
Escanciano, Juan Carlos; Zhu, Lin

Working Paper

Set inferences and sensitivity analysis in semiparametric
conditionally identified models

cemmap working paper, No. CWP55/13

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Escanciano, Juan Carlos; Zhu, Lin (2013) : Set inferences and sensitivity analysis in
semiparametric conditionally identified models, cemmap working paper, No. CWP55/13, Centre for
Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2013.5513

This Version is available at:
https://hdl.handle.net/10419/97406

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2013.5513%0A
https://hdl.handle.net/10419/97406
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Set inferences and sensitivity 
analysis in semiparametric 
conditionally identified models 
 
 
 

Juan Carlos Escanciano 
Lin Zhu 

 

 

 
 

 

 

The Institute for Fiscal Studies 
Department of Economics, UCL 

 
cemmap working paper CWP55/13 



Set Inferences and Sensitivity Analysis in Semiparametric

Conditionally Identi�ed Models�

Juan Carlos Escancianoy

Indiana University
Lin Zhuz

Tsinghua University

October 22nd, 2013

Abstract

This paper provides tools for partial identi�cation inference and sensitivity analysis in a general

class of semiparametric models. The main working assumption is that the �nite-dimensional parame-

ter of interest and the possibly in�nite-dimensional nuisance parameters are identi�ed conditionally

on other nuisance parameters being known. This structure arises in numerous applications and

leads to relatively simple inference procedures. The paper develops uniform convergence for a set

of semiparametric two-step GMM estimators, and it uses the uniformity to establish set inferences,

including con�dence regions for the identi�ed set and the true parameter. Sensitivity analysis con-

siders a domain of variation for the unidenti�ed parameter that can be well outside its identi�ed set,

which demands inference to be established under misspeci�cation. The paper also introduces new

measures of sensitivity. Inferences are implemented with new bootstrap methods. Several example

applications illustrate the wide applicability of our results.
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1 Introduction

In many economic models, point identi�cation of parameters of interest is often at the cost of ad-hoc

assumptions. Relaxing these assumptions in general leads to a loss of point identi�cation, and instead

only a strict (non-singleton) subset of the parameter space can be identi�ed from a large sample, a

situation that has been referred to as partial identi�cation or set identi�cation; see Manski (2003,

2007) for textbook treatments and Tamer (2010) for a survey on recent theoretical and empirical

developments. The literature on partial identi�cation has increasingly grown over the last two decades,

but much of this literature has been restricted to models involving only �nite-dimensional parameters.

Furthermore, there are rather few tools available for applied economists to quantify the sensitivity

of inferences to critical identifying assumptions with di¤erent degrees of identi�cation power. In this

paper, we propose a new uni�ed framework and new tools to implement inference and sensitivity

analysis in a broad class of partially identi�ed semiparametric models.

Speci�cally, we investigate inferences in a class of semiparametric models containing a vector of

�nite-dimensional parameters (�0; �0) 2 � � T ; � � Rd� ; T � Rd� ; a possibly in�nite-dimensional
nuisance parameter h0 2 H, for a suitable class of functions H, and satisfying the moment restrictions

E[ (W; �0; h0 (W ) ; �0)] = 0; (1)

where W is a dw-dimensional observable random vector, and  (�; �; h (�) ; �) is a measurable moment
function from Rdw to Rd ; for each  := (�; h (�) ; �) 2 � := ��H� T : We are particularly concerned
with situations where �0; the parameter of interest, is not identi�ed by the moment restrictions (1).

However, we �nd plausible that in many applications the parameter � is conditionally identi�ed in the

sense that, for each �xed � 2 T0 � T and for an identi�ed h0(�; �) 2 H; there exists a unique solution
to (1) in �0, say �0(�) 2 �:1 The conditional identi�cation implies that the identi�ed set for � is the
�nite-dimensional manifold

�0 := f� 2 � : � = �0(�) for some � 2 T0g ;

where T0 := f� 2 T : E [ (W; (�0(�); h0 (�; �) ; �))] = 0g is possibly unknown:
This setting turns out to be general enough to be applicable to many parametric and semiparametric

partially identi�ed econometric models considered in the literature, and to many other new applications,

while permitting the use of relatively standard methods of analysis. It provides a framework under

which sensitivity to identi�cation can be quantitatively assessed. Roughly speaking, the nuisance

parameter � embodies assumptions that �complete�the model, and variation of �0 (�) in � quanti�es

the sensitivity of the parameter of interest to these assumptions. The set T0 could be interpreted as the
set of observationally equivalent identifying assumptions. Sensitivity analysis often considers variation

of �0(�) on sets T1 with T1 * T0; and the theory we propose accommodates this possibility.
This paper provides the following contributions within the setting described above: (i) it estab-

lishes uniform (in �) asymptotic results for semiparametric two-step Generalized Method of Moments
1We assume for simplicity a two-step setting where h0(�; �) is identi�ed prior and independently to the identi�cation

of �: A leading example is when h0(X; �; �) = E[�(W; �; �)jX], for some �(�): Example 1 below shows how our results can
be easily extended to models with an in�nite number of restrictions, therefore relaxing the prior identi�cation of h0.
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(GMM) estimators for �0(�) in (1), with non-smooth moment functions and possibly misspeci�ed mod-

els, thereby extending previous results by Chen, Linton and Van Keilegom (2003) (CLV hereafter)2;

(ii) it justi�es approximations of limiting distributions and standard errors via a multiplier-type boot-

strap; (iii) it proposes set inferences, including con�dence regions for the identi�ed set �0 and the

true parameter, allowing for the nuisance identi�ed set T0 to be unknown and estimated; and (iv) it
formalizes sensitivity analysis for �0(�) on � 2 T1 * T0: In particular, we propose new inferences for
the sensitivity set �1 = f�0(�) : � 2 T1g; and new measures of sensitivity, such as @�0(�)=@� at � 2 T1:

We illustrate the previous ideas with two generic examples below. The �rst example investigates

inferences about bounded linear functionals of a function that is known to lie within a band. This

is an example that has numerous applications in economics, see Manski (2003, 2007). We show how

our results can be used to extend recent results by, e.g., Chandrasekhar, Chernozhukov, Molinari and

Schrimpf (2012), Kline and Santos (2013) and Pacini (2012) from best linear approximation functionals

to general linear continuous functionals, including but not restricted to average partial e¤ects, gender

gap distributional e¤ects, counterfactual distributional e¤ects, consumer surplus, and functionals of the

joint distribution of outcomes in treatment e¤ects such as the proportion of individuals who bene�ted

from the treatment, to mention just a few. A second example application discusses set inferences and

sensitivity analysis in semiparametric models with no exclusion restrictions. This example complements

and extends related ideas in Conley, Hansen and Rossi (2012), derived there for parametric linear in-

strumental variables (IV) models, to semiparametric double-index models, including limited dependent

variable models with endogeneity and sample selection models as special cases. These two examples

serve to illustrate the wide applicability of the proposed procedures. The �rst example leads to convex

identi�ed sets with semiparametric support functions3, and it also shows how our results can easily ac-

commodate an in�nite number of moment restrictions, which includes conditional moment restrictions

or models with a continuum of quantiles as special cases. The second example yields identi�ed sets

which are in general non-convex non-linear manifolds. A previous version of the paper, Escanciano and

Zhu (2012), contains further detailed examples and an empirical application of the techniques discussed

here to estimating functionals of willingness-to-pay in a contingent valuation study.

The paper is organized as follows: After this introduction and a literature review, Section 3 illus-

trates the wide applicability of our methods with two motivating examples. Section 4 develops uniform

inferences for the possibly misspeci�ed version of the conditionally identi�ed model in (1). Section 5

applies the uniform results to construct con�dence regions for the identi�ed set and the true parameter.

Other applications in this section include a formalization of sensitivity analysis and inferences incorpo-

rating prior knowledge on the nuisance parameters. Section 6 considers some applications motivated

from the examples in Section 3, showing how our conditions can be generally veri�ed in each of them.

Finally, Section 7 concludes and discusses possible extensions. Mathematical proofs are gathered in

the Appendix.

2We extend CLV to partially identi�ed semiparametric models and to misspeci�ed models. The analysis under mis-

speci�cation is needed here to handle the case where T0 is unknown and estimated, and also for sensitivity analysis. Under
misspeci�cation the de�nition of �0(�) has to be modi�ed accordingly; see Section 4.

3For a de�nition of support function of a convex set see Section 2.
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2 Literature Review

Our approach to partial identi�cation has important precedents in the literature. To the best of our

knowledge, this setting was �rst proposed for modeling partial identi�cation by Sargan (1959) in a

context of IV models. In the classical setting of demand and supply simultaneous equations, Leamer

(1981) shows that the non-convex identi�ed set for demand and supply elasticities can be written as

in (1). For instance, in a demand and supply model with no exogenous variables and uncorrelated

errors, the identi�ed set for the slope parameters is a section of a hyperbola. For more general linear

simultaneous equations, Phillips (1989) shows the existence of parameterizations �tting our setting with

identi�ed �0(�) � �0 and � completely unidenti�ed. He further investigated the asymptotic theory of

estimators and test statistics under partial identi�cation. More recently, Altonji, Elder and Taber

(2005) study the impact of attending a Catholic school on future educational attainment. In their

application �0(�) is the coe¢ cient of an endogenous binary variable in a bivariate probit model and �

denotes the correlation of the unobservable errors in the �rst and second stage equations.

This earlier approach to partial identi�cation has been recently extended to general parametric

moment restrictions by Arellano, Hansen and Sentana (2012). These authors provide a test for un-

deridenti�cation and example applications in linear IV models, dynamic panel data, Phillips curves

and asset pricing models. Conley et al. (2012) and Nevo and Rosen (2012) consider set inferences

in linear IV models satisfying (1). Further example applications in the context of dynamic models

include structural vector autoregressions with sign restrictions, see, e.g., Rubio-Ramirez, Waggoner

and Zha (2010), non-fundamental moving average representations in Lippi and Reichlin (1993,1994) or

incomplete asset pricing models in Kaido and White (2009), to mention but a few. More generally, in

dynamic macroeconomic models calibration has been routinely employed, which may be interpreted as

a pointwise version of our partial identi�cation approach in partially identi�ed settings.4 The inferences

we propose here are substantially di¤erent from those in the aforementioned papers and the setting

considered is signi�cantly more general.

The scope of applications of our methods is considerably broader than the examples mentioned

above; see Manski (2003, 2007). Conditionally identi�ed models arise naturally in situations with

missing, contaminated, misclassi�ed or censored data, see, e.g., Horowitz and Manski (1995, 2000, 2006)

and references below. In these models � may parameterize the counterfactual conditional probability

or selection probability. For instance, Chernozhukov, Rigobon and Stoker (2010) study inferences for

the parameter associated with a Tobin regressor (an endogenous, censored and selected regressor).

Their model satis�es (1) for certain (non-smooth) moments, with � denoting the conditional selection

probability. Our results can be used to complement their pointwise results with uniform inferences in

semiparametric versions of their model.

There is also an extensive literature using sensitivity analysis as a method to quantify the impact of

relaxing strong identi�cation assumptions on parameters of interest, see, e.g., Rosenbaum and Rubin

4An exception to the pointwise inference in macro models is Faust, Swanson and Wright (2004), who constructed

con�dence intervals for scalar parameters of interest by taking the union of con�dence intervals indexed by structural

parameters which are not identi�ed.
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(1983), Rosenbaum (2002), Imbens (2003), or more recently, Kline and Santos (2013). In this literature

the focus is not on set inference per se, but in the modulus of continuity of �0(�); for example, how

large has to be � (e.g. a measure of selection on unobservables) to obtain a �large�deviation of �0(�)

from �0(�0), where �0 is a benchmark case, e.g. �0 = 0 (no selection). Our inferences deal with the

whole curve �0(�); and as such, they include sensitivity analysis as a special case. Another important

di¤erence between partial identi�cation analysis and sensitivity analysis is that in the former � 2 T0;
whereas in the latter typically � 2 T1 * T0. This implies that sensitivity analysis should account for
misspeci�cation, a result that has been overlooked in the literature. These arguments led us to consider

a generic set T1 � T and to allow for misspeci�cation in our asymptotic results.5

Although the literature on sensitivity analysis has been mainly con�ned to parametric models,

there are some applications in semiparametric models as well. For instance, Scharfstein, Rotnitzky

and Robins (1999) study how non-ignorable drop-out a¤ects inferences on the mean of the outcome

of interest in a semiparametric model for panel data. They show that their model satis�es (1) for

certain moments, where � is the mean of the outcome variable, h is a cumulative conditional hazard

function, and � is a selection bias parameter. For a �xed � , they show that � and h are point-identi�ed,

and they carry out a pointwise sensitivity analysis by varying the selection bias parameter � over a

plausible (�nite) range of values. More recently, Kline and Santos (2013) study sensitivity in missing

data problems by setting � to be a Kolmogorov-Smirnov distance between the distributions of missing

and observed outcomes. We show in Example 1 below how our framework can accommodate inferences

on parameters such as average partial e¤ects in a general setting that includes that of Kline and Santos

(2013).

A large class of models for which our results are applicable are convex identi�ed sets. Bon-

temps, Magnac and Maurin (2012) consider linear �incomplete�models satisfying (1) with an in�nite-

dimensional nuisance parameter � but without nuisance parameters h: They show that many examples

fall under this structure, including the case of regression models with interval dependent data, which

has been a leading example investigated in the literature, see e.g. Manski and Tamer (2002). The

convexity and boundedness of T and the linearity of the moment function  in the nuisance function �
lead to a convex and closed identi�ed set, and Bontemps et al. (2012) exploit the convexity to develop

inference based on the support function of the identi�ed set, which is de�ned as � (qj�0) := sup�2�0 q0�,
for all q 2 Sp := fq 2 Rp : q0q = 1g. In their model, the support function is the expectation of a suit-
able function indexed by q 2 Sp. Beresteanu and Molinari (2008) propose inference based on support
functions for general models with convex identi�ed sets. As shown by these authors, inference about

the support function can be also carried out in the setting of (1) where � now denotes a direction q with

T0 = Sp and �0 is the value of the support function in that direction, i.e. �0(�) = � (� j�0). Our results
then extend those in Beresteanu and Molinari (2008) and Bontemps et al. (2012) by permitting the

moments characterizing the support function to depend on in�nite-dimensional nuisance parameters

as well.6

5Allowing for misspeci�cation is also important in sensitivity analysis because often ad-hoc functional form assumptions

are used for the unobserved heterogeneity, missing data or selection mechanism.
6Examples within this class of models are given by, e.g., Manski (2003, 2007), Blundell, Gosling, Ichimura and Meghir
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Our paper belongs to the rapidly growing literature on inferences in partially identi�ed models.7

When the identi�ed set is a closed interval, Horowitz and Manski (2000) develop con�dence intervals

for the entire identi�ed set, while Imbens and Manski (2004) and Stoye (2009) discuss methods for

constructing con�dence intervals for the true value. In a general setup, Chernozhukov, Hong and Tamer

(2007) develop a uni�ed criterion function approach for estimation and inference in partially identi�ed

models, generalizing results in M-estimation theory from point identi�cation to partial identi�cation.

They show the consistency of their level set estimator and obtain rates of convergence. Inference

is based on subsampling. For an alternative proposal in the same setting see Romano and Shaikh

(2008, 2010). Moment inequalities are leading examples of this literature, see e.g. Andrews and Jia

(2012), Andrews and Guggenberger (2009), Andrews and Soares (2010) and Bugni (2010), among

others. Models with convex identi�ed sets are investigated in Beresteanu and Molinari (2008). See

also Beresteanu, Molchanov and Molinari (2011, 2012). Recently, Kaido (2012) has investigated the

connections between the criterion function approach and the support function approach when the

identi�ed set is convex. These aforementioned papers deal with partially identi�ed models with no

in�nite-dimensional nuisance parameters to be estimated.

The literature on general semiparametric partially identi�ed models is more recent and rather

scarce. Song, Kosorok and Fine (2009) use pro�le likelihood methods to propose optimal tests in

semiparametric models with parameters that are not identi�ed under the null, extending previous

results by Andrews and Ploberger (1994). Chen, Tamer and Torgovitsky (2011) propose inverting

pro�led likelihood ratio tests to construct con�dence sets for �nite-dimensional parameters. These

works allow for the �nite-dimensional parameter to be estimated at a slower rate than the regular

(parametric) one.8 Hong (2012) considers semiparametric conditional moment models, with in�nite-

dimensional parameters approximated by sieves, extending previous important results by Santos (2012).

Our paper di¤ers considerably from these existing papers in the setting and objectives. We consider a

two-step approach, and more importantly, our results exploit the conditional identi�cation assumption

(identi�ed sets parameterized by �), which leads to simple and e¢ cient implementations in our setting.

Thus, sieve nonparametric methods and our methods are complements rather than substitutes, and

they can be potentially combined in extensions of our basic setting where � is in�nite-dimensional:9

3 Motivating Examples

The following examples illustrate the wide applicability of our methods. Henceforth, A0 denotes the

transpose of the matrix or vector A; 1(B) denotes the indicator of the event B (=1 if B occurs

(2007), Fan and Zhu (2009), Lee (2009), Chandrasekhar et al. (2012), Pacini (2012) and Kline and Santos (2013), to

mention but a few.
7This literature is too extensive to be fully discussed here. The reader is referred to Tamer (2010) for a survey.
8Our results can be extended to non-regular situations using well-known results from the empirical process literature.

For an interesting application of these tools in the context of partially identi�ed models see Lee, Seo and Shin (2011).
9All our results, with the exception of Theorem 5.2, are directly applicable to an in�nite-dimensional � . A sieve

approach, combined with our uniform results, can be used to extend Theorem 5.2. This extension is, however, beyond

the scope of this paper, and it is deferred for future research.
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and =0 otherwise), for a generic real-valued function r(x); r+(x) := r(x)1(r(x) > 0) and r�(x) :=

r(x)1(r(x) < 0) denote the positive and negative parts, respectively, and for a generic random vector

X, FX ; fX and SX denote the cumulative distribution function (cdf), (Lebesgue) density and support
of X; respectively.

Example 1 (Bounded linear functionals of band-identi�ed functions) In many partially iden-
ti�ed models, the function of interest is known to lie within a band; see Manski (2003, 2007) and

Chandrasekar et al. (2012) for numerous interesting examples, including regression with interval data,

sample selection and quantile treatment e¤ects. In this setting there is a real-valued function of inter-

est, which is denoted by '(x; �), e.g., a structural mean, distribution or quantile function conditional

on X = x: It is known that ' is identi�ed within a band

l(x; �) � '(x; �) � u(x; �) for a.s. x and all � 2 A; (2)

for identi�ed lower and upper functions l(x; �) and u(x; �); respectively, which can be estimated non-

parametrically. The index A may denote, for instance, the set of quantiles of interest and/or other

parameters measuring the level of missingness in the data, as in Kline and Santos (2013). Let L2(FX)

be the Hilbert space of square-integrable measurable functions of X: Assume '(�; �) 2 L2(FX) for each
� 2 A: Suppose we are interested in a linear bounded functional of '(x; �); say �0(�) = T'(�; �): For
instance, T might be an average incremental e¤ect functional T'(�; �) = E ['(1; X2; �)� '(0; X2; �)] ;
where X = (X1; X2) and X1 2 f0; 1g is a binary variable (e.g., gender or treatment indicator), or
a best linear approximation functional T'(�; �) = E [XX 0]�1E [X'(X;�)] as in Chandrasekar et al.

(2012), Kline and Santos (2013) or Pacini (2012), or a counterfactual distribution functional e¤ect

T'(�; �) =
R
'(x; �)F �(dx); where F �(x) is an identi�ed counterfactual distribution for covariates, see,

e.g., Chernozhukov, Fernández-Val and Melly (2013).10

In the general case, by the Riesz Representation Theorem there exists a function r � rT 2 L2(FX);
called the Riesz representer of T , such that

�0(�) = E ['(X;�)r(X)] ;

and the identi�ed set for �0(�) is the closed interval [l(�); u(�)]; where l(�) := E [L(X;�)] ; u(�) :=

E [U(X;�)],

L(X;�) := l(X;�)r+(X) + u(X;�)r�(X)

and

U(X;�) := u(X;�)r+(X) + l(X;�)r�(X):

For example, for T'(�; �) = E ['(1; X2; �)� '(0; X2; �)] ; the Riesz representer is

r(x) :=
x1 � p(x2)

p(x2)(1� p(x2))
; x = (x1; x2);

10We focus on univariate functionals but our results can be trivially extended to multivariate ones by using one-

dimensional projections, as with the support function of a convex set:
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where p(x2) := P [X1 = 1jX2 = x2] is a propensity score, assumed to satisfy 0 < p(x2) < 1; for

all x2 2 SX2 � Rdx2 : For T'(�; �) = E [@'(X;�)=@x1] ; r(x) = �@ log fX(x)=@x1: Notice that for
many examples of T the corresponding r is nonparametric, which may lead to moment functions that

are non-smooth in an in�nite-dimensional nuisance parameter. Our semiparametric setting, much like

CLV, allows for this possibility. Interestingly enough, in this new generic example with a nonparametric

representer r there is no asymptotic contribution from estimating r in the non-smooth indicators, which

facilitates inference. See Section 8.2 in the Appendix for details.

We can write this general example into our setting by letting �0(�) = �l(�) + (1 � �)u(�); with

� = (�; �) 2 T0 := [0; 1]�A: That is, the set of solutions corresponding to the moment functions

 (W; �0; h0; �) = �0 � �L(W;�)� (1� �)U(W;�);

where W = X and h0(�; �) � h0(�; �) = (l(�; �); u(�; �); r(�)).
The application of our procedures to this class of examples leads to extensions of previous results

by Chandrasekar et al. (2012), who deal with best linear approximation functionals. Special examples

include average partial or increment e¤ects, average structural functions, counterfactual distributions

or functionals of the joint distribution of outcomes in treatment e¤ects such as the proportion of

individuals who bene�ted from the treatment.11 This generic example also illustrates how our setting

can be modi�ed to accommodate an in�nite number of moment restrictions and/or convex identi�ed

sets with semiparametric support functions. Section 6 below discusses in detail an application of our

results to construct uniform (in �) con�dence bands for gender gap wage distributional e¤ects.

Example 2 (Semiparametric double-index models with no exclusion restrictions) In many
applications in microeconometrics exclusion restrictions, in the form of zero coe¢ cients in an outcome

equation, are imposed to achieve point identi�cation. Economic theory is often silent about such

restrictions, and, as we show below, the sensitivity of the conclusions can be assessed by �xing such

coe¢ cients to �; rather than zero, and proceeding with a formal sensitivity analysis. Conley et al.

(2012) applied a similar idea in a linear IV setting, where � is the coe¢ cient of the instruments in

the structural equation. See also Altonji et al. (2005) for an alternative approach in a setting with

no exclusion restrictions. We show how our results can be used to investigate sensitivity to exclusion

restrictions in non-linear and possibly non-separable semiparametric models. Non-linear and non-

separable models are representative of situations where the veri�cation of the conditional identi�cation

assumption is non-trivial. Likewise, these are typical applications where T0 may be unknown and needs
to be estimated.

Many semiparametric models, including models with endogenous regressors estimated by control

function or limited dependent variable models with selection, lead to double-index restrictions of the

form E[Y jX] = F0 [X
0�0; g0 (X)]; see, e.g., Blundell and Powell (2004), Escanciano, Jacho-Chávez and

11Our setting here does not provide sharp bounds for cases where ' satis�es additional restrictions to (2), such as

having identi�ed linear functionals; see, e.g., Firpo and Ridder (2010) and Fan and Zhu (2009) for results on the joint

distribution of outcomes in treatment e¤ects, and see also Heckman and Vytlacil (2007, Section 10) for a survey of partial

identi�cation in this context.
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Lewbel (2012) and references therein for numerous examples. This setting includes a wide class of

selection models, such as standard Heckman-type selection models, extensions of Tobit models like

double hurdle models, and censored binary choice models, among others.

A researcher estimating this model would impose that one of the coe¢ cients in �0 is zero, say

that of X1, where X = (X1; X2; X
0
3)
0: Suppose, however, that she is concerned about the sensitivity

of inferences to the maintained exclusion restriction. Then, she can write X 0�0 = �X1 + X2 + �00X3

(here the coe¢ cient of X2 is normalized to one since F0 is unknown). In this application h0(�; �) =
(F0(�; �); g0). We show below that our conditional identi�cation assumption holds under mild conditions
when we take as moments the score equations from the semiparametric least squares (SLS) estimator of

Escanciano et al. (2012). In this example, the mapping � ! �0(�) is nonlinear, the nuisance parameter

F0 depends on both �0(�) and �; and the set T0 is unknown. A robust approach to identi�cation, as
the one suggested here, does not impose that T0 is a singleton. Similarly, sensitivity analysis can be
carried out by estimating �0(�) over a set T1 that includes the exclusion restriction � = 0: A particular
case of this semiparametric double-index model is investigated in more detail in Section 6.

4 Uniform Inference

We �rst elaborate further on the model introduced in (1). Notice that, though we do not make it explicit

in (1), the nuisance function h0 (�) may contain (�; �) as additional arguments (see, e.g., Example 2
above). Our estimation and inference results are developed to account for potential misspeci�cation of

the moment restriction (1), and we also discuss simpli�cation of the results when the model is correctly

speci�ed. The asymptotic results developed below for semiparametric GMM estimation under global

misspeci�cation with non-smooth moment functions are of independent interest and complement some

of the previous results given by Hall and Inoue (2003) and Ai and Chen (2007) for smooth moments

and point-identi�ed models.

We assume that for each �xed value of (�; �) 2 ��T1; there is available a �rst-step nonparametric
estimator bh (�) for h0 (�) with certain convergence properties as speci�ed in Assumption A1 and A2
below. Throughout we use the following notation. Let j�j denote the Euclidean norm, i.e. jAj :=
(tr (A0A))1=2 ; where tr (A) is the trace of the matrix A. Let vec(A) denote the vectorization of matrix

A and 
 denote the Kronecker product. For a measurable function g of W; de�ne the norms kgk1 =

supw2SW jg (w)j and kgkr := (E [jg (W )j
r])1=r: The function space H is endowed with a pseudo-metric

k�kH ; which is a sup-norm metric with respect to the (�; �)-arguments and a pseudo-metric with respect
to w. For example, khkH := sup�;� kh (�; �; �)k1 or khkH := sup�;� kh (�; �; �)kr : In what follows, we
suppress (�; �) in the nuisance function h to save space, but it should be understood conformably, i.e.

(�; h; �) := (�; h (�; �; �) ; �) :
Suppose the observed data fWigni=1 are an independent and identically distributed (i.i.d.) sequence

of random vectors following the same distribution as W . For a measurable function f we denote the

empirical expectation and empirical process by

Enf(W ) :=
1

n

nX
i=1

f (Wi) and Gnf(W ) :=
1p
n

nX
i=1

ff (Wi)� E[f (Wi)]g :

9



Then, let Mn (�; h; �) := En [ (W; �; h (W ) ; �)], M (�; h; �) := E [ (W; �; h (W ) ; �)] ; and de�ne the

weighted Euclidean norm of a matrix A as kAk = (tr (A0�A))1=2 for some �xed symmetric positive

de�nite matrix �: Our theory can be easily extended to the case where � depends on � and is estimated,

provided the model is correctly speci�ed. However, when the model is misspeci�ed such extension is

cumbersome; see Ai and Chen (2007, p.10) for discussion. Thus, for simplicity we assume hereafter

that � is known. To develop asymptotic results under misspeci�cation, we maintain the conditional

identi�cation assumption throughout, that is, for each � 2 T1, we assume kM (�; h0; �)k is uniquely
minimized at �0 (�) :12 For each �xed � 2 T1, we consider a two-step GMM-estimator for �0(�) :b�(�) := argmin

�2�

Mn

�
�;bh; �� ; (3)

where bh (�) is the �rst-step estimator of h0 (�) for each �xed pair (�; �). In some applications, it would
su¢ ce to consider an estimator that is close to the minimizer, and we will make this point clear in the

following assumptions. Denote Zn(�) :=
p
n(b�(�) � �0(�)). Under mild regularity conditions, Zn(�)

belongs to the Banach space `1(T1) of uniformly bounded functions on T1; which is equipped with the
sup-norm; kzkT1 := sup�2T1 jz(�)j. In this paper we consider weak convergence, denoted by ; of Zn(�)
in the metric space `1(T1) endowed with the sup-norm in the sense of J. Ho¤mann-Jørgensen (see, e.g.,
Dudley 1999 p. 94). For simplicity of presentation, we abstract from measurability issues that may

arise as a result of using the space `1(T1) endowed with the sup-norm. See, e.g., van der Vaart and
Wellner (1996) for a formal treatment of lack of measurability and for de�nitions of Glivenko-Cantelli

and P -Donsker classes.

4.1 Consistency

In this section we discuss the consistency of the estimator de�ned in (3) under the following assumptions.

Assumption A1: Suppose that �0 (�) 2 � solves the minimization problem inf�2� kM(�; h0; �)k for
each � 2 T1, where � is a compact set in Rd� : In addition, assume
(i) The estimator b� (�) 2 � satis�es

sup
�2T1

�Mn

�b� (�) ;bh; ��� inf
�2�

Mn

�
�;bh; ��� = oP (1) : (4)

(ii) Uniform Conditional Identi�cation: for all " > 0, there exists � (") > 0 such that

inf
�2T1

�
inf

�:j���0(�)j�"
kM(�; h0; �)k � kM(�0 (�) ; h0; �)k

�
� � (") : (5)

(iii) Uniform Continuity: uniformly for all � 2 � and � 2 T1, M(�; h; �) is continuous in h at h = h0

with respect to the metric k�kH :
(iv)

bh� h0
H
= oP (1) :

(v) Uniform convergence: for all sequences of positive numbers f�ng ! 0;

sup
�2�;�2T1;kh�h0kH��n

kMn(�; h; �)�M(�; h; �)k = oP (1) : (6)

12Under misspeci�cation �0(�) is a pseudo-parameter; see White (1982).
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These assumptions are uniform versions of those in CLV for consistency. Like these authors, we

also allow for non-smooth moment functions  (�) as long as M(�) is continuous. Consistency and
rates of convergence for nonparametric estimators indexed by nuisance parameters are investigated

in Andrews (1995) or Escanciano, Jacho-Chávez and Lewbel (2013) for kernel estimates, or by Song

(2008) for series estimators. These results can be used to verify A1(iv). Assumption A1(v) is implied

by a Glivenko-Cantelli property of the class 	 := f (�; �; h; �) : � 2 �; h 2 H, � 2 T1g, for which well
known su¢ cient conditions are available in the literature, see, e.g., van der Vaart and Wellner (1996).

Our �rst result shows the uniform consistency of b� (�) :
Theorem 4.1 Under Assumption A1, it holds that sup�2T1

���b� (�)� �0 (�)��� = oP (1):

4.2 Weak Convergence

Consider now the weak convergence of Zn(�) =
p
n(b�(�) � �0(�)) as a stochastic process in `1(T1)

endowed with the sup-norm k�kT1 . Given consistency, we can work, as usual, in a small or even

shrinking neighborhood of �0 (�) and h0. De�ne the sensitivity set �1 := f�0 (�) : � 2 T1g : With some
abuse of the notation, de�ne a �-expansion of the parameter sets ��1 := f� 2 � : inf�12�1 j� � �1j � �g
and H� := fh 2 H : kh� h0kH � �g ; where the pseudo-metric k�kH is also modi�ed according to the

smaller parameter set ��1:We �rst introduce the de�nition of pathwise functional derivative to deal with

the estimation e¤ects of bh. For each (�; �) 2 ��1 � T1, we say that M (�; h; �) is pathwise di¤erentiable

at h 2 H� in the direction
�
h� h

�
if
�
h+ �

�
h� h

�
: � 2 [0; 1]

	
� H� and

lim
�!0

M
�
�; h+ �

�
h� h

�
; �
�
�M (�; h; �)

�
exists.

To simplify the notation we drop the dependence on true values. For instance,M (�) :=M (�0 (�) ; h0; �) :

De�ne V�(�; h; �) := @M (�; h; �) =@�0, V�0 (�) := V�(�0 (�) ; h0; �), let Vh (�; h; �)
�
h� h

�
be the path-

wise derivative ofM (�; h; �) along the direction h�h; V��(�; h; �) := @vec (V� (�; h; �)) =@�
0; V�0�0(�) :=

V��(�0 (�) ; h0; �); and let V�h (�; h; �)
�
h� h

�
be the pathwise derivative of V�(�; h; �) along the direc-

tion h � h: We will suppress � from �0 (�) and b� (�) whenever there is no ambiguity. For the weak
convergence we need the following assumptions.

Assumption A2: Suppose that �0 (�) is in the interior of � for each � 2 T1, and that sup�2T1 jb� (�)�
�0 (�) j = oP (1) : In addition, assume:

(i) There exists a (d � d� matrix) function  � (�; �; h; �) such that for any positive sequence �n ! 0;

sup
�2T1

sup
j���0j��n;kh�h0kH��n

jEn � (W; �; h; �)� V�(�; h; �)j = oP (1) :

(ii) The estimator b� (�) satis�es that uniformly in � 2 T1,�
En �

�
W; b� (�) ;bh; ���0�En �W; b� (�) ;bh; �� = oP

�
n�1=2

�
: (7)

(iii) Smoothness in � : (a) for each � 2 T1; the map � !M(�; h0; �) is twice continuously di¤erentiable

at �0; with �rst-order derivative V�0(�): Furthermore, (b) suppose that A0 (�) := V�0(�)
0�V�0(�) +

(M (�)0�
 Id�)V�0�0(�) is of full rank for all � 2 T1; sup�2T1 jA0 (�)j <1 and sup�2T1
��A�10 (�)

�� <1:
11



(iv) Smoothness in h : (a) for each (�; �) 2 ��1 � T1, the pathwise derivative Vh (�; h0; �) [h� h0] of
M(�; h; �) at h = h0 exists in all directions [h� h0] 2 H; and for all (�; h; �) 2 ��n1 �H�n � T1 with a
positive sequence �n ! 0, it holds that

sup
�2T1

kM (�; h; �)�M (�; h0; �)� Vh (�; h0; �) [h� h0]k � c kh� h0k2H (8)

for a constant c � 0; and

sup
�2T1

kVh (�; h0; �) [h� h0]� Vh (�0; h0; �) [h� h0]k � o (1) j� � �0j ; (9)

(b) similarly, the pathwise derivative V�h (�; h0; �) [h� h0] of V� (�) at h = h0 also exists, and

sup
�2T1

kV� (�; h; �)� V� (�; h0; �)� V�h (�; h0; �) [h� h0]k � c kh� h0k2H (10)

and

sup
�2T1

kV�h (�; h0; �) [h� h0]� V�h (�0; h0; �) [h� h0]k � o (1) j� � �0j ; (11)

(v) Pr
�bh 2 H�! 1, and

bh� h0
H
= oP

�
n�1=4

�
.

(vi) Stochastic Equicontinuity: for all sequences of positive numbers �n ! 0; (a)

sup
�2T1

sup
j���0j��n;kh�h0kH��n

kGn (W; �; h; �)�Gn (W; �0; h0; �)k = oP (1) :

and, (b)

sup
�2T1

sup
j���0j��n;kh�h0kH��n

kGn � (W; �; h; �)�Gn � (W; �0; h0; �)k = oP (1) :

(vii)
p
nVh (�0; h0; �) [bh� h0] admits an asymptotic expansion (uniformly in �):

p
nVh (�0; h0; �) [bh� h0] = 1p

n

nX
i=1

� (Wi; �0; h0; �) + oP (1) ;

and
p
nV�h (�0; h0; �) [bh� h0] also admits an asymptotic expansion (uniformly in �):

p
nV�h (�0; h0; �) [bh� h0] = 1p

n

nX
i=1

�� (Wi; �0; h0; �) + oP (1) :

Moreover, we set

s (w; �0; h0; �) :=

�
 (w; �0; h0; �) + � (w; �0; h0; �)

vec( � (w; �0; h0; �) + �� (w; �0; h0; �))

�
; (12)

and assume the function class S := fw ! s (w; �0(�); h0(�; �); �) : � 2 T1g is P�Donsker.

Note we allow for � to be on the boundary, e.g. T1 = T , but we rule out parameters �0(�) on
the boundary of � to keep the theory �simple�, but see, for instance, Chernozhukov et al. (2007).

Assumptions A2(i) and A2(ii) are instrumental in deriving asymptotic distribution of
p
n(b� � �0)

under misspeci�cation. When the moment function  (w; �; h0; �) is smooth in �; these conditions are
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typically satis�ed by letting  � (�; �; h0; �) = @ (�; �; h0; �) =@�0: With non-smooth moment functions,
these are high-level conditions but still are satis�ed by some commonly used models, for example,

the quantile regression model; see Angrist, Chernozhukov and Fernández-Val (2006). More generally,

the expression for  � can be obtained from the generalized information equality, see, e.g., Newey and

McFadden (1994). Assumption A2(iii) requires second-order di¤erentiability with respect to (w.r.t.)

� due to misspeci�cation. Similarly, A2(iv) imposes conditions on the cross term V�h (�) in addition
to the �rst-order pathwise derivative Vh (�) : Conditions on second-order derivatives are not needed in
the correctly speci�ed case, cf. CLV. Assumption A2(v) or similar versions are commonly assumed

in the semiparametric literature. Ichimura and Lee (2010) imposed slightly weaker conditions on the

converging rates of the initial estimator bh. Escanciano et al. (2013) provide simple primitive conditions
for verifying Pr

�bh 2 H� ! 1 with general constant kernel estimators. The rate oP
�
n�1=4

�
can be

relaxed to oP (1) when c in (8) is zero (i.e., under linearity). Assumption A2(vi) is usually implied

by the P�Donsker property of the function classes 	 := f (�; �; h; �) : � 2 ��1; h 2 H�, � 2 T1g and
	� := f � (�; �; h; �) : � 2 ��1; h 2 H�, � 2 T1g; for which primitive conditions can be easily provided
using standard empirical processes tools. Assumption A2(vii) is a high-level condition and implies

Assumption (2.6) in CLV for a �xed � . Notice that veri�cation of Assumption (2.6) in CLV usually

leads to the above asymptotic linear expansion by plugging in, for example, the Bahadur representation

for the nonparametric estimator bh� h0 in the Riesz representation of the linear mapping Vh: See, e.g.,
Section 3 in CLV and Newey (1994) for discussion. The type of analysis needed for establishing the

uniformity in � 2 T1 in the expansion of Assumption A2(vii) is similar to certain uniform weighted

bias calculations, which have been carried out in the literature for well-known estimators; see Andrews

(1995) and Escanciano et al. (2013) for kernel estimators and Song (2008) for series estimators.

Theorem 4.2 Under Assumption A2, it holds that
p
n(b� � �0) L;

where L is a Gaussian process in `1(T1) with zero mean and covariance function

C (�1; �2) = A0 (�1)
�1 [B0 (�1) D0 (�1)]K (�1; �2)

�
B00 (�2) D

0
0 (�2)

�0
A00 (�2)

�1 ;

with A0 (�) de�ned in A2(iii), B0 (�) := V�0 (�)
0�; D0 (�) := (M (�0; h0; �)

0�
 Id�);

K(�1; �2) := Cov (s (W; �0; h0; �1) ; s (W; �0; h0; �2)) ;

and s de�ned in (12).

Remark 4.1 When the model is correctly speci�ed (i.e. M (�) � 0) the assumptions and the asymp-
totic covariance function can be substantially simpli�ed. In this case, for all � 2 T1,

A0 (�) = V�0 (�)
0�V�0 (�) and D0 (�) = 0:

Hence, the covariance function simpli�es to

eC (�1; �2) = �V�0 (�1)0�V�0 (�1)��1 V�0 (�1)0� eK (�1; �2) �V�0 (�) �V�0 (�2)0�V�0 (�2)��1 ; (13)
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with eK (�1; �2) = E [es (W; �0; h0; �1) es0 (W; �0; h0; �2)] and es (W; �0; h0; �) :=  (W; �0; h0; �)+�(W; �0; h0; �):

Similarly, Assumptions A2(i-ii), A2(iv-b) and A2(vi-b) are not needed anymore. For the sake of com-

pleteness, we list the conditions for the correctly speci�ed case in the Appendix.

Example 1 (cont.) Theorem 4.2 quanti�es the asymptotic e¤ect of estimating nuisance parameters

(e.g. through the function � when the model is correctly speci�ed). Interestingly enough, in Example 1

with a nonparametric Riesz representer r there is no asymptotic contribution from estimating r in the

non-smooth indicators, which facilitates inference. Technically, the pathwise derivatives of mappings

such as �r(�)! E[l(X;�)r(X)1(�r(X) > 0)] at �r(�) = r(�) are zero, under some mild regularity conditions.
See Section 8.2 for details. Practically, this means that we can treat r in the indicator functions as

known, and we only need to consider estimation e¤ects arising from the linear functionals such as

�r(�)! E[l(X;�)�r(X)1(r(X) > 0)]; which are straightforward to deal with as shown in the Appendix.

4.3 Bootstrap Approximations

The set inferences developed in this paper will involve the limit distribution of continuous functionals

of Zn(�) =
p
n(b�(�) � �0(�)): Quantiles of these limiting distributions are generally unknown, and

bootstrap methods can be used to provide approximations of such quantiles. CLV propose to use

the ordinary nonparametric bootstrap. The nonparametric bootstrap can be used in our setting as

well, and conditions for its consistency can be easily given combining our uniform results above with

the arguments of CLV. The nonparametric bootstrap, however, can be computationally expensive

in our context, since we need to re-estimate the pair (�; h) for each bootstrap sample and for each

�xed � 2 T1. Hence, for completeness we propose here an alternative bootstrap method based on
the multiplier principle, which has the computational advantage that one does not need to estimate

(�0 (�) ; h (�; �)) for each bootstrap sample. In contrast to the nonparametric bootstrap, the multiplier
bootstrap requires the estimation of the in�uence function of the semiparametric estimator b� (�) ; which
can be a cumbersome task in some applications, especially under misspeci�cation. Hence, the most

practically convenient bootstrap method to choose depends on the speci�c application at hand. Since

the theory for the nonparametric bootstrap is relatively well known, we focus in the rest of this section

on the multiplier bootstrap.

According to the proof of Theorem 4.2, the asymptotic linear expansion for the estimator b� is
Zn(�) = ��(�0; h0; �)Gns (W; �0; h0; �) + oP (1) ;

where �(�0; h0; �) = A0 (�)
�1 [B0 (�) D0 (�)] with A0; B0; D0 and s (�) de�ned as in Theorem 4.2.

To simplify the exposition and with some abuse of notation, in what follows we include in h0 any

nonparametric object that may appear in the in�uence function s and the matrix � as a result of

di¤erentiation. This is for instance the case in models under quantile restrictions, where the in�uence

function depends on a conditional density, in addition to the original parameters of the model. Our

results below allow for this possibility under su¢ cient regularity conditions for the nonparametric esti-

mators of these additional nonparametric objects. Notice that if h0 includes � as an argument, e.g. h0
is pro�led, then estimation of V�0 (�) and V�0�0 (�) might be di¢ cult. However, in many applications

14



it is feasible to obtain uniformly consistent estimators. Even for the pro�led case, we can still esti-

mate V�0 (�) and V�0�0 (�) in some widely used semiparametric models, for instance, mean regression

and quantile regression models, see Example 2 below. Suppose there exists a uniformly (in (�; h; �))

consistent estimator bV� (�; h; �) of V� (�; h; �), as in Assumption A2(i), then V�0 (�) can be estimated
by bV�(b�;bh; �) := En �

�
W; b�;bh; ��. Similarly, we assume we can estimate V�0�0 (�) by bV��(b�;bh; �)

and M (�) by En
h
 
�
W; b�;bh; ��i : Denote the corresponding estimator of �(�0; h0; �) by b�(b�;bh; �).

We propose the following multiplier-type bootstrap to approximate the asymptotic distribution of a

continuous functional of Zn (�), say 	(Zn) :

Algorithm 1: (Multiplier Bootstrap Approximation)
Step 1: Generate an i.i.d. sequence of random variables fuigni=1 with mean zero, unit variance and
bounded (2 + �) moments, with � > 0, which are also independent of fWigni=1. Possible choices of
distributions for ui include the standard normal and Bernoulli. For example, one can use the Bernoulli

distribution with Pr(ui = (1�
p
5)=2) = (

p
5+ 1)=(2

p
5), and Pr(ui = (1+

p
5)=2) = (

p
5� 1)=(2

p
5);

as advocated in e.g. Mammen (1993).

Step 2: For each �xed � , compute bZ�n (�) = b�(b�;bh; �)n�1=2Pn
i=1

n
s
�
Wi; b�;bh; ��� Ens�W; b�;bh; ��oui:

Step 3: Compute the functional of interest 	( bZ�n):
Step 4: Repeat Step 1-3 B times and approximate the distribution of 	(Zn) with the empirical cdf

of the B bootstrap realizations of 	( bZ�n):
Our next theorem shows that bZ�n (�) weakly converges to the same distribution as Zn (�), for which we
need the following assumption.

Assumption A3: In addition to Assumption A2(ii), assume:
(i) sup�2T1

���b� (�)� �0 (�)��� = oP (1) ; Pr
�bh 2 H�! 1, and

bh� h0
H
= oP (1) :

(ii) There exist estimators bV�(�; h; �) and bV��(�; h; �) such that
sup

�2��1;h2H� ;�2T1

���bV�(�; h; �)� V�(�; h; �)��� = oP (1) ;

sup
�2��1;h2H� ;�2T1

���bV��(�; h; �)� V��(�; h; �)��� = oP (1) ;

both V�(�; h; �) and V��(�; h; �) are continuous in (�; h) at (�; h) = (�0; h0) uniformly in � 2 T1:
(iii) The class of functions S = fs (�; �; h; �) : � 2 ��1; h 2 H�; � 2 T1g is P�Donsker with uniformly
bounded mean, i.e. sup(�;h;�)2��1�H��T1 E [js (W; �; h; �)j] < 1; moreover, both E [s (W; �; h; �)] and
E
�
s (W; �; h; �) s (W; �; h; �)0

�
are continuous in (�; h) ; uniformly in �:

Notice that because of the possible addition of new in�nite-dimensional nuisance parameters into

the in�uence function, the parameter set H might be di¤erent from the one used in Theorem 4.2.

Assumption A3(ii) is a high-level condition, which is used to show the consistency of b�(b�;bh; �) to
�(�0; h0; �) uniformly in � 2 T . This assumption requires veri�cation of the uniform convergence of
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bV� and bV��, which is relatively easy in many cases. For example, if  (�; �; h; �) is twice continuously
di¤erentiable in �, then under some mild regularity conditions, we can establish a Glivenko-Cantelli

property for f@=@� (�; �; h; �) : � 2 ��1; h 2 H; � 2 T1g and bV� is the sample analog of V�(h; �) =
E[@ (�; �; h; �) =@�]; similar primitive conditions can be imposed for bV��. As for Assumption A3(iii),
we directly assume a P�Donsker property for the function class S which can be veri�ed by applying
standard arguments, see van der Vaart and Wellner (1996).

We use the notion of bootstrap consistency in probability introduced in Giné and Zinn (1990).

Let BL1 denote the set of all functionals on `1 (T1) with a Lipschitz norm bounded by 1, i.e. for

any f 2 BL1, supz2`1(T1) jf (z)j � 1 and for z1; z2 2 `1 (T1) ; jf (z1)� f (z2)j � kz1 � z2kT1 : Let
E� [�] and V ar� (�) denote the expectation and variance of bootstrap statistics conditional on fWigni=1,
respectively:

Theorem 4.3 Under Assumption A3, it holds that bZ�n (�) weakly converges to L (�) in `1 (T1) condi-
tional on fWigni=1 in probability, i.e.

sup
f2BL1

���E� hf � bZ�n�i� E [f (L)]��� = oP (1) (14)

and

sup
�2T1

���V ar�( bZ�n (�))� C(�; �)��� = oP (1) ; (15)

where L (�) and C (�; �) are de�ned as in Theorem 4.2.

Remark 4.2 Equation (14) and the continuous mapping theorem imply the consistency of bootstrap

quantiles of continuous functionals of Zn; whereas (15) shows the consistency of bootstrap standard

errors. Similar results to (15) for the ordinary nonparametric bootstrap are not available in the literature

in this generality. If the model is correctly speci�ed, then we do not need to estimate V�0�0 (�) and the

assumptions can be simpli�ed as shown in Section 8.1 in the Appendix. Details are omitted.

5 Set Inferences, Sensitivity Analysis and Prior Information

5.1 Set Inferences

5.1.1 Inference on the Identi�ed Set

We apply our previous uniform results to obtain inference on the identi�ed set�0 = f�0(�) : � 2 T0g for
a correctly speci�ed model. We allow for the possibility that T0 is unknown and estimated consistently
by T̂0. A candidate for T̂0 can be obtained extending the ideas in Chernozhukov et al. (2007) to our
semiparametric context with in�nite-dimensional nuisance parameters.

Speci�cally, a natural estimate for T0 is the level set estimator

T̂0 =
�
� 2 T1 :

Mn

�b� (�) ;bh(�; b� (�) ; �); ��2 � ĉ=n

�
; (16)
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for a suitable positive level value ĉ: In practice we can choose ĉ = log n; as suggested by Chernozhukov

et al. (2007). The following result provides conditions for convergence of dH
�
T̂0; T0

�
to zero, where

dH denotes the Hausdor¤ distance

dH (A;B) := max

�
sup
a2A

dH(a;B); sup
b2B

dH (b; A)

�
;

with dH (a;B) := infb2B ja� bj. This result is of independent interest.

Lemma 5.1 Let Assumption A2 hold. Then, dH
�
T̂0; T0

�
= oP (1) and Pr

�
T0 � T̂0

�
! 1 for T̂0 in

(16) and any ĉ!1; such that ĉ=n! 0 as n!1:

Even in applications where T0 is known, it is often practically convenient to consider a discrete approx-
imation to T0; so that our inferences below can be easily carried out (i.e., the sup is replaced by a max
over a �nite set). Our results permit discrete approximations as long as the discrete set T̂0 converges
to T0 in the Hausdor¤ metric as n!1. To include all these possibilities, we derive our inferences on
�0 for a generic estimator T̂0 satisfying a consistency condition.

Our �rst result is a direct corollary of Theorem 4.1 and shows the consistency in the Hausdor¤

metric of the estimated identi�ed set b�0 = fb�(�) : � 2 T̂0g. Let T �0 := f� 2 T : inf� 02T0 j� � � 0j � �g
be a small expansion of T0: In situations where we can guarantee that Pr

�
T̂0 � T0

�
! 1 there is no

need to consider a ��expansion and local misspeci�cation, so Assumption A2 above can be replaced
by Assumption A2�in the Appendix. Unfortunately, it is the other inclusion what we typically obtain,

cf. Lemma 5.1.

Corollary 5.1 Let Assumption A1 above hold for T1 = T �0 ; and assume �0 (�) is uniformly continuous
on T1 and that dH

�
T̂0; T0

�
= oP (1) : Then, it holds that dH

�b�0;�0� = oP (1) :

We now use our previous uniform convergence results to construct con�dence regions for the identi-

�ed set �0:We construct such con�dence regions by inverting tests of the hypothesis H0 : � (�) = �0 (�)

for all � 2 T0, against the negation of H0: One popular test statistic is the Kolmogorov-Smirnov (KS)p
n sup�2T̂0

���b�n (�)� �0 (�)��� ; whose asymptotic quantiles can be approximated by bootstrap. The KS
test leads to the con�dence region

CR1��;n :=
[

�2T̂0

n
� 2 � :

���� � b�n (�)��� � bc1��;n=pno ;
where bc1��;n is the bootstrap approximation of c1��;n := inffc : Pr(pn sup�2T̂0 ���b�n (�)� �0 (�)��� � c) �
1� �g: The coverage probability is established in the following proposition:

Proposition 5.1 Let Assumptions A2 and A3 hold with T1 = T �0 , and assume Pr
�
T0 � T̂0

�
! 1.

Then,

lim inf
n!1

Pr (�0 � CR1��;n) � 1� �:
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The required inclusion condition Pr
�
T0 � T̂0

�
! 1 is not very restrictive, see Lemma 5.1. It is worth

stressing that estimation of T0 does not have an asymptotic impact on our con�dence region for the
identi�ed set. This follows from the fact that, under our assumptions,

p
n sup
�2T̂0

���b�n (�)� �0 (�)��� = pn sup
�2T0

���b�n (�)� �0 (�)���+ oP (1);
see Chernozhukov, Lee and Rosen (2013) for a related result in a di¤erent setting.

5.1.2 Inference on the True Parameter

In this subsection, we consider testing for the null hypothesis that some given parameter vector lies in

the identi�ed set, and we use this test to construct con�dence sets for the �true�parameter, see Imbens

and Manski (2004) for related discussions. We distinguish two cases for completeness: the general case

and the case of convex identi�ed sets. The general case has wide applicability but, as we show below,

our proposal in that setting requires a rank condition and an order condition that are mirror images

of the classical overidenti�cation conditions required in the standard J-test. The convex case is less

general, but it has the advantage that in some cases where the order condition of the general case fails,

it still can be applied.

The General Case The testing hypotheses are

H0 : e� 2 �0 against H1 : e� =2 �0:
These hypotheses are of interest in their own. For instance, Altonji et al. (2005) aim to test for

signi�cance of the impact of attending a Catholic school on educational attainment in a partially

identi�ed parametric model. Their example �ts our setting with a null hypothesis 0 2 �0: A stronger
sense of no-impact is �0 (�) = 0 for all � 2 T0; which can be tested using the results of the previous
section.

Recalling that M (�; h0; �) = E [ (W; �; h0 (�; �; �) ; �)], then the null hypothesis is equivalent to

9 e� 2 T , s:t: M �e�;eh0; e�� = 0;
where eh0 (�; �) := h0

�
�; e�; �� : De�ne eT := ne� 2 T :M �e�;eh0; e�� = 0o, which satis�es that eT � T0 andeT is non-empty under the null hypothesis.

A simple approach to obtain a con�dence region for the true parameter consists in taking the union

of con�dence intervals for �0 (�) constructed at each � 2 T0. This union-intersection principle has
been commonly used in the literature. However, this approach leads to conservative inference. A more

e¢ cient method can be based on the following test statistic:

Tn(e�) := inf
�2T

pnMn

�e�;bh; �� ;
where bh is a consistent estimator for eh0: This criterion-based approach is a semiparametric extension of
the method proposed by Chernozhukov et al. (2007). For a given e� under the null, Tn(e�) can be viewed
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as a generalization of the classical overidenti�cation test statistic to partially identi�ed semiparametric

models: To proceed, we need the following assumptions.

Assumption A4: For �xed e� given in the testing problem:
(i) Existence of Minorant: there exist c > 0 and � > 0, such that

M �e�;eh0; �� � c(infe�2eT j� � e� j ^ �)
for all � 2 T ; where a ^ b := minfa; bg;
(ii) Smoothness in � : M(e�;eh0; �) is continuously di¤erentiable at all � 2 T , with derivative matrix
V� (e�;eh0; �) := @M(e�;eh0; �)=@�:
(iii) Smoothness in h : Assumption A2(iv)(a) holds with � = e�; T1 = T0 and condition (9) replaced by
the following condition: for h 2 H�n and �n = o(1), j�1 � �2j � �n,Vh �e�;eh0; �1� hh� eh0i� Vh �e�;eh0; �2� hh� eh0i � O (�n�n) : (17)

(iv) The estimator bh satis�es bh� eh0
H
= oP

�
n�1=4

�
; uniformly in e� 2 eT ,

p
nVh

�e�;eh0; e�� [bh� eh0] = 1p
n

Pn
i=1�

�
Wi; e�;eh0; e��+ oP (1) ;

and the function class
n
s
�
w; e�;eh0; �� :=  

�
w; e�;eh0; ��+ ��w; e�;eh0; �� : � 2 T o is P�Donsker.

(v) suph2H�n ;�2T
Gn �W; e�; h; ���Gn �W; e�;eh0; �� = oP (1) :

Assumption A4(i) is used to derive the convergence rate of the minimizers of inf�2T
pnMn

�e�;bh; �� :
Chernozhukov et al. (2007) imposed similar assumptions on the sample criterion function to obtain

convergence rate of the set estimates. Similar conditions can also be found in semiparametric estima-

tion with point identi�cation, e.g. see Ai and Chen (2003). This assumption is trivially satis�ed if

M
�e�; h0; �� is linear in �; or is di¤erentiable in � with derivative matrix bounded away from zero near

the neighborhood of the identi�ed set eT . Other assumptions are similar to those in Assumption A2.
Let Id denote the d � d identity matrix, and let D� denote the Moore�Penrose pseudoinverse

of D. De�ne the projection matrix P
�e�; e�� := Id � V� (e�) [V� (e�)0�V� (e�)]�V� (e�)0�; where V� (e�) :=

V� (e�;eh0; e�):
Theorem 5.2 Let the null hypothesis H0 and Assumption A4 hold. Then,

Tn(e�) infe�2eT
P �e�; e��G (e�) ;

where G (e�) is a Gaussian process on eT with covariance kernel eK (�; �) de�ned in Remark (4.1).
Remark 5.1 If rank(V� (e�)) = d for some e� 2 eT , then P �e�; e�� becomes zero, see e.g. Theorem 3.5

in Yanai, Takeuchi and Takane (2011), and as a result, the limiting distribution of Tn(e�) is degenerate.
This is for instance the case if d � d� , i.e. the number of unidenti�ed nuisance parameters is greater

than or equal to the number of moments.
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Remark 5.2 Note that Theorem 5.2 does not require the conditional identi�cation assumption of �0.

The theorem also shows that if � is conditionally identi�ed, so eT is a singleton, then a pointwise opti-

mal version of our test behaves like the standard J-test of overidentifying restrictions, with a limiting

distribution equal to a chi-square with d � d� degrees of freedom. The pointwise optimal version cor-

responds, as usual, to the optimal choice of � at the unique minimizer, which is implemented following

standard practice. In this situation, the test is straightforward to carry out and it does not require

any resampling method. When the conditional identi�cation of � does not hold, one could still use

the asymptotic critical values from chi-squared distribution for a continuous updated version of Tn(e�),
but inference would be conservative for the general case. Nevertheless, the computational simplicity

of this approach makes it a very attractive procedure. A more e¢ cient bootstrap method, also more

computational demanding, is described below.

Similar test statistics to Tn(e�) have been used in the partial identi�cation literature, albeit for
di¤erent models. In a support function setting, Bontemps et al. (2012) circumvent the potential

multiple-minimizer problem (i.e eT is not singleton) by obtaining a shrinkage estimator whose limit is

well de�ned, and the test statistic evaluated at this estimator converges to standard normal distrib-

ution. Galichon and Henry (2009) consider a generalized Kolmogorov-Smirnov test statistic and the

special structure of their testing problem delivers a straightforward asymptotic distribution. Santos

(2012) develops a testing procedure for the hypothesis that at least one element of the identi�ed set in

a nonparametric IV model satis�es a conjectured restriction, for which he constructs a similar test sta-

tistic as Tn(e�) but with an in�nite-dimensional minimizing function space. In his setting, the limiting
distribution of Tn(e�) involves two minimizations in two in�nite-dimensional spaces.

For more e¢ cient inference in the general case, we propose using a multiplier-type bootstrap de-

scribed below. If rank
�
V�

�e�;eh0; e��� < d for all e� 2 eT ; then by the proof of Theorem 5.2, we

have

Tn(e�) = infe�2eT
P �e�; e�� 1p

n

Pn
i=1s

�
Wi; e�;eh0; e��+ oP (1):

Suppose there is a uniformly (in � and h) consistent estimator bV� �e�; h; �� of V� �e�; h; �� ; then P �e�; ��
can be estimated by bP �e�; �� := Id � bV� �e�;bh; ���bV� �e�;bh; ��0�bV� �e�;bh; ���� bV� �e�;bh; ��0�. We
suggest the following bootstrap procedure:

Algorithm 2: (Bootstrap Approximation for Con�dence Regions of True Values)
Step 1: Generate fuigni=1 as in Step 1 of Algorithm 1.

Step 2: For each � , compute R�n (�) =
 bP �e�; ��n�1=2Pn

i=1s
�
Wi; e�;bh; ��ui + �n

Mn

�e�;bh; ��,
where f�ng is a positive sequence diverging to in�nity at an appropriate rate, so that �n = o (

p
n= log log n),

e.g. �n = log n su¢ ces:

Step 3: Compute T �n(e�) = inf�2T R�n (�) :
Step 4: Repeat Step 1-3 B times and compute the (1��) empirical bootstrap critical value c�n;1��(e�):
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Remark 5.3 We follow Santos (2012) and use the penalty term �n

Mn

�e�;bh; �� in Step 2. This is
necessary because the process n�1=2

Pn
i=1s

�
Wi; e�;bh; ��ui is centered for all � 2 T instead of just fore� 2 eT . By introducing this penalty term, it is ensured that R�n (�) diverges to in�nity for all � =2 eT ;

hence when computing T �n(e�), the in�mum is e¤ectively evaluated only at a shrinking neighborhood ofeT : Notice that the test statistics are computed by taking in�mum over the whole nuisance parameter

set T . An alternative approach can be conducted by �rst estimating the argmin set eT , then computing
the bootstrap statistics using this estimated set. However, this approach is computationally expensive

for constructing con�dence sets for the true parameter as we need to estimate eT for each candidate e�.
Next proposition shows that the bootstrap test statistic T �n(e�) converges to the same limit as Tn(e�) :
Proposition 5.2 Suppose (i) Assumption A4 holds; (ii) the penalty sequence �n satis�es �n ! 1
and �n = o (

p
n= log log n) ; and (iii) the asymptotic distribution of Tn(e�) is continuous at its 1 � �

quantile. Then, under the null hypothesis,

lim
n!1

Pr
�
Tn(e�) � c�n;1��(e�)� = 1� �:

Moreover, under the alternative hypothesis, we have

lim
n!1

Pr
�
Tn(e�) > c�n;1��(e�)� = 1:

With the consistency of the testing procedure, we can construct a con�dence region for the true

parameter by collecting all e� that cannot be rejected by our test, i.e. de�ne the con�dence region as
CSn;1�� :=

ne� 2 � : Tn(e�) � c�n;1��(
e�)o. Then, it follows that limn!1 Pr (�0 2 CSn;1��) = 1 � � for

the true parameter �0 driving the underlying data generating process.

The Convex Case As discussed in Remark (5.1), when rank(V� (e�)) = d (for example if d � d� ),

the proposed test statistic Tn
�e�� is degenerate. To overcome this limitation, we complement our

previous proposal with one in which we impose shape restrictions (convexity) on the identi�ed set. Let

� (� jB) denote the support function of a convex set B. The testing problem is the same as in the

general case. Let eS := argmin�2Sd� f� (� j�0) � � 0e�g be the set of minimizers, which does not need to
be a singleton. We need the following conditions:

Assumption A5: Assume:
(i) �0 is convex and compact;

(ii) There exists a moment function � (�) such that � (� j�0) = E [� (W; g0; �)] ; where g0 (�) is a vector
of unknown functions which may include h0 (�) and possibly other nuisance parameters. Suppose g0
admits a uniformly consistent estimator bg (�) such that kbg � g0kG = oP

�
n�1=4

�
where the pseudo-metric

k�kG is similarly de�ned as k�kH :
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(iii) Smoothness in g : the pathwise derivative V c
g (g0; �) [g � g0] of E [� (W; g; �)] at g = g0 exists in all

directions [g � g0] 2 G; and for all (g; �) 2 G�n � Sd� with a positive sequence �n ! 0, it holds that

sup
�2Sd�

E [� (W; g; �)]� E [� (W; g0; �)]� V c
g (g0; �) [g � g0]

 � c kg � g0k2G ;

(iv) Uniformly in � 2 Sd� ,
p
nV c

g (g0; �) [bg � g0] = 1p
n

Pn
i=1� (Wi; g0; �) + oP (1) ;

and the function class fsc (w; g0; �) := � (w; g0; �) + � (w; g0; �) : � 2 Sd�g is P�Donsker.
(v) Stochastic Equicontinuity in g :

sup
g2G�n ;�2Sd�

kGn� (W; g; �)�Gn� (W; g0; �)k = oP (1) :

If the moment M (�; h0; �) is continuous in � for all �; then the identi�ed set �0 is closed, and with

� compact, it is also compact. Beresteanu and Molinari (2008), Beresteanu, Molchanov and Molinari

(2011, 2012) and Bontemps et al. (2012), among others, have provided numerous examples where

Assumption A5(ii) holds with parametric g0: The rest of assumptions are standard and are similar to

the ones previously discussed for the general case.

The test statistic we propose is

T cn(
e�) := inf

�2Sd�

p
nEn

h
� (W; bg; �)� � 0e�i :

The test consists in rejecting H0 for small values of T cn(e�): The asymptotic distribution of T cn(e�) is
described below.

Theorem 5.3 Let Assumption A5 hold. Then8>><>>:
T cn(
e�) P! +1, if e� 2 int (�0)

T cn(
e�) inf

�2 eSfGc (�)g; if e� 2 @�0
T cn(
e�) P! �1, if e� =2 �0

where Gc (�) is a Gaussian process on eS with covariance kernel Kc (�; �) de�ned as:

Kc (�1; �2) := Cov (sc (w; g0; �1) ; s
c (w; g0; �2)) ;

where sc is de�ned in A5(iv).

Remark 5.4 We do not explicitly require di¤erentiability of the support function � (� j�0) w.r.t. �

which is equivalent to the non-existence of the exposed faces of the identi�ed set �0: However, the

stochastic equicontinuity assumption might implicitly rule out the presence of exposed faces, see for

example Proposition 9 in Bontemps et al. (2012), who, in their speci�c setting, derive the non-regular

asymptotic distribution of the support function estimator with the presence of exposed faces. It should

be noticed that non-di¤erentiability does not necessarily lead to non-regular asymptotic distribution of

the support function estimator, e.g. see section 5.3 in Bontemps et al. (2012).
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Remark 5.5 To deal with the multiple minimizer problem caused by the presence of kinks, Bontemps

et al. (2012) proposes a shrinkage type estimator to obtain a unique minimizer, instead we suggest

taking the minimum over all possible minimizers as in the general case described in Algorithm 2.

To implement the test we can follow the bootstrap procedure introduced for the general case above

to obtain the critical value. That is, we can use the same multiplier bootstrap method and introduce

the slowly diverging sequence as an additional penalizing term. However, if we a priori know the

uniqueness of the minimizer, then the limit distribution of T cn
�e�� in the least favorable case boils down

to a normal distribution. In this case, or simpler case with known minimizer, there is no need to do

bootstrap and instead we can just plug in the estimator of the minimizer �n to consistently estimate

the asymptotic variance.

5.2 Sensitivity Analysis

The previous uniform results can be also applied to carry out a formal sensitivity analysis. Sensitivity

analysis di¤ers from partial identi�cation inference in the choice of the set T1; and also in the set of
estimands considered. Typically, in applications of sensitivity analysis �0 is identi�ed, i.e. T0 = f�0g;
but its identi�cation is viewed as very fragile, e.g. dependent on ad-hoc parametric functional form

assumptions, so it is not considered credible (i.e., �0 is nonparametrically unidenti�ed). To illustrate the

main ideas, consider the sensitivity of the average treatment e¤ect (ATE) parameter to the exogeneity

assumption (unconfoundedness) in program evaluation. Rosenbaum and Rubin (1983) pioneered this

sensitivity analysis by assuming that the exogeneity condition holds only after conditioning on an

unobservable covariate (e.g. ability). In a parametric setting, they investigate the sensitivity of the

ATE estimator b� (�) to the coe¢ cients � of the unobservable covariate over an arbitrary range T1.
Imbens (2003) suggests to interpret the sensitivity analysis in terms of partial R2 of the unobserved

covariate, in comparison with partial R2 of observed covariates. Here we contribute to this literature by

providing a formal analysis of sensitivity analysis that accounts for estimators and model uncertainty,

and by introducing new measures of sensitivity.

In the context of program evaluation the set of moments is given, for instance, by score equations

resulting from the parametric speci�cation of the potential outcomes and selection equations, see Im-

bens (2003) for details. Using our notation, the moments are E[ (W; �0; h0 (W ) ; �0)] = 0; where �0 is

the ATE, h0 (W ) � h0 is here �nite-dimensional and includes nuisance parameters such as the coe¢ -

cients of observable covariates X; and �0 denotes the coe¢ cients of the unobservable covariate in the

outcome and selection equations, respectively. Following Imbens (2003), let R̂2Y;par(�) and R̂
2
D;par(�)

be the proportion of the variation in the outcome and treatment, respectively, that is explained by

the unobserved covariate. Imbens (2003) suggests to report the pairs
�
R̂2Y;par(�); R̂

2
D;par(�)

�
where���b�n (�)� b�n (0)��� > r; and where r is some pre-speci�ed threshold (� = 0 is the benchmark of exo-

geneity, and r = $1000 in Imbens�application). He then compares these pairs with pairs of partial

R2 based on relevant observed covariates. The sensitivity is judged on the basis of this comparison.

There are two important limitations of this approach. First, it only uses limited information on the

parameter of interest, i.e. whether or not
���b�n (�)� b�n (0)��� > r for a �xed r: The conclusions may be
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sensitive to the choice of r: Second, it does not account for estimators and model uncertainty. If, for

instance, E[ (W; �0; h0 (W ) ; 0)] 6= 0; then standard errors of estimates need to be modi�ed to account
for misspeci�cation.

The methods discussed here provide a methodological ground for sensitivity analysis. Combining

the original ideas of Rosenbaum and Rubin (1983) and Imbens (2003), we suggest to report the setb�1 = fb�(�) : � 2 bT1g; where
bT1 = n� 2 T : R̂2Y;par(�) � r̂Y ; R̂

2
D;par(�) � r̂D

o
;

and (r̂Y ; r̂D) are, for instance, the partial R2 of some observed covariates on the outcome and treatment,

respectively. See also Altonji et al. (2005) for a related choice of bT1: Inference on the sensitivity set
�1 := f�0(�) : � 2 T1g; where T1 is the limit of bT1; can be carried out using our uniform results,

including a con�dence region for �1; a consistent estimator for the diameter of the set �1; i.e. d =

sup�;� 02T1 j�0(�)� �0(� 0)j ; or a test for the hypothesis 0 2 �1: For instance, a consistent estimator for
d is bd = sup

�;� 02bT1
���b�(�)� b�(� 0)��� :

Likewise, a quantity of great interest in sensitivity analysis is @�0(�)=@�: This quantity exists under

our smoothness conditions, and it can be estimated by implicit di¤erentiation from the �rst order

conditions

(E [ � (W; �0 (�) ; h0; �)])
0�E [ (W; �0 (�) ; h0; �)] = 0:

For instance, consider the parametric case for illustration with d = d� = 1 (the general semiparametric

case involves more algebra when h0 depends on �0 and �; but it is conceptually the same). In this case

(using our previous notation but without vectorization in V�0�0)

@�0(�)

@�
= �

�
V�0�0 (�)M (�) + V�0 (�)V

0
�0 (�)

��1
[V�0� (�)M (�) + V�0 (�)V� (�)] ; (18)

where V�0� (�) is the cross-derivative w.r.t � and � and V� (�) is the derivative w.r.t �: Equation (18) can

be used to construct a uniform consistent estimator of @�0(�)=@�: Details in the more general case are

omitted to save space. We have previously discussed estimation of the elements involved in @�0(�)=@�:

Note that for a correctly speci�ed model with � 2 T0; (18) simpli�es to

@�0(�)

@�
= �

�
V�0 (�)V

0
�0 (�)

��1
[V�0 (�)V� (�)] :

It is worth stressing some connections between the sensitivity measure @�0(�)=@� and the theory of

two-step estimators. Suppose that b� 2 T1 is a consistent estimator for � 2 T1; and consider the
asymptotic behaviour of the two-step estimator b�(b�): By a stochastic equicontinuity argument, under
our assumptions,

p
n(b�(b�)� �0(�)) = pn(b�(b�)� �0(b�)) +pn(�0(b�)� �0(�))

=
p
n(b�(�)� �0(�)) +pn(�0(b�)� �0(�)) + oP (1) :

Then, under general conditions the second term in the right hand side is zero when @�0(�)=@� = 0 andp
n(b� � �) = OP (1) : Therefore, roughly speaking �0 is not sensitive to � when estimating the latter

has no impact in the limiting distribution of the estimator of the former, and viceversa.
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5.3 Incorporating Prior Information

In applications, experts of the subject area may have some prior information on plausible values of

the unidenti�ed parameter �: Since di¤erent practitioners may have di¤erent priors, a (functional) set

identi�cation approach is still convenient. Suppose a researcher has a prior density g(�) over the set of

identi�ed parameters T0; which is assumed to be known for simplicity. Then, the aim is to do inference

on the �induced�parameter

�0(g) =

Z
T0
�0(�)g(�)d�;

provided the integral is well de�ned. A natural estimator for �0(g) is

b� � b� (g) = Z
T0
b� (�) g(�)d�:

If b� cannot be computed numerically, we suggest the Monte Carlo approximation
bb� � bb� (g) = 1

m

mX
j=1

b� (�j) ;
where f�jgmj=1 are randomly drawn from g; and are independent of the original sample. Assume thatZ

T0
j�0 (�)j2 g(�)d� <1: (19)

Then, simple arguments show that
p
n(
bb� � b�) = oP (1); provided n=m ! 0 as n ! 1: Next corollary

follows directly from Theorem 4.2 and the continuous mapping theorem, and hence its proof is omitted.

Corollary 5.2 Under Assumption A2, (19) and n=m! 0 as n!1; it holds that
p
n(
bb� (g)� �0(g))!d N(0;�g);

where

�g =

Z
T0�T0

C (�1; �2) g(�1)g(�2)d�1d�2;

and C(�; �) is given in Theorem 4.2.

Conley et al. (2012) investigate alternative ways to incorporate prior knowledge on the exogeneity

of instrumental variables and focus on con�dence regions for the true parameter. Their methods can

potentially be extended to our more complex setting here.

6 Example Applications

In this section we show how our general conditions can be veri�ed in speci�c applications of the

motivating examples. To avoid redundancy with existing literature, we refer the reader to references

for complete sets of primitive conditions and well known results. We also describe implementation of

our uniform results in these examples.
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6.1 Gender Gap Distributional E¤ects

We illustrate some of the ideas discussed above with an application to inferences on the gender gap

distributional e¤ects in wage equations. Understanding the determinants and dynamics of the gender

gap is one of the most prominent problems in labor economics. Here we discuss a robust inference

approach to this problem. For a general treatment of partial identi�cation in sample selection models

see Manski (1989). For some interesting empirical applications in semiparametric partially identi�ed

models with selection see, for instance, Blundell et al. (2007) and Lee (2009). The latter reference deals

with estimation of ATE in the context of a randomized experiment (the Job Corps training program)

under selection, which has exactly the same structure as the gender gap e¤ects functional investigated

here. Hence, our results below can be used to extend the analysis in Lee (2009) to continuous covariates.

Let Y � be a latent wage. We only observe wages for working individuals. The selection variable is

D: That is, we only observe Y = Y �D; together with D and a vector of covariates X. The structural

function of interest is the wage conditional distribution '(X;�) = P [Y � � �jX]; which is known to
satisfy (2), see Manski (1989), with

l(x; �) � m0(x; �) and u(x; �) � m0(x; �) + 1� g0 (x) ; (20)

for all � 2 A; where m0(x; �) := E [D1(Y � �)jX = x] ; g0 (x) := E[DjX = x] and A is a compact

set of R that represents the quantiles of interest: Let X = (X1; X2); where X1 denotes gender, X1 = 1

for women; X1 = 0 for men, and X2 is a vector of individual�s characteristics, such as education,

experience, etc. We aim to do inference on the gender gap distributional e¤ects functional

T'(�; �) = E ['(1; X2; �)� '(0; X2; �)] :

The special structure of T in this example permits a simpler representation of the identi�ed set than

the one previously derived, cf. Manski (1989), so that the following moments characterize the identi�ed

set for T'(�; �)
 (W; �; h; �) = � � �a(W;�; h; 0)� (1� �)a(W;�; h; 1);

where W = X, � = (�; �) 2 T0 := [0; 1]�A; and for d = 0; 1 and with h = (m; g);

a(W;�; h; d) := m(1; X2; �)�m(0; X2; �) + (�1)d+1(1� g(d;X2)):

The nuisance parameter vector is given here by h0 = (m0; g0): This parametrization is convenient

because M (�; h; �) is linear in h: Standard kernel estimators can be used to estimate m0 and g0:

Denote the estimator by bh = (bm; bg):
Checking the consistency assumption is straightforward in this example, so we focus on the more

involved Assumption A2�(note the set T0 is known). In this application we take

H = f(m; g) : m(d; �); g(d; �) 2 C�1 (SX2) for each d = 1; 0; where � > dx2=2g ;

where C�1 (SX2) is a subset of continuous, bounded (by 1) functions on the convex, bounded subset
SX2 2 Rdx2 ; with non-empty interior, endowed with the sup-norm k�kH = k�k1 ; as de�ned in van der
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Vaart and Wellner (1996, p.154). It is known that H is a P�Donsker class. The �rst order derivative
w.r.t. � and the functional derivative w.r.t. h = (m; g) are given, respectively, by

V�0 (�) = 1;

Vm (�; h; �) [m�m] = E [m(0; X2; �)�m(0; X2; �)�m(1; X2; �) +m(1; X2; �)] ;
Vg (�; h; �) [g � g] = ��E [(g (0; X2)� g (0; X2))] + (1� �)E [(g (1; X2)� g (1; X2))] :

Then Assumption A2�(ii) and (iii) are trivially satis�ed. Since the moment function is linear in h

we only require
bh� h0

H
= oP (1) : The latter can be checked using, for instance, the results of

Escanciano et al. (2013). It is straightforward to show that f (�; �; h; �) : � 2 �; h 2 H; � 2 T g is a
P�Donsker class. Hence, Assumption A2�(v) holds. Likewise, conditions for the bias calculations for
Assumption A2�(vi) are standard in the nonparametric literature; see, e.g., Newey (1994).

Denote b�L(�) := En

h
a(W;�;bh; 1)i and b�U (�) := En

h
a(W;�;bh; 0)i. De�ne the random sets An :=

fYj : Yj 2 A; j = 1; :::; ng and bT0 := [0; 1]�An: Then, one can show that
sup
�2bT0

���pn�b� (�)� �0 (�)���� = max
�2An

max
np

n
���b�L(�)� �L(�)��� ;pn ���b�U (�)� �U (�)���o ; (21)

where �L(�) := E [a(W;�; h; 1)] and �U (�) := E [a(W;�; h; 0)] : Here, we use the multiplier bootstrap

implementation to approximate critical values, which is computationally more attractive than the non-

parametric bootstrap. To that end, we need the expression for the in�uence function � in Assumption

A2�(vi), which is straightforward to obtain. Under standard assumptions, � in Assumption A2�(vi) is

given by � = �m � �g; where

�m (W; �0; h0; �) := fD1(Y � �)�m(0; X2; �)g
1(X1 = 0)

1� p(X2)

� fD1(Y � �)�m(1; X2; �)g
1(X1 = 1)

p(X2)

and

�g (W; �0; h0; �) := fD � g(0; X2)g
�1(X1 = 0)

1� p(X2)

+ fD � g(1; X2)g
(1� �)1(X1 = 1)

p(X2)
;

where the additional nuisance parameter is the propensity score p(x2) := P [X1 = 1jX2 = x2], which

can be easily estimated by, e.g., kernel methods. Thus, estimating  + � is straightforward in this

application, and the multiplier-bootstrap can be applied to approximate critical values for the limiting

distribution of (21). With the bootstrap critical value bc1�e�;n, a uniform (1� e�)-con�dence band for
gender distributional e¤ects (or ATE as in Lee, 2009) can be constructed as�b�L(�)� bc1�e�;np

n
; b�U (�) + bc1�e�;np

n

�
; � 2 A:

This con�dence band accounts for the partial identi�cation and the dependence across di¤erent quantile

levels � of the estimated gender gap.
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6.2 Binary Choice with Sample Selection and No Exclusions

Suppose a latent binary variable Y � satis�es the ordinary threshold crossing binary response model

Y � = 1 (X 0�0 � e � 0). The econometrician is assumed to know relatively little about selection

D other than it is binary, so let D be given by the nonparametric threshold crossing model D =

1 (g0 (X)� u � 0) where u is uniformly distributed in [0; 1]. Assume (e; u) is drawn from an unknown

joint distribution function F0 (e; u) with (e; u) ? X and the speci�ed uniform marginal for u. We only

observe (Y = Y �D;D;X): Point-identi�cation in this model has been investigated in Escanciano et al.

(2012), while its estimation is discussed in Klein, Shen and Vella (2011) and Escanciano et al. (2012,

2013). Below we discuss sensitivity analysis and partial identi�cation in this model.

Introducing some normalization restrictions, the model is then summarized by the equations

Y = 1
�
�0X1 +X2 + �

0
0X3 � e � 0

�
D;

D = 1 (g0 (X)� u � 0) ;

and it can be estimated from the conditional moment restrictions

E[Y jX] = F0(�0X1 +X2 + �
0
0X3; g0 (X)): (22)

We illustrate the general ideas with the SLS estimator. Similar ideas can be applied with likelihood

methods. Denote the index I(X; �0; g0; �) := (�X1 + X2 + �00X3; g0 (X)) and consider the moment

restrictions that result as the �rst order conditions of the SLS estimator, i.e.

 (W; �0; h0 (W ) ; �0) = (Y � F0(I(X; �0; g0; �)))@�F0(I(X; �0; g0; �))=@�:

That is, we assume the SLS solves

�0(�) := argmin
�2�

E
h
(Y � E[Y jI(X; �; g0; �)])2

i
: (23)

Here the nuisance parameters are h0 = (F0; g0; @�F0) 2 H � F� �C�g1 (SX)�F�; where �g > dx=2 and

F� is the following class of functions de�ned in Escanciano et al. (2013). Let W := fI(�; �; g; �) : � 2
�; g 2 C�g1 (SX) ; � 2 T1g: Let F� be a class of measurable functions on SX ; q (I(x)j I) say, such that
I 2 W and q satis�es for a universal constant CL and each Ij 2 W, j = 1; 2,

kq (I1(�)j I1)� q (I2(�)j I2)k1 � CL kI1 � I2k1 . (24)

Moreover, we assume that for each I 2 W, q ( �j I) 2 C�1 (SI), for some � > 1, and that q is bounded.
Suppose we want to carry out sensitivity analysis with respect to an exclusion restriction � = 0:

We apply our results with � 2 T1; for a generic T1. Henceforth, we assume that E[Y jI(X; �; g0; �)] is
twice continuously di¤erentiable in �: It is straightforward to show that a su¢ cient condition for our

conditional identi�cation assumption is that E[Y jI(X; �1; g0; �)] = E[Y jI(X; �2; g0; �)] implies �1(�) =
�2(�); for all � 2 T1: This condition holds, for instance, under correct speci�cation of the double-index
model and mild conditions on F0 and the distribution of X3: Speci�cally, if F0 is strictly increasing in
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its �rst argument, and E[X3X 0
3] is non-singular, then conditional identi�cation holds for a correctly

speci�ed model.

Let bg be a kernel estimator for g0; and for a candidate I(X; �; bg; �); let bF (I(X; �; bg; �)) and
@� bF (I(X; �; bg; �)) be kernel estimates of E[Y jI(X; �; bg; �)] and its derivative w.r.t �, respectively. Then,
consistency under our partial identi�cation assumption holds by the uniform rate results for kernel es-

timates in Escanciano et al. (2013). Although we allow for misspeci�cation, in the sense that the

conditional moment (22) may not hold for � 2 T1, we assume that the unconditional moment holds.
This entails the solution �0(�) of (23) to be an interior solution. Ichimura and Lee (2010) also in-

vestigate conditions for single-index model estimation under misspeci�cation. The model here is an

extension of theirs to a double-index model with a nonparametric index g0 and the uniformity aspect

in �:

We proceed to check the conditions for weak convergence in Assumption A2�. Henceforth, for

simplicity of the notation we remove the dependence on true values and simply use a subscript zero,

e.g. I0 � I(X; �0; g0; �) and @�F0 = @�F0(I0)=@�: Using a simpli�ed notation, the (pathwise) derivatives

are given by

V�0 (�) = E[�@�F0@0�F0 + (Y � F0)@��F0];
V� (�) = E[�@�F0@�F0 + (Y � F0)@��F0];

VF (�0; h0; �) [F � F ] = �E
�
(F � F0)@�F0

�
;

Vg (�0; h0; �) [g � g] = �E [(@gF0@�F0 + (Y � F0)@�gF0) (g � g0)] ;
V@�F0 (�0; h0; �) [@�F0 � @�F0] = E

�
(Y � F0)(@�F0 � @�F0)

�
;

where @gF0(I0i) := @E[Y jI0 = I0i(�g; �)]=@�gj�g=g0i , @�gF0 := @2E[Y jI0 = I0i(�g; �)]=@�@�g
��
�=�0;�g=g0i

and

I0i(�g; �) := I(Xi; �0; �g; �): Assumption A2�(iii) is satis�ed with c = 0 for the corresponding terms to

F and @�F , and hence, we only require rates on kbg � g0k1. Standard empirical processes arguments
and the de�nition of H then imply that Assumption A2�(v) holds. Veri�cation of Assumption A2�(vi)

is long but involves standard bias calculations. Details are available from the authors upon request.

In the correctly speci�ed case where the conditional moment (22) holds there is no contribution in

Assumption A2�(vi) from the pathwise derivative V@�F0 and from the second component of Vg; but in

the misspeci�ed case these terms contribute to the asymptotic distribution of the estimators.

For sensitivity analysis we propose to estimate consistently

@�0(�)

@�
= �V �1�0

(�)V� (�) ;

by plugging in consistent kernel estimates for @�F0; F0; @��F0; @�F0 and @��F0 in the expressions above.

Denote these kernel estimators by @� bF ; bF ; @�� bF ; @� bF and @�� bF ; respectively. Then, we estimate

@�0(�)=@� by

\@�(�)
@�

= �
�
En

h
�@� bF@0� bF + (Y � bF )@�� bFi��1En h�@� bF@� bF + (Y � bF )@�� bFi :

Of particular interest is the derivative at zero, measuring the sensitivity of the parameters of interest

to the exclusion restriction. When (22) holds, the estimator of @�0(�)=@� can be simpli�ed, and
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corresponds to the least square estimate of �@� bF on @� bF ; which can be implemented with standard
regression packages.

If a partial identi�cation approach to this problem is considered, it proceeds by �rst estimating T0;
using (16). Then, one can apply our methods above to construct a con�dence region for the identi�ed

set or for the true parameter. In this application there is no closed form expression for �0 (�) : Hence,

it is convenient to consider discrete approximations of T1 or T0 to implement our inferences. Similarly,
the expression for the in�uence function is too involved in the misspeci�ed case, so the nonparametric

bootstrap seems to be more convenient in this example than the multiplier-bootstrap. The algorithm

for implementing our inferences in this example is as follows:

Algorithm 3: (Nonparametric Bootstrap Approximation)
Step 1: Choose a grid approximation f�1; :::; �mg of T1 or bT0: For each j = 1; :::;m : compute kernel

estimates of E[Y jV (X; �; bg; �j)]; say bF (V (X; �; bg; �j)) : Then, compute the SLS estimator b� (�j).
Step 2: Draw a bootstrap sample from the empirical distribution of the data and repeat Step 1 above

with the bootstrap sample.

Step 3: Repeat Step 2 B times. Approximate the distribution
p
n
�b� (�)� �0 (�)� by the empirical

distribution of
np

n
�b��l (�)� b� (�)�oB

l=1
; where b��l denotes the l � th iteration of Step 2.

7 Conclusions

In this paper, we develop inference procedures for a class of semiparametric partially identi�ed mod-

els where the identi�ed set for the Euclidean parameter of interest is a �nite-dimensional manifold.

Within this setting, we can employ tools from empirical process theory to derive uniform convergence

results for the set estimates. Our framework allows for the presence of in�nite-dimensional nuisance

parameters and unknown nuisance identi�ed sets. Our inference methods permit but do not require

convex identi�ed sets. When applied to convex identi�ed sets, they allow for semiparametric support

functions, which complements the support function approach considered in Beresteanu and Molinari

(2008) and Bontemps et al. (2012). We propose bootstrap procedures to approximate the asymptotic

distribution of functionals of the set estimator. Based on the uniform weak convergence results and

consistency of the bootstrap, we construct a simple con�dence region for the identi�ed set and the true

parameter.

We have emphasized and formalized the di¤erences between partial identi�cation and sensitivity

analysis. The latter is relatively underdeveloped, and this paper is a �rst attempt to �ll this gap in

the literature. We have formalized and extended important ideas in Rosenbaum and Rubin (1983) and

Imbens (2003) to account for estimation and model uncertainty in sensitivity analysis. Additionally,

we have suggested new measures of sensitivity such as the derivative @�0(�)=@� or the diameter d =

sup�;� 02T1 j�0(�)� �0(� 0)j, and ways to estimate them.
The methods developed in this paper can be potentially useful in other contexts. For example,

using our methods we could extend the parametric quantile process studied in Angrist et. al. (2006)

to other semiparametric quantile models with in�nite-dimensional parameters, such as partially linear
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quantile regressions (here � is the quantile level). The results derived here can also be used to develop

consistent speci�cation tests in semiparametric quantile models and many semiparametric partially

identi�ed models.

An interesting extension of our approach is to allow for an in�nite-dimensional unidenti�ed para-

meter � . There are a number of applications in which this can be useful; see, e.g., dynamic binary

panel data models in Honoré and Tamer (2006), dynamic discrete decision processes in Magnac and

Thesmar (2002), nonparametric instrumental variable models in Santos (2012) or models with discrete

outcomes in Chesher (2010). Although most of our theoretical results are directly applicable to a

nonparametric T ; feasible versions of the proposed inferences require an approximation of T by sieves

(e.g., for computing the supremum in T ). These feasible inferences under this more general setting
can be justi�ed combining the results of this paper with those of Santos (2012). This extension is

beyond the scope of this paper and it is deferred for future research. On the contrary, the extension to

conditional moment restrictions is trivial, as we can transform these models into an in�nite number of

unconditional moments, whose index is part of � .13 This illustrates the versatility of our results.

8 Appendix

8.1 Assumptions Under Correct Speci�cation

The following condition replaces Assumption A2 under correct speci�cation.

Assumption A2�: Suppose that �0 (�) is in interior of � for each � 2 T1, and that sup�2T1 jb� (�) �
�0 (�) j = oP (1) : In addition, assume

(i) The estimator b� (�) also satis�es
sup
�2T1

(Mn

�b� (�) ;bh; ��� inf
�2��1

Mn

�
�;bh; ��) = oP

�
n�1=2

�
:

(ii) Smoothness in � : for each � 2 T1; the map � !M(�; h0; �) is continuously di¤erentiable at �0(�);

with derivative V�0(�) that is of full rank and sup�2T1 jV�0 (�)j <1 and sup�2T1

���V �1�0
(�)
��� <1:

(iii) Smoothness in h : for each (�; �) 2 ��1�T1, the pathwise derivative Vh (�; h0; �) [h� h0] ofM(�; h; �)
at h = h0 exists in all directions [h� h0] 2 H; and for all (�; h; �) 2 ��n1 � H�n � T1 with a positive
sequence �n ! 0, it holds that

sup
�2T1

kM (�; h; �)�M (�; h0; �)� Vh (�; h0; �) [h� h0]k � c kh� h0k2H

for a constant c � 0; and

sup
�2T1

kVh (�; h0; �) [h� h0]� Vh (�0; h0; �) [h� h0]k � o (1) �n:

(iv) Pr
�bh 2 H�! 1, and

bh� h0
H
= oP

�
n�1=4

�
:

13That is, E[�(W; �0; h0 (W ) ; �1)jX] = 0 for all �1 is equivalent to E[ (W; �0; h0 (W ) ; �)] = 0 for all � , where

 (W; �0; h0 (W ) ; �) = �(W; �0; h0 (W ) ; �1)1(X � �2) and � = (�1; �2):
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(v) Stochastic Equicontinuity: for all sequences of numbers �n ! 0;

sup
�2T1

sup
j���0j��n;kh�h0kH��n

kGn (W; �; h; �)�Gn (W; �0; h0; �)k = oP (1) :

(vi)
p
nVh (�0; h0; �) [bh� h0] admits an asymptotic expansion (uniformly in �):

p
nVh (�0; h0; �) [bh� h0] = 1p

n

nX
i=1

� (Wi; �0; h0; �) + oP (1) ;

and the function class fs (w; �0; h0; �) :=  (w; �0; h0; �) + � (w; �0; h0; �) : � 2 T1g is P�Donsker.

8.2 Pathwise derivatives for Example 1

In Example 1 the moment is given by

M(�0; h0; �) = �0 � �E[L(X;�)]� (1� �)E[U(X;�)]:

We provide here the pathwise derivatives with respect to the components of h0(�; �) = (l(�; �); u(�; �); r(�)):
Using our notation and standard arguments we obtain

Vl (�; h0; �)
�
�l � l

�
= ��E

�
(�l(X;�)� l(X;�))r+(X)

�
� (1� �)E[(�l(X;�)� l(X;�))r�(X)]

and

Vu (�; h0; �) [�u� u] = ��E
�
(�u(X;�)� u(X;�))r�(X)

�
� (1� �)E[(�u(X;�)� u(X;�))r+(X)]:

In order to compute the pathwise derivative with respect to r; we �rst show that the pathwise derivatives

of mappings such as �r(�) ! E[l(X;�)r(X)1(�r(X) > 0)] at �r(�) = r(�) are zero, under the following
conditions:

Assumption E1: (i) Assume the conditional means ml(r; �) := E[l(X;�)jr(X) = r] and mu(r; �) :=

E[u(X;�)jr(X) = r] are continuous and �nite in a neighborhood of r = 0; uniformly in � 2 A; (ii)
for each direction �(X) such that r�;�(X) := r(X) + ��(X) belongs to the parameter space for r; it

holds that j�(X)j < C; for a positive constant C; (iii) the density of r(X) is continuous and �nite in a

neighborhood of r = 0:

De�ne al(r; �) := ml(r; �)r: Under Assumption E1, we can show that for all � > 0����E[a+l (r; �)1(r�;�(X) > 0)� 1(r0;�(X) > 0)]�

����
�
E[a+l (r; �)1(��C � r(X) � �C)]

�

=
1

�

�Z �C

��C
a+l (r; �)fr(X)(r)dr

�
;
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but the right hand side converges to zero as �! 0 under Assumption E1 by the fundamental theorem

of calculus. A similar proof follows for the term involving a�l (r; �); and hence, for al(r; �): Similar

arguments show that the pathwise derivative of �r(�) ! E[u(X;�)r(X)1(�r(X) > 0)] at �r(�) = r(�) is
zero. Hence, the pathwise derivative with respect to r is given by

Vr (�; h0; �) [�r � r] = ��E [l(X;�)(�r(X)� r(X))1(r(X) > 0)]
� �E [u(X;�)(�r(X)� r(X))1(r(X) < 0)]
� (1� �)E[u(X;�)(�r(X)� r(X))1(r(X) > 0)]
� (1� �)E[l(X;�)(�r(X)� r(X))1(r(X) < 0)]:

8.3 Mathematical Proofs

Proof of Theorem 4.1: The proof closely follows that of Theorem 1 in CLV. We would like to

show that for any " > 0; Pr
�
sup�2T1

���b� (�)� �0 (�)��� > "
�
! 0 as n ! 1: For each " > 0, the eventn

sup�2T1

���b� (�)� �0 (�)��� > "
o
implies that 9� 0 2 T1 s.t.

���b� (� 0)� �0 (� 0)��� � "; then by Assumption

A1(ii), there exists a �(") > 0 such that
M(b� (� 0) ; h0; � 0)� kM(�0 (� 0) ; h0; � 0)k � � (") : Thus,

Pr

�
sup
�2T1

���b� (�)� �0 (�)��� > "

�
� Pr

�
sup
�2T1

nM(b�(�); h0; �)� kM(�0 (�) ; h0; �)ko � � (")

�
:

We shall prove that the right-hand side probability tends to zero as n!1: To that end, note that by
triangle inequality, it holds

sup
�2T1

nM(b�(�); h0; �)� kM(�0 (�) ; h0; �)ko
� sup

�2T1

M(b�(�); h0; �)�M(b�(�);bh; �)
+ sup
�2T1

Mn(b�(�);bh; �)�M(b�(�);bh; �)
+ sup
�2T1

nMn(b�(�);bh; �)� kM(�0 (�) ; h0; �)ko :
By Assumption A1(v), sup�2T1

Mn(b�(�);bh; �)�M(b�(�);bh; �) = oP (1) ; by Assumption A1(iii)(iv),

it holds that sup�2T1

M(b�(�); h0; �)�M(b�(�);bh; �) = oP (1) ; it remains to show the last term

sup�2T1

nMn(b�(�);bh; �)� kM(�0 (�) ; h0; �)ko = oP (1). Assumption A1(i) implies that uniformly

in � 2 T1;
Mn

�b� (�) ;bh; �� � inf�2� Mn

�
�;bh; ��+oP (1) : By triangle inequality and Assumption

A1(iii)(iv)(v), uniformly in (�; �) ;Mn

�
�;bh; �� � Mn

�
�;bh; ���M �

�;bh; ��+ M �
�;bh; ���M (�; h0; �)


+ kM (�; h0; �)k
� oP (1) + kM (�; h0; �)k :
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Hence,

sup
�2T1

�
inf
�2�

Mn

�
�;bh; ��� kM(�0 (�) ; h0; �)k�

� oP (1) + sup
�2T1

�
inf
�2�

kM (�; h0; �)k � kM(�0 (�) ; h0; �)k
�

= oP (1) ;

where the last equality follows from inf�2� kM (�; h0; �)k = kM(�0 (�) ; h0; �)k by de�nition of �0 (�).
Then the result follows. �

Proof of Theorem 4.2: (1) We �rst show that
���b�(�)� �0 (�)��� = OP

�
n�1=2

�
uniformly in � 2 T1.

By stochastic equicontinuity in Assumption A2(vi), it follows that uniformly in � 2 T1

En �

�
W; b� (�) ;bh; ��

= En � (W; �0 (�) ; h0; �)� E � (W; �0 (�) ; h0; �) + E �
�
W; b� (�) ;bh; ��+ oP �n�1=2� ;

and

En 
�
W; b� (�) ;bh; ��

= En (W; �0 (�) ; h0; �)� E (W; �0 (�) ; h0; �) + E 
�
W; b� (�) ;bh; ��+ oP �n�1=2� :

Then by noticing that

En � (W; �0 (�) ; h0; �)� E � (W; �0 (�) ; h0; �) = OP

�
n�1=2

�
;

En (W; �0 (�) ; h0; �)� E (W; �0 (�) ; h0; �) = OP

�
n�1=2

�
;

E �

�
W; b� (�) ;bh; �� = OP (1) and E 

�
W; b� (�) ;bh; �� = OP (1) ; with some algebra we obtain uni-

formly in � 2 T1,

oP

�
n�1=2

�
=
�
En �

�
W; b� (�) ;bh; ���0 � �En �W; b� (�) ;bh; ���

= E �

�
W; b� (�) ;bh; ��0 � �E �W; b� (�) ;bh; ���+OP �n�1=2�+ oP �n�1=2� :

By Assumption A2 (iii)(iv)(v), using the notations introduced above Assumption A2, we have uniformly

in � 2 T1

E �

�
W; b� (�) ;bh; �� = E �

�
W; b� (�) ; h0; ��+ V�h �b� (�) ; h0; �� hbh� h0i+ oP �n�1=2�

= E � (W; �0 (�) ; h0; �) + V�0�0 (�) (
b� (�)� �0 (�)) +OP ����b� � �0���2�

+ V�h (�0 (�) ; h0; �)
hbh� h0i+ oP ����b� � �0����+ oP �n�1=2� ;
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E 
�
W; b� (�) ;bh; �� = E 

�
W; b� (�) ; h0; ��+ Vh �b� (�) ; h0; �� hbh� h0i oP �n�1=2�

=M (�) + V�0 (�) (
b� (�)� �0 (�)) +OP ����b� � �0���2�

+ Vh (�0 (�) ; h0; �)
hbh� h0i+ oP ����b� � �0����+ oP �n�1=2� :

Combining the three equations above, and noticing that E � (W; �0 (�) ; h0; �)
0�E (W; �0 (�) ; h0; �) =

0, we obtain, uniformly in � 2 T1;

oP

�
n�1=2

�
= A0 (�) (b� (�)� �0 (�)) + oP ����b� � �0����+OP �n�1=2� ;

where A0 (�) = V�0 (�)
0�V�0 (�) +

�
M (�)0�
 Id�

�
V�0�0 (�) : By Assumption A2(iii), jA0 (�)j is uni-

formly bounded both from above and from below, hence, we obtain the uniform convergence rate

sup
�2T1

���b� (�)� �0 (�)��� = OP

�
n�1=2

�
:

(2) We next derive the asymptotic distribution of
p
n
�b� (�)� �0 (�)� :

By Assumption A2(vi), we have uniformly in � 2 T
p
nEn (W; b�;bh; �) = Gn (W; b�;bh; �) +pnE[ (W; b�;bh; �)]

= Gn (W; �0; h0; �) +
p
nE[ (W; b�;bh; �)] + oP (1)

= Gn (W; �0; h0; �) +
p
n
n
E (W; b�;bh; �)� E (W; b�; h0; �)o

+
p
n
n
E (W; b�; h0; �)� E (W; �0; h0; �)o+pnM (�0; h0; �) + oP (1)

(�)
= Gn (W; �0; h0; �) +

p
nVh (�0; h0; �)

hbh� h0i+ oP (1)
+
p
n
n
E (W; b�; h0; �)� E (W; �0; h0; �)o+pnM (�0; h0; �) + oP (1)

= Gn (W; �0; h0; �) +
p
nEn�(W; �0; h0; �)

+ V�0 (�)
p
n(b� (�)� �0 (�)) +pnM (�0; h0; �) + oP (1);

where the equality in (�) follows from Assumption A2(iv)(a) as well as Assumption A2(v) and the
p
n-consistency of b� (�) � �0 (�) ; and the last equality follows from Assumption A2(iii)(vii). We can

show by similar arguments that�p
nEn �(W; b�;bh; �)�0�M (�0; h0; �)

=
�p

nE[ �(W; b�;bh; �)]�0�M (�0; h0; �)

+ (Gn �(W; �0; h0; �))0�M (�0; h0; �) + oP (1)

=
�p
nEn��(W; �0; h0; �)

�0
�M (�0; h0; �)

+
�
M (�0; h0; �)

0�
 Id�
�
V 0�0�0 (�)

p
n(b� (�)� �0 (�))

+ (Gn �(W; �0; h0; �))0�M (�0; h0; �) + oP (1) :
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Hence, by de�nition of b� (�) ; we have
oP (1) = En �(W; b�;bh; �)0��pnEn (W; b�;bh; �)�

= En �(W; b�;bh; �)0�Gn (W; �0; h0; �) + En �(W; b�;bh; �)0�Gn�(W; �0; h0; �)
+ En �(W; b�;bh; �)0�V�0 (�)pn(b� (�)� �0 (�))
+
�p

nEn �(W; b�;bh; �)�0�M (�0; h0; �) + oP (1)

= V�0 (�)
0�Gn (W; �0; h0; �) + V�0 (�)

0�Gn�(W; �0; h0; �)

+ V�0 (�)
0�V�0 (�)

p
n(b� (�)� �0 (�)) + oP (1)

+
�p
nEn��(W; �0; h0; �)

�0
�M (�0; h0; �)

+
�
M (�0; h0; �)

0�
 Id�
�
V 0�0�0 (�)

p
n(b� (�)� �0 (�))

+ (Gn �(W; �0; h0; �))0�M (�0; h0; �) + oP (1) :

It follows that�
V�0 (�)

0�V�0 (�) +
�
M (�0; h0; �)

0�
 Id�
�
V�0�0 (�)

�p
n(b� (�)� �0 (�))

= �V�0 (�)
0� [Gnf (W; �0; h0; �) + �(W; �0; h0; �)g]

� (M (�0; h0; �)
0�
 Id�)Gnf vec� (W; �0; h0; �) + �

vec
� (W; �0; h0; �)g+ oP (1)

where  vec� (W; �0; h0; �) := vec( �(W; �0; h0; �)) and �vec� (W; �0; h0; �) := vec(��(W; �0; h0; �)): Recall

A0 (�) = V�0 (�)
0�V�0 (�) +

�
M (�0; h0; �)

0�
 Id�
�
V�0�0 (�) ;

B0 (�) = V�0 (�)
0�;

D0 (�) = (M (�0; h0; �)
0�
 Id�);

then

p
n(b� (�)� �0 (�))
= �A0 (�)�1 [B0 (�) D0 (�)]Gn

�
 (W; �0; h0; �) + �(W; �0; h0; �)

 vec� (W; �0; h0; �) + �vec� (W; �0; h0; �)

�
+ oP (1) :

By Assumption A2 (vii), it follows that

p
n(b� � �0) L;

where L is a Gaussian Process with zero mean and covariance function

C (�1; �2) = A0 (�1)
�1 [B0 (�1) D0 (�1)]K (�1; �2)

�
B00 (�2) D

0
0 (�2)

�0
A00 (�2)

�1 ;

with K (�1; �2) = E [(s (W; �0; h0; �1)� Es (W; �0; h0; �1)) (s0 (W; �0; h0; �2)� Es0 (W; �0; h0; �1))] where

s (W; �0; h0; �) =

�
 (W; �0; h0; �) + �(W; �0; h0; �)

 vec� (W; �0; h0; �) + �vec� (W; �0; h0; �)

�
:
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�

Proof of Theorem 4.3: (1) By Assumption A3(iii), the function class fs (w; �; h; �)u : � 2 ��1,
h 2 H�, � 2 T1g is P�Donsker. Hence by stochastic equicontinuity and Assumption A3(i), it follows
that uniformly in � 2 T1

1p
n

nX
i=1

n
s
�
Wi; b�;bh; ��� Ens�W; b�;bh; ��oui

=
1p
n

nX
i=1

n
s
�
Wi; b�;bh; ��� Es�Wi; b�;bh; ��oui

�
n
Ens

�
W; b�;bh; ��� Es�Wi; b�;bh; ��o 1p

n

nX
i=1

ui

=
1p
n

nX
i=1

fs (Wi; �0; h0; �)� Es (Wi; �0; h0; �)gui + oP (1) :

Assumption A3(ii) implies

sup
�2T1

��� b�(b�;bh; �)��(�0; h0; �)��� = oP (1) :

De�ne Z�0n (�) := �(�0; h0; �)n
�1=2Pn

i=1 fs (Wi; �0; h0; �)� Es (Wi; �0; h0; �)gui; then by Slutsky�s Lemma,
it follows that bZ�n (�) = Z�0n (�) + oP (1) :

Theorem 2.9.6 in van der Vaart andWellner (1996) implies thatGn f(s (W; �0; h0; �)� Es (W; �0; h0; �))ug
weakly converges to the same limit process as Gns (W; �0; h0; �) conditioning on fWigni=1 almost surely,
hence, Z�0n (�) weakly converges to the same limit as Zn (�) =

p
n
�b� (�)� �0 (�)� conditional on

fWigni=1 in probability. Hence it su¢ ces to show bZ�n (�) and Z�0n (�) weakly converge to the same limit
conditional on fWigni=1 with probability approaching 1.

Let BL1 denote the set of all real functionals on `1 (T1) with a Lipschitz norm bounded by 1,

i.e. for any f 2 BL1, jf (z)jz2`1(T1) � 1 and z1; z2 2 `
1 (T1) ; jf (z1)� f (z2)j � kz1 � z2kT1 , then by

Theorem 1.12.4 in van der Vaart and Wellner (1996), it is equivalent to show

sup
f2BL1

���E hf � bZ�n�� f (Z�0n) j fWigni=1
i���! 0:

By de�nition, for any � > 0,

sup
f2BL1

���E hf � bZ�n�� f (Z�0n) j fWigni=1
i���

� sup
f2BL1

E
h���f � bZ�n�� f (Z�0n)��� j fWigni=1

i
� sup

f2BL1
E

�
1

� bZ�n � Z�0nT1 � �

� ���f � bZ�n�� f (Z�0n)��� j fWigni=1
�

+ sup
f2BL1

E

�
1

� bZ�n � Z�0nT1 > �

� ���f � bZ�n�� f (Z�0n)��� j fWigni=1
�

� �Pr

� bZ�n � Z�0nT1 � �j fWigni=1
�
+ 2Pr

� bZ�n � Z�0nT1 > �j fWigni=1
�
:
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By law of iterated expectations,

E

�
Pr

� bZ�n � Z�0nT1 > �j fWigni=1
��

= Pr

� bZ�n � Z�0nT1 > �

�
! 0;

and hence Pr
� bZ�n � Z�0nT1 > �j fWigni=1

�
! 0 in probability. Since � is arbitrary, we have

sup
f2BL1

���E hf � bZ�n�� f (Z�0n) j fWigni=1
i��� = oP (1) :

(2) For notation ease, we use the following abbreviations: bsi (�) = s
�
Wi; b�;bh; �� ; s0i (�) = s (Wi; �0; h0; �) :

The conditional mean of bZ�n (�) is 0, hence we have
V ar�

� bZ�n (�)� = E
h bZ�n (�) bZ�n (�)0 j fWigni=1

i
= b�(b�;bh; �)" 1

n

nX
i=1

(bsi (�)� Enbsi (�)) (bsi (�)� Enbsi (�))0# b�(b�;bh; �)0
= b�(b�;bh; �)" 1

n

nX
i=1

(bsi (�)� Ebsi (�)) (bsi (�)� Ebsi (�))0# b�(b�;bh; �)0
� b�(b�;bh; �) (Enbsi (�)� Ebsi (�)) (Enbsi (�)� Ebsi (�))0 b�(b�;bh; �)0
= b�(b�;bh; �)" 1

n

nX
i=1

(bsi (�)� Ebsi (�)) (bsi (�)� Ebsi (�))0# b�(b�;bh; �)0 + oP (1) ;
where the second equality is due to the independence of fuig and the last equality is due to uniform
law of large numbers for the class of function S. By Assumption A3 and Lemma 2.10.14 in van der
Vaart and Wellner (1996), the function class S2 :=

�
s (�; �; h; �) s0 (�; �; h; �) : (�; h; �) 2 ��1 �H� � T1

	
is Glivenko-Cantelli class, hence by uniform law of large numbers and continuity of Es (W; �; h; �) and

Es (W; �; h; �) s (W; �; h; �)0 in (�; h) ; we have uniformly in � 2 T1

1

n

nX
i=1

(bsi (�)� Ebsi (�)) (bsi (�)� Ebsi (�))0
= E

�
(s0i (�)� Es0i (�)) (s0i (�)� Es0i (�))0

�
+ oP (1) :

Hence, it follows that uniformly in � 2 T1

V ar�
� bZ�n (�)� = �(�0; h0; �)E �(s0i (�)� Es0i (�)) (s0i (�)� Es0i (�))0��(�0; h0; �)0 + oP (1) :

�

Proof of Lemma 5.1:

We apply Theorem 3.1 in Chernozhukov et al. (2007). Assumption A2 and Theorem 4.2 imply that

their Condition C.1 holds with

Qn(�) =
Mn

�b� (�) ;bh(�; b� (�) ; �); ��2 ;
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Q the limit of Qn and an = n; bn =
p
n: Similarly, our Theorem 4.2 implies that

sup
�2T0

nQn(�) = OP (1):

Then any ĉ satisfying the conditions of the Lemma also satis�es the conditions required in Theorem

3.1 in Chernozhukov et al. (2007), which completes the proof. �

Proof of Corollary 5.1:

De�ne the set e�0 := n�0 (�) : � 2 T̂0o ; then by triangle inequality for the Hausdor¤ distance,
dH

�b�0;�0� � dH

�b�0; e�0�+ dH �e�0;�0� :
Since dH

�
T̂0; T0

�
= oP (1), it follows Pr

�
T̂0 � T1

�
! 1:Notice that for each � 2 T̂0 � T1, dH(b� (�) ; e�0) ����b� (�)� �0 (�)��� ; hence sup�2T̂0 dH(b� (�) ; e�0) � sup�2T̂0 ���b� (�)� �0 (�)���; similarly, sup�2T̂0 dH(�0 (�) ; b�0) �

sup�2T̂0

����0 (�)� b� (�)��� : Then Theorem 1 implies dH
�b�0; e�0� = oP (1) : Uniform continuity assump-

tion of �0 (�) implies dH
�e�0;�0� = oP (1) as dH

�
T̂0; T0

�
= oP (1) : Thus, dH

�b�0;�0� = oP (1) holds.

�

The following lemma is used in some of the subsequent proofs.

Lemma A1 : Assume dH
�
T̂0; T0

�
= oP (1), and Zn (�) is stochastic equicontinuous for all � 2 T1 = T �0 ;

then ����� sup
�2T̂0

Zn (�)� sup
�2T0

Zn (�)

����� = oP (1) :

Proof: See proof of Lemma 1 in Chernozhukov, Lee and Rosen (2013). �

Proof of Proposition 5.1:

By de�nition of CR1��;n and �0; let gCR1��;n :=[�2T0

n
� 2 � :

���� � b�n (�)��� � bc1��;n=pno, we have
Pr (�0 � CR1��;n)

= Pr
�
f�0 � CR1��;ng \ fT0 � T̂0g

�
+ Pr

�
f�0 � CR1��;ng \ fT0 " T̂0g

�
� Pr

�
f�0 � CR1��;ng \ fT0 � T̂0g

�
� Pr

�
f�0 �gCR1��;ng \ fT0 � T̂0g�

= Pr
�n
8� 2 T0, 9� 0 2 T̂0,

����0 (�)� b�n �� 0���� � bc1��;n=pno�+ oP (1)
� Pr

�n
8� 2 T0,

����0 (�)� b�n (�)��� � bc1��;n=pno�+ oP (1)
= Pr

�p
n sup
�2T0

���b�n (�)� �0 (�)��� � bc1��;n�+ oP (1) ;
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where the second equality follows from the assumption Pr
�
T0 � T̂0

�
! 1. Since

p
n
���b�n (�)� �0 (�)��� is

stochastic equicontinuous by Theorem 4.2, then according to Lemma A1,
p
n sup�2T0

���b�n (�)� �0 (�)���
and

p
n sup�2T̂0

���b�n (�)� �0 (�)��� have the same asymptotic distribution, hence
lim inf Pr

�p
n sup
�2T0

���b�n (�)� �0 (�)��� � bc1��;n�
= 1� �:

�

Proof of Theorem 5.2: We �rst show the convergence rate of the minimizers in (i), and then prove

the theorem in (ii).

(i) Let e�n 2 argmin�2T Mn

�e�;bh; �� be any �xed minimizer, then we �rst show that the Hausdor¤
distance between fe�ng and eT is of order OP

�
n�1=2

�
; i.e. dH

�e�n; eT � = OP
�
n�1=2

�
; which takes two

steps of proofs. At the �rst step, we show dH

�e�n; eT � � OP
�
n�1=4

�
: For this purpose, let �n1 :=

OP
�
n�1=4

�
be a positive sequence, and de�ne eT�n1 := f� 2 T : 9e� 2 eT s.t. j� � e� j � �n1g which is

the �n1-expansion of eT , then �n1 := inf�2T neT�n1
M �e�;eh0; �� � c�n1 by Assumption A4(i). For anye� 2 eT , by Assumption A4(iii)(iv)(v) and the fact that Mn(e�;bh; e�n) � Mn(e�;bh; e�),M �e�;eh0; e�n� = nM �e�;eh0; e�n�� M(e�;bh; e�n)o+ nM(e�;bh; e�n)� Mn(e�;bh; e�n)o

+
nMn(e�;bh; e�n)� Mn(e�;bh; e�)o+ nMn(e�;bh; e�)� M(e�;bh; e�)o

+
nM(e�;bh; e�)� M(e�;eh0; e�)o

�
M �e�;eh0; e�n��M(e�;bh; e�n)+ M(e�;bh; e�n)�Mn(e�;bh; e�n)

+
Mn(e�;bh; e�)�M(e�;bh; e�)+ M(e�;bh; e�)�M(e�;eh0; e�)

=
Vh �e�;eh0; e�n� [bh� eh0] + oP �n�1=2�+ Vh �e�;eh0; e�� [bh� eh0] + oP �n�1=2�

+
Mn(e�; h0; e�n)�M(e�; h0; e�n) + oP �n�1=2�+ Mn(e�; h0; e�)�M(e�; h0; e�) + oP �n�1=2�

�
Vh �e�;eh0; e�n� [bh� eh0]� Vh �e�;eh0; e�� [bh� eh0]+ oP �n�1=2�

+ 2
Vh �e�;eh0; e�� [bh� eh0]+OP �n�1=2�

= oP

�
n�1=4

�
:

Hence, Pr
�M �e�;eh0; e�n� < �n1

�
! 1, which implies e�n 2 eT�n1 , i.e. dH �e�n; eT � � �n1 = OP

�
n�1=4

�
:

Then at the second step, we will make similar arguments but with di¤erent auxiliary converging se-

quences.

Notice that sup�;h
Mn

�e�; h; ���M �e�; h; �� = OP
�
n�1=2

�
, let �n2 := 2c�1lnn�1=2 for some

slowly increasing positive sequence flng such that ln = o (
p
n) and

p
n sup�;h

Mn

�e�; h; ���M �e�; h; �� �
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ln with probability approaching 1. De�ne eT�n2 := f� 2 T : 9e� 2 eT s.t. j� � e� j � �n2g, i.e. the
�n2-expansion of eT , and �n2 := inf

�2T neT�n2
M �e�;eh0; �� � c�n2 by Assumption A4(i). Hence it

su¢ ces to show Pr
�M �e�;eh0; e�n� � �n2

�
! 1 which implies Pr

�
dH

�e�n; eT � � �n2

�
! 1. For �xede�n 2 eT�n1 ; there exists a e� 2 eT , such that je�n � e� j � OP

�
n�1=4

�
. From the �rst step, we obtainM �e�;eh0; e�n�

�
Vh �e�;eh0; e�n� [bh� eh0]� Vh �e�;eh0; e�� [bh� eh0]

+ 2
Vh �e�;eh0; e�� [bh� eh0]+OP �n�1=2� :

Then by Assumption A4(iii)(iv), it follows thatM �e�;eh0; e�n� � OP

�
n�1=4

�
oP

�
n�1=4

�
+OP

�
n�1=2

�
= OP

�
n�1=2

�
which implies Pr

�M �e�;eh0; e�n� < �n2

�
! 1. Since the convergence of ln to 1 can be arbitrarily

slow, flng is essentially OP (1) sequence, we obtain infe�2eT je�n � e� j = OP
�
n�1=2

�
:

(ii) Let �n = O
�
n�1=2

�
be a positive sequence, and de�ne the neighborhood B�n (e�) := f� 2 T :

j� � e� j � �ng for all e� 2 eT . Then
inf
�2T

pnMn(e�;bh; �)
= infe�2eT inf

�2B�n (e�)
pnMn(e�;bh; �)+ oP (1) (25)

By stochastic equicontinuity,
bh� eh0

H
= oP

�
n�1=4

�
and j� � e� j � �n, it holds that

p
nMn(e�;bh; �)
=
p
nMn(e�;eh0; e�) +pn�M(e�;bh; �)�M(e�;eh0; e�)�+ oP (1) ;

hence continuing with (25) and M(e�;eh0; e�) = 0,
inf
�2T

pnMn

�e�;bh; ��
= infe�2eT inf

�2B�n (e�)
pnMn(e�;eh0; e�) +pnM(e�;bh; �)+ oP (1) :

By Assumption A4(ii)(iii), we have

M(e�;bh; �)�M(e�;eh0; e�)
= Vh

�e�;eh0; e�� [bh� eh0] + V� �e�;eh0; e�� (� � e�) + oP �n�1=2� :
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Then, together with Assumption A4(iv),

infe�2eT inf
�2B�n (e�)

pnMn(e�;eh0; e�) +pnM(e�;bh; �)
= infe�2eT inf

�2B�n (e�)

p
nMn(e�;eh0; e�) +pnVh �e�;eh0; e�� [bh� eh0]

+V�

�e�;eh0; e��pn (� � e�)
+ oP (1)

= infe�2eT inf
�2B�n (e�)

 1pn
nX
i=1

s
�
Wi; e�;eh0; e��+ V� �e�;eh0; e��pn (� � e�)

+ oP (1) :
Note that j� � e� j � �n and �n = O

�
n�1=2

�
, then

infe�2eT inf
�2B(e�;�n)

 1pn
nX
i=1

s
�
Wi; e�;eh0; e��+ V� �e�;eh0; e��pn (� � e�)


= infe�2eT inf

2Rd�

 1pn
nX
i=1

s
�
Wi; e�;eh0; e��+ V� �e�;eh0; e�� 

 :
Denote Sn (e�) := 1p

n

nX
i=1

s
�
Wi; e�;eh0; e��, then inf2Rd� Sn (e�) + V� �e�;eh0; e��  is the classical weighted

least square problem and has a closed-form solution. Let [V�
�e�;eh0; e��0�V� �e�;eh0; e��]� be the pseudoin-

verse of V�
�e�;eh0; e��0�V� �e�;eh0; e�� if it is not invertible, which equals [V� �e�;eh0; e��0�V� �e�;eh0; e��]�1

if it is invertible, then we can obtain (denote V� (e�) := V�

�e�;eh0; e��):
inf

2Rd�
kSn (e�) + V� (e�) k

=
(I � V� (e�) [V� (e�)0�V� (e�)]�V� (e�)0�)Sn (e�)

=

P �e�; e�� 1p
n

nX
i=1

s
�
Wi; e�;eh0; e��

 ;
where P

�e�; e�� := I � V� (e�) [V� (e�)0�V� (e�)]�1V� (e�)0�: Since
1p
n

nX
i=1

s
�
Wi; e�;eh0; e�� G (e�) in l1 �eT � ;

where G (e�) is a Gaussian process on eT , then if rank(V� �e�;eh0; e��) < d , by Theorem 1.11.1 in van

der Vaart and Wellner (1996),

infe�2eT
P �e�; e�� 1p

n

nX
i=1

s
�
Wi; e�;eh0; e��


 infe�2eT

P �e�; e��G (e�) ;
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which leads to our conclusion that

Tn  infe�2eT
P �e�; e��G (e�) :

�

Proof of Proposition 5.2: (1) Under the null, Lemma A.17 in Santos (2012) indicates

inf
�2T

R�n (�) = inf
�2eT

 bP �e�; e�� 1p
n

nX
i=1

s
�
Wi; e�;bh; ��ui

+ oP � (1) :
Then the rest of the proof follows directly from the proof of Theorem 4.3.

(2) Under the alternative, Tn
�e�� diverges at the rate n1=2, while T �n �e�� diverges at the slower rate

�n = o (
p
n= log log n) ; hence the conclusion follows. �.

Proof of Theorem 5.3:

By stochastic equicontinuity in Assumption A5(v), we have

p
nfEn� (W; bg; �)� � 0e�g
=
p
nfEn� (W; g0; �)� E� (W; g0; �)g+

p
nfE� (W; bg; �)� E� (W; g0; �)g

+
p
nfE� (W; g0; �)� � 0e�g+ oP (1) :

Notice that by Assumption A5(iii)

p
nfE� (W; bg; �)� E� (W; g0; �)g
=
p
nV c

g (g0; �) [bg � g0] + oP (1) ;
hence,

p
nfEn� (W; bg; �)� � 0e�g
=

1p
n

nX
i=1

f� (Wi; g0; �)� E� (Wi; g0; �) + � (Wi; g0; �)g (26)

+
p
nfE� (W; g0; �)� � 0e�g+ oP (1) :

(1) For any �xed e� 2 int (�0) ; there exists � > 0 such that the closed ball centered at e� with radius
�; B�

�e�� � �0: Then for any � 2 Sd� ; by the de�nition of support function, it follows that
� (� j�0) � sup

�2B�(e�) �
0�

� � 0
�e� + ���

= � 0e� + �
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where the second inequality is because e�+ �� 2 B� �e��. Hence for any � 2 Sd� ; we have E� (W; g0; �)�
� 0e� � �: Notice that the choice of � does not depend on �; and the �rst term is OP (1), thus the second

term dominates and we have

inf
�2Sd�

p
nfEn� (W; bg; �)� � 0e�g P! +1:

(2) If e� =2 �0; then by similar arguments as in (1) and the Hyperplane Separation Theorem, there
exists some � > 0 and e� 2 Sd� ; such that E� (W; g0; e�)�e� 0e� � ��: Hence we have inf�2Sd� fE� (W; g0; �)�
� 0e�g < ��, thus

inf
�2Sd�

p
nfEn� (W; bg; �)� � 0e�g P! �1:

(3) If e� is on the boundary of �0, i.e. e� 2 @�0, notice eS =
n
� 2 Sd� : E� (W; g0; �) = � 0e�go ;

then eS 6= ?: For this case, we modify the proof of Theorem 1 in Galichon and Henry (2009). Let

Gn (�) :=
1
n

Pn
i=1 f� (Wi; g0; �)� E� (Wi; g0; �) + � (Wi; g0; �)g, de�ne

eSb := n� 2 Sd� : E� (W; g0; �)� � 0e� � bg
o
;

eSn;b := n� 2 Sd� : Gn (�) + E� (W; g0; �)� � 0e� � bg
o
:

Suppose there exists a positive sequence fbng satisfying bn ln lnn + b�1n
p
ln lnn=n ! 0; we �rst show

that dH
� eS; eSn;bn� = oP (1) : Notice that bn

p
n!1; we have

Pr
� eS � eSn;bn� = Pr

 
sup
�2 eS

p
nGn (�) � bn

p
n

!
! 1;

it su¢ ce to show sup
�2 eSn;bn d

�
�; eS� = oP (1) : For any " > 0, denote the "-expansion of eS as eS", then

by de�nition of eS, there exists � (") > 0 such that inf
�2Sd�n eS"

n
E� (W; g0; �)� � 0e�o > � (") ; and by

de�nition of eSn;bn , we have
sup

�2 eSn;bn
n
E� (W; g0; �)� � 0e�o

� sup
�2 eSn;bn fbn �Gn (�)g

= bn � inf
�2 eSn;bn Gn (�) = oP (1) :

Thus eSn;bn \ �Sd�n eS"� is empty with probability approaching 1, implying eSn;bn � eS". Since " is

arbitrary, we have sup
�2 eSn;bn d

�
�; eS� = oP (1) :

We next show that with probability approaching one,

inf
�2 eS

p
nGn (�) � inf

�2Sd�
T 0n (�) � inf

�2 eSn;bn
p
nGn (�) ;
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where T 0n (�) :=
p
nGn (�) +

p
nfE� (W; g0; �)� � 0e�g: It follows that

inf
�2 eS

p
nGn (�) =(i) inf

�2 eS T 0n (�)
�(ii) inf

�2Sd�
T 0n (�)

= min

(
inf

�2 eSn;bn T
0
n (�) ; inf

�2Sd�n eSn;bn T
0
n (�)

)

�(iii) min
(

inf
�2 eSn;bn

p
nGn (�) ; inf

�2Sd�n eSn;bn T
0
n (�)

)
�(iv) inf

�2 eSn;bn
p
nGn (�) ;

where (i) is due to the de�nition of eS; (ii) follows from the fact that eS � Sd� ; (iii) is due to the fact
E� (W; g0; �)�� 0e� � 0 for all � , hence inf�2 eSn;bn T 0n (�) � inf�2 eSn;bn pnGn (�); as for (iv), by de�nition ofeSn;bn , for any � 2 Sd�n eSn;bn , T 0n (�) > bn

p
n, hence inf

�2Sd�n eSn;bn T 0n (�) � bn
p
n > inf

�2 eSn;bn pnGn (�)
with probability approaching 1.

Lastly, by Lemma A1, we have����� inf�2 eS
p
nGn (�)� inf

�2 eSn;bn
p
nGn (�)

����� = oP (1) ;

which implies that inf�2Sd� T
0
n (�) = inf�2 eS pnGn (�) + oP (1) : Hence by (26),

T cn(
e�) = inf

�2 eS
p
nGn (�) + oP (1)

 inf
�2 eSfGc (�)g:

�
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