subclass are said to satisfy the consistency property (Kano, 1994) and are

characterised by having all their d dimensional marginals d < p from the same type of

elliptic class as the p dimensional joint distribution. Unfortunately, the subclass excludes

some well known members of the elliptic class such as the logistic, Pearson types II and VII,

Kotz-type and Bessel distributions. It does however include (inter alia) the multivariate

symmetric stable and Cauchy distributions, which arise as limit laws of normalised sums of

i.i.d. random variables with fewer than 2 finite absolute moments, leading to their popularity

as (multivariate) mutation distributions in evolutionary algorithms (see e.g. Rudolph, 1997;

Arnold and Beyer, 2003), as well as the multivariate t, popular in finance. A key issue

in some applications is heavy tails or non existence of moments and so in practice more
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emphasis has been given to leptokurtic members of the elliptical class, which is aligned with

our approach.

We propose a two-stage estimation procedure based on mixture likelihoods for the density

of an elliptically distributed random vector with the consistency property. A major feature

of this estimator is that it accepts data as a stream, which leads to a significant reduction in

computational and storage requirements. In the elliptic framework without the consistency

property, Stute and Werner (1991) proposed a density estimator that also circumvents the

curse of dimensionality. Stute and Werner (1991) document the difficulty in estimating the

density of an elliptic random variable due to the so called volcano effect that presents itself in

a neighbourhood of the mean. Liebscher (2005) proposed a different estimator of the density

that benefits from improved properties; he showed that his estimator achieved an optimal

(one-dimensional) rate away from the mean for standard smoothness classes. As noted, his

estimator does not completely overcome the problems arising near the mean. Furthermore,

his main result requires the existence of at least four moments for the random variables of

interest, which rules out many distributions of practical interest. Another problem is that

the procedure relies on higher order kernels that must be chosen to satisfy a series of condi-

tions, with the ultimate consequence that the resulting estimate can be negative and highly

oscillatory at certain points of the support, an effect that is particularly prominent in small

sample sizes (Marron and Wand, 1992). Our estimator, by contrast, always yields a valid

density. Moreover, the implementation relies on delicate asymptotic analysis which requires

knowledge of unknown quantities. Since the procedure does not support cross validation, it

is hard in practice to implement the estimator described in Liebscher (2005). Further dis-

cussion of these problems appears in section 4.2. Although the construction of our estimator

also relies on one unknown quantity, this may be computed, either by cross validation or

by direct estimation. In fact, Monte Carlo evidence also suggests that the estimator is not

unduly affected by an incorrect choice of this quantity. A key difference in the orientation of

our approach is that we allow for heavy tailed data and our estimation procedure explicitly

uses information or assumptions about tail behaviour rather than smoothness properties.

2 The model and its properties

Let X1, . . . , Xn be i.i.d. random vectors in Rp having a density f ∈ F . In this paper, we are

only concerned with the case in which F is the set of elliptic densities with the consistency

property (see below); it is of interest to study the implications for the estimator of f when

the assumption of elliptical symmetry is violated, but this task is left for future work. A p

dimensional random vector X is said to have an elliptic distribution with mean µ, scaling

matrix Ω (positive definite), and Lebesgue measurable generator gp : R+ 7→ R+ (written
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X ∼ El(µ,Ω, gp)) if its density function at x has the form

f(x) = cp|Ω|−1/2gp
(
(x− µ)TΩ−1(x− µ)

)
.

The parameters µ, Ω and gp uniquely determine the elliptic density up to a scaling factor:

El(µ,Ω, gp) = El(µ, cΩ, gp,c) where gp,c(q) = gp(q/c), which means we can always consider

a Ω with diagonal elements all equal to one. This Ω is just the matrix of linear correlation

coefficients in the case that the elements of X have finite variances, however, to subsume

the more general cases, we will refer to Ω as the orbital eccentricity matrix. Provided Ω is

full rank, X necessarily has the following stochastic representation (Cambanis et al., 1981,

Theorem 1)

X
d
= µ+RAU (p); A = Ω1/2, (2.1)

where
d
= means equality in distribution, U (p) is a random vector uniformly distributed on

the unit sphere in Rp, i.e. on {u ∈ Rp : uTu = 1}, A is the square root of Ω and R is a

scalar random variable on R+, distributed independently of U (p). By the full rank condition,

we may define Z := A−1(X − µ)
d
= RU (p), which has a spherical distribution, hence is

distributionally invariant under the orthogonal group (Muirhead, 1982, Definition 1.5.1).

The density of Z is thus uniquely determined by the density of ZTZ
d
= R2 according to

f(z) = cpgp(z
T z) ≡ cpgp(r

2), where this density exists if and only if R has density at r,

hp(r), related to gp(r
2) as (Fang et al., 1990)

hp(r) =
2πp/2

Γ(p/2)
rp−1gp(r

2).

The subscript p on the generator indicates that, in general, gp depends on the dimension

p. When variables can be integrated out without changing the form of g, then the density

generator is said to possess the consistency property (Kano, 1994); see Condition 3 below for

a formal statement.

Condition 1. Ω is full rank.

Condition 2. R possesses a density with respect to Lebesgue measure.

Condition 3. The density generator, g(·), possesses the consistency property, i.e.

∫ ∞

−∞
g
p

(
p∑

j=1

z2j

)
dz

p
= g

p−1

(
p−1∑

j=1

z2j

)
(2.2)

for any p ∈ N and almost all z ∈ Rp

To provide an example of when Condition 3 holds and when it does not, if the p dimen-

sional joint distribution is, say, Gaussian, then all the p− 1 dimensional marginals are also
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Gaussian, yet if the p dimension joint distribution is power exponential with parameter α,

then it is not true that the p− 1 dimensional marginals are power exponential with param-

eter α for any p ∈ N; further details on this latter example are provided in Kano (1994).

Theorem 1 of Kano (1994) establishes equivalence between the consistency property and Z

being a scale mixture of normal random vectors, which motivates our estimation procedure

described below.

Assuming µ is known, we may centre as Y := X−µ and, by Condition 1 and the property

El(µ,Ω, gp) = El(µ, cΩ, gp,c), consider,

Y
d
= Ω1/2RU (p).

Then by the consistency property (Condition 3) and by Theorem 1 (iii) of Kano (1994),

there exists a random variable Q > 0, unrelated to p such that for any p ∈ N, R
d
=
√
χ2
p/Q

with χ2
p a chi-square random variable with p degrees of freedom and Q, χ2

p and U (p) mutu-

ally independently distributed. It follows that Y
d
= Np/

√
Q where Np is a p dimensional

normal random vector with mean zero and correlation matrix Ω and Q is unrelated to p and

independent of Np. By Condition 2, Y possesses a Lebesgue density, hence the probability

density function f(y) of Y at y may be written

f(y) =

∫ ∞

0

φ(y|Ω/q)P(d(1/q)), (2.3)

where φ(y|Ω) is the normal kernel, given by (2π)−p/2|Ω|−1/2 exp{−1
2
(yTΩ−1y)} and P is the

unknown law of the inverse mixing random variable 1/Q on Q = (0,∞). The problem is

now one of estimating Ω and the unknown law of 1/Q, whose tails are assumed to satisfy

Condition 4.

Condition 4. P(1/Q > x) ≤ L(x)x−α; α > 0, where the slowly varying function L(x)

satisfies limx→∞L(tx)/L(x) = 1 for all constant t > 0.

Remark. Condition 4 allows us to estimate densities of random variables with heavy tails,

with the convergence rate of our estimator depending on the parameter α. For instance,

consider a random variable T2 distributed as a student t with 2 degrees of freedom, then

Q ∼ χ2
2/2, where χ

2
2 is a chi-square random variable with 2 degrees of freedom. Since

Pr (1/Q > x) = Pr
(
2χ−2

2 > x
)
= 2(1− e−1/2x), (2.4)

T2 satisfies Condition 4 with α = 1.
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Figure 2.1: Plot of Pr(1/Q > x) against x for 1/Q ∼ 2/χ2
2, (blue), together with x−1

against x (red) (lines lie on top of each other).

Likewise, for a student t random variable with 1.5 degrees of freedom, the tail behaviour of

1/Q satisfies

Pr (1/Q > x) = Pr
(
1.5χ−2

1.5 > x
)
= 1.22407(1.22542− Γ(0.75, 0.5/x)) ≈ x−0.75, (2.5)

where Γ(a, b) is the incomplete gamma function Γ(a, b) =
∫∞
b
ta−1e−tdt.

200 000 400 000 600 000 800 000 1´106

0.00005

0.00010

0.00015

0.00020

Figure 2.2: Plot of Pr(1/Q > x) against x for 1/Q ∼ 1.5/χ1.5
2 , (blue), together with x−0.75

against x (red).

3 Estimation via finite mixture sieves

Sancetta (2009) considers Bayesian semiparametric estimation of an elliptic density in a

similar framework to that above, establishing weak conditions for posterior consistency. In

this paper, we adopt a frequentist approach and define a sequence of approximations to

equation (2.3)

SM =

{
fM : fM(y) :=

M∑

s=1

Λsφ(y|Ω/qs); M ∈ N

}
, (3.1)

where {Λs}Ms=1 are weights such that Λs ∈ [0, 1] ∀ s ∈ {1, . . . ,M} and
∑M

s=1Λs = 1, and the

qs are such that 1/qs ∈ (0, x̄(M)], where x̄(M) → ∞ as M → ∞. Interest lies in finding
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the optimal rate at which to allow M to grow with the sample size in order to achieve the

optimal trade-off between approximation error and estimation error. Since we allow x̄ to go

to infinity, we permit one or more of the estimated component densities of the mixture to

have infinite variance in the limit as the sample size goes to infinity.

3.1 Two-stage sieve estimation

Notice that estimating fM
n (y) requires estimation of p(p−1)/2 orbital eccentricity coefficients

from Ω = [Ωkl]. There is more than one way of doing this, and we shall make some specific

suggestions below. We shall assume that whichever method is chosen obeys the following

Condition.

Condition 5. The sequence (Ω̂n)n∈N satisfies |Ω̂n − Ω| = Op(n
−1/2).

The above condition admits estimation of Ω by the Stahel-Donoho robust estimator of

multivariate location and scatter, as discussed in Maronna and Yohai (1995). This estimator

also takes care of estimation of µ, which is a requirement for re-centering at zero the X in

equation (2.1) in the case that µ is unknown. As an alternative, the vector of univariate

sample means or sample medians could be used to estimate µ and a different estimator for

Ω may be used.

We advocate the following estimator based on a transformation of p(p− 1)/2 estimators

of the Kendall tau dependence measure. The following canonical transformation is valid for

all members of the elliptic class (Lindskog et al., 2003):

τkl =
2

π
arcsin(ρkl), (3.2)

where τkl is the Kendall tau dependence measure, defined as

τkl := Pr ((Yi,k − Yj,k)(Yi,l − Yj,l) > 0)− Pr ((Yi,k − Yj,k)(Yi,l − Yj,l) < 0) ,

with (Yj,k, Yj,l) an independent copy of (Yi,k, Yi,l). In the case that the elements of Y have

finite variances and Ω = [Ωkl] = [Cov(Yk, Yl)/Var(Yk)Var(Yl)], the standard estimator of

the orbital eccentricity is the Pearson product moment correlation coefficient, derived as

the maximum likelihood solution in the case that Y is multivariate normally distributed.

This estimator is not robust, in the sense that it is not unaffected by departures of Y from

normality. In particular, the Pearson estimator performs very poorly when Y is from a

distribution with heavy tails (Pollard, 2000); by contrast, the sample version of Kendall’s

tau τ̂kl is robust to heavy tailedness. τ̂kl is the proportion of concordant pairs minus the
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proportion of discordant pairs, i.e.

τ̂k,l =

n∑

i=1

n−1∑

j=i

I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) > 0} − I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) < 0}
I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) > 0}+ I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) < 0}

=

(
n

2

)−1∑

i,j<i

( I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) > 0} − I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) < 0}) ,

which, in light of equation (3.2) provides a natural means of estimating the orbital eccen-

tricity efficiently:

ρ̂kl = sin
(π
2
τ̂kl

)
. (3.3)

Zhao et al. (1997) show that each of the (p−1)p/2 Kendall tau estimators satisfy |τ̂kl−τkl| =
Oa.s.(n

−1/2). Since sin(π
2
·) is a continuous mapping, Slutsky’s theorem implies Ω̂kl = Ωkl +

Op(n
−1/2) ∀k 6= l, hence Condition 5 is satisfied by the Kendall tau transform estimator.

We next turn to estimation of the weights. Equation (3.1), being a finite scale-mixture of

normal densities, yields an incomplete data problem as it is not observed from which compo-

nent density each of the data points are drawn. Since the true maximum likelihood solution

is infeasible, we must rely on iterative methods that compute a sequence of mixture vec-

tors Λ1, . . . ,Λj, . . . for which some composite mixture
∑M

s=1 Λ̂sqsφ(y|Ω/qs) converges to the

(unknown) maximum likelihood mixture
∑M

s=1 Λ̂
ML
s qsφ(y|Ω/qs), where ΛML

s is the infeasible

maximum likelihood solution and Λs is some composite of the mixture weights computed in

an iterative algorithm, which is yet to be specified. Note that for typographical reasons, we

make no notational distinction between scalar weights and vector weights; the distinction will

be clear from the context and the indexing. The celebrated Expectation Maximisation (EM)

algorithm, is one such iterative procedure; we refer to the seminal paper by Dempster et al.

(1977) for details. Despite its theoretical ability to overcome the latent factor problem, the

EM algorithm can converge quite slowly (Meng and van Dyk, 1997) and can be impractical,

especially when processing large data sets and data streams (Cappé and Moulines, 2009).

Concerns in the latter case arise from the fact that all the data must be made available at

each iteration, implying large storage requirements and computational inefficiency. On-line

variants allow previous estimates to be updated based on each new piece of information and

are therefore attractive from a computational perspective.

We study the asymptotic properties of the mixture sieve estimator using the Exponenti-

ated Gradient algorithm (henceforth termed EG algorithm) of Helmbold et al. (1997). This is

a grid-based on-line algorithm for the unsupervised mixture proportions estimation problem,

providing significant computational speed-ups over conventional EM. The EG algorithm con-

siders a finite number, M , of mixture components, corresponding to fixed values of (qs)
M
s=1

in the support of P. This is in contrast to continuous support EM-type algorithms in which

the conditional expectation of the log-likelihood is maximised with respect to the scale pa-

rameters, (qs)
M
s=1, in addition to the mixing parameters, (Λs)

M
s=1. Clearly, such a grid-based
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approach will have the disadvantage that the (qs)
M
s=1 must be chosen a priori; we make the

choice that minimises the approximation error, i.e. we choose these values to be separated

by equal intervals for all s ∈ 1, . . . ,M . The case where equal intervals are chosen is also

covered in Helmbold et al. (1997) and thus an explicit bound is available on the estimation

error from making this choice.

Write LN(Λ) for the log mixture likelihood constructed from the first N sample points

and evaluated at Λ, i.e.

LN (Λ) =
1

N

N∑

i=1

ln

(
M∑

s=1

Λsφ(Yi|Ω/qs)
)
.

At the jth iteration, the EG algorithm with learning rate η (termed EGη algorithm) seeks

to maximise with respect to Λj

F (Λj) = η

(
Lj(Λj−1)−

∑

s

∇sLj(Λj−1)(Λj,s − Λj−1,s)

)
− d(Λj,Λj−1) (3.4)

subject to the constraint
∑M

s=1Λj,s = 1, where d(Λj,Λj−1) is the Kullback-Leibler divergence

between the two probability distributions Λj and Λj−1. Heuristically, the EGη algorithm is

easy to understand as a Taylor series approximation to Lj(Λj) with a penalty to reflect the

quality of the approximation. Maximising the Lagrangian corresponding to equation (3.4),

amounts to solving the M + 1 equations for the M elements of Λj :

F (Λj, γ)

∂Λj,s
= η∇sLj(Λj−1)−

∂d(Λj ,Λj−1)

∂Λj
+ γ = 0

and
M∑

s=1

Λj,s = 1.

Replacing d(Λj,Λj−1) with the Kullback-Leibler divergence yields the requirement

η∇sLj(Λj−1)−
(
ln

(
Λj,s

Λj−1,s

)
+ 1

)
+ γ = 0. (3.5)

Solving equation (3.5) for the Λj,s and imposing the normalisation constraint yields the

analytic update

Λj,s =
Λj−1,s exp{η∇sLj(Λj−1)}∑M
t=1 Λj−1,t exp{η∇tLj(Λj−1)}

,

which, given an initialisation vector Λ0, gives a recursive estimate of the mixing weights

(Λs)
M
s=1; we denote the EG estimates by (Λ̂EG

s )Ms=1. At each iteration, the EG solution Λ̂EG

is charged a loss,

−Ln(Λ̂
EG) = −1

n

n∑

i=1

ln

(
M∑

s=1

Λ̂EG
s ψ(Yi|qs)

)
.
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The true (unknown) maximum likelihood solution, Λ̂ML (the one that would maximise the

log likelihood if the labels were observed) suffers an analogous loss. It is instructive to

consider the average additional loss incurred over I = n iterations of the EG algorithm over

that incurred by the unknown maximum likelihood solution, which is obtained from equation

(9) of Helmbold et al. (1997) as

− 1

I

I∑

j=1

1

n

n∑

i=1

ln

(
M∑

s=1

Λ̂EG
j,s ψ(Yi|qs)

)
≤ −1

n

n∑

i=1

ln

(
M∑

s=1

Λ̂ML
s ψ(Yi|qs)

)
+

2 lnM

Iη
(3.6)

where ψ(y|qs) is the sth mixture density at y; here

ψ(y|qs) := φ(y|Ω/qs). (3.7)

Define the density estimator

f̂M
n (y) =

M∑

s=1

Λ̂EG
I,s φ(y|Ω̂,n /qs), (3.8)

where (Λ̂I,s)
M
s=1 is the average set of weights estimated in I = n iterations of the EG algorithm

with learning rate η. Note that (3.6) does not imply convergence of Λ̂EG to Λ̂ML at rate

(2 lnM)/Iη, but rather convergence in log likelihood of Λ̂EG
I,s to Λ̂ML.

4 Asymptotic properties and practicalities

Using the EGη algorithm to estimate the mixture proportions in equation (3.1), and replacing

Ω with Ω̂ in (3.7) gives rise to the bound in the following theorem.

Theorem 1. Let Conditions 1 - 4 hold. Fix {qs = 1/xs : s = 1, . . . ,M} where x1 =

M−α/(1+α)/2 and xs = xs−1 +M−α/(1+α) and let M := M(n) be given by M =
⌊
cn

1+α
2+4α

⌋

(where c is a positive constant and bxc gives the largest integer less than or equal to x).

Suppose that f̂M
n (z) is defined by (3.8) with the learning rate η = 2r

√
2 lnM

I
where r is a

lower bound on the instances ψ(Yi|qs) for all i and all s. Then,

sup
y∈D

|f(y)− f̂M
n (y)| = Op

(
n− 1+3α

4(1+2α)

)
(4.1)

for any compact subset D of Rp such that 0 /∈ D. Allowing r to go to zero at rate
√
2 lnM

2M
√
n

delivers the same rate in equation (4.1).

Although constants depend on p because of the estimation of p(p − 1)/2 eccentricity

parameters in Ω, for a fixed p, the rate of convergence of f̂M
n (y) does not depend on p; this

is qualitatively the same result as that obtained in Liebscher (2005).
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Remark. In a neighbourhood of y = 0, the proof strategy does not allow us to say anything

about the convergence rate. In fact, the density f can be infinite and nondifferentiable at this

point under our conditions. Under the strong additional condition that the mixing measure

P is supported on [δ,∞) where δ > 0, the rate in equation (4.1) becomes uniform over the

whole of Rp, as the space of functions,

G := {g : q 7→ φ (y|Ω/q) ; 1/q ∈ Q, y ∈ Rp} ,

is bounded for Q = [δ,∞). We note that in Ghosal and van der Vaart (2001), which studies

univariate normal mixture density estimation, the assumption of compactly supported mix-

ing measure is assumed in order to obtain rates that hold uniformly over (−∞,∞). In this

case rates of almost n−1/2 are available. The case of noncompact support is considered by

Genovese and Wasserman (2000) who establish rates of at most n−1/4 when the tails of the

mixing density are described by our Condition 4 (see section 5.2 of Genovese and Wasserman

(2000) and the discussion surrounding equation (36) op. cit.).

Clearly, the rate of convergence of the sieve estimator depends rather significantly on

the tail exponent α of the mixing measure. When the law of the mixing measure satisfies

the least restrictive tail condition (smallest tail exponent), a bound of Op

(
n−1/4

)
may be

achieved. In the limit however, as the law of 1/Q satisfies a stronger tail condition, a rate of

Op

(
n−3/8

)
is achievable. This rate corresponds to the case in which Y is normally distributed

in Rp (see the discussion in section 4.1 below).

4.1 A practical method for selection of the tuning parameter

Since the smoothing parameter required to attain the above rate depends on α, in order to

reduce the potential inefficiency induced by unnecessarily taking α too small in condition

4, it would be preferable that the choice of α be data-driven. One of the advantages of

our approach over that of Liebscher (2005) is that it does admit a cross-validatory choice

of α. However, since cross validation is such a computationally intensive procedure, we also

consider the possibility of direct estimation of α from realisations of Y TΩ−1Y
d
= R2. Since

the law of the inverse mixing random variable 1/Q (as determined by α) is related to the law

of the random variable R2, the tail behaviour of the two is linked in a way that is quantified

in equation (2.5) in the case that Y is a student t random variable with d = 2 degrees of

freedom. The tail behavior of 1/Q can be described in a similar way for any d.

Considering the case in which Y is distributed as a student t random variable with

d = {2, 5, 10} degrees of freedom, we display the probability density functions of 1/dQ,

which has an inverse χ2 distribution with d degrees of freedom, and the corresponding

density functions of R2/p, which has an Fp,d distribution (see e.g. Muirhead, 1982, section

15 and exercise 1.30).
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As d → ∞ the inverse χ2
d density collapses to a spike at zero which corresponds to the

density of 1/Q = dχ−2
d collapsing to a spike at 1, corresponding to normality of the random

vector Y .
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Figure 4.1: Density function of 1/dQ
d
= χ−2

d and the corresponding density function

of R2/p = (1/p)Y TΩ−1Y
d
= Fp,d when Y is distributed as a student-t random variable

with dimension p = 3 and d degrees of freedom (d = {2, 5, 10} with corresponding curve

{blue, red,yellow}).

The discussion above motivates the use of a Hill estimator (Hill, 1975) of the tail exponent

of R2, whose realisations come from the same distribution as realisations of Y TΩ−1Y , in order

to gain insight into the tail behaviour of 1/Q, whose realisations are inaccessible. Let R̂2 be

defined as the random variable obtained from the transformation Y T Ω̂−1Y , where Ω̂ is the

estimator of the eccentricity matrix obtained from the canonical Kendall tau transform in

equation (3.3). Let R̂2
(k) denote the k

th order statistic of this random variable R̂2. Then a Hill

estimator for the tail exponent of R2 (based on a subsample of the K largest observations

R̂2) may be defined as

α̂K,n(R
2) =

1

K

K∑

k=1

(ln R̂2
(n−k) − ln R̂2

(n−K)).

Based on 100 simulations and n = 100000 draws from the distribution of 1/Q and R2 when Y

is distributed as a trivariate student t random variable with d degrees of freedom, we find that

α̂K,n(R
2) exhibits a strong relationship with α̂K,n(1/Q) (where we take K = 0.05n = 5000)

(see Figure 4.2 below), the consistent, yet practically infeasible estimator of the tail exponent

of the law of 1/Q. Figure 4.2 depicts the average (over 100 simulations for each value of

d) Hill estimate for the tail exponent of the inaccessible 1/Q. This is plotted against the

average Hill estimate for the tail exponent of R2, which can be estimated easily and reliably

from the data. The right panel of Figure 2 plots the average of α̂K,n(1/Q) and the average

of the exponential transformations of α̂K,n(R
2), where this transformation is chosen with a

view to making the relationship linear. Empirically the relationship seems fairly robust to

changes in the dimension p (see Figure 4.4).

12



The right panels of Figures 4.2 and 4.3 both indicate that an estimator of the form

α̂(1/Q) := c1 + c2 exp{α̂K,n(R̂
2)} (4.2)

may be reasonable for the tail exponent of 1/Q. However, the constants c1 and c2 are not

invariant to the dimension of the problem. We plot in Figure 4.4 the ordinary least squares

estimates of the coefficients as a function of the dimension p, along with the coeffient of

determination. We do not plot confidence bands for the coefficients c1 and c2 as the upper

and lower confidence limits are indistinguishable from the estimated regression coefficients;

it is worth noting that zero is not included in any of the confidence bands.
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Figure 4.2: Scatter plots of the average (over 100 simulations) of α̂K,n(1/Q) against

the average of α̂K,n(R
2) (left) and the average of α̂K,n(1/Q) against the average of

exp{α̂K,n(R
2)} when Y is distributed as a trivariate student t random variable with d

degrees of freedom. The colour indicates increasing d (from 2 to 70 in steps of 0.05).
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Figure 4.3: Scatter plots of the average (over 100 simulations) of α̂K,n(1/Q) against

the average of α̂K,n(R
2) (left) and the average of α̂K,n(1/Q) against the average of

exp{α̂K,n(R
2)} when Y is distributed as a student t random variable in p = 5 dimensions

with d degrees of freedom. The colour indicates increasing d (from 2 to 70 in steps of

0.05).
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Figure 4.4: Estimated regression coefficients c1 and c2, and the coefficient of determi-

nation from a regression of α̂(1/Q) on exp{α̂(R2)} within the class of p-dimensional t

distributions. Statistics are plotted as a function of the dimension p.

We emphasise that this is simply a rule of thumb method designed around a particular

class of distributions; although it will not always work, it is a simple and reasonable approach

for choosing the unknown parameter α(1/Q). More generally we can define a cross-validation

procedure that would work for any distribution.

Although we do not dedicate further discussion to the properties of f̂M
n based on an

estimator of α(1/Q), to illustrate that the rule of thumb approach of equation (4.2) provides

reasonable results even outside the class of multivariate t distributions, we present in section

5 the MISE minimising choice of α and the corresponding ISE estimates when the data are

drawn from a symmetric stable distribution with various tail parameters. We compare the

resulting ISEs to those obtained from using the choice of α based on equation (4.2) with the

constants c1 and c2 of Figure 4.4.

4.2 Discussion of results

We have already discussed our results in relation to those of Genovese and Wasserman (2000)

for univariate normal mixtures. We now compare them with those of Liebscher (2005) who

considered estimation of elliptically symmetric densities under smoothness conditions. He

obtained the bound

Op

(
(n/ln(n))−

k
2k+1

)
(4.3)

for his kernel-based nonparametric estimator (2.5). In the above display, k is the maximum

order of derivative of the density generator, g(·), for which the derivative exists and is

bounded on R+; it is assumed to be an even integer greater than or equal to 2. Note that
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the rate in (4.3) is – up to a logarithmic factor – optimal in the sense of Stone (1980) for

densities whose effective dimension is one. However, the bound is only valid uniformly over

compact subsets of Rp that exclude the mean, rather than over the whole of Rp (to which

Stone’s minimax rate applies).

The validity of the rate of Liebscher (2005) is dependent on several conditions, which rule

out cases that we are able to accommodate with our method. The discussion surrounding

Figure 4.1. allows us to relate the condition of Liebscher (2005) that Y TΩ−1Y
d
= R2 has

finite 4 + ε moment, to the tails of the density of Y . Given that the Fp,d distribution only

has finite moments of order d/2, the assumption of finite 4 + ε moment rules out the case in

which Y TΩ−1Y is distributed as an Fp,d random variable with d ≤ 8, which corresponds to

Y having student t distribution with d ≤ 8 degrees of freedom.

Our procedure has several practical advantages over that of Liebscher (2005). Aside from

the practical advantages of online estimation over batch estimation, the approach of Liebscher

(2005) requires that a suitably chosen transformation (so chosen to alleviate problems that

would otherwise lead to significant bias in a neighbourhood of the mean) be applied to the

data. This transformation is delicate and influences the order and choice of higher-order

kernel (see Conditions T (p) and K(p) of the paper). The suggested transformations involve

a tuning parameter that, due to the nature of the procedure, cannot be chosen by cross

validation. This is in contrast to our approach, which does support a cross validatory choice

of α or potentially even direct estimation of α along the lines discussed in section 4.1 above.

Furthermore, Monte Carlo evidence illustrates the encouraging finite sample performance of

our procedure, even when α is not chosen as the true one.

A final but important point to note is that the estimator of Liebscher (2005) requires

a kernel of order k in order to achieve the k-dependent rate of display (4.3). In order to

have high-order even moments equal to zero (his condition K(p)), higher-order kernels need

to be negative and highly oscillatory, which means the resulting estimate is not a proper

density. This effect is gradually dampened as n → ∞, but will be prominent in small and

moderate sample sizes. Although such a symptom may be unproblematic if, for instance,

we are interested in using the estimator for nonparametric regression, it is an undesirable

feature in many other cases of interest. Our estimator has the advantage that it always

yields an estimate that is a proper density.

5 Simulation studies

5.1 Analysis of the rule of thumb procedure

In this section, we analyse the extent to which the rule of thumb procedure of section

4.1, which was built around a particular family of distributions, may be suitable for other

members of the elliptic class. We consider univariate symmetric stable distributions, whose
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characteristic function is parameterised by a tail parameter γ ∈ (0, 2] in addition to the

location and scale parameters µ ∈ R and σ ∈ R+. Since the stable distribution does not

possess a closed form solution for its density function, a symmetric stable random variable

Y ∼ S(γ, 0, σ, µ) is described by its characteristic function as

E exp{iuY } =

{
exp{−σγ |u|γ + iµu} γ 6= 1

exp{−σγ |u|+ iµu} γ = 1 .

The density function of a stable random variable can be calculated numerically by the algo-

rithm described by Nolan (1997) in the univariate case and using the method of Abdul-Hamid

and Nolan (1998) in the multivariate case. Due to the lack of freely available software that

support this distribution, we consider only the univariate case here, for which user-written

software is publically available (Veillette, 2012).

For values of the tail parameter γ increasing from 0.3 to 2 in steps of size 0.1, we conduct

a simulation study in which n = 500 symmetric stable random variables Y ∼ S(γ, 0, 1, 0)

on each of 100 Monte Carlo replications. For values of the tuning parameter α ∈ A, where

A is a finite set of elements increasing from 0.25 to 3 in steps of size 0.25, we construct an

estimate of the density function, we also construct an estimate of the density function based

on the Hill estimate α̂(R̂2) and the rule of thumb procedure described in section 4.1. We

plot in the left panel of Figure 5.1 below the symmetric stable density function for various

values of γ. We also plot in the right panel of Figure 5.1 the estimates of α(1/Q) and the

values of the tuning parameter in A that minimise the empirical MISE over the 100 Monte

Carlo replications. In Figure 5.2 we plot the natural logarithm of the integrated square error

in 100 simulations for each value of the tail parameter γ; the left panel corresponds to the

MISE minimising choice of tuning parameter, and the right panel corresponds to the Hill

estimate.
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Figure 5.1: Left panel: univariate symmetric stable density functions for different tail

parameters γ with µ and σ fixed at 0 and 1 respectively; right panel: boxplots of the

natural logarithm of (1 + α) with α chosen by the rule of thumb described in equation
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(4.2), with c1 and c2 the least squares estimates of Figure 4.4. The black dots represent

the α chosen by minimising the MISE over the 100 Monte Carlo replications.

The right panel of Figure 5.1 illustrates that for γ in the range (0.6,1.6), the rule of thumb

based on equation (4.2) performs reasonably well in the sense that the estimated α̂(1/Q) is

close to the α that produces the lowest MISE over the 100 Monte Carlo replications. For

large and small values of γ, the rule of thumb is less reliable. This is not surprising in light

of the right panels of Figures 4.2 and 4.3, where the linearity of the relationship breaks down

for very heavy and very light tails.

Viewing the right panel for Figure 5.1 together with Figure 5.2, we see that taking α

too small is not detrimental to the performance of the estimator, whilst taking α too large

results in too few mixtures being used to approximate the density of interest and causes the

performance to deteriorate substantially.
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Figure 5.2: Right panel: boxplots of the ISE over 100 simulations when the empirical

MISE minimising α is chosen; boxplots of the ISE over 100 simulations when α is

chosen by the rule of thumb described in equation (4.2), with c1 and c2 the least

squares estimates of Figure .4

5.2 Finite sample performance

We consider the relative performance of our sieve estimator in samples of size 100, 500, 1000

and 2000 when the data come from the bivariate and trivariate t distributions with 1.5, 2,

3 and 4 degrees of freedom and with correlation coefficients ρ = 0.4 in the p = 2 case and

ρ12 = 0.4, ρ13 = −0.7, ρ23 = 0.1 in the p = 3 case.

Figures 5.3 and 5.4 depict the integrated squared errors (ISE) based on 1000 Monte Carlo

replications for the kernel density estimator, the Liebscher (2005) estimator, and for several

versions of the Kendall tau-transform Gaussian mixture sieve estimator, where the latter is

computed using both the EG and EM algorithms over a fixed set of mixing points {1/qs, s =
1, . . . ,M}. We examine the performance of the EG and EM mixture sieve estimators using
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both the rule of thumb procedure and the unobservable theoretical value of α, with which

the estimator is optimised. Letting αd satisfy Pr(dχ−2
d > x) = x−αd , which is the relevant

quantity Pr(1/Q > x) from Condition 4 for the case in which Y is a t distribution with

d degrees of freedom, we have α1.5 ≈ 0.75, α2 ≈ 1, α3 ≈ 1.52 and α4 ≈ 2.05. Since this

quantity is unknown in practice, we consider the performance of the EG and EM variants

of the mixture sieve estimator when these values of α are estimated using the rule of thumb

procedure discussed in section 4.1. Letting α denote the true value of α (i.e. dropping the

d subscript), and letting α̂ denote the estimated value of α based on the rule of thumb

procedure, we take respectively, ε = M−α/1+α, with M =
⌊
n

1+α
2+4α

⌋
and ε = M−α̂/1+α̂, with

M =
⌊
n

1+α̂
2+4α̂

⌋
, i.e. the optimal number of mixtures from Theorem 1 with c = 1. Letting

{xs, s = 1, . . . ,M} be the values of {1/qs, s = 1, . . . ,M}, we consider uniform spacings

xj − xj−1 starting at x1 = δ + ε/2, with δ some small constant that we take equal to 0.25,

and xs = xs−1 + ε ∀ s{1, . . . ,M}. We take initial weights {Λ0,s : s = 1, . . . ,M} all equal to

1/M and we set η = 1.5. Where applicable, we use the same choice of tuning parameters for

the finite mixture sieve with EM update.

For the kernel density estimator we use an empirical bandwidth selector based on least

squares cross validation (LSCV) (Wand and Jones, 1995, section 4.7). The empirical band-

widths and kernel density estimates were computed using the ks package (Duong, 2007) in R.

Although we do not discuss this further, it is worth pointing out that an adaptive bandwidth

kernel density estimator such as that of Abramson (1982) is likely to perform better on heavy

tailed data such as these; we also refer to Sain and Scott (1996) for univariate adaptive kernel

methods, and to Sain (2002) and Scott and Sain (2005) for multivariate adaptive techniques.

For the Liebscher estimator, we employ the transformation suggested in the example

preceding Theorem 1 of Liebscher (2005). The transformation depends on a constant, a,

which is not discussed in the paper; we take this constant equal to 1, but the estimator

appears to be rather insensitive to this choice. The kernel estimator and sieve estimator can

all produce estimates in dimensions higher than p = 3, using respectively the ks package and

the code we wrote to compute the sieve estimates in the p = 2 and p = 3 cases (available

upon request). The only modifications required are the fairly simple ones required to produce

the p > 3 dimensional grid-array of evaluation points.
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Figure 5.3: Boxplots of the square root of the integrated squared error (divided by the

number of points in the grid-array of evaluation points) based on 1000 MC replications

using n observations from a bivariate t distribution with d degrees of freedom and with

correlation coefficient ρ = 0.4. Top left panel: d = 1.5; top right panel: d = 2; bottom

left panel: d = 3; bottom right panel: d = 4. In all panels, the blocks relate to the

sample size: (from left to right) n = 100, 500, 1000, 2000.

We see from Figures 5.3 and 5.4 that the performance of the kernel density estimator with

empirical bandwidth selector is very unpredictable in small to moderate sample sizes, a prob-

lem that is amplified when p = 3. Except for in the trivariate case with 2 degrees of freedom

and n = 2000 observations, where the kernel density estimator marginally outperforms the

mixture sieve (EG), the Gaussian mixture sieve (EG and EM) estimates consistently yield a

smaller median ISE estimate than do the Liebscher estimates and the kernel estimates based

on empirically selected bandwidth. The differences are particularly prominent in the cases

where the sample size is small and the true density is heavy tailed. The Liebscher estimator

has a much smaller standard deviation than does the LSVC kernel in small sample sizes, and

it marginally outperforms for all sample sizes in the p = 2 case when the tails of the true
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density are not too heavy. The EM algorithm tends to slightly outperform the EG algorithm

in terms of median integrated squared error in the p = 3 case. In the p = 2 case, the EG

algorithm tends to slightly outperform EM when the α is estimated based on the rule of

thumb procedure. It all scenarios, there is very little difference in performance between the

EM and EG algorithms. Further figures are available in a longer version of this paper.
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Figure 5.4: Boxplots of the square root of the integrated squared error (divided by

the number of points in the grid-array of evaluation points) based on 1000 MC repli-

cations using n observations from a trivariate t distribution with d degrees of freedom

and with correlation coefficients ρ12 = 0.4, ρ13 = −0.7, ρ23 = 0.1. Top left panel: d = 1.5;

top right panel: d = 2; bottom left panel: d = 3; bottom right panel: d = 4. In all

panels, the blocks relate to the sample size: (from left to right) n = 100, 500, 1000, 2000.

Because our proof strategy does not allow is to comment on the theoretical performance

of our estimator in a neighbourhood of the origin, we provide in Figures 5.5 and 5.6 the

root squared errors (over the same 1000 Monte Carlo replications) of each estimator at

zero. While the Liebscher estimator behaves moderately well at zero in the p = 2 case (see

Figure 5.5), when p > 2 the estimator is not defined at zero. This is due to the nature of
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the transformations employed; referring to equation (2.5) of Liebscher (2005) we see that

whenever p > 2, the component z−p/2+1 is problematic at z = 0, and equation (2.5) results

in a zero times infinity operation. For this reason the Liebscher estimator is not used as a

comparison in Figure 5.6.
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Figure 5.5: Boxplots of the root squared error at zero based on 1000 MC replications

using n observations from a bivariate t distribution with d degrees of freedom and with

correlation coefficient ρ = 0.4. Top left panel: d = 1.5; top right panel: d = 2; bottom

left panel: d = 3; bottom right panel: d = 4. In all panels, the blocks relate to the

sample size: (from left to right) n = 100, 500, 1000, 2000.

It is worth noting that the difference in computation time for the different estimators is

substantial in large and moderate sample sizes, especially when the data are heavy tailed.

On the same standard desktop computer (2.4GHz, 2GB RAM), the average computation

time over ten different draws of n = 2000 observations from the trivariate t distribution with

1.5 degrees of freedom was 0.74 seconds for the EG mixture sieve (true α), 27.31 seconds

for the EM mixture sieve (true α), and 10.32 seconds for the Liebscher estimator, whilst

that for the LSVC kernel density estimator was over 10 minutes. It is comforting to note
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that, the EG algorithm, an algorithm with such substantial practical advantages when it

comes to handling large and growing datasets can perform so well, even in samples of small

and moderate size. Since each iteration of the EG alogirthm with p = 3 only takes around

8/1000 seconds to compute, it is an attractive option for handling financial and other data

generated on a tic-by-tic basis.
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Figure 5.6: Boxplots of the root squared error at zero based on 1000 MC replications

using n observations from a trivariate t distribution with d degrees of freedom and

with correlation coefficients ρ12 = 0.4, ρ13 = −0.7, ρ23 = 0.1. Top left panel: d = 1.5; top

right panel: d = 2; bottom left panel: d = 3; bottom right panel: d = 4. In all panels,

the blocks relate to the sample size: (from left to right) n = 100, 500, 1000, 2000.

5.3 Sensitivity to the choice of c

A natural question that arises when considering Theorem 1 is how large a role the choice

of c makes to the performance of the estimator. To address this question, we analyse the

performance of the mixture sieve (EG) algorithm over a range of values of c. For c increasing

from 0.5 to 2 in steps of size 0.1, we compute the integrated squared errors of the EG estimator
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in 100 simulation experiments in which n = 500 observations were drawn from a bivariate t

distribution with 1.5 degrees of freedom and correlation coefficient ρ = 0.4. η was taken as

1.5 and α was fixed at 0.75, which is the correct value of α to use when the data are drawn

from a t distribution with 1.5 degrees of freedom. An analogous experiment is conducted for

the 4 degrees of freedom case. The results are displayed in Figure 5.7.

0

0.002

0.004

0.006

0.008

0.01

0.012

c=
0.

5

c=
0.

6

c=
0.

7

c=
0.

8

c=
0.

9

c=
1

c=
1.

1

c=
1.

2

c=
1.

3

c=
1.

4

c=
1.

5

c=
1.

6

c=
1.

7

c=
1.

8

c=
1.

9

c=
2

0

0.002

0.004

0.006

0.008

0.01

0.012

c=
0.

5

c=
0.

6

c=
0.

7

c=
0.

8

c=
0.

9

c=
1

c=
1.

1

c=
1.

2

c=
1.

3

c=
1.

4

c=
1.

5

c=
1.

6

c=
1.

7

c=
1.

8

c=
1.

9

c=
2

Figure 5.7: Boxplots of the root integrated squared error (divided by the number of

points in the grid-array of evaluation points) based on 100 MC replications using

500 observations from a bivariate t distribution with d degrees of freedom and with

correlation coefficient ρ = 0.4. Left panel: d = 1.5; right panel: d = 4.

As Figure 5.7 indicates for this example, in practice the estimator is rather insensitive

to the choice of c as long as c is not taken too small. The reason that small c results in

a deterioration in performance is that too few mixtures are being used to approximate the

density. By contrast, when a large number of mixtures are used, the algorithm produces

estimates of the mixing weight that are close to zero for many of the mixture components.

6 Application to binary classification of Wisconsin breast

cancer data

We consider our elliptic density estimator in the context of binary classification using the
well-known Wisconsin breast cancer (diagnostic) dataset used also in Liebscher (2005). This
dataset is available on the UCI Machine Learning Repository website:
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29.

It consists of 30 real-valued continuous attributes based on the cell nuclei of 569 breast tumor

patients, of which 212 instances are malignant and 357 instances are benign, along with a

variable indicating whether the tumor was malignant or benign. The dataset is discussed

in more detail in Street et al. (1993). Figure 6.1 presents a smoothed scatterplot matrix of

three of these attributes (the area, smoothness and texture of the worst nuclei observations
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for each patient) for the malignant and benign groups.
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Figure 6.1: Smoothed scatter plot matrices for malignant cases (left) and benign cases

(right) for three of the attributes of the Wisconsin breast cancer data: worst area,

worst smoothness and worst texture.

Figure 6.2 plots the hill estimates of α(R) against the threshold, K (see section 4.1) for

the benign and the malignant cases (standardised data). It suggests that the tails of the

inverse mixing measure for the trivariate density of worst case area, texture and smoothness

are much heavier in the case of a malignant tumour than in the case of a benign tumour.

We consider the problem of classifying patients into the benign or malignant group based on

observations on these three variables. To this end, we construct trivariate density estimates

in the benign and malignant groups using the mixture sieve (EG) estimator with tuning

parameter α chosen by the rule of thumb procedure in section 4.1. Using a threshold of

K = 65 observations in equation (4.2) yields a α̂(1/Q) of 3.47 in the malignant case and of

4.17 in the benign case. Letting f̂n(y|M) denote the density at some evaluation point y in

the malignant group and letting f̂n(y|B) denote the density at y in the benign group, we

may construct a Bayes’ classifier based on the estimated posterior probabilities,

P̂ (M |y) = f̂M
n (y|M)P̂ (M)

f̂n(y|M)P̂ (M) + f̂n(y|B)P̂ (B)
and P̂ (B|y) = f̂M

n (y|B)P̂ (B)

f̂n(y|M)P̂ (M) + f̂n(y|B)P̂ (B)
.

where P̂ (M) and P̂ (B) denote the estimated probability of being in the malignant and be-

nign groups respectively; these quantities are obtained using the empirical proportions of

malignant and benign cases. The relative magnitudes of P̂ (M |yi) and P̂ (B|yi) then deter-

mines whether individual i with attributes yi is assigned to group M (malignant) or group

B (benign). Based on these posterior probabilities, we test the performance of the classifier

by comparing the output of the classifier to the true group labels. Our classifier misclassifies
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only 69 of the patients in the malignant group, as compared with 79 misclassifications in

the malignant group when the classification is based on the trivariate normal distribution.

However, the trivariate normal model does classify the patients in the benign group better,

with 33 misclassifications occurring rather than 43 in the case of the our classifier.
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Figure 6.2: hill estimates of α(R) against threshold, K, for malignant and benign cases.

We have presented here one possible application of the methodology developed in this

paper. A further application to systemic risk management using emerging markets exchange

rates is presented in a longer version of this paper, which is available elsewhere.

7 Proofs

Proof of Theorem 1. As usual, decompose the left hand side of equation (4.1) into estimation

error and approximation error,

sup
y∈D

|f(y)− f̂M
n (y)| ≤ sup

y∈D
|f(y)− fM(y)|+ sup

y∈D
|fM(y)− f̂M

n (y)|

= I1 + I2,
(7.1)

We will make use of linear functional notation throughout, i.e.

P(A) :=

∫
I1{1/q ∈ A}P(d(1/q)) and Ph :=

∫

Q
h(1/q)P(d(1/q)).

The controls over I1 and I2 both rely on the following preliminary lemma

Lemma 1. For a fixed p < ∞ and D any fixed compact subset of Rp that does not include

the zero vector, the set of functions

G := {g : q 7→ ψ (y|q) ; q ∈ Q, y ∈ D} , (7.2)
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is a subset of B, the set of bounded functions from A to R, where A is an arbitrary set.

Proof. Let

ζ(q) := qp/2 and ϑ(q) := exp
{
−qyTΩ−1y

}
,

and as before, let w := yTΩ−1y. Then lim1/q→0 ζ(q)ϑ(q) is indeterminate. Transforming, we

have

lim
1/q→0

ζ(q)ϑ(q) = lim
1/q→0

ζ(q)

1/ϑ(q)
,

which is zero for all w outside a small neighbourhood of w = 0 and p <∞, hence G ⊂ B. Note
that the above limit is infinity in a neighbourhood of w = 0, which is why a neighbourhood

of w = 0 must be excluded.

Control over I1.

Definition 1 (Dudley (2002)). Let PM and P be laws on Q. The Prohorov metric is defined

as

ρ(PM ,P) := inf {ε > 0 : PM(A) ≤ P(Aε) + ε for all Borel sets A} , (7.3)

where A is an arbitrary Borel set and Aε := {r ∈ R+ : d(r, A) < ε} is the “ε-enlargement”

of A.

Lemma 2. Let PM ∈ M with

M :=

{
M∑

s=1

Λsδ1/qs : Λ1, . . . ,ΛM ∈ Q ∩ [0, 1],
M∑

s=1

Λs = 1,M = 1, 2, . . .

}
.

δ1/qs is the Dirac measure at 1/qs, i.e., for an arbitrary Borel set A, δ1/qs(A) = 1 if 1/qs ∈ A,

0 otherwise. Under Condition 4,

ρ(P,PM) = O
(
M−α/(1+α)

)
,

where ρ(·, ·) is the Prohorov metric of equation (7.3).

Proof. Let {1/qs : s ∈ N} be equally spaced over Q and let P(Q) be the set of all probability

measures on the Borel sets of Q. Since M is dense in P(Q) under the weak topology

(Parthasarathy, 1967, Theorem 6.3), there exists a choice of weights, (Λs)s=1,...M , such that

the sequence of weighted discrete measures, PM(A) :=
∑M

s=1 Λsδ1/qs(A) converges weakly to

P(A) as M → ∞. Furthermore, separability of Q means weak convergence of PM to P is

equivalent to convergence under the Prohorov metric (Dudley, 2002, Theorem 11.3.3). To

establish the rate of convergence, we fix an ε > 0 and introduce the function h ∈ Cb,

h(1/q) = 0 ∨
(
1− 1

2ε
d(1/q, A)

)
, (7.4)
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which is the same function introduced in Dudley (2002) Chapter 11.3. In the above definition

d(1/q, A) = infr∈A d(1/q, r), so that h(1/q) = 1 if and only if 1/q ∈ A, and h(1/q) = 0 as soon

as 1/q is more than a 2ε away from the boundary of A. Hence I1{1/q ∈ A} ≤ h(1/q) ≤ I1{1/q ∈
A2ε}. For this fixed ε, there exists a x = εM(ε) such that P(1/Q > x(ε)) ≤ ε by Condition

4. Cover [0, x(ε)] with disjoint open balls of radius ε/2 around the {1/qs : s = 1, . . . ,M(ε)},
i.e. with Bε

s satisfying Bε
s ∩ Bε

j = 0 ∀j 6= s, and fix {Λs : s = 1, . . . ,M(ε)} such that∑M(ε)
s=1 |Λsδ1/qs − P(Bε

s)| ≤ ε. Then for the arbitrary Borel set A,

PM(A) ≤
∫

Q
h(1/q)P(d(1/q)) +

∫

Q
h(1/q)|PM − P|(d(1/q))

≤
∫

Q
I1{1/q ∈ A2ε}P(d(1/q)) +

∫

Q
h(1/q)|PM − P|(d(1/q))

= P(A2ε) +

∣∣∣∣∣∣

M(ε)∑

s=1

Λsh(1/qs)−
∫

Q
h(1/q)P(d(1/q))

∣∣∣∣∣∣

≤ P(A2ε) + sup
r∈Q

|h(r)|
M(ε)∑

s=1

∣∣Λsδ1/qs − P(Bε
s)
∣∣+ sup

r∈Q
|h(r)|P

((
∪M(ε)
s=1 B

ε
s

)c)

≤ P(A2ε) + 2ε.

Since x = εM(ε), Condition 4 implies that

P(1/Q > εM(ε)) . [εM(ε)]−α

where . means less than up to a finite absolute constant. Solving for ε gives

ε = [εM(ε)]−α =M(ε)−
α

1+α (7.5)

The infimum over the ε such that the condition PM ≤ P(A2ε) + 2ε holds is ε =M(ε)−α/(1+α)

and thus the Prohorov metric tends to zero at a rate of O(M−α/(1+α)) when x = εM(ε) =

M
1

1+α .

Corollary 1. Under Conditions 1 and 4, with PM as defined in Lemma 2 and {1/qs : s =
1, . . . ,M} equally spaced between 0 + ε/2 and x− ε/2 =M

1
1+α − ε/2, where ε =M−α/1+α,

I1 = |Ω|−1/2 sup
y∈D

∣∣∣∣
∫ ∞

0

ψ(y|q)(P− PM)(dq)

∣∣∣∣ = O
(
M−α/(1+α)

)
.

Proof. By Jensen’s inequality and the convexity of the supremum and the absolute value

I1 =|Ω|−1/2 sup
y∈D

∣∣∣∣
∫ ∞

0

ψ(y|q)(P− PM)(d(1/q))

∣∣∣∣

≤|Ω|−1/2

∫ ∞

0

sup
y∈D

ψ(y|q)(d(1/q))
∫

|P− PM | (d(1/q)).
(7.6)
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The right hand side of (7.6) converges at rate rM if

∫ ∞

0

sup
y∈D

ψ(y|q)d(1/q) <∞ (7.7)

and PM → P at rate rM in some metric that metricises the topology of weak convergence.

Lemma 1 ensures

sup
y∈D

ψ(y|q) <∞ ∀q ∈ R+,

and since supy∈D ψ(y|q) ↘ 0 for 1/q → ∞, the condition in equation 7.7 is satisfied. The

rate rM is provided by Lemma 2 alongside Theorem 11.3.3 of Dudley (2002).

Control over I2. Since we control the approximation error separately, we assume in what

follows, that each Yi is generated from a member of the set of densities {ψ(·|qs) : qs ∈
R+, s = 1, . . . ,M} and write the true log likelihood, i.e. the one that contains the latent

mixture indicators (Zi,s), as

PnL(Λ) :=
1

n

n∑

i=1

ln

(
M∑

s=1

Λs|Ω|1/2Zi,sψ(Yi|qs)
)
,

where

Zi,s =

{
1 if Yi ∈ Ys

0 otherwise,

and Ys is the set of Yi drawn from the sth mixture component. Then the infeasible maximum

likelihood estimator is

Λ̂ML := argsup
Λ∈Γ

PnL(Λ) and Λ0 := argsup
Λ∈Γ

PL(Λ),

where

Γ =

{
Λ : Λs ∈ [0, 1] ∀s,

M∑

s=1

Λs = 1

}
;

Pn is the empirical measure and P is the true one.

Let Λ̂EG
I denote the vector of average weights computed over I = n iterations of the EG
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algorithm. We decompose I2 as

I2 = sup
y∈D

∣∣∣∣∣|Ω|
− 1

2

M∑

s=1

Λ0
sφ(y|Ω/qs)− |Ω̂|− 1

2

M∑

s=1

Λ̂EG
I,s φ(y|Ω̂n/qs)

∣∣∣∣∣

≤ sup
y∈D

∣∣∣∣∣
(
|Ω|−1/2 − |Ω̂|−1/2

) M∑

s=1

Λ0
sφ(y|Ω/qs)

∣∣∣∣∣

+ sup
y∈D

∣∣∣∣∣|Ω̂|
− 1

2

M∑

s=1

Λ0
sφ(y|Ω/qs)− |Ω̂|− 1

2

M∑

s=1

Λ0
sφ(y|Ω̂/qs)

∣∣∣∣∣

+ |Ω̂|− 1
2 sup
y∈D

∣∣∣∣∣

M∑

s=1

Λ0
sφ(y|Ω/qs)−

M∑

s=1

Λ̂EG
I,s φ(y|Ω/qs)

∣∣∣∣∣
= II1 + II2 + II3.

Remark. | · | denotes both determinant and absolute value here, with the context ensuring

no ambiguity.

Control over II1.

II1 ≤
∣∣∣
(
|Ω|−1/2 − |Ω̂|−1/2

)∣∣∣
M∑

s=1

Λ0
s sup
y∈D

φ(y|Ω/qs)

by convexity of the supremum. By Condition 5, Ω̂ is root-n consistent for Ω; we show here

that the determinant is also root-n consistent. The determinant of a p-dimensional matrix

X := (xjk) is given by |X| =∑p
j=1 cjkxjk for any k ∈ {1, . . . , p}, where C := (cjk) is a matrix

of cofactors (Abadir and Magnus, 2005, Exercise 4.36) hence for any k ∈ {1, . . . , p}
∣∣∣|Ω̂| − |Ω|

∣∣∣ ≤
p∑

j=1

|cjk − ĉjk||Ωjk|+
p∑

j=1

|cjk||Ωjk − Ω̂jk|

where

|cjk − ĉjk| =
∣∣∣(−1)j+k

(
|Ωjk| − |Ω̂jk|

)∣∣∣
and Ωjk is the (p− 1)-dimensional matrix obtained by removing the jth row and kth column

from Ω. By induction,
∣∣∣|Ω̂| − |Ω|

∣∣∣ = Op(n
−1/2) with constants of order p!. The final result

follows by Lemma 1.

Control over II2. It suffices to controlM maxs supy∈D |φ(y|Ω̂/qs)−φ(y|Ω̂/qs)|. Notice that

Pr
(
|φ(y|Ω̂/qs)− φ(y|Ω̂/qs)| > Kηn

)

≤ Pr
(
|φ(y|Ω̂/qs)− φ(y|Ω̂/qs)| > Kηn, ‖Ω̂− Ω‖1 ≤ Kδn

)

+ Pr
(
‖Ω̂− Ω‖1 > Kδn

)

= III1 + III2.
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III2 is O(1) with δn = n−1/2 and constant of the order p(p− 1)/2 by Condition 5. For any

fixed y ∈ D and s ∈ {1, . . . ,M} let Dφ(Ω̂) denote the derivative of φ(y|Ω/qs) with respect

to Ω evaluated at Ω̂. Since

sup
y∈D,qs∈{q1,...,qM}

‖Dφ(Ω̂)‖1

= sup
y∈D,qs∈{q1,...,qM}

∥∥∥∥(2π)
−p/2 exp

{
−1

2
qsy

T Ω̂y

}
(−qsΩ̂−1y ⊗ Ω̂−1y)

∥∥∥∥
1

< ∞,

we have, through a Taylor expansion of φ(y|Ω/qs) around φ(y|Ω̂/qs),

sup
y∈D,qs∈{q1,...,qM}

∣∣∣φ(y|Ω/qs)− φ(y|Ω̂/qs)
∣∣∣ . ‖Ω̂n − Ω‖1 .

where ‖ · ‖1 is the l1 norm. The right hand side is bounded by Kδn = Kn−1/2 by the

statement of the joint event. III1 = Op(n
−1/2) uniformly over y ∈ D and qs ∈ {q1, . . . , qM}

which together with III2 implies II2 is Op(M/
√
n).

Control over II3. The control over II3 relies on three preliminary lemmata, stated and

proved below.

Lemma 3. Suppose Conditions 1 - 4 hold. Then

(i) d(Λ̂ML,Λ0) →p 0, and

(ii) d(Λ̂ML,Λ0) = Op(M/
√
n),

where d(·, ·) is Euclidean distance.

Proof. To prove part (i) we verify the conditions of Theorem 5.7 of van der Vaart (1998).

Let

L :=

{
L(Λ) : Λ 7→ ln(

∑

s

ΛsZψ(Y |qs)) ; Λ ∈ Γ

}
⊂ L1(P ),

and let M(Λ) = PL(Λ), Mn(Λ) = PnL(Λ) so that Mn(Λ) − M(Λ) = (Pn − P )L(Λ; Y, Z).

By the identification established in Holzmann et al. (2006), the map Λ 7→ M(Λ) has unique

maximum at Λ0, hence

sup
Λ∈Γ:d(Λ,Λ0)≥δ

M(Λ) <M(Λ0) ∀δ > 0.

It remains to show that

sup
Λ∈Γ

|Mn(Λ)−M(Λ)| →p 0. (7.8)
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Since Γ ⊂ [0, 1]M is compact, it has a finite cover, hence we can easily construct brackets for

L (see e.g. van de Geer, 2000, proof of Lemma 3.10). (7.8) follows by Lemma 3.1 of van de

Geer (2000).

Our proof of part (ii) follows van der Vaart and Wellner (1996) Theorem 3.2.5. Re-write

our goal in Lemma 3 (ii) as

lim
J→∞

lim sup
n→∞

Pr
(
rnd(Λ̂

ML,Λ0) > 2J
)
= 0. (7.9)

Through a Taylor series expansion of M(Λ) around Λ0 we have

M(Λ) = M(Λ0) + (Λ− Λ0)TM̈(Λ0)(Λ− Λ0) + o(‖Λ− Λ0‖22) ∀Λ ∈ Γ,

where the Hessian matrix M̈(Λ0) is negative definite, implying

M(Λ0)−M(Λ) ≥ Cd2(Λ0,Λ) ∀Λ ∈ Γ. (7.10)

Next, by the definition of Λ̂ML as a maximiser,

sup
Λ∈Γ

Mn(Λ) ≤ Mn(Λ̂
ML). (7.11)

For n, j ∈ N, we introduce the sequence of sets

Sjn :=
{
Λ ∈ Γ : 2j−1 < rn‖Λ̂ML − Λ0‖2 ≤ 2j

}
, j ∈ N,

where rn is an divergent sequence of positive real numbers and, as before

Γ =

{
Λ : Λs ∈ [0, 1] ∀s,

M∑

s=1

Λs = 1

}
.

Let K :=
⋃∞

j=j0
Sjn, where j0 > J . For Λ̂ML ∈ K

Mn(Λ̂
ML)−Mn(Λ

0) +M(Λ0)−M(Λ̂ML)

= (Pn − P )L(Λ̂ML)− (Pn − P )L(Λ0)

≥ Cd2(Λ0, Λ̂ML)

[by equations (7.10) and (7.11)]

> C(r−1
n 2j0−1)2

= Cr−1
n 22j0−2.

Letting Gn(Λ) :=
√
n(Pn − P )L(Λ), introduce the event

B :=

{
1√
n

(
Gn(Λ̂

ML)−Gn(Λ
0)
)
>
C22j0−2

r2n
, Λ̂ML ∈ K

}
,
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and consider

Pr(rn‖Λ̂ML − Λ0‖2 > 2J)

≤ Pr
(
B, ‖Λ̂ML − Λ0‖2 < η

)
+ Pr

(
B, ‖Λ̂ML − Λ0‖2 ≥ η

)

[by equation (7.11)]

≤ Pr
(
B, ‖Λ̂ML − Λ0‖2 < η

)
+ Pr(‖Λ̂ML − Λ0‖2 ≥ η)

≤ Pr


 ⋃

j≥j0:2j−1<rnη

sup
Λ∈Sjn

1√
n

(
Gn(Λ)−Gn(Λ

0)
)
>
C22j−2

r2n


+ Pr(‖Λ̂ML − Λ0‖2 ≥ η)

≤
∑

j≥j0:2j−1<rnη

Pr

(
sup
Λ∈Sjn

1√
n

(
Gn(Λ)−Gn(Λ

0)
)
>
C22j−2

r2n

)
+ Pr(2‖Λ̂ML − Λ0‖2 ≥ η)

[by Boole’s inequality]

= IV1 + IV2.

IV2 is o(1) on K by the consistency established in part (i). The object of interest is the

largest rn for which IV1 is O(1) for a fixed M <∞. By Markov’s inequality

IV1 =
∑

j≥j0:2j−1<rnη

Pr

(
sup
Λ∈Sjn

1√
n

(
Gn(Λ)−Gn(Λ

0)
)
>
C22j−2

r2n

)

≤
∑

j≥j0:2j−1<rnη

E supΛ∈Sjn
r2n |Gn(Λ)−Gn(Λ

0)|
C
√
n22j−2

,

which requires a bound on the expected modulus of continuity of the empirical process

Gn(Λ) :=
√
n(Pn − P )L(Λ) over the Λ ∈ Γ such that ‖Λ− Λ0‖2 < 2jr−1

n . let Ġn(Λ) denote

the gradient of Gn at Λ, and Ġs
n(Λ) the s

th element. Then

Ġs
n(Λ) =

1

n

n∑

i=1

q
p/2
s Zi,s exp

{
−1

2
Y T
i (Ω/qs)

−1Yi
}

∑M
s=1Λsq

p/2
s Zi,s exp

{
−1

2
Y T
i (Ω/qs)−1Yi

}

− q
p/2
s E

[
Zi,s exp

{
−1

2
Y T
i (Ω/qs)

−1Yi
}]

∑M
s=1 Λsq

p/2
s E

[
Zi,s exp

{
−1

2
Y T
i (Ω/qs)−1Yi

}] .
(7.12)

The class of functions,

Gs := {g : qs 7→ ψ(y|qs) : qs ∈ [q1, qM ], y ∈ Rp} ,

is bounded Lipschitz so, since qM < ∞, q
p/2
s Vi,s exp

{
−1

2
Y T
i (Ω/qs)

−1Yi
}
and its expectation

are bounded. Furthermore, since

M∑

s=1

Λsq
p/2
s Zi,s exp

{
−1

2
Y T
i (Ω/qs)

−1Yi

}
≥ sup

s
Λsq

p/2
s Zi,s exp

{
−1

2
Y T
i (Ω/qs)

−1Yi

}
> 0 ,
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the supremum of equation (7.12) is bounded by some constant K, leading to

IV1 ≤
∑

j≥j0:2j−1<rnη

E supΛ∈Sjn
r2nĠ

T
n (Λ̄)‖Λ− Λ0‖

C
√
n22j−2

≤
∑

j≥j0:2j−1<rnη

E supΛ∈Sjn
r2nM max1≤s≤M Ġs

n(Λ̄s) |Λs − Λ0
s|

C
√
n22j−2

≤
∑

∑
l∈N:2l+J≤rnη

MKr2n2
l+Jr−1

C
√
n22(l+J)−2

= O

(
MK(1− 22)rn
C22J−2

√
n

)
,

where Λ̄ lies in the convex hull of Λ and Λ0. The above display is O(1) with rn =
√
n for

J → ∞ and M <∞, which proves the claim.

Lemma 4 (ULLN for the Hessian). Under Conditions 1-3,

‖∇Λ∇ΛLn(Λ)− E∇Λ∇ΛLn(Λ)‖ = Op(n
−1/2).

Proof. By Compactness of Γ, introduce a finite cover for Γ, {N (Λ(j), δ), j = 1, . . . , J},
Λ(j) ∈ Γ. Introduce also

H(l,r)
n (Λ) = [∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r,

where [∇Λ∇ΛLn(Λ)]l,r is the (l, r)th element of the Hessian, given by

[∇Λ∇ΛLn(Λ)]l,r = −1

n

n∑

i=1

ψ(Yi|ql)ψ(Yi|qr)
[
∑

k Λkψ(Yi|qk)]2
.

We use a familiar argument based on pointwise convergence and stochastic equicontinuity,

stated here for ease of reference.

Pr

(
sup
Λ∈Γ

|[∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r| >
2C√
n

)

≤ Pr

(
max

j∈{1,...,J}
sup

Λ∈N (Λ(j),δ)

(∣∣H(l,r)
n (Λ)−H(l,r)

n (Λ(j))
∣∣+
∣∣H(l,r)

n (Λ(j))
∣∣) > 2C√

n

)

≤ Pr

(
max

j∈{1,...,J}
sup

Λ∈N (Λ(j),δ)

∣∣H(l,r)
n (Λ)−H(l,r)

n (Λ(j))
∣∣ C√

n

)
+ Pr

(
J⋃

j=1

{∣∣H(l,r)
n (Λ(j))

∣∣ > C√
n

})

≤ Pr

(
max

j∈{1,...,J}
sup

Λ∈N (Λ(j),δ)

∣∣H(l,r)
n (Λ)−H(l,r)

n (Λ(j))
∣∣ C√

n

)
+

J∑

j=1

Pr

(∣∣H(l,r)
n (Λ(j))

∣∣ > C√
n

)
.

Hence the problem is one of showing:
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(i) ∃ 0 < C <∞ such that
∑J

j=1Pr
(∣∣H l,r

n (Λ(j))
∣∣ > C√

n

)
< ε ∀ ε > 0;

(ii) ∃ 0 < C <∞ such that, as δ = δn ↘ 0 at rate
√
n,

Pr


 sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣∣H(l,r)
n (Λ)−H(l,r)

n (Λ′)
∣∣ > C√

n


 < ε ∀ ε > 0.

For pointwise convergence (i), Markov’s inequality and the fact that (Yi)
n
i=1 are i.i.d. implies

Pr

(
|[∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r| >

C√
n

)

≤ nE
{
|[∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r|2

}

C2

=
nE
{∣∣h(l,r)(Yi; Λ)− Eh(l,r)(Yi; Λ)

∣∣2
}

nC2
,

where

h(l,r)(Yi; Λ) = − ψ(Yi|ql)ψ(Yi|qr)
[
∑

k Λkψ(Yi|qk)]2
.

By Lemma 1, h(l,r)(Yi; Λ) := h(l,r)(Yi; ql, qr,Λ) is bounded uniformly over y ∈ D and ql, qr ∈
Q, hence (i) is true. For (ii), we first note that, by the mean value theorem, for any Λ,Λ′ ∈ Γ,

there exists a Λ̄ in the convex hull of {Λ,Λ′} such that

h(l,r)(Yi,Λ)− h(l,r)(Yi,Λ
′) =

[
∇Λh

(l,r)(Yi, Λ̄)
]T

(Λ− Λ′).

Averaging, taking absolute values of both sides and applying the Cauchy-Schwarz inequality

gives

∣∣∣∣∣n
−1

n∑

i=1

h(l,r)(Yi,Λ)− n−1
n∑

i=1

h(l,r)(Yi,Λ
′)

∣∣∣∣∣ ≤ sup
Λ∈Γ

∥∥∥∥∥n
−1

n∑

i=1

∇Λh
(l,r)(Yi, Λ̄)

∥∥∥∥∥ ‖Λ− Λ′‖.
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An analogous bound applies to |Eh(l,r)(Yi,Λ)− Eh(l,r)(Yi,Λ
′)| and we have

Pr


 sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣∣H l,r
n (Λ)−H l,r

n (Λ′)
∣∣ C√

n




≤ Pr


 sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣∣∣∣∣n
−1

n∑

i=1

h(l,r)(Yi,Λ)− n−1

n∑

i=1

h(l,r)(Yi,Λ
′)

∣∣∣∣∣ >
C

2
√
n




+ I1





sup
Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣∣Eh(l,r)(Yi,Λ)− Eh(l,r)(Yi,Λ
′)|
∣∣ > C

2
√
n





≤ Pr


 sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

Bn‖Λ− Λ′‖ > C

2
√
n


+ I1





sup
Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

B‖Λ− Λ′‖ > C

2
√
n




,

where

Bn = sup
Λ∈Γ

∥∥∥∥∥n
−1

n∑

i=1

∇Λh
(l,r)(Yi, Λ̄)

∥∥∥∥∥ and B = sup
Λ∈Γ

∥∥∇Λ

[
Eg(l,r)(Yi, Λ̄)

]∥∥ .

Letting δn ↘ 0 at rate
√
n, we require, for the existence of a 0 < C <∞ such that

Pr


 sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

Bn‖Λ− Λ′‖ > C

2
√
n


 <

ε

2
∀ε > 0,

that such a C ensures Pr(Bn > C/2) < ε/2 ∀ε > 0. Let ξl,r(Yi; Λ) be a vector with sth

element

[ξ(l,r)(Yi; Λ)]s =
2ψ(Yi|ql)ψ(Yi|qr)ψ(Yi|qs)

[
∑

k |Λkψ(Yi|qk)]3
.

By Markov’s inequality

Pr(Bn > C/2)

≤
4E supΛ∈Γ

∥∥∥ 1
n2 [
∑n

i=1 ξ
(l,r)(Yi; Λ)

2 + 2
∑n

i=1

∑
j<i ξ

(l,r)(Yi; Λ)ξ
(l,r)(Yj; Λ)]

∥∥∥
C2

≤
4E 1

n2 supΛ∈Γ
∥∥∑n

i=1 ξ
(l,r)(Yi; Λ)

2
∥∥+ 2

∑n
i=1

∑
j<i supΛ∈Γ

∥∥ξ(l,r)(Yi; Λ)ξ(l,r)(Yj; Λ)]
∥∥

C2

[By Jensen’s inequality]

=
4

C2

[
1

n
E sup

Λ∈Γ

∥∥∥∥∥

n∑

i=1

ξ(l,r)(Yi; Λ)
2

∥∥∥∥∥+
n(n− 1)

n2
sup
Λ∈Γ

∥∥ξ(l,r)(Yi; Λ)ξ(l,r)(Yj; Λ)
∥∥
]

−→ E sup
Λ∈Γ

∥∥ξ(l,r)(Yi; Λ)ξ(l,r)(Yj; Λ)
∥∥ as n→ ∞.
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Existence of a finite C for which

I1





sup
Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

B‖Λ− Λ′‖ > C

2
√
n





= 0

is ensured by the boundedness of B. This establishes (ii).

The following lemma, which establishes the rate of convergence of the arithmetic mean

to the geometric mean, is standard (see e.g. de Leeuw, 2011). The proof is reproduced here

for convenience.

Lemma 5. Let (a)mi=1 denote a collection of numbers and define,

am :=
1

m

m∑

i=1

ai and gm = [

m∏

i=1

ai]
1/m .

am and gm converge to the same limit at rate 2m.

Proof.

xm+1 :=
am+1

gm+1
=
am + gm
2
√
amgm

=
1

2

(√
am
gm

+

√
gm
am

)
=

1

2
(
√
xm + 1/

√
xm)

By the geometric-arithmetic mean inequality, we have xm ≥ 1, so 1/
√
xm ≤ 1 and

√
xm ≤ xm.

Hence

xm+1 − 1 =
1

2

(√
xm +

1√
xm

− 2

)
≤ 1

2
(xm − 1)

so

0 ≤ (xm+1 − 1) ≤ 1

2
(xm − 1),

and the recursion gives

0 ≤ (xm+1 − 1) ≤ 1

2m
(x0 − 1);

i.e. xm → 1 at rate 2m.

Corollary 2. When η is chosen as 2r
√
(2 lnM)/I , where r is the lower bound on the

instances ψ(Yi|qs), introduced in Theorem 1 of Helmbold et al. (1997),

|Ω̂|−1/2 sup
y∈D

∣∣∣∣∣

M∑

s=1

Λ0
sψ(y|qs)−

M∑

s=1

Λ̂EG
I,s ψ(y|qs)

∣∣∣∣∣ = Op

(
M√
n

)
.

where I = n. We may also consider the asymptotics as we allow r ↘ 0. This yields the

same rate if r is of order at most
√
2 lnM

2M
√
n

and yields

|Ω̂|−1/2 sup
y∈D

∣∣∣∣∣

M∑

s=1

Λ0
sψ(y|qs)−

M∑

s=1

Λ̂EG
I,s ψ(y|qs)

∣∣∣∣∣ = Op

(√
2 lnM

(2r)n

)

if r converges to zero faster.
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Proof.

|Ω̂|−1/2 sup
y∈D

∣∣∣∣∣

M∑

s=1

Λ0
sψ(y|qs)−

M∑

s=1

Λ̂EG
I,s ψ(y|qs)

∣∣∣∣∣ ≤ |Ω̂|−1/2

[
max

s∈{1...,M}
sup
y∈D

ψ(y|qs)
] M∑

s=1

|Λ0
s − Λ̂EG

I,s |.

The term in parenthesis is bounded by Lemma 1. For
∑M

s=1 |Λ0
s − Λ̂EG

I,s |, consider, by the

triangle inequality

‖Λ̂EG
I − Λ0‖1 ≤ ‖Λ̂EG

I − Λ̂ML‖1 + ‖Λ̂ML − Λ0‖1, (7.13)

where ‖·‖1 is the l1-norm. An application of Lemma 3 gives ‖Λ̂ML−Λ0‖1 = Op(M/
√
n). For

the first term, mean value expand the partial derivative vector of the log likelihood around

Λ̂ML to give

∇ΛLn(Λ̂
EG
I ) = ∇ΛLn(Λ̂

ML) +∇Λ∇ΛLn(Λ̄)(Λ̂
EG
I − Λ̂ML),

where Λ̄ lies in the convex hull of Λ̂EG
I and Λ̂ML. Inverting,

(Λ̂EG
I − Λ̂ML) =

[
∇Λ∇ΛLn(Λ̄)

]−1
(
∇ΛLn(Λ̂

EG
I )−∇ΛLn(Λ̂

ML)
)
,

and Chebyshev’s inequality applied to
∣∣∣∇ΛLn(Λ̂

ML)− E∇ΛLn(Λ̂
ML)

∣∣∣ and
∣∣∣∇ΛLn(Λ̂

EG
I )− E∇ΛLn(Λ̂

EG
I )
∣∣∣

implies that, elementwise for all s ∈ {1, . . . ,M},
∣∣∣∇ΛLn(Λ̂

EG
I )−∇ΛLn(Λ̂

ML)
∣∣∣

=
∣∣∣∇ΛELn(Λ̂

EG
I )−∇ΛELn(Λ̂

ML)
∣∣∣+Op(n

−1/2)

=

∣∣∣∣∣∇ΛE

(
1

n

n∑

i=1

ln

(
1

I

I∑

j=1

∑

k

Λ̂EG
k,j ψ(Yi|qk)

))
−∇ΛE

(
1

n

n∑

i=1

ln

(
∑

k

Λ̂ML
k ψ(Yi|qk)

))∣∣∣∣∣

+ Op(n
−1/2)

=

∣∣∣∣∣∣
∇ΛE


 1

n

n∑

i=1

ln

[
I∏

j=1

∑

k

Λ̂EG
k,j ψ(Yi|qk)

]1/I
−∇ΛE

(
1

n

n∑

i=1

ln

(
∑

k

Λ̂ML
k ψ(Yi|qk)

))∣∣∣∣∣∣
+ Op(n

−1/2) +Op(2
−I)

=

∣∣∣∣∣∇ΛE

[
1

I

I∑

j=1

Ln(Λ̂
EG
j )

]
−∇ΛELn(Λ̂

ML)

∣∣∣∣∣+Op(n
−1/2) + Op(2

−I),

where the penultimate line follows by Lemma 5. Equation (3.6) and the negative semi-

definiteness of the Hessian imply that, elementwise for all s ∈ {1, . . . ,M},
∣∣∣∣∣∇ΛE

[
1

I

I∑

j=1

Ln(Λ̂
EG
j )

]
−∇ΛELn(Λ̂

ML)

∣∣∣∣∣ = O

(√
2 lnM

2r
√
I

)
,

37



where I = n and r is a lower bound on the random variables ψ(Yi, qs) introduced by Helmbold

et al. (1997) (see Theorem 1 op. cit.). By Lemma 4 along with the continuity of the inverse,

which ensures the applicability of Slutsky’s theorem,
[
∇Λ∇ΛLn(Λ̄)

]−1
converges to some

finite constant at rate
√
n. We have

(Λ̂EG
I − Λ̂ML) =

[
∇Λ∇ΛLn(Λ̄)

]−1
(
∇ΛLn(Λ̂

EG
I )−∇ΛLn(Λ̂

ML)
)

= Op

(
1√
n

)
Op

(
max

{
1√
n
,

√
2 lnM

2r
√
I

})
= Op

(√
2 lnM

(2r)n

)

since I = n.

We conclude the proof of Theorem 1 by returning to equation (7.1). We see from the

controls over II1, II2 and II3 that II3 dominates in the bound on I2. Equalising the an-

tagonistic approximation and estimation error terms and solving for M delivers the rate in

Theorem 1
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